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ABSTRACT

SOME CONTRIBUTIONS TO SEMI- SUPERVISED LEARNING

By

Pavan Kumar Mallapragada

Semi-supervised learning methods attempt to improve the performance of a supervised

or an unsupervised learner in the presence of “side information”. This side information can

be in the form of unlabeled samples in the supervised case or pair-wise constraints in the

unsupervised case. Most existing semi-supervised learning approaches design a new objec-

tive function, which in turn leads to a new algorithm rather than improving the performance

of an already available learner. In this thesis, the three classical problems in pattern recog-

nition and machine learning, namely, classification, clustering, and unsupervised feature

selection, are extended to their semi-supervised counterparts.

Our first contribution is an algorithm that utilizes unlabeled data along with the la-

beled data while training classifiers. Unlike previous approaches that design specialized

algorithms to effectively exploit the labeled and unlabeled data, we design a meta-semi-

supervised learning algorithm calledSemiBoost, which wraps around the underlying super-

vised algorithm and improve its performance using the unlabeled data and a similarity func-

tion. Empirical evaluation on several standard datasets shows a significant improvement in

the performance of well-known classifiers (decision stump,decision tree, and SVM).

In the second part of this thesis, we address the problem of designing a mixture model

for data clustering that can effectively utilize “side-information” in the form of pair-wise

constraints. Popular mixture models or related algorithms(K-means, Gaussian mixture

models) are too rigid (strong model assumptions) to result in different cluster partitions

by utilizing the side-information. We propose a non-parametric mixture model for data

clustering in order to be flexible enough to detect arbitrarily shaped clusters. Kernel density



estimates are used to fit the density of each cluster. The clustering algorithm was tested on

a text clustering application, and performance superior topopular clustering algorithms

was observed. Pair-wise constraints (“must-link” and “cannot-link” constraints) are used

to select key parameters of the algorithm.

The third part of this thesis focuses on performing feature selection from unlabeled

data using instance level pair-wise constraints (i.e., a pair of examples labeled as must-link

pair or cannot-link pair). Using the dual-gradient descentmethod, we designed an efficient

online algorithm. Pair-wise constraints are incorporatedinto the feature selection stage,

providing the user with flexibility to use unsupervised or semi-supervised algorithms at

a later stage. The approach was evaluated on the task of imageclustering. Using pair-

wise constraints, the number of features was reduced by around 80%, usually with little

or no degradation in the clustering performance on all the datasets, and with substantial

improvement in the clustering performance on some datasets.
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CHAPTER 1

Introduction

The advent of cheap sensors and storage devices has resultedin the generation, storage

and consumption of massive amounts and variety of data in theform of text, video, image

and speech. Multimedia content generation, which was once confined to recording studios

or editorial offices, has now become a household activity. Internet users contribute to the

media generation through blogs and vlogs (Blogspot), tweets(Twitter), photos (Flickr),

audio and video recordings (Youtube). In addition, users unintentionally contribute to this

surge through the records of their online activities such asInternet search logs (Google, Ya-

hoo/Bing), advertisement clicks (Google and Yahoo), shopping (Amazon, Ebay), network

logs (ISPs), browser logs (ISPs) to name just a prominent few!

It is not surprising then that automatic data analysis playsa central role for analyz-

ing, filtering and presenting the user with the information he is searching for. Machine

learning, pattern recognition and data mining are three related fields that study and develop

algorithms to perform the necessary data analysis. Traditionally, data analysis has been

studied in two settings:

Supervised Learning Given a set of input objectsX = {xi}
n
i=1, and a set of correspond-

ing outputs (class labels) for thei-th object,yi = {yi
k}

K
k=1, whereK is the number of output

variables per input object, supervised learning aims to estimate a mappingf : X → Y such
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that the output for a test objectx (that was not seen during the training phase) may be pre-

dicted with high accuracy. For instance,X can be a collection of documents, andY can be

a collection of labels specifying if a user finds the corresponding document interesting (or

not). The algorithm must learn a functionf that predicts if the user will be interested in a

particular document that has not yet been labeled.

Unsupervised Learning Given a set of objects,X = {xi}
n
i=1, and asimilarity measure

between pairs of objectsk : X × X → R, the goal of unsupervised learning is to partition

the set such that the objects within each group are more similar to each other than the

objects between groups. For example, given a set of documents, the algorithm must group

the documents into categories based on their content alone without any external labels.

Unsupervised learning is popularly known asclustering.

Supervised learning expects training data that is completely labeled. On the other ex-

treme, unsupervised learning is applied on completely unlabeled data. Unsupervised learn-

ing is more difficult problem than supervised learning due tothe lack of a well-defined

user-independent objective [3, 4]. For this reason, it is usually considered an ill-posed

problem that is exploratory in nature [5]; that is, the user is expected to validate the output

of the unsupervised learning process. Devising a fully automatic unsupervised learning

algorithm that is applicable in a variety of data settings isan extremely difficult problem,

and possibly infeasible. On the other hand, supervised learning is a relatively easier task

compared to unsupervised learning. The ease comes with an added cost of creating a la-

beled training set. Labeling a large amount of data may be difficult in practice because data

labeling:

1. is expensive: human experts are needed to perform labeling. E.g. Expertsneed to be

paid to label, or tools such as Amazon’s Mechanical turk [6] must be used.

2. has uncertainty about the level of detail: the labels of objects change with the granu-

larity at which the user looks at the object. As an example, a picture of a person can
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be labeled as “person”, or at a greater detail “face”,“eyes”,“torso” etc.

3. is difficult: sometimes objects must be sub-divided into coherent partsbefore they can

be labeled. For example, speech signals and images have to beaccurately segmented

into syllables and objects, respectively before labeling can be performed.

4. can be ambiguous: objects might have non-unique labellings or the labellings them-

selves may be unreliable due to a disagreement among experts.

5. uses limited vocabulary: Typical labeling setting involves selecting a label from alist

of pre-specified labels which may not completely or precisely describe an object. As

an example, labeled image collections usually come with a pre-specified vocabulary

that can describe only the images that are already present inthe training and testing

data.

Unlabeled data is available in abundance, but it is difficultto learn the underlying struc-

ture of the data. Labeled data is scarce but is easier to learnfrom. Semi-supervised learning

is designed to alleviate the problems of supervised and unsupervised learning problems, and

has gained significant interest in the machine learning research community [7].

1.1 Semi-supervised learning

Semi-supervised learning (SSL) works in situations where the available information in data

is in between those considered by the supervised and unsupervised learners; i.e. it can

be approached from both supervised and unsupervised learning problems by augmenting

their traditional inputs. Various sources of side-information considered in the literature are

summarized in Table 1.1.
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Semi-supervised classification

Semi-supervised classification algorithms train a classifier given both labeled and unlabeled

data. A special case of this is the well known transductive learning [8], where the goal is to

label only the unlabeled data available during training. Semi-supervised classification can

also be viewed as an unsupervised learning problem with onlya small amount of labeled

training data.

Semi-supervised clustering

Clustering is an ill-posed problem, and it is difficult to comeup with a general purpose

objective function that works satisfactorily with an arbitrary dataset [4]. If any side-

information is available, it must be exploited to obtain a more useful or relevant clustering

of the data. Most often, side-information in the form of pairwise constraints (“a pair of ob-

jects belong to the same cluster or different clusters”) is available. The pairwise constraints

are of two types:must-linkandcannot-linkconstraints. The clustering algorithm must try

to assign the same label to the pair of points participating in a must-link constraint, and

assign different labels to a pair of points participating ina cannot-link constraint. These

pairwise constraints may be specified by a user to encode his preferred clustering. Pairwise

constraints can also be automatically inferred from the structure of the data, without a user

having to specify them. As an example, web pages that are linked to one another may be

considered as participating in a must-link constraint [9].

Semi-supervised feature selection

Feature selection can be performed for both supervised and unsupervised settings depend-

ing on the data available. Unsupervised feature selection is difficult for the same reasons

that make clustering difficult – lack of a clear objective apart from the model assumptions.

Supervised feature selection has the same limitations as classification, i.e. scarcity of la-

beled data. Semi-supervised feature selection aims to utilize pairwise constraints in order

4



Task Typical input Side-information for References
semi-supervised learning

Classification Labeled data Unlabeled data [11]
Classification Labeled data Weakly related unlabeled data [12]
Multilabel learning Multi-label data Unlabeled data [13]
Multilabel learning Multi-label data Partially labeled examples [14]
Clustering Unlabeled data Labeled data [15]
Clustering Unlabeled data Pairwise constraints [16]
Clustering Unlabeled data Group constraints [17]
Clustering Similarity metric Balancing constraints [18]
Ranking Similarity metric Partial ranking [19]

Table 1.1: Different kinds of semi-supervised settings considered in the literature.

to identify a possibly superior subset of features for the task.

Many other learning tasks, apart from classification and clustering, have their semi-

supervised counterparts as well (e.g., semi-supervised ranking [10]). For example, page

ranking algorithms used by search engines can utilize existing partial ranking information

on the data to obtain a final ranking based on the query.

1.2 Thesis contributions

Most semi-supervised learning algorithms developed in theliterature (summarized in Chat-

per 2) attempt to modify existing supervised or unsupervised algorithms, or devise new ap-

proaches. This is often not desirable since a significant amount of effort may already have

been invested in developing pattern recognition systems byfine tuning the parameters, or

incorporating domain knowledge. The high-level goals of the thesis are as follows:

• To design semi-supervised learning methods and algorithmsthat improve the existing

and established supervised and unsupervised learning algorithms without having to

modify them.
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• To develop semi-supervised approaches following the above principle for each of the

standard pattern recognition problems, namely, supervised learning, unsupervised

learning and feature selection.

The above goals can be achieved by using the side informationin one of the following

ways:

1. Design wrapper algorithms that use existing learning algorithms as components and

improve them using the side information (e.g. unlabeled data for classification).

2. Use the side information to select critical parameters ofthe algorithm.

3. Incorporate side information directly into the data representation (features or simi-

larity matrix) so that supervised and unsupervised algorithms can be directly used.

This thesis contributes to the field of semi-supervised classification and clustering by

attempting to answer the following questions:

1. A meta semi-supervised-learning algorithm, calledSemiBoostwas developed that

is presented in Chapter 3. It is designed to iteratively improve a given supervised

classifier in the presence of a large number of unlabeled data.

2. A non-parametric mixture model using kernel density estimation is presented in

Chapter 4. The resulting algorithm can discover arbitrary cluster structures in the

data. Since the algorithm is probabilistic in nature, several issues like the number of

clusters, incorporating side information etc., can be handled in a principled manner.

Side-information in the form of pairwise constraints is used to estimate the critical

parameters of the algorithm.

3. Curse of dimensionality is a well known problem in pattern recognition and machine

learning. Many methods face challenges in analyzing high-dimensional data that are

being generated in various applications (e.g, images and documents represented as
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bag-of-words, gene microarray analysis etc.). Given a set of unlabeled examples,

and an oracle that can label the pairwise constraints as must-link or cannot link, an

algorithm is proposed to select a subset of relevant features from the data.
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CHAPTER 2

Background

Most semi-supervised learning methods are extensions of existing supervised and unsu-

pervised algorithms. Therefore, before introducing the developments in semi-supervised

learning literature, it is useful to briefly review supervised and unsupervised learning ap-

proaches.

2.1 Supervised learning

Supervised learning aims to learn a mapping functionf : X → Y, whereX andY are

input and output spaces, respectively (e.g. classificationand regression [20, 21]). The

process of learning the mapping function is calledtraining and the set of labeled objects

used is called thetraining dataor thetraining set. The mapping, once learned, can be used

to predict the labels of the objects that were not seen duringthe training phase. Several

pattern recognition [22, 20, 21] and machine learning [23, 21] textbooks discuss supervised

learning extensively. A brief overview of supervised learning algorithms is presented in this

section.

Supervised learning methods can be broadly divided intogenerativeor discriminative

approaches. Generative models assume that the data is independently and identically dis-

tributed and is generated by a parameterized probability density function. The parameters
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are estimated using methods like the Maximum Likelihood Estimation (MLE), Maximum

A Posteriori estimation (MAP) [20], Empirical Bayes and Variational Bayes [21]. Proba-

bilistic methods could further be divided intofrequentistor Bayesian. Frequentist methods

estimate parameters based on the observed data alone, whileBayesian methods allow for

inclusion of prior knowledge about the unknown parameters.Examples of this approach

include the Naive Bayes classifier, Bayesian linear and quadratic discriminants to name a

few.

Instead of modeling the data generation process, discriminative methods directly model

the decision boundary between the classes. The decision boundary is represented as a para-

metric function of data, and the parameters are learned by minimizing the classification

error on the training set [20]. Empirical Risk Minimization (ERM) is a widely adopted

principle in discriminative supervised learning. This is largely the approach taken by Neu-

ral Networks [24] and Logistic Regression [21]. As opposed toprobabilistic methods, these

do not assume any specific distribution on the generation of data, but model the decision

boundary directly.

Most methods following the ERM principle suffer from poor generalization perfor-

mance. This was overcome by Vapnik’s [25] Structural Risk Minimization (SRM) princi-

ple which adds a regularity criterion to the empirical risk that selects a classifier with good

generalization ability. This led to the development of Support Vector Machines (SVMs)

which regularize the complexity of classifiers while simultaneously minimizing the empir-

ical error. Methods following ERM such as Neural networks, and Logistic Regression are

extended to their regularized versions that follow SRM [21].

Most of the above classifiers implicitly or explicitly require the data to be represented

as a vector in a suitable vector space, and are not directly applicable to nominal and ordi-

nal features [26]. Also, most discriminative classifiers have been developed for only two

classes. Multiclass classifiers are realized by combining multiple binary (2-class) classi-

fiers, or using coding methods [20].
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Decision trees is one of the earliest classifier [23], that can handle handle a variety of

data with a mix of both real, nominal, missing features and multiple classes. It also provides

interpretable classifiers, which give a user an insight about which features are contributing

for a particular class being predicted for a given input example. Decision trees could pro-

duce complex decision rules, and are sensitive to noise in the data. Their complexity can

be controlled by using approaches like pruning, however, inpractice classifiers like SVM

or Nearest Neighbor have been shown to outperform decision trees on vector data.

Ensemble classifiers are meta-classification algorithms that combine multiple compo-

nent classifiers (called base classifiers) to obtain a meta-classifier with the hope that they

will perform better than any of the individual component classifiers. Bagging [27] and

Boosting [28, 29] are the two most popular methods in this class. Bagging is a short form

for bootstrap aggregation, which trains multiple instances of a classifier on different sub-

samples (bootstrap samples) of the training data. The decision on an unseen test example

is taken by a majority vote among the base classifiers. Boosting, on the other hand, sam-

ples training data more intelligently by sampling examplesthat are difficult for the existing

ensemble to classify with a higher preference.

2.2 Unsupervised learning

Unsupervised learning or clustering, is a significantly more difficult problem than classi-

fication because of the absence of labels on the training data. Given a set of objects, or

a set of pairwise similarities between the objects, the goalof clustering is to findnatural

groupings (clusters) in the data. The mathematical definition of what is considered a natu-

ral grouping defines the clustering algorithm. A very large number of clustering algorithms

have already been published, and new ones continue to appear[30, 3, 31]. We broadly

divide the clustering algorithms into groups based on theirfundamental assumptions, and

discuss a few representative algorithms in each group, ignoring minor variations within the
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group.

K-means [30, 3], arguably, is the most popular and widely used clustering algorithm.

K-means is an example of a sum of squared error (SSE) minimization algorithm. Each

cluster is represented by its centroid. The goal of K-means is to find the centroids and

the cluster labels for the data points such that the sum-of-squared error between each data

point and its closest centroid is minimized. K-means is initialized with a set of random

cluster centers, that are iteratively updated by assigningthe closest data point to each center,

and recomputing the centroids. ISODATA [32] and Linear Vector Quantization [33] are

closely related SSE minimization algorithms that are independently proposed in different

disciplines.

Parametric mixture modelsare well known in statistics and machine learning commu-

nities [34]. A mixture of parametric distributions, in particular, GMM [35, 36], has been

extensively used for clustering. GMMs are limited by the assumption that each component

is homogeneous, unimodal, and generated using a Gaussian density. Latent Dirichlet Allo-

cation [37] is a multinomial mixture model that has become the de facto standard for text

clustering.

Several mixture models have been extended to their non-parametric form by taking the

number of components to infinity in the limit [38, 39, 40]. A non-parametric prior is used

in the generative process of these infinite models (e.g. Dirichlet Process) for clustering

in [38]. One of the key advantages offered by the non-parametric prior based approaches

is that they adjust their complexity to fit the data by choosing the appropriate number of

parametriccomponents. Hierarchical Topic Models [39] are clusteringapproaches that

have seen huge success in clustering text data.

Spectral clusteringalgorithms [41, 42, 43] are popular non-parametric models that min-

imize an objective function of the formJ(f) = fT ∆f , wheref is the function to be

estimated, and∆ is the discrete graph Laplacian operator. Kernel K-means isa related ker-

nel based algorithm, which generalizes the Euclidean distance based K-means to arbitrary
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metrics in the feature space. Using the kernel trick, the data is first mapped into a higher

dimensional space using a possibly non-linear map, and a K-means clustering is performed

in the higher dimensional space. In [44], the explicit relation (equivalence for a particular

choice of normalization of the kernel) between Kernel K-means, Spectral Clustering and

Normalized Cut was established.

Non-parametric densitybased methods are popular in the data mining community.

Mean-shift clustering [45] is a widely used non-parameteric density based clustering al-

gorithm. The objective of Mean-shift is to identify the modes in the kernel-density, seeking

the nearest mode for each point in the input space. Several density based methods like DB-

SCAN also rely on empirical probability estimates, but theirperformance degrades heavily

when the data is high dimensional. A recent segmentation algorithm [46] uses a hybrid

mixture model, where each mixture component is a convex combination of a parametric

and non-parametric density estimates.

Hierarchical clusteringalgorithms are popular non-parametric algorithms that itera-

tively build a cluster tree from a given pairwise similaritymatrix. Agglomerative algo-

rithms such as Single Link, Complete Link, Average Link [4, 30], Bayesian Hierarchical

Clustering [47], start with each data point in a single cluster, and merge them succesively

into larger clusters based on different similarity criteria at each iteration. Divisive algo-

rithms start with a single cluster, and successively dividethe clusters at each iteration.

2.3 Semi-supervised algorithms

Semi-supervised learning algorithms (See Section 1.1) canbe broadly classified based on

the role the available side information plays in providing the solution to supervised or

unsupervised learning.
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Table 2.1: A comparison of different clustering algorithmsproposed in the literature. Given the large number of available algorithms,
only a few representative ones are shown here.

Method/Family Algorithm Cluster Definition

Non-parametric density es-
timation

Jarvis-Patrick [48], DBSCAN [49], MeanShift [45],
DENCLUE [50]

Spatially dense and connected regions
correspond to clusters.

Spectral Algorithms Min Cut [51], Ratio Cut [52], Normalized Cut [41],
Spectral Clustering [42]

Sparse regions correspond to the cluster
separation boundaries.

Probabilistic Mixture mod-
els

Mixture of Gaussians [53, 36], Latent Dirichlet Allo-
cation [37], PLSI [54]

Data comes from an underlying proba-
bilistic mixture model.

Squared-Error K-Means [20, 3], X-means [55], Vector Quantiza-
tion [33], Kernel K-means [56]

Data points close to their cluster repre-
sentative belong to the same cluster.

Hierarchical Single Link, Complete Link and Average Link [20],
Bayesian Hierarchical Clustering [57], COBWEB [58]

Data points close to each other fall in the
same cluster.

Information Theoretic Minimum Entropy [59, 60], Information Bottle-
neck [61], Maximum entropy [62]

Clustering is obtained by compressing
the data to retain the maximum amount
of information.
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2.3.1 Semi-supervised classification

While semi-supervised classification is a relatively new field, the idea of using unlabeled

samples to augment labeled examples for prediction was conceived several decades ago.

The initial work in semi-supervised learning is attributedto Scudders for his work on “self-

learning” [63]. An earlier work by Robbins and Monro [64] on sequential learning can

also be viewed as related to semi-supervised learning. Vapnik’s Overall Risk Minimiza-

tion (ORM) principle [65] advocates minimizing the risk overthe labeled training data as

well as the unlabled data, as opposed to the Empirical Risk Minimization, and resulted in

transductive Support Vector Machines.

Fig. 2.1 gives the basic idea of how unlabeled data could be useful in learning a clas-

sifier. Given a set of labeled data, a decision boundary may belearned using any of the

supervised learning methods (Fig. 2.1(a)). When a large number of unlabeled data is pro-

vided in addition to the labeled data, the true structure of each class is revealed through

the distribution of the unlabeled data (Fig. 2.1(b)). The unlabeled data defines a “natural

region” for each class, and the region is labeled by the labeled data. The task now is no

longer just limited to separating the labeled data, but to separate the regions to which the

labeled data belong. The definition of this “region” constitutes some of the fundamental

assumptions in semi-supervised learning.

Existing semi-supervised classification algorithms may beclassified into two categories

based on their underlying assumptions. An algorithm is saidto satisfy themanifold as-

sumptionif it utilizes the fact that the data lie on a low-dimensionalmanifold in the input

space. Usually, the underlying geometry of the data is captured by representing the data as

a graph, with samples as the vertices, and the pairwise similarities between the samples as

edge-weights. Several graph based algorithms such as Labelpropagation [11, 66], Markov

random walks [67], Graph cut algorithms [68], Spectral graph transducer [69], and Low

density separation [70] proposed in the literature are based on this assumption.

The second assumption is called thecluster assumption[71]. It states that the data
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Figure 2.1: Utility of the unlabeled data in learning a classifier. (a) Classifier learned using
labeled data alone. (b) Utility of unlabeled data. The filleddots show the unlabeled data.
The gray region depicts the data distribution obtained fromthe unlabeled data.

samples with high similarity between them, must share the same label. This may be equiv-

alently expressed as a condition that the decision boundarybetween the classes must pass

through low density regions. This assumption allows the unlabeled data to regularize the

decision boundary, which in turn influences the choice of theclassification models. Many

successful semi-supervised algorithms like TSVM [72] and Semi-supervised SVM [73] fol-

low this approach. These algorithms assume a model for the decision boundary, resulting

in an inductive classifier.
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Table 2.2: A summary of semi-supervised classification algorithms. T or I in the last column denotes Transductive or Inductive property
of the algorithm, respectively.

Group Approach Summary T/I

Manifold Assumption

Label Propagation [11, 66] Graph-based; Maximize label consistency using Graph Laplacian T
Min-cuts [68] Edge-weight based graph-partitioning algorithm constraining nodes

with same label to be in same partition
T

MRF [67], GRF [74] Markov random field and Gaussian random field models T
LDS [75] TSVM trained on a dimensionality reduced data using graph-based

kernel
T

SGT [69] Classification cost minimized with a Laplacian regularizer T
LapSVM [76] SVM with Laplacian regularization I

Cluster Assumption

Co-training [77] Maximizes predictor consistency among two distinct feature views I
Self-training [78] Assumes pseudo-labels as true labels and retrains the model I
SSMB [79] Maximizes pseudo-margin using boosting I
ASSEMBLE [80] Maximizes pseudo-margin using boosting I
Mixture of Experts [81] EM based model-fitting of mixture models I
EM-Naive Bayes [82] EM based model-fitting of Naive Bayes I
TSVM [72], S3VM [73] Margin maximization using density of unlabeled data I
Gaussian processes [83] Bayesian discriminative model I

Manifold & Cluster As-
sumptions

SemiBoost (Proposed) Boosting with a graph Laplacian inspired regularization I
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Bootstrapping Classifiers from Unlabeled data

One of the first uses of unlabeled data was to bootstrap an existing supervised learner using

unlabeled data iteratively. The unlabeled data is labeled using a supervised learner trained

on the labeled data, and the training set is augmented by the most confident labeled sam-

ples. This process is repeated until all the unlabeled data have been processed. This is pop-

ularly known as “Self-training”, which was first proposed byScudders [63]. Yarowsky [84]

applied self-learning to the “word sense” disambiguation problem. Rosenberg et al. [85]

applied self-training for object detection.

Several classifiers proposed later follow the bootstrapping architecture similar to that

of self-training, but with a more robust and well-guided selection procedure for the un-

labeled samples for inclusion in the training data. Semi-supervised generative models

using EM [53], for instance, the Semi-supervised Naive Bayes[86], is a “soft” version

of self-training. Many ensemble classification methods, inparticular, those following the

semi-supervised boosting approach [79, 87, 88] use specificselection procedures for the

unlabeled data, and use a weighted combination of classifiers instead of choosing the final

classifier.

Margin based classifiers

The success of margin based methods in supervised classification motivated a significant

amount of research in their extension to semi-supervised learning. The key idea of margin

based semi-supervised classifiers is to model the change in the definition of margin in the

presence of unlabeled data. Margin based classifiers are usually extensions of Support

Vector Machines (SVM). An SVM minimizes the empirical erroron the training set, along

with a regularization term that attemps to select the classifier with maximum margin. For a

given set of labeled examples{(xi, yi)}
n
i=1, and a loss functionℓ : X ,Y → R, SVM finds

a classifierf(x) minimizing the following objective function
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Jsvm(f) = ||f ||2H +
n
∑

i=1

ℓ(f(xi), yi) (2.1)

The first term in Eq (2.1) corresponds to the complexity of thefunction computed as

the norm in an appropriate function space (Hilbert space), and the second term corresponds

to the empirical error of the classifierf on the training set measured using a convex loss

functionℓ(f(x), y). The lossℓ(f(x), y) is defined only when the labely of the sample is

known. The key idea behind the semi-supervised extensions of support vector machines

is to define the loss for unlabeled data asℓ(x, yu) = minŷ=±1 ℓ(x, ŷ), whereŷ is the label

assigned to the unlabeled example during learning (also called the pseudo-label).

Vapnik [8] first formulated this problem and proposed a branch and bound algorithm.

A Mixed Integer Programming based solution is presented in [89], which is called Semi-

supervised SVM or S3VM. Fung and Mangasarian [73] proposed a successive linear ap-

proximation to themin(.) function in the loss function, and proposed VS3VM. None of

these methods are applicable to real datasets (even small size datasets) owing to their high

computational complexity.

Transductive SVM (TSVM) [90] is one of the early attempts to develop a practically

usable algorithm for semi-supervised SVM. TSVM provides anapproximate solution to

the combinatorial optimization problem of semi-supervised SVM by first labeling the un-

labeled data with an SVM trained on the labeled data, followed by switching the individual

labels of unlabeled data such that the objective function isminimized. Gradient descent was

used in [75] to minimize the same objective function, while defining an appropriate sub-

gradient for themin(.) function. This approach was called∇TSVM, and its performance

is shown to be comparable to that of the other optimization schemes discussed above.
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Ensemble Methods

Almost all the early semi-supervised extensions to boosting algorithms relied on the margin

interpretation of AdaBoost [28, 29]. It is well known that boosting algorithms minimize

the following objective function:

Jboost(H) =

nl
∑

i=1

M(−yiH(xi)), (2.2)

whereM(.) is a convex cost function. ChoosingM = exp(.) results in the well-known Ad-

aBoost algorithm. The quantityyiH(xi) is the classification margin by definition. Boosting

algorithms like ASSEMBLE [89] and Semi-supervised Margin Boost (SSMB) [79] extend

the definition of margin to unlabeled samples. Margin over unlabeled samples is defined

as|H(xi)| by ASSEMBLE and as(H(xi))
2 by SSMB. This definition of margin is reason-

able since both the modulus and square functions are monotonically increasing functions

of margin (Maximizing a monotonically increasing functionof margin effectively maxi-

mizes the margin), and they conveniently eliminate the value of unknown label from the

definition. More detailed discussion of the boosting algorithms with relevance to the pro-

posed SemiBoost algorithm is presented in Chatper 3. In particular, we note that the margin

over unlabeled data is not a sufficiently good measure for classification performance. Ideas

from highly successful unsupervised methods are combined with the boosting algorithm

in Chapter 3 to obtain a powerful boosting classifier, that is shown to improve the average

margin.

Graph Connectivity

Graph theory has been known to be powerful tool for modeling unsupervised learning (clus-

tering) problems since its inception [100, 101] to relatively recent Normalized Cuts [102]

and Spectral clustering [103], and shown to perform well in practice [104, 105, 106]. Graph

based methods represent the data as a weighted graph, where the nodes in the graph repre-

sent the data points, and the edge weights represent the similarity between the correspond-
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Table 2.3: Unsupervised learning algorithms and their corresponding semi-supervised counterparts.

Method/Family Original Unsupervised Algorithm Semi-supervised Extension

Non-parametric density es-
timation

MeanShift [45] Weakly-supervised Mean-Shift [91]

Spectral Algorithms Min Cut [51]
Ratio Cut [52] and Normalized Cut [41] SS-Graph Clustering [92, 93, 94]
Spectral Clustering [42] Spectral Learning [95]

Probabilistic Mixture mod-
els

Mixture of Gaussians [53, 36], Latent Dirichlet Allo-
cation [37], PLSI [54]

Penalized Probabilistic Clustering [96],
Model based clustering with con-
straints [17]

Squared-Error K-Means [20, 3] COP-K-Means [97], HMRF-K-
means [15], PC-K-means, MPCK-
means [98]

Hierarchical Single Link, Complete Link and Average Link [20] [99]
COBWEB [58] COP-COBWEB [16]

Information Theoretic Minimum Entropy [59, 60], Information Bottle-
neck [61], Maximum entropy [62]

No semi-supervised extention proposed
yet.
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ing pair of data points. The success of graph based algorithms in unsupervised learning

motivates its use in semi-supervised learning (SSL) problems.

A extension to Min-cut clustering algorithm for transduction is presented in [68]. The

edge weight between a pair of samples is set to∞ if they share the same label, to ensure that

they remain in the same partition after partitioning the graph. Szummer and Jakkola [67]

and Zhu and Ghaharamani [11] model the graph as a discrete Markov random field, where

the nomalized weight of each edge represents the probability of a label (state) jumping

from one data point to the other. The solution is modeled as the probability of a label (from

a labeled data point) reaching an unlabeled data point in a finite number of steps. Zhu et

al., [74] relax the Markov random field with a discrete state space (labels) to a Gaussian

random field with continous state space, thereby achieveingan approximate solution with

lower computational requirements.

Most graph based semi-supervised learning methods are non-parametric and transduc-

tive in nature, and can be shown as solutions to the discrete Green’s function, defined using

the discrete Graph Laplacian.

Definition 1. For a weighted graphG = 〈V,W 〉, whereW represents the edge weight

matrix, the Graph Laplacian∆ is defined as∆ = (D−W ), whereD is a diagonal matrix

containing the sums of rows of W.

The quantityyt∆y measures the inconsistency between the similarity matrixW and

the labelingy, and plays a central role in graph based SSL algorithms. Given a similarity

matrixW , where[W ]ij = wij, yt∆y can be expanded as

yt∆y = −
1

2

∑

ij

wij(yi − yj)
2. (2.3)

To minimize the inconsistency, the difference betweenyi andyj must be small whenever

the similaritywij is large, and vice versa.

Eq (2.3) has several useful mathematical properties. Most importantly, it is a convex

function of the labels, and hence has a unique minima. Normalized Cut [102] is an unsu-

21



pervised algorithm that minimizes a normalized version of Eq (2.3) using spectral methods.

Spectral graph transducer [69] minimizes graph Laplacian over both labeled and unlabeled

data, with an additional term penalizing the difference in prediction over the labeled sam-

ples. Manifold regularization [107] is a semi-supervised extension of SVMs that searches

for a function that minimizes the graph Laplacian in addition to the standard SVM objec-

tive function. Unlike all other extensions of SVM, the resulting optimization function is

convex, and can be optimized very efficiently.

2.3.2 Semi-supervised clustering

Clustering aims to identify groups of data such that the points within each group are

more similar to each other than the points between differentgroups. Clustering problem

is ill-posed, and hence multiple solutions exist that can beconsidered equally valid and

acceptable. Semi-supervised clustering utilizes any additional information, calledside-

information, that is available to disambiguate between the solutions. The side information

is usually present in the form of instance levelpairwiseconstraints [16]. Pairwise con-

straints are of two types –must-linkconstraints andcannot-linkconstraints. Given a pair

of points, must link constraints require the clustering algorithm to assign the same label to

the points. On the other hand, cannot-link constraints require the clustering algorithm to

assign different labels to the points. However, several other forms of side-information have

been considered in the literature as summarized in Table 1.1. Figure 2.2 shows the utility

of pairwise constraints in clustering.

Penalizing Constraints

One of the earliest constrained clustering algorithms was developed by Wagstaff and

Cardie [16, 97], called the COP K-means algorithm. The clusterassignment step of K-

means algorithm was modified with an additional check for constraint violations. However,

when constraints are noisy or inconsistent, it is possible that there are some points that are
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not assigned to any cluster. This was mitigated in an approach by Basu et. al. [109] which

penalizes constraint violations instead of imposing them in a hard manner. A constrained

clustering problem is modeled using a Hidden Markov Random Field (HMRF) which is

defined over the data and the labels, with labels as the hiddenstates that generate the data

points. The constraints are imposed on the values of the hidden states. Inference is carried

out by an algorithm similar to that of K-means which penalizes the constraint violations.

Generative models are very popular in clustering. Gaussianmixture model (GMM) is

one of the well-known models used for clustering [53, 36]. Shental et al. [108] incorpo-

rated pairwise constraints into the GMMs. To achieve this, groups of points connected by

must-link constraints are defined aschunkletsand each chunklet is treated as a single point

for clustering purposes. Zhao and Miller [111] proposed an extension to GMM which pe-

nalizes constraint violations. A method to automatically estimate the number of clusters in

the data using the constraint information was proposed. Lu and Leen [96] incorporate the

constraints into the prior over all possible clusterings. In particular, for a clusteringz, they

use a prior of the formP (z) =
∑

i

∑

j WijI(zi, zj), whereI(x, y) is the indicator function

which is 1 whenx = y and 0, otherwise, andWi,j is a penalty for violating the constraint

between thei-th andj-th data points. Gibbs sampling is used to infer the cluster labels.

In many approaches that enforce constraints in a hard manner(including those that

penalize them), non-smooth solutions are obtained. A solution is called non-smooth when

a data point takes a cluster label that is different from all of its surrounding neighbors. As

noted in [112], it is possible that the hypothesis that fits the constraints well may not fit

the data well. Therefore, a trade off between satisfying theconstraints and fit to the data

is required. Lange et al. [110] alleviate this problem by involving all the data points into a

constraint through a smooth label.
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Adapting the Similarity

Several semi-supervised clustering methods operate by directly modifying the entries of the

pair-wise similarity matrix that are involved in constraints. All these algorithms, reudce the

distance between data points connected by must-link constraints and increase the distance

between those connected by must-not link by a small value. Spectral Learning algorithm

by Kamvar et al. [95] modifies the normalized affinity matrix by replacing the values cor-

responding to must-link constraints by 1 and must-not link constraints by 0. The specific

normalization they use ensures that the resulting matrix ispositive definite. The remaining

steps of the algorithm are the same as the Spectral clustering algorithm by Ng et al. [103].

Klien et. al. [99] modified the dissimilarity metric by replacing the entries participating

in must-link constraints with0 and replaced the entries participating in cannot-link con-

straints by maximum pairwise distance incremented by 1. This is followed by a complete

link clustering on the modified similarity matrix. Kulis et al. [93] propose a generalzation

of Spectral Learning via semi-supervised extensions to thepopular normalized cut [102],

ratio cut and ratio association [52]. To ensure positive definiteness of the similarity matrix,

they simply add an arbitrary positive quantity to the diagonal.

The specific values of increments chosen in the above algorithms impacts the perfor-

mance of the clustering algorithm. In order to apply spectral algorithms, we need the

pairwise similarity matrix to be positive semi-definite. Arbitrary changes (especially decre-

ments) to the similarity matrix may not retain its positive semi-definiteness. Some methods

avoid using spectral algorithms, while some update the simliarity matrix carefully to retain

the essential properties. The similarity adaptation methods are adhoc in nature, and are

superseded by the similarity learning approaches presented in the next section.

Learning the Similarity

The performance of a clustering algorithm depends primarily on the similarity metric de-

fined between the samples. It is usually difficult to design a similarity metric that suits
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all the clustering scenarios. For this reason, attempts have been made to directly learn the

similarity metric from the data using the side information.Similarity metric learning is

not a new problem, and has been considered before in both unsupervised dimensionality

reduction methods (LLE [113], ISOMAP [114]) and supervisedmethods like Fisher Lin-

ear Discriminant [20], Large Margin Distance Metric Learning [115] and Neighborhood

Component Analysis [116]. Only those methods that learn the distance metric in a semi-

supervised setting, i.e., using pairwise constraints and unlabeled data are reviewed here.

Once a similarity metric is learned, standard clustering/classification algorithms may

later be applied with the learned similarity metric. The distance metric learning problem

can be posed in its generality as follows: learn a functionf : X ×X → R such that the dis-

tance between points linked by must-link constraints is smaller than that between the points

linked by must-not link constraints overall. The distance function is usually parametrized

in its quadratic form, i.efA(xi,xj) = xT
i Axj, whereA is the unknown parameter to be

estimated from the constraints.

Xing et al. [117] formulated distance metric learning as a constrained optimization

problem, whereA is estimated such that the sum of distances between points connected

by must-link constraints is minimized, while constrainingthe sum of distances between

points connected by must-not link to be greater than a fixed constant. Bar-Hillel et al. [118]

proposed Relevant Component Analysis (RCA), which estimates a global transformation

of the feature space by reducing the weights of irrelevant features such that the groups of

data points linked by must-link constraints (calledchunklets) are closer to each other. A

modified version of the constrained K-means algorithm that learns a parametrized distance

function is presented in [119].

Yang et al. [120] learn a local distance metric by using an alternating optimization

scheme that iteratively selects the local constraints, andfits the distance metric to the con-

straints. They parametrize the kernel similarity matrix interms of the eigenvalues of the

top few eigenvectors of the pairwise similarity matrix computed using the RBF kernel. Hoi
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et al. [121] present a non-parametric distance metric learning algorithm that addresses the

limitations of quadratic distance functions used by almostall the other approaches. Lee et

al. [122] proposed an efficient distance metric learning algorithm and applied it to a content

based image retrieval task showing significant performancegains.

There has been a recent surge in the interest in online learning algorithms due to the

large volume of datasets that need to be processed. Shalev-shwartz et al. [123] present

an online distance metric learning algorithm called POLA, that learns a quadratic distance

function (parametrized by the covariance matrix) from pairwise constraints. A batch ver-

sion of the algorithm is obtained by multiple epochs of the online algorithm on the training

data. Davis et al. [124] present online and batch versions ofan algorithm that searches for

the parameterized covariance matrixA that satisfes the constraints maximally. Addition-

ally, a log-determinant regularizer is added to preventA from moving too far away from

the initial similarity metricA0.

Applications

Clustering with constraints has been applied succesfully toseveral real world problems.

Bar-Hillel et al. [125] used pairwise constraints for clustering as an intermediate step to

speaker identification in a conversation. An application tovideo surveillance, where the

temporal similarity between frames is used to generate must-link constraints between the

pixels is presented in [118]. Wagstaff et al. [97] applied constrained clustering for GPS lane

finding. Yu and Shi [92] used the constraint information generated from the fact that pix-

els near image boundaries may represent background and pixels at the center of the image

may represent the foreground. They automatically generatethe pairwise constraints relat-

ing foreground and background pixels and showed that the segmentation is significantly

improved with the side-information. Yang et al. [126] applied a local distance metric learn-

ing algorithm using pairwise constraints for interactive search assisted diagonostics (ISAD)

of mammogram images and demonstrated an improved accuracy in identifying clusters of
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similar patient cases in the database.

Acquiring the Constraints

Most of the papers in semi-supervised clustering literature describe how to utilize the con-

straints once they are available, but relatively few methods consider automatic acuqisition

of constraints. While it is generally easier for a user to provide pairwise constraints com-

pared to assigning class labels, it is still tedious if it hasto be done for a large number of

object pairs.

Automatic constraint acqusition aims at encoding human knowledge in the form of

pairwise constraints or to minimize the number of constraints a user has to specify by

selecting the most important set of pairs of points to be labeled. When the necessary

domain knowledge is not available to automatically derive the pairwise constraints, it is

desirable to present the user the most informative pairs of points to label. Active learning

approaches [127, 128, 129] aim to select the most informative pairs of points or such that a

large performance gain is obtained from as few constraints as possible.

2.4 Does side-information always help?

There is a significant gap between theoretical analysis and the practice of semi-supervised

learning. Most theoretical analyses aim to derive the conditions under which the side-

information will always improve the performance of the learning algorithm. The available

results are limited and applicable to narrow and ideal learning scenarios. Most results

emphasize that the relation between the underlying structure of both labeled and unlabeled

data (which is different from label smoothness assumption)is a major factor in determining

the performance of a semi-supervised learner.
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2.4.1 Theoretical observations

Semi-supervised Classification

Castelli and Cover [130] provide an analysis of the utility of the unlabeled data from a

Bayes Risk perspective for a two-class classification problem, with known class conditional

densitiesP (x|y), wherex∈ R
d, andy ∈ {ω1, ω4}. In particular, they establish that the

labeled samples reduce Bayes error exponentially, while unlabeled samples reduce Bayes

error linearly. For instance, in a trivial scenario where nolabeled samples are available,

the Bayes risk of a classifier on the two-class problem is equalto 1
2
, since any example

might be labeled as any class. However, when a single sample is known from each class,

the Bayes risk becomes2ǫ(1− ǫ), whereǫ is the Bayes risk for the two class problem if all

the data are labeled.

Zhang [131] analyzed the utility of unlabeled data from the perspective of Fisher In-

formation. Cramer-Rao inequality states that for any unbiased estimatortn of α based on

n i.i.d samples, the covariance oftn satisfiescov(tn) ≥ (nI(α))−1. When the data dis-

tribution and the conditional label distribution share theparameters, unlabeled data help

in reducing the variance (cov(tn)) of the estimator. This is the case for generative mod-

els. However, in discriminative models,P (y|x) is directly modeled disregarding the data

densityP (x), and therefore, unlabeled data do not help in this situation. This analysis

is not applicable to non-probabilistic discriminiative semi-supervised classification algo-

rithms like TSVM since they use theP (x) to avoid keeping the decision boundary where

the value ofP (x) is very high, thereby following the input-dependent regularization frame-

work of [132]

Semi-supervised learning algorithms incorporating side information may not necessar-

ily result in improved performance. In many cases, the performance of a learner may even

degrade with the use of side information. In the case of generative classifiers, Cozman and

Cohen [133] summarize their empirical observations regarding the performance degrada-

tion as follows. Unlabeled data helps to improve the parameter estimates, and in turn the
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predictive performance of classifiers, when the model assumptions match the data. How-

ever, when the model assumptions do not match the structure of the data, unlabeled data

potentially degrade the performance significantly. However, in practice, it is not possible

to evaluate the match between structure of the data and the model, neccessitating the need

for caution when incorporating unlableled data into generative models.

Ben-David et al. [134] noted that under Probably Approximately Correct (PAC) learn-

ing setting, unlabeled data does not improve the worst case sample complexity1 of a clas-

sifier compared to that of labeled data by more than a constantfactor, unless strict assump-

tions are made about the label distribution.

Balcan and Blum [135] proposed the notion of “compatiability function” which mea-

sures how “nicely” the classifier fits the unlabeled data in terms of a measure (e.g. margin).

Since this reduces the hypothesis class to only those functions that fit the unlabled data

well, the generalization error bounds improve. However, ifthere is a mismatch between

the label structure of the unlableled data and the labeled data, this reduction in the hy-

pothesis class retains only the poor performing classifiers, resulting in a degradation in the

empirical performance of the resulting classifier.

Semi-supervised Clustering

Semi-supervised clustering is a harder problem compared tosemi-supervised classification,

and it has not yet been amenable to theoretical analysis. Theoretical results pertaining to

semi-supervised clustering aim to answer how and when the pairwise constraints are useful,

or if they are useful at all. Davidson et al. [136] empirically observed that pairwise con-

straints can significantly degrade the performance of the clustering algorithm. They define

two measures in an attempt to quantify the constraint set utility, called informativenessand

coherence. Informativeness measures the mismatch between the unsupervised clustering

algorithm and the constraint set. Coherence measures the internal consistency of the con-

1Sample complexity of a classifier is the number of samplesm required to be sure with a probability1−δ,
that the test error of the classifier will not be more than a givenǫ.
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straint set. However, a greater value of informativeness does not necessarily mean that the

clustering algorithm will perform better. Our experience also suggests that it is very diffi-

cult to conclude a priori whether a set of constraints will improve or degrade the clustering

performance.

2.5 Summary

Semi-supervised classification has received significant amount of interest, as it provides a

way to utilize the large amount of readily available unlabeled data for improving the clas-

sifier performance. Semi-supervised classification has been successfully applied to various

applications in computer vision and machine learning, suchas text classification [86], hu-

man computer interaction [137], content based image retrieval [138] , object detection [85],

person identification [139], relevance feedback [140], computational linguistics [141] and

protein categorization [7], to name a few. Similarity, side-information such as pairwise

constraints has been utilized to improve the performance ofclustering algorithms by aiding

them in arriving at a clustering desired by the user. Semi-supervised learning continues to

pose both theoretical and pracitcal questions to researchers in the machine learning. There

is also an increasing interest in the fields of cognitive sciences and human psychology since

there are demonstrated settings where humans performed semi-supervised learning [142].

30



Unlabeled data to be clustered
into two clusters.

(a) Input data to be clustered into 2 clusters.

Data with pairwise constraints
Clustering with pairwise constraints

(b) Clustering with a set of pairwise constraints. Solid lineshows must-link
constraints and dotted line shows cannot-link constraints.

Data with pairwise constraints
Clustering with pairwise constraints

(c) Different clustering of the same data obtained using a different set
of pairwise constraints.

Figure 2.2: Utility of pairwise constraints in data clustering. (a) Input unlabeled data to be
clustered into two clusters. Figures (b) and (c) show two different clusterings of data in (a)
obtained by using two different sets of pairwise constraints.
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CHAPTER 3

SemiBoost: Boosting for

Semi-supervised Classification

3.1 Introduction

Most semi-supervised learning approaches, as discussed inChapter 1, design specialized

learning algorithms to effectively utilize both labeled and unlabeled data. However, it is

often the case that a user already has a favorite (well-suited) supervised learning algorithm

for his application, and would like to improve its performance by utilizing the available

unlabeled data. In this light, a more practical approach is to design a technique to utilize

the unlabeled samples, regardless of the underlying learning algorithm. Such an approach

would accommodate for the task-based selection of a classifier, while providing it with

an ability to utilize unlabeled data effectively. We refer to this problem of improving the

performance ofanysupervised learning algorithm using unlabeled data asSemi-supervised

Improvement, to distinguish our work from the standard semi-supervisedlearning prob-

lems.

To address the semi-supervised improvement, we propose a boosting framework,

termedSemiBoost, for improving a given supervised learning algorithm with unlabeled

data. Similar to most boosting algorithms [28], SemiBoost improves the classification ac-

curacy iteratively. At each iteration, a number of unlabeled examples are selected and used
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Figure 3.1: Block diagram of the proposed algorithm, SemiBoost. The inputs to SemiBoost are: labeled data, unlabeled data and the
similarity matrix.
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to train a new classification model using the given supervised learning algorithm. The

trained classification models from each iteration are combined linearly to form a final clas-

sification model. An overview of the SemiBoost is presented inFigure 3.1. The key diffi-

culties in designing SemiBoost are: (1) how to sample the unlabeled examples for training

a new classification model at each iteration, and (2) what class labels should be assigned

to the selected unlabeled examples. It is important to note that unlike supervised boosting

algorithms where we select labeled examples that are difficult to classify, SemiBoost needs

to select unlabeled examples, at each iteration.

One way to address the above questions is to exploit both the clustering assumption

and the large margin criterion. One can improve the classification margin by selecting the

unlabeled examples with the highest classification confidence, and assign them the class

labels that are predicted by the current classifier. The assigned labels are hereafter referred

to as thepseudo-labels. The labeled data, along with the selected pseudo-labeled data

are utilized in the next iteration for training a second classifier. This is broadly the strat-

egy adopted by approaches like Self-training [78], ASSEMBLE[80] and Semi-supervised

MarginBoost [79]. However, a problem with this strategy is that the introduction of exam-

ples with predicted class labels may only help to increase the classification margin, without

actually providing any novel information to the classifier.Since the selected unlabeled

examples are the ones that can be classified confidently, theyoften are far away from the

decision boundary. As a result, the classifier trained by theselected unlabeled examples is

likely to share the same decision boundary with the originalclassifier that was trained only

by the labeled examples. This is because by adjusting the decision boundary, the examples

with high classification confidence will gain even higher confidence. This implies that we

may need additional guidance for improving the base classifier, along with the maximum

margin criterion.

To overcome the above problem, we propose to use the pairwisesimilarity measure-

ments to guide the selection of unlabeled examples at each iteration, as well as for as-
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signing class labels to them. For each unlabeled examplexi, we compute the confidence

of assigning the examplexi to the positive class as well as the confidence of assigning it

to the negative class. These two confidences are computed based on the prediction made

by the boosted classifier and the similarity among differentexamples. We then select the

examples with the highest classification confidence together with the labeled examples to

train a new classification model at each iteration. The new classification model will be

combined linearly with the existing classification models to make improved predictions.

Note that the proposed approach is closely related to graph-based semi-supervised learn-

ing approaches that exploit the manifold assumption. The following section discusses the

existing semi-supervised learning methods, and their relationship with SemiBoost.

3.2 Related work

In Table 1.2 a brief summary of the existing semi-supervisedlearning methods and the

underlying assumptions was presented. Recall that an inductive algorithm can be used to

predict the labels of samples that are unseen during training (irrespective of it being labeled

or unlabeled). On the other hand, transductive algorithms are limited to predicting only the

labels of the unlabeled samples seen during training.

Graph-based approaches represent both the labeled and the unlabeled examples by a

connected graph, in which each example is represented by a vertex, and pairs of vertices

are connected by an edge if the corresponding examples have large similarity. The well

known approaches in this category include Harmonic Function based approach [74], Spec-

tral Graph Transducer (SGT) [69], Gaussian process based approach [83], Manifold Reg-

ularization [76] and Label Propagation approach [11, 66]. The optimal class labels for the

unlabeled examples are found by minimizing their inconsistency with respect to both the

supervised class labels and the graph structure.

A popular way to define the inconsistency between the labelsy = {yi}
n
i=1 of the sam-
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ples{xi}
n
i=1, and the pairwise similaritiesSi,j is the quadratic criterion,

F (y) =
n
∑

i=1

n
∑

j=1

Si,j(yi − yj)
2 = yT Ly

whereL is the combinatorial graph Laplacian. Given a semi-supervised setting, only a

few labels in the above consistency measure are assumed to beknown, and the rest are

considered unknown. The task is to assign values to the unknown labels in such a way that

the overall inconsistency is minimized. The approach presented in [68] considers the case

whenyi ∈ {±1}, thereby formulating it as a discrete optimization problemand solve it

using a min-cut approach. Min-cuts are however prone to degenerate solutions, and hence

the objective was minimized using a mixed integer programming approach in [89], which

is computationally prohibitive [73]. A continuous relaxation of this objective function,

whereyi ∈ [0, 1] has been considered in several approaches, which is solved using Markov

random fields [67], Gaussian random fields and harmonic functions [74].

The proposed framework is closely related to the graph-based approaches in the sense

that it utilizes the pairwise similarities for semi-supervised learning. The inconsistency

measure used in the proposed approach follows a similar definition, except that an expo-

nential cost function is used instead of a quadratic cost forviolating the labels. Unlike most

graph-based approaches, we create a specific classificationmodel by learning from both the

labeled and the unlabeled examples. This is particularly important for semi-supervised im-

provement, whose goal is to improve a given supervised learning algorithm with massive

amounts of unlabeled data.

The approaches built on cluster assumption utilize the unlabeled data to regularize the

decision boundary. In particular, the decision boundary that passes through the region with

low density of unlabeled examples is preferred to the one that is densely surrounded with

unlabeled examples. These methods specifically extend SVM or related maximum margin

classifiers, and are not easily extensible to non-margin based classifiers like decision trees.

Approaches in this category include transductive support vector machine (TSVM) [72],

Semi-supervised Support Vector Machine (S3VM) [73], and Gaussian processes with null
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category noise model [83]. The proposed algorithm, on the other hand, is a general ap-

proach which allows the choice of a base classifier well-suited to the specific task.

Finally, we note that the proposed approach is closely related to the family of ensemble

approaches for semi-supervised learning. Ensemble methods have gained significant pop-

ularity under the realm of supervised classification, with the availability of algorithms such

as AdaBoost [143]. The semi-supervised counter parts of ensemble algorithms rely on the

cluster assumption, and prime examples include ASSEMBLE [80] and Semi-supervised

MarginBoost (SSMB) [79]. Both these algorithms work by assigning a pseudo-label to the

unlabeled samples, and then sampling them for training a newsupervised classifier. SSMB

and ASSEMBLE are margin-based boosting algorithms which minimize a cost function of

the form

J(H) = C(yiH(xi)) + C(|H(xi)|),

whereH is the ensemble classifier under construction, andC is a monotonically decreasing

cost function. The termyiH(xi) corresponds to the margin definition for labeled samples.

A margin definition involves the true labelyi, which is not available for the unlabeled

samples. A pseudo-margin definition is used such as|H(xi)| in ASSEMBLE, orH(xi)
2 in

SSMB, thereby getting rid of theyi term in the objective function using the fact thatyi ∈

{±1}. However, the algorithm relies on the prediction of pseudo-labels using the existing

ensemble classifier at each iteration. In contrast, the proposed algorithm combines the

similarity information along with the classifier predictions to obtain more reliable pseudo-

labels, which is notably different from the existing approaches. SSMB on the other hand

requires the base learner to be a semi-supervised algorithmin itself [79, 80]. Therefore, it

is solving a different problem of boosting semi-supervisedalgorithms, in contrast with the

proposed algorithm.

In essence, the SemiBoost algorithm combines the advantagesof graph based and en-

semble methods, resulting in a more general and powerful approach for semi-supervised

learning.
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• Start with an empty ensemble.
• Until α < 0, at each iteration,

– Compute the peusdolabel (and its confidence) for each un-
labeled example (using existing ensemble, and the pairwise
similarity).

– Sample the most confident pseudolabeled examples; combine
them with the labeled samples and train a component classi-
fier using the supervised learning algorithmA.

– Update the ensemble by including the component classifier
with an appropriate weight.

Figure 3.2: An outline of the SemiBoost algorithm for semi-supervised improvement.

3.3 Semi-supervised boosting

We first describe the semi-supervised improvement problem formally, and then present the

SemiBoost algorithm.

3.3.1 Semi-supervised improvement

Let D = {x1,x2, . . . ,xn} denote the entire dataset, including both the labeled and the

unlabeled examples. Suppose that the firstnl examples are labeled, given byyl =

(yl
1, y

l
2, . . . , y

l
nl

), where each class labelyl
i is either +1 or −1. We denote byyu =

(yu
1 , yu

2 , . . . , yu
nu

), the imputed class labels of unlabeled examples, wherenu = n − nl.

Let the labels for the entire dataset be denoted asy = [yl;yu]. Let S = [Si,j]n×n denote

the symmetric similarity matrix, whereSi,j ≥ 0 represents the similarity betweenxi and

xj. Let A denote the given supervised learning algorithm. The goal ofsemi-supervised

improvement is to improve the performance ofA iteratively by treatingA like a black

box, using the unlabeled examples and the pairwise similarity S. A brief outline of the

SemiBoost algorithm for semi-supervised improvement is presented in Figure 3.2.

It is important to distinguish the problem of semi-supervised improvement from the

existing semi-supervised classification approaches. As discussed in section 2, any ensem-
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ble based algorithm must rely on the pseudo-labels for building the next classifier in the

ensemble. On the other hand, graph based algorithms use the pairwise similarities between

the samples, and assign the labels to unlabeled samples suchthat they are consistent with

the similarity. In the semi-supervised improvement problem, we aim to build an ensemble

classifier which utilizes the unlabeled samples in the way a graph based approach would

utilize.

3.3.2 SemiBoost

To improve the given learning algorithmA, we follow the idea of boosting by running the

algorithmA iteratively. A new classification model will be learned at each iteration using

the algorithmA, and the learned classification models at different iterations will be linearly

combined to form the final classification model.

Objective function

The unlabeled samples must be assigned labels following thetwo main criteria: (a) the

points with high similarity among unlabeled samples must share the same label, (b) those

unlabeled samples which are highly similar to a labeled sample must share its label. Our

objective functionF (y, S) is a combination of two terms, one measuring the inconsistency

between labeled and unlabeled examplesFl(y, S), and the other measuring the inconsis-

tency among the unlabeled examplesFu(yu, S).

Inspired by the harmonic function approach, we defineFu(y, S), the inconsistency

between class labelsy and the similarity measurementS, as

Fu(yu, S) =
nu
∑

i,j=1

Si,j exp(yu
i − yu

j ). (3.1)

Many objective functions using similarity or kernel matrices, require the kernel to be posi-

tive semi-definite to maintain the convexity of the objective function (e.g., SVM). However,

sinceexp(x) is a convex function1, and we assume thatSi,j is non-negative∀i, j, the func-

1Our choice ofF (y, S) is a mixture of exponential loss functions, and is motivatedby the traditional
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tion Fu(yu, S) is convex irrespective of the positive definiteness of the similarity matrix.

This allows similarity matrices which are asymmetric (e.g., similarity computed using KL-

divergence) without changing the convexity of the objective function. Asymmetric similar-

ity matrices arise when using directed graphs for modeling classification problems, and are

shown to perform better in certain applications related to text categorization [144].

Though this approach can work for general similarity matrices, we assume that the sim-

ilarity matrix provided is symmetric. Note that Eq (3.1) canbe expanded asFu(yu, S) =

1
2

∑

Sj,i exp(yu
j − yu

i ) + 1
2

∑

Si,j exp(yu
i − yu

j ), and due to the symmetry ofS, we have

Fu(yu, S) =
nu
∑

i,j=1

Si,j cosh(yu
i − yu

j ), (3.2)

wherecosh(yi− yj) = (exp(−yi + yj)+exp(yi− yj))/2 is the hyperbolic cosine function.

Note thatcosh(x) is a convex function with its minimum atx = 0. Rewriting Eq (3.1)

using thecosh(.) function reveals the connection between the quadratic penalty used in

the graph Laplacian based approaches, and the exponential penalty used in the current

approach. Using acosh(.) penalty function not only facilitates the derivation of boosting

based algorithms but also increases the classification margin. The utility of an exponential

cost for boosting algorithms is well known [145].

The inconsistency between labeled and unlabeled examplesFl(y, S) is defined as

Fl(y, S) =

nl
∑

i=1

nu
∑

j=1

Si,j exp(−2yl
iy

u
j ). (3.3)

Combining Eqs (3.1) and (3.3) leads to the objective function,

F (y, S) = Fl(y, S) + CFu(yu, S). (3.4)

The constantC is introduced to weight the importance between the labeled and the unla-

beled data. Given the objective function in (3.4), the optimal class labelyu is found by

minimizingF .

exponential loss used in Boosting and the resulting large margin classifier. However, any convex (monotonic)
loss function should work with the current framework.
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Let ŷl
i, i = 1, · · · , nl denote the labels predicted by the learning algorithm over the

labeled examples in the training data. Note that in Eq (3.4),there is no term corresponding

to the inconsistency between predicted labels of the labeled samples and their true labels,

which would beFll =
∑nl

i=1 exp(yl
i, ŷ

l
i). Adding this term would make the algorithm reduce

to AdaBoost when no unlabeled samples are present. Since in practice, there is a limited

amount of labeled data available, theFll term is usually significantly smaller thanFl and

Fu, and therefore it is omitted in the formulation in Eq (3.4).

selecting an even smaller subset of samples to train the classifier may not be effec-

tive. Our approach, includes the prediction on the labeled data in the form of constraints,

thereby utilizing all the available labeled data at each iteration of training a classifier for

the ensemble. The problem can now be formally expressed as,

min F (y, S)

s.t. ŷl
i = yl

i, i = 1, · · · , nl. (3.5)

This is a convex optimization problem, and therefore can be solved effectively by nu-

merical methods. However, since our goal is to improve the given learning algorithmA

by the unlabeled data and the similarity matrixS, we present a boosting algorithm that can

efficiently minimize the objective functionF . The following procedure is adopted to derive

the boosting algorithm.

• The labels for the unlabeled samplesyu
i are replaced by the ensemble predictions

over the corresponding data sample.

• A bound optimization based approach is then used to find the ensemble classifier

minimizing the objective function.

• The bounds are simplified further to obtain the sampling scheme, and other required

parameters.

The above objective function is strongly related to severalgraph based approaches,

manifold regularization and ensemble methods.
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3.3.3 Algorithm

We derive the boosting algorithm using the bound optimization approach. An alternate,

conventional way to derive the boosting algorithm using theFunction Gradient method is

presented in [146]. This method may also be viewed as a relaxation that approximates

the original objective function by a linear function. Such an approach however, involves

specification of a parametric step size. In our derivation, the step size is automatically de-

termined thus overcoming the difficulty in determining the step-size. SemiBoost algorithm

is briefly summarized in Figure 3.3.

Let h(t)(x) : X → {−1, +1} denote the 2-class classification model that is learned at

the t-th iteration by the algorithmA. Let H(x) : X → R denote the combined classifica-

tion model learned after the firstT iterations. It is computed as a linear combination of the

first T classification models, i.e.,

H(x) =
T
∑

t=1

αth
(t)(x),

whereαt is the combination weight. At the(T + 1)-st iteration, our goal is to find a new

classifierh(x) and the combination weightα that can efficiently minimize the objective

functionF .

This leads to the following optimization problem:

arg min
h(x),α

nl
∑

i=1

nu
∑

j=1

Si,j exp(−2yl
i(Hj + αhj))

+ C
nu
∑

i,j=1

Si,j exp(Hi −Hj) exp(α(hi − hj)) (3.6)

s.t. h(xi) = yl
i, i = 1, · · · , nl, (3.7)

whereHi ≡ H(xi) andhi ≡ h(xi).

This expression involves products of variablesα andhi, making it non-linear and hence

difficult to optimize. The constraints, however, can be easily satisfied by including all the

labeled samples in the training set of each component classifier. To simplify the compu-
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tation, we construct the upper bound of the objective function, described in Proposition

1.

Proposition 1. Minimizing Eq(3.7) is equivalent to minimizing the function

F 1 =
nu
∑

i=1

exp(−2αhi)pi + exp(2αhi)qi (3.8)

where

pi =

nl
∑

j=1

Si,je
−2Hiδ(yj, 1) +

C

2

nu
∑

j=1

Si,je
Hj−Hi (3.9)

qi =

nl
∑

j=1

Si,je
2Hiδ(yj,−1) +

C

2

nu
∑

j=1

Si,je
Hi−Hj (3.10)

andδ(x, y) = 1 whenx = y and0 otherwise.

Proof Sketch: By substitutingHi ← Hi + αhi into F (y, S) and regrouping the terms, we

obtain the desired result. �

The quantitiespi andqi can be interpreted as the confidence in classifying the unlabeled

examplexi into the positive class and the negative class, respectively.

The expression in Eq (3.8) is difficult to optimize since the weightα and the classifier

h(x) are coupled together. We simplify the problem using the upper bound stated in the

following proposition.

Proposition 2. Minimizing Eq (3.8) is equivalent to minimizing

F 1 ≤
nu
∑

i=1

(pi + qi)(e
2α + e−2α − 1)−

nu
∑

i=1

2αhi(pi − qi).

Proof: See [147]. �

We denote the upper bound in the above equation byF 2.

Proposition 3. To minimizeF 2, the optimal class labelzi for the examplexi is zi =

sign(pi − qi), and the weight for sampling examplexi is |pi − qi|. The optimalα that

minimizesF 1 is

α =
1

4
ln

∑nu

i=1 piδ(hi, 1) +
∑nu

i=1 qiδ(hi,−1)
∑nu

i=1 piδ(hi,−1) +
∑nu

i=1 qiδ(hi, 1)
. (3.11)
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• Compute the pairwise similaritySi,j between any two examples.

• Initialize H(x) = 0

• For t = 1, 2, . . . , T

– Computepi andqi for every example using Equations (3.9)
and (3.10)

– Compute the class labelzi = sign(pi − qi) for each example

– Sample examplexi by the weight|pi − qi|

– Apply the algorithmA to train a binary classifierht(x) using
the sampled examples and their class labelszi

– Computeαt using Equation (3.11)

– Update the classification function asH(x) ← H(x) +

αtht(x)

Figure 3.3: The SemiBoost algorithm

Proof Sketch: Expression in Eq 3.11 can be obtained by differentiatingF̄2 w.r.t α and

setting it equal to 0. Observe that the above function is linear in hi(pi−qi) and is minimized

when we choosehi = sign(pi − qi), for maximum values of|pi − qi|. �

Propositions 1-3 justify the relaxations made in the derivation of the SemiBoost. At

each relaxation, the “touch-point” is maintained between the objective function and the

upper bound. As a result, the procedure guarantees: (a) the objective function always

decreases through iterations and (b) the final solution converges to a local minimum. For

more details, see [148]. Proposition 3 establishes the key ingredients required for a boosting

algorithm. Using these, the SemiBoost algorithm is presented in Figure 3.3.

Let ǫt be the weighted error made by the classifier, where

ǫt =

∑nu

i=1 piδ(hi,−1) +
∑nu

i=1 qiδ(hi, 1)
∑

i(pi + qi)
.

As in the case of AdaBoost [146],α can be expressed as

αt =
1

4
ln

(

1− ǫt

ǫt

)

(3.12)
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which is very similar to the weighting factor of AdaBoost, differing only by a constant

factor of 1
2
. Also, if AdaBoost encounters a situation where the base classifier has an error

rate more than random, i.e.ǫt+1 ≥
1
2
, it returns the current classifierHt. This situation has

a direct correspondence with the condition in SemiBoost where the algorithm stops when

α ≤ 0. From Eq (3.11) (or rather directly from Eq (3.12)), we can see that this happens only

when the denominator exceeds the numerator, which meansǫt+1 ≥
1
2

is equivalent to the

conditionα ≤ 0. However, since this condition may not be satisfied until a large number

of classifiers are trained, usually there is a parameter specifying the number of classifiers

to be used. It has been empirically determined that using a fixed number (usually 20) of

classifiers for AdaBoost gives good performance [145].

The sampling scheme used in SemiBoost is significantly different from that of Ad-

aBoost. AdaBoost is given the true labels of the data, and hencecan proceed to in-

crease/decrease the weights assigned to samples based on the previous iteration. In Semi-

Boost we do not have the true class labels for the unlabeled data, which makes it challeng-

ing to estimate the difficulty of classification. However, Proposition 2 gives us the result

that selecting the most confident unlabeled data samples is optimal for reducing the objec-

tive function. Intuitively, using the samples with highly confident labeling is a good choice

because they are consistent with the pairwise similarity information along with their classi-

fications. The values ofpi andqi tend to be large if (i)xi can’t be classified confidently, i.e.,

|Hi| is small, and one of its close neighbors is labeled. This corresponds to the first term

in Eq. (3.9) and Eq. (3.10). (ii) the examplexi is very similar to some unlabeled examples

that are already confidently classified, i.e., largesi,j and |Hj| for unlabeled examplexj.

This corresponds to the second term in Eq. (3.9) and Eq. (3.10). This indicates that the

similarity information plays an important role in guiding the sample selection, in contrast

to the previous approaches like ASSEMBLE and SSMB, where the samples are selected to

increase the value of|Hi| alone.

Similar to most boosting algorithms, we can show that the proposed semi-supervised
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boosting algorithm reduces the original objective function F exponentially. This result is

summarized in the following Theorem.

Theorem 1. Let α1, ..., αt be the combination weights that are computed by running the

SemiBoost algorithm (Fig 1). Then, the objective function at (t + 1)st iteration, i.e.,Ft+1,

is bounded as follows:

Ft+1 ≤ κS exp

(

−
t
∑

i=1

γi

)

,

whereκS =
[

∑nu

i=1

(

∑nl

j=1 Si,j + C
∑nu

j=1 Si,j

)]

andγi = log(cosh(αi)).

Proof. Similar to the supervised Boosting algorithms, we can show that the proposed semi-

supervised boosting algorithm is able to reduce the objective function exponentially. Let

Ft denote the objective function at thet-th iteration. Letαt > 0 denote the combination

weight of thetth iteration. We first show that

Ft+1 = Ft

(

2

exp(2αt) + exp(−2αt)

)

. (3.13)

The above equality indicates that the reduction factor is2/(exp(2αt)+ exp(−2αt)), which

is guaranteed to be less than 1 whenαt is positive. The proof of the equality in Eq (3.13) is

straightforward. According to the derivation in the previous section,

Ft+1 =
nu
∑

i=1

exp(−2αthi)pi + exp(2αthi)qi.

By replacingαt with the expression in Eq (3.11) , and by defining the quantities ǫt =
∑nu

i=1 piδ(hi,−1) +
∑nu

i=1 qiδ(hi, 1), andηt =
∑

i pi + qi, we have

Ft+1 = 2
√

(ηt − ǫt)ǫt . (3.14)

Using the fact thatFt = ηt, we have

Ft+1 = 2
Ft

ηt

√

(ηt − ǫt)ǫt = 2Ft
ǫt

ηt

√

(

ηt − ǫt

ǫt

)

. (3.15)

Using the relationαt = 1
4
log(ηt − ǫt/ǫt), we prove the equality in Eq (3.13) as follows:

Ft+1 = 2Ft
1

exp(4αt) + 1
exp(2αt) =

Ft

cosh(2αt)
. (3.16)

Extending this equality toF0, we have the final expression forFt+1 in terms of the initial

value of the objective functionF0, i.e.,

Ft+1 = F0 exp

(

−

t
∑

i=1

γi

)

, (3.17)
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whereF0 =
∑nu

i=1

∑nl

j=1 Si,j and γi = log(cosh(2αt)). As indicated in Eq (3.17), the

objective functionF is reduced exponentially as the number of iterations is increased.

The above theorem shows that the objective function followsan exponential decay,

despite the relaxations made in the above propositions.

Corollary 1 The objective function at(t + 1)st iteration is bounded in terms of the error

ǫt asFt+1 ≤ κS

∏t
i=1

(

1−ǫt

ǫt

)1/4

.

Proof. The corollary can be verified by substituting Eq. (3.12) forαi in Theorem 1. The

connection betweenαi and the errorǫt may be used to bound the objective function in terms

of classification error at each iteration. From the theorem,we haveγt = log(cosh(αt)).

Note that,

γt = log(cosh(αt)) ≥ log(exp(αt)) = αt.

Using the definition ofαt from Eq (3.12), we haveexp(−γt) ≤
(

1−ǫt

ǫt

)1/4

. Using this

inequality with the bound in the Theorem 1 results in

Ft+1 ≤ κS

t
∏

i=1

(

1− ǫt

ǫt

)1/4

.

In the above derivation, we constrained the objective function such that the prediction

of the classifier on the labeled samples must match the true labels provided. However,

if the true labels are noisy, the resulting semi-supervisedclassifier might not perform its

best. An algorithm similar to SemiBoost may be derived in sucha case by including a term

penalizing the solution, if the predicted labels of the labeled samples are different from the

true labels. We assume that the given labels are correct, which is reasonable given the fact

that there are very few labeled samples.

3.3.4 Implementation

Sampling

Sampling is the most important step in SemiBoost, just like any other boosting algorithm.

The criterion for sampling usually considers the followingissues: (a) How many samples
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(a) Iter. 1 (65.0%) (b) Iter. 2 (76.5%)

(c) Iter. 3 (86.4%) (d) Iter. 12 (94.6%)

Figure 3.4: Decision boundary obtained by SemiBoost at iterations 1, 2, 3 and 12, on the
two concentric rings dataset, using Decision Stump as the base classifier. There are 10
labeled samples per class (�,N). The transductive performance (i.e., performance on the
unlabeled data used for training) of SemiBoost is given at each iteration in parentheses.

must be selected from the unlabeled samples available for training? and (b) What is the

distribution according to which the sampling must be done?

Supervised boosting algorithms like AdaBoost have the true labels available, which

makes it easy to determine which samples to choose or not to choose. On the other hand,

the labels assigned during the SemiBoost iteration are pseudo labels, and may be prone to

errors. This suggests that we should choose only a small number of the most confident data

points for SemiBoost. But selecting a small number of samples might make the conver-

gence slow, and selecting too large a sample might include non-informative samples into

the training set. The choice currently is made empirically;selecting the top 10% of the
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samples seems to work well in practice. From Proposition 3, to reduceF̄1, it is preferable

to select the samples with a large value of|pi − qi|. This selection provides highly reliable

pseudo-labeled samples to the classifier. The sampling is probabilistically done according

to the distribution,

Ps(xi) =
|pi − qi|

∑nl

i=1 |pi − qi|
,

wherePs(xi) is the probability that the data pointxi is sampled from the transduction set.

Stopping Criterion

According to the optimization procedure, SemiBoost stops when α ≤ 0, indicating that

addition of that classifier would increase the objective function instead of decreasing it.

However, the value ofα decreases rapidly in the beginning, and eventually the rateof

decrease falls down, taking a large number of iterations to actually make it negative. We

currently use an empirically chosen fixed number of classifiers in the ensemble, specified

as a parameterT . We set the value ofT = 20.

Similarity Matrix

We use the Radial Basis Function similarity inspired from its success in graph based ap-

proaches. For any two samplesxi and xj, the similarity Si,j is computed as,Si,j =

exp(‖xi − xj‖
2
2/σ

2), whereσ is the scale parameter controlling the spread of the radial

basis function. It is well known that the choice ofσ has a large impact on the performance

of the algorithm [74]. We set the scale parameter to the similarity values at the10-th per-

centile to the 100-th percentile, varied in steps of 10, where µs is the average value of the

similarity matrixS. Experimental results revealed that the transductive and inductive per-

formances are stable for the chosen range ofσ. This is a desirable property given the fact

that choosing the right scale parameter is a difficult problem.
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3.4 Results and discussion

The focus of SemiBoost is to improve any given (supervised) classifier using the unlabeled

data. Therefore, our primary aim is to evaluate SemiBoost based on the improvement

achieved in the inductive performance of base classifiers.

An illustration of improvement in the performance of a supervised learner (Decision

Stump) using SemiBoost on the “ring-norm” dataset is shown inFigure 3.4. The dataset

has 2 classes, with 500 samples each. There are 10 labeled samples per class, indicated by

symbols (�, N). The solid line shows the decision boundary and the dark andlight regions

indicate the two class regions. The performance of SemiBoostat each iteration is given

in parentheses below each of the plots. Figures 3.4(a)-(c) show the classifier obtained by

SemiBoost at the first three iterations, and Figure 3.4(d) shows the final classifier obtained

at the 12 iteration.

3.4.1 Datasets

SemiBoost was evaluated on 16 different datasets: 4 benchmark datasets provided in [71],

10 UCI datasets and 2 datasets from ethnicity classification from face images [149] and

texture classification [150]. Since SemiBoost is applicablefor two-class problems, we

chose the two-class datasets from these benchmark datasets. The multiclass datasets in UCI

are converted into two-class datasets by choosing the two most populated classes. The name

of the dataset used, the classes chosen, the number of samples present in the selected classes

n, and the dimensionality of the datasetd are summarized in the first column in Table 3.1. In

addition to this, we also evaluated the proposed approach ontext categorization problems.

The transductive performance of semi-supervised learningalgorithms is well-

studied [71, Chapter 21]. However, semi-supervised learning is not limited to transductive

learning, and out-of-sample extensions have attracted significant attention. In fact, induc-

tive learning is important, given that only a portion of the unlabeled samples are seen during

the training phase. The real utility of learning in such cases lies in the ability to classify
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unseen test samples. With this motivation, we compare the performance of SemiBoost

with three state-of-the-art inductive semi-supervised algorithms: Transductive SVM [69],

an inductive version of Low Density Separation (LDS) [70] and Laplacian-SVM from the

Manifold Regularization approach [76]. LDS is not an inductive algorithm as it involves a

graph-based dimensionality reduction step. We use the labels predicted by the LDS on the

transduction set to train an inductive classifier on the original data.

3.4.2 Experimental setup

The experimental setup aims to study the improvement in performance of a supervised

learner, by using unlabeled data and compare the performance of the SemiBoost algorithm

with three state of the art semi-supervised learning algorithms.

We use classification accuracy as the evaluation measure. The mean and standard devi-

ation of the accuracy are reported over 20 runs of each experiment, with different subsets

of training and testing data. To measure the inductive performance, we randomly split the

dataset into two halves. We call them the training and test sets. The training set has 10

labeled points along with all the given unlabeled samples. The ensemble classifier learnt

by SemiBoost on the training set is evaluated by its performance on predicting the labels

of the test set.

SemiBoost samples the unlabeled data, labels them at each iteration of boosting and

builds a classifierht(x). The number of such classifiers built will depend on the number

of iterationsT in boosting. T was set to 10 and we stop the boosting when weightsαt

computed from Eq (3.11) become negative. We set the value ofC in the objective function

(Eq (3.4)) to be the ratio of number of labeled samples to the number of unlabeled samples

C = nl/nu.

The first experiment studies the improvement in the performance of three different base

classifiers (ht(x)) after applying SemiBoost: Decision Stump (DS), the J48 decision tree

algorithm (J48), and the Support Vector Machine with the sequential minimal optimization
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(SVM) algorithm. Software WEKA [151] was used to implement all the three classifiers.

All the algorithms are run with their default parameters (e.g. default C and a linear kernel

was used for SVM algorithm). We chose decision trees (DS and J48) and SVM as the base

classifiers because of their success in the supervised learning literature, for learning tasks.

3.4.3 Results

Choice of base classifier

Table 3.1 compares the supervised and the three benchmark semi-supervised algorithms to

the SemiBoost algorithm. The columns DS, J48 and SVM give the performances of the

base classifiers on the induction set. The column SB-X gives the inductive performances

of SemiBoost with base classifier X. The last three columns in Table 3.1 correspond to

the inductive performances of benchmark semi-supervised algorithms TSVM, LDS and

LapSVM. Note that the idea is not to build the best classifier for individual classification

problem, but to show the possible improvement in the performance of supervised classifiers

using SemiBoost on all the classification problems. Results indicate that SemiBoost signif-

icantly improves the performance of all the three base classifiers for nearly all the datasets.

Using an independent sample paired t-test, we observed thatSemiBoost significantly im-

proved the performance of Decision Stump on 12 out of 16 datasets. The performance of

J48 is improved significantly on 13 out of 16 datasets, with a significant degradation on

the house dataset. For SVM, there is a significant improvement for 7 out of 16 datasets,

while a significant degradation for 3 of the 16 datasets. The three cases where SVM with

SemiBoost degraded, the benchmark algorithms performed poor compared to the super-

vised classifiers, suggesting that unlabeled data is not helpful in these cases. The ensemble

classifier obtained using SemiBoost is relatively more stable, as its classification accuracy

has lower standard deviation when compared to the base classifier.
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Performance comparison of SemiBoost with Benchmark Algorithms

Performance of SemiBoost is compared with three different algorithms, namely TSVM,

LapSVM and ILDS (inductive version of the LDS algorithm). SemiBoost achieves per-

formance comparable to that of the benchmark algorithms. SemiBoost performs better

than ILDS on almost all the datasets, and significantly better on 4 of the datasets, 2 using

Decision Stump and 2 using SVM as the base classifier. SemiBoost significantly outper-

forms TSVM on 10 out of 16 datasets using SVM, and 8 out of 16 datasets using Decision

Stump. Also, TSVM had difficulty converging on three datasets in a reasonable amount

of time (20 hours). SemiBoost performs comparably to LapSVM;SB-DS outperformed

LapSVM significantly on 2 datasets, and performed worse thanLapSVM on 1 dataset.

Similarly, SB-SVM and LapSVM significantly outperform each other on 3 out of the 16

datasets. There are datasets where one of the base classifiers outperforms SemiBoost. But

in these cases, one of the base classifiers outperforms all the semi-supervised algorithms

(e.g., SVM outperforms all the algorithms on COIL2, vehicle,sat and house datasets). This

indicates that the unlabeled data do not always improve the base classifier, or in general,

are not guaranteed to help in the learning process. When a baseclassifier outperforms

the semi-supervised learning algorithms, we observed thatthe SemiBoost tends to perform

close to the baseline compared to the other SSL algorithms inmost cases.

Performance with respect to number of unlabeled data

Figs. 3.5(a)-(b) show the performance of SemiBoost on two of the UCI datasets. Each

dataset is split into two equal parts, one for training and one for inductive testing. Ten

samples in the training set are labeled. The performance of SVM, trained on the labeled

data and with default parameters, on the test set is shown with a dotted line in each plot.

The unlabeled examples in the training set are incrementally added to the labeled examples

in units of 10%. The solid line shows the performance of the SemiBoost algorithm with

addition of unlabeled data. The dashed line shows the performance obtained by the SVM
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Figure 3.5: Performance of baseline algorithm SVM with 10 labeled samples, with increas-
ing number of unlabeled samples added to the labeled set (solid line), and with increasing
number of labeled samples added to the training set (dashed line).
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Table 3.1: Inductive performance of SemiBoost and the three benchmark algorithms. The
first column shows the dataset and the two classes chosen. Thenumber of samplesn and
the dimensionalityd are shown below the name of each dataset. The algorithms chosen
as base classifiers for boosting are Decision Stump (DS), Decision Tree (J48) and Support
Vector Machine (SVM). For each algorithm, the SB- prefixed column indicates using the
SemiBoost algorithm on the base classifier. The columns TSVM,ILDS and LapSVM show
the inductive performance of the three benchmark algorithms. A ‘-’ indicates that we could
not finish running the algorithm in a reasonable time (20 hours) due to convergence issues.
Each entry shows the mean classification accuracy and standard deviation (in parentheses)
over 20 trials.

Dataset DS SB-DS J48 SB-J48 SVM SB- TSVM ILDS Lap
(n, d) SVM SVM
Digit1 (1,2) 57.15 78.09 57.21 74.97 74.81 77.89 79.52 79.53 74.06
(1500, 241) (7.0) (3.6) (7.1) (4.3) (6.2) (4.6) (5.0) (7.0) (4.1)
COIL2 (1,2) 55.14 55.84 54.81 55.27 59.75 55.42 50.23 54.62 55.64
(1500, 241) (3.1) (4.0) (3.4) (2.9) (3.3) (4.3) (4.9) (4.0) (5.6)
BCI(1,2) 51.27 49.38 51.42 50.67 52.45 52.02 50.50 50.73 54.37
(400, 117) (4.2) (2.9) (4.1) (3.8) (3.1) (4.1) (3.6) (2.4) (3.6)
g241n(1,2) 50.73 54.54 50.57 54.71 57.55 57.93 51.14 50.25 53.65
(1500, 241) (3.1) (2.8) (2.9) (2.5) (2.6) (3.4) (3.5) (1.5) (3.1)
austra(1,2) 60.39 73.46 60.12 73.36 65.64 71.36 73.38 66.00 74.38
(690, 15) (13.0) (7.9) (12.7) (7.4) (8.2) (8.8) (12.6) (14.5) (8.7)
ethn(1,2) 65.72 66.42 64.98 63.98 67.04 67.57 - 67.16 74.60
(2630, 30) (8.6) (6.4) (7.9) (5.3) (4.8) (5.7) (16.7) (5.8)
heart(1,2) 68.26 79.48 67.67 78.78 70.59 79.00 77.63 77.11 77.96
(270, 9) (14.3) (3.6) (15.0) (3.8) (7.9) (4.1) (6.6) (9.6) (4.8)
wdbc(1,2) 79.47 88.98 75.95 89.82 75.74 88.82 86.40 85.07 91.07
(569, 14) (16.3) (6.5) (17.1) (4.0) (9.7) (9.9) (8.6) (8.7) (3.4)
vehicle(2,3) 60.48 69.31 60.89 70.25 78.28 72.29 63.62 66.28 71.38
(435, 26) (7.6) (6.7) (8.1) (7.7) (6.2) (9.4) (8.6) (8.5) (6.7)
texture(2,3) 95.67 98.90 89.46 98.50 98.44 99.91 - 98.38 99.11
(2026, 19) (5.6) (0.6) (6.7) (0.9) (1.4) (0.1) (7.2) (0.92)
image(1,2) 89.64 100.00 87.03 99.79 99.92 100.00 91.91 100 99.95
(660, 18) (11.2) (0.0) (9.3) (0.3) (0.2) (0.0) (8.2) (0.0) (0.2)
isolet(1,2) 64.23 91.92 64.48 90.20 89.58 95.12 90.38 92.07 93.93
(600, 51) (12.7) (2.1) (12.8) (3.4) (5.3) (2.3) (8.0) (11.4) (3.4)
mfeat(1,2) 82.25 96.25 85.90 96.00 98.78 99.85 95.32 96.5 100.00
(400, 76) (2.6) (2.0) (12.9) (1.8) (1.1) (0.3) (7.5) 10.8 (0.0)
optdigits(2,4) 65.91 93.22 65.59 93.33 90.31 96.35 92.34 96.40 98.34
(1143, 42) (13.4) (3.0) (13.1) (2.6) (3.6) (2.4) (9.0) (11.1) (2.4)
sat(1,6) 82.77 85.99 83.80 86.55 99.13 87.71 - 94.20 99.12
(3041, 36) (5.5) (3.7) (6.1) (3.0) (0.7) (2.9) (14.2) (0.5)
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Figure 3.6: Performance of baseline algorithm SVM with 10 labeled samples, with increas-
ing value of the parameterσ. The increments inσ are made by choosing theρ-th percentile
of the similarities, whereρ is represented on the horizontal axis.
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when all these added samples are labeled using their ground truth. It is observed that the

performance of SemiBoost improves with the addition of more and more unlabeled data,

whenever such an improvement is possible.

Sensitivity to parameterσ

Fig. 3.6 shows the performance of the SemiBoost-SVM, with varying value of the pa-

rameterσ. The parameterσ was chosen to be theρ-th percentile of the distribution of

similarities, withρ varying between 10-th percentile to 100-th percentile. Selecting the

value ofσ is one of the most difficult aspects of graph construction, and several heuristics

have been proposed to determine its value. On most of the datasets shown, SemiBoost is

relatively stable with respect to the scale parameter. However, a choice ofσ between 10-th

percentile to 20-th percentile of the pairwise distances isrecommended, based on empirical

observations.

Margin and Confidence

In this experiment we empirically demonstrate that SemiBoost has a tendency to maximize

the mean-margin. For unlabeled data, a popular definition ofmargin is|H(xi)| [80, 79].

The mean margin is the empirical average of|H(xi)| over the unlabeled data used for train-

ing. Figs. 3.7, 3.8, and 3.9 show the mean-margin value on optdigits dataset (classes 2,4)

over the iterations using Decision Stump, J48 and SVM as the base classifiers, respectively.

The value of the mean-margin increases over the iterations,irrespective of the choice of the

base classifier. However, it is important to note that the minimum margin may not increase

at each iteration, although the test error decreases. When the training data consists of a

small number of labeled samples which can be perfectly classified, the margin is largely

decided by the unlabeled data. Considering the margin over the unlabeled data, the clas-

sifier at iteration 1 has a margin ofα1 for all the unlabeled data, wheres at the second

iteration, the minimum margin isminxi
|H(2)(xi)| = |α1 − α2| ≤ α1 = minxi

|H(1)(xi)|.

In fact, over the iterations, the value of the minimum marginmay be traded off to obtain
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Figure 3.7: The mean-margins over the iterations, on a single run of SemiBoost on optdigits
dataset (classes 2,4), using Decision Stump as the base classifier.
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Figure 3.8: The mean-margins over the iterations, on a single run of SemiBoost on optdigits
dataset (classes 2,4), using J48 as the base classifier.
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Figure 3.9: The mean-margins over the iterations, on a single run of SemiBoost on optdigits
dataset (classes 2,4), using SVM as the base classifier.

a gain in the performance, i.e. being in agreement with the similarity matrix. It has been

shown in [152] that maximizing the value of minimum margin does not necessarily trans-

late to a better performance of a classifier. It is argued in the context of boosting that an

approach that maximizes the mean-margin in a greedy fashionis preferable to those that

maximize the minimum margin. Fig. 3.11 shows the distribution of the value ofH(xi) over

the iterations. The light and dark bars in the histogram represent the two classes (2 and 4),

in the optdigits dataset. Note that as iterations progress,the two classes get more and more

separated.

3.4.4 Convergence

According to Theorem 1, SemiBoost converges exponentially.To illustrate the conver-

gence, we chose the two most populous classes in the optdigits dataset, namely digits 2

and 4. The change in the objective function as new classifiersare added over iterations is
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demonstrated in Fig. 3.13. which follows an exponential reduction. Fig. 3.12 shows the

value ofα over the iterations. Initially, the value ofα falls rapidly, and after around 20 iter-

ations, the value is insignificantly small relative to that of initial classifiers. This suggests

that although SemiBoost still needs more iterations to converge, the new classifiers added

in boosting will not significantly change the decision value. Fig. 3.14 shows the accuracy

of the SemiBoost with Decision Stump as the base classifier, over the iterations.

3.4.5 Comparison with AdaBoost

Table 3.2: Performance of different classifiers and their boosted versions on 6 UCI datasets.
X-small stands for the classifier trained on a set of 10 labeled samples chosen from the data.
The prefix AB-X stands for AdaBoost with base classifier X. SB-X stands for SemiBoost
with base classifier X. X-large stands for the classifier trained by labeling all the unlabeled
data used in SB-X.

Classifier austra bupa wdbc optdigits mfeat-fou isolet

Decision Stump

small 60.39 54.94 79.47 65.91 82.25 64.23
AB-small 62.55 56.45 70.02 63.20 77.62 64.82
SemiBoost 73.46 55.78 88.98 93.22 96.25 91.92
large 79.36 57.71 90.42 90.26 99.72 92.57
AB-large 81.70 68.44 94.44 99.98 99.72 97.68

J48

small 60.12 54.97 75.95 65.59 85.90 64.48
AB-small 60.68 55.09 68.86 61.40 75.80 65.33
SemiBoost 73.36 54.74 89.82 93.33 96.00 90.20
large 79.97 62.49 92.68 97.18 99.12 92.90
AB-large 82.42 66.21 94.96 98.97 99.12 96.68

SVM

small 65.64 52.05 75.74 90.31 98.78 89.58
AB-small 63.29 53.50 73.53 87.11 93.80 88.48
SemiBoost 71.36 54.02 88.82 96.35 99.85 95.12
large 85.57 58.15 94.81 99.66 100.00 99.72
AB-large 84.29 65.64 95.89 99.65 100.00 99.72

To evaluate the contribution of unlabeled data in improvingthe performance of a base

classifier, we compared the performance of SemiBoost with that of AdaBoost on the same

base classifier (or weak learner) and using a similar experimental procedure as in Sec-
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tion 3.4.2. Table 3.2 shows the performance of three base classifiers Decision Stump, J48

and SVM (shown in column 1) on 6 datasets shown in the top row. For each classifier,

the first two rows show the inductive performance of the classifier and its boosted version

(using AdaBoost) trained on 10 labeled samples. The third rowshows the performance of

SemiBoost when unlabeled data is added to the same set of labeled samples. The fourth

and fifth rows, labeledlarge andAB-largeshow the performance of the classifier and its

boosted version trained after labeling the unlabeled data used in SemiBoost.

From Table 3.2, we can see that the performance of SemiBoostedversions of the clas-

sifiers (SB-DS, SB-J48, and SB-SVM) is significantly better thanclassifiers trained using

only labeled data, boosted (using AdaBoost) or unboosted (rows 1 and 2 for each classifier

section). Naturally, when all the unlabeled data are labeled, the performance of the clas-

sifiers and their boosted versions are significantly better than SemiBoost (rows 4 and 5).

The reduction in the inductive performance of AB-small compared to the base classifier on

several datasets may be attributed to the overfitting due to small number of training sam-

ples. The addition of unlabeled data as a regularizing mechanism in SemiBoost avoids the

overfitting, thereby achieving an improved classifier.

3.5 Performance on text-categorization

We further evaluate the SemiBoost algorithm on the Text Categorization problem using

the popular 20-newsgroups dataset2. We performed the evaluation of SemiBoost algorithm

with Decision Stump, J48 and SVM as the base classifiers on binary problems created using

the 10 most popular classes of the 20-newsgroups dataset. Note that this experimental setup

is different from some of the other studies in semi-supervised learning in which the one-vs-

rest approach is used for evaluation. Compared to one-vs-rest, the one-vs-one evaluation

has the following advantages:

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 3.3: Comparison of the inductive performance (measured as % accuracy) of Semi-
Boost, TSVM, ILDS and LapSVM on pairwise binary problems created from 5 classes of
the 20-newsgroups dataset.

Classes DS SB DS J48 SB J48 SVM SB SVM TSVM ILDS LapSVM
(d)

1, 2 55.82 82.30 56.93 72.86 71.02 70.74 75.44 55.10 68.23
(3736) (14.0) (12.3) (15.5) (8.0) (8.7) (5.6) (13.2) (16.6) (3.9)

1, 3 54.61 85.95 56.24 77.05 72.17 74.83 89.34 58.88 71.34
(3757) (10.6) (9.6) (10.7) (8.0) (8.2) (5.4) (5.9) (20.2) (4.8)

1, 4 51.35 87.36 54.71 80.65 77.22 78.47 88.71 61.72 74.67
(3736) (7.1) (11.4) (13.4) (5.7) (9.0) (3.6) (6.8) (9.4) (3.1)

1, 5 55.72 91.37 57.55 86.65 74.84 82.64 92.35 66.45 78.01
(3979) (11.4) (7.8) (12.6) (6.7) (9.8) (4.3) (5.5) (16.7) (4.1)

2, 3 48.94 73.33 49.43 64.52 63.12 64.06 66.05 50.76 61.68
(4154) (2.3) (11.6) (2.1) (7.8) (5.2) (4.5) (10.6) (1.8) (3.8)

2, 4 49.60 88.43 49.40 78.07 69.47 74.85 81.50 50.32 70.95
(4143) (4.0) (9.5) (3.8) (5.0) (7.0) (3.2) (13.5) (2.1) (3.2)

2, 5 49.38 94.65 49.24 83.87 71.62 80.12 84.94 53.94 74.79
(4406) (1.9) (6.5) (1.6) (6.0) (6.6) (4.8) (12.4) (7.3) (3.4)

3, 4 51.16 90.22 51.46 77.34 72.22 75.26 81.98 50.08 71.45
(4130) (3.1) (8.6) (3.7) (7.2) (5.4) (5.1) (12.7) (2.7) (3.8)

3, 5 51.67 92.93 51.71 81.16 73.65 78.31 77.38 53.83 74.91
(4426) (4.0) (6.5) (4.9) (7.0) (8.3) (3.9) (16.2) (8.1) (4.2)

4, 5 51.68 79.51 51.53 68.27 62.08 68.07 67.54 52.39 65.05
(4212) (4.1) (11.5) (3.9) (8.4) (5.8) (5.3) (12.7) (6.5) (5.0)

• There is a large variation in the best performing supervisedclassifier for the binary

tasks. This enables us to show that when SVM is not the best classifier for a problem,

then the methods that improve SVM using unlabeled data may not be the best semi-

supervised algorithms to use.

• Semi-supervised learning algorithms rely on certain assumptions about the structure

of the data and the classes. In one-vs-rest approaches, these assumptions are likely

to be violated. For instance, many semi-supervised algorithms assume a large cluster

gap between the two classes. By aggregating multiple classesinto one negative class,
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we expect to see a large cluster gap amongst the negative class itself. Violation of the

manifold assumption can be explained similarily.

• There is a large imbalance in the data in a one-vs-rest classification. While a knowl-

edge of priors may be used to incorporate this imbalance intosemi-supervised learn-

ing to improve the performance, we assume no prior information is available about

the data other than the similarity information and a small number of training exam-

ples.

• One-vs-one has been a popular approach for creating multiclass classifiers. The test-

ing time can be significantly reduced in a one-vs-one settingby using a DAG based

architecture [153].

We generate all the 45 possible binary problems of the 10 classes. For simplicity,

we include only results on 10 binary problems created from 5 of the classes in the 20

newsgroups, summarized in Table 3.3. These results are similar to the results on the other

35 binary problems.The first column in Table 3.3 shows the classes chosen for creating

the binary problems. Each classification task contains a dataset with approximately 2,000

documents. We use the popular tf-idf features computed overthe words which occur at

least 10 times in total, in all the 2,000 documents. The tf-idf features are later normalized

per document. The dimensionality of each dataset is shown incolumn 2 of Table 3.3.

We follow the same inductive evaluation procedure as in Section 3.4.2. We use 2 labeled

samples per class for training the classifier. We use the linear kernel (dot product between

the feature vectors) as the similarity measure, popular in the text classification tasks. The

inductive performance of the different algorithms Decision Stump, J48, SVM and their

SemiBoosted versions, Transductive SVM, Inductive LDS, Laplacian SVM are shown in

Table 3.3. To allow a fair comparison, the parameter valueC for all SVMs is set to 1.

The mean and standard deviation of the performance over 20 runs of the experiment are

reported.
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Table 3.3 shows that in the case of Decision Stump and J48, SemiBoost significantly

(at a 95% confidence level, measured using independent sample paired t-test) improves the

performance on all the pairs of classes. The performance of SVM is improved significantly

on 5 out of the 10 class pairs. Also, we notice that SemiBoostedDecision stump performs

signficantly better than SemiBoosted SVM on all the pairs of classes. Comparing the SVM

based methods, SB-SVM significantly outperforms LapSVM on 7 class pairs and ILDS

on all the 10 pairs. TSVM outperforms SB-SVM on 5 out of the 10 class pairs. Overall,

the performance of SB-SVM is comparable to TSVM and it is significantly better than

LapSVM and ILDS. SB-DS outperforms TSVM significantly on 5 outof the 10 class pairs,

and LapSVM and ILDS on all the class pairs. The poor performance of ILDS may be as-

cribed to the use of a graph based kernel, which may not be as suitable for text classification

based tasks as a linear kernel. These results show that SemiBoosting Decision Stumps is a

viable alternative to the SVM based semi-supervised learning approaches.

3.6 Conclusions and future work

An algorithm for semi-supervised learning using a boostingframework is presented. The

strength of SemiBoost lies in its ability to improve the performance of any given base

classifier in the presence of unlabeled samples. Overall, the results on both UCI datasets

and the text categorization using 20-newsgroups dataset demonstrate the feasibility of

this approach. The performance of SemiBoost is comparable tothe state-of-the-art semi-

supervised learning algorithms. The observed stability ofSemiBoost suggests that it can

be quite useful in practice. SemiBoost, like almost all othersemi-supervised classification

algorithms, is designed for two-class classification. Multiclass extension of SemiBoost is

presented in [154]. We are working towards obtaining theoretical results that will guarantee

the performance of SemiBoost, when the similarity matrix reveals the underlying structure

of data (e.g., the probability that two points may share the same class).
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Figure 3.10: Distribution of the ensemble predictionsHt(xi), over the unlabeled sam-
ples in the training data from optdigits dataset (classes 2,4) at the iterationt, where
t ∈ {1, 2, 10, 20}. SVM is used as the base classifier. The light and dark bars in the
histogram correspond to the two classes 2 and 4, respectively.
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Figure 3.11: Continued from previous page.
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Figure 3.12: Objective function of SemiBoost over the iterations, when run over two classes
(2,4) of the optdigits dataset using Decision Stump as the base classifier.
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Figure 3.13: The classifier combination weightα of SemiBoost over the iterations, when
run over two classes (2,4) of the optdigits dataset using Decision Stump as the base classi-
fier.
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Figure 3.14: Accuracy of SemiBoost over the iterations, whenrun over two classes (2,4) of
the optdigits dataset using Decision Stump as the base classifier. The accuracy of the base
classifier is 65.9%.
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CHAPTER 4

Non-parametric Mixtures for Clustering

4.1 Introduction

Clustering is applicable to many central problems in data analysis, specifically in computer

vision such as image segmentation [155, 46], clustering images [156], visual word con-

struction for image annotation [157], motion segmentation[158], image retrieval [159],

and visual object recognition [160].

The lack of a universal definition of a cluster, and its task ordata dependent nature has

resulted in publication of a very large number of algorithms, each with slightly different as-

sumptions about the cluster structure. A brief categorization of the existing algorithms was

presented in Table 2.1, and some of their major properties are listed in Table 4.1. Broadly,

the proposed approaches can be classified intoparametricvs. non parametricapproaches.

Parametric approaches impose a structure on the data, whereas non-parametric methods

infer the underlying structure from the data itself. Since parameteric models assume a spe-

cific structure in the dataset (e.g. K-means prefers spherical clusters), they tend to be less

flexbile compared to the non-parameteric approaches.

Probabilistic models are highly effective when the underlying distribution of the data

is either known, or can be closely approximated by the distribution assumed by the model.

One of the most widely used probabilistic clustering methods is the finite mixture mod-

eling [35, 36]. Several probabilistic models like GaussianMixture Models (GMM) [36]
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and Latent Dirichlet Allocation [37] have been shown to be successful in a wide variety of

applications concerning the analysis of continuous and discrete data, respectively. Proba-

bilistic models are advantageous since they allow soft cluster memberships and provide a

principled way to address issues like the number of clusters, missing feature values, etc. In

addition, the probabilistic memberships are often used as an alternative representation of

objects, leading to effective dimensionality reduction. The most well known example of

this case is the Probabilistic Latent Semantic Indexing (PLSI) [54], which is widely used in

the dimensionality reduction of text data. The main shortcoming of most mixture models

is the assumption that data is generated from a finite mixtureof parametric distributions

e.g., Gaussian, multinomial etc. However, it is well known that clusters in real data are

not always of the same shape and rarely follow a “nice” distribution like Gaussian [4].

In a general setting, each cluster may follow its own distribution that is unknown a priori.

Therefore, there is a need for algorithms that are more flexbile in terms of their assumptions

such that they are able to detect clusters of arbitrary shapes.

The limitations of parametric mixture models can be overcome by the use of non-

parametric density estimation methods. Several algorithms, such as Mean-shift [45], DEN-

CLUE [50] and DBSCAN [49] were developed to exploit non-parametric density estimates

for data clustering. These methods find a single kernel-density estimate of the data, and de-

tect clusters by identifying modes or regions of high density in the estimated density [45].

Despite their success, most of these approaches do not perform well consistently on high-

dimensional datasets. The performance of DBSCAN is highly dependent on the parameters

that are used to define the neighborhood. Since it is difficultto define the neighborhood

of the data points in a high-dimensional space due to the curse of dimensionality [21],

DBSCAN performs rather poorly in clustering high dimensionaldata; applications of DB-

SCAN cluster data with dimensionality upto 5 [161]. Further,many of these methods

require specifying appropriate values for some parametersthat often need to be decided in

a rather ad-hoc manner. Finally, for most of these density estimation based approaches, it
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is not possible to specify the number of clusters. Although this property may be viewed

as an advantage since the number of clusters is determined implicitly, it is clearly a disad-

vantage as any prior information about the number of clusters can not be incorporated into

the clustering algorithm. A hybrid clustering approach to segment images using a combi-

nation of parametric and non-parametric mixture models waspresented in [46], which can

incorporate the number of clusters into the non-parametricmodel.

In this chapter, an extension of the non-parametric densityestimation to the mixture

models for data clustering is presented. It is assumed that each cluster is generated by its

own density that is unknown. The density of each cluster may be arbitrary and multimodal

and hence it is modeled using a non-parametric kernel density estimate. The overall data

is modeled as a mixture of the individual cluster densities.Since the NMM algorithm,

unlike other non-parametric algorithms (e.g., Spectral clustering), constructs an explicit

probabilistic model for each cluster, it can naturally handle out-of-sample1 clustering by

computing the posterior probabilities for new data points.Tables 4.2 and 4.4 compare the

NMM algorithm to several well known clustering algorithms.In summary, we emphasize

that:

• The NMM algorithm for data clustering offers several advantages compared to the

other non-parametric approaches (e.g., hierarchical clustering, spectral clustering,

etc.) that are not based on probabilistic models: (a) it allows for probabilistic assign-

ments of data points to different clusters (b) it can effectively explore probabilistic

tools such as Dirichlet process and Gaussian process for non-parametric priors, and

(c) the model naturally supports out of sample cluster assignments

• Contrary to most existing mixture models, the NMM approach does not make any

explicit assumption about the parametric form of the underlying density function,

and therefore is flexible in modeling arbitrarily shaped clusters.

1A clustering algorithm can performout-of-sampleclustering if it can assign a cluster label to a data point
unseen during the learning phase.
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Table 4.1: Properties of different clustering methods. Prototype-based clustering methods
are approaches that use a single data point to represent eachof the clusters (e.g. K-means
uses centroid of the cluster to represent each cluster)

Method/Family Non-
parametric

Prototype-
based [4]

Out Of
Sample

Output

Squared-Error No Yes Yes Labels
Parametric mixture models No Yes Yes Probabilities
Non-parametric density esti-
mation

Yes No No Labels

Spectral Algorithms Yes No No Scores
Hierarchical Yes No No Labels
Information Theoretic Yes Some Some Labels
Non-parametric Mixture Yes No Yes Probabilities

The performance of the NMM algorithm is shown on a large number of text and UCI

datasets. Experimental results demonstrate that, compared to several widely used clus-

tering algorithms such as K-means and spectral clustering,the NMM algorithm performs

significantly better when data is of high dimensionality, asin text and image data.

There is no clustering algorithm that is optimal, i.e. it hasthe best performance on all

the datasets [3]. However, depending on the data characteristics, different algorithms are

appropriate for capturing the underlying structure of the data. Furthermore, each clustering

algorithm has certain crucial pararameters that are critical to the performance of the algo-

rithm. There is generally no guidance available to select these parameters. In this chapter,

we propose to use any additional information to evaluate a goodness measure for each value

of the parameter, and select the parameter with the highest goodness value. We call this

approachsemi-supervised parameter selection.
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4.2 Non-parametric mixture model

4.2.1 Model description

LetD = {x1, . . . , xn} be a collection ofn data points to be clustered, where eachxi ∈ R
d

is a vector ofd dimensions. LetG be the number of clusters. The aim is to fit the data

points inD by a non-parametric mixture model. Letκ(·, ·) : R
d × R

d → R be the kernel

function for density estimation. We further assume that thekernel function is stationary,

i.e.,κ(xi, xj) = κs(xi − xj), where
∫

κs(x)dx = 1. Let the matrixK = [κ(xi, xj)]n×n ∈

R
n×n
+ denote the pairwise kernel similarity for data points inD.

Let {cg}, g = 1, . . . , G be the set ofG clusters that forms a partition ofD. We specify

the conditional density functionpg(x|cg,D) for each clustercg as follows:

pg(x|cg,D) =
1

|cg|

∑

xi∈cg

κ(x, xi) (4.1)

where|cg| is the number of samples in clustercg, and
∑

g |cg| = n. The unconditional (on

clusters) densityp(x|D) is then written as

p(x|D) =
G
∑

g=1

πgpg(x|cg,D) (4.2)

whereπg = P (cg) is the mixture coefficient for clustercg. We generalize the cluster condi-

tional densityp(x|cg,D) in Eq. (4.1) by considering soft cluster memberships. We denote

by wg = (wg
1, . . . , w

g
n) the probability of assigning data points to clustercg. Evidently, we

havewg
i ≥ 0, i = 1, . . . , n, g = 1, . . . , G, and

∑G
g=1 wg

i = 1. Using the soft memberships

wg, g = 1, . . . , G, we can then generalizepg(x|cg,D) as

pg(x|cg,D) =
1

∑n
i=1 wg

i

n
∑

i=1

wg
i κ(xi, x) (4.3)

Let qg
i = wg

i /(
∑n

j=1 wg
j ). This simplifiespg(x|cg,D) as

pg(x|cg,D) =
n
∑

i=1

qg
i κ(xi, x) (4.4)
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We refer toqg = (qg
1 , . . . , q

g
n) as theprofile vectorfor clustercg, andQ = (q1, . . . , qG) as

the profile matrix. The objective of our clustering model is to learn the profilematrix Q

for data setD. We emphasize that due to the normalization step, i.e.,
∑n

j=1 qg
j = 1, qg

j can

no longer be interpreted as the probability of assigningxj to clustercg. Instead, it only

indicates the relative importance ofxj to the density function for clustercg. We finally

note that density function in Eq. (4.4) is also referred to asthe density estimate in “dual

form” [162].

4.2.2 Estimation of profile matrix Q by leave-one-out method

To estimate the profile matrixQ, we follow the idea of maximum likelihood, i.e., to find

the matrixQ by solving the optimization problemmaxQ

∑n
i=1 log p(xi|D). One major

problem with this approach is that, when estimatingp(xi|D), xi is already an observed

data point inD that is used to construct the density functionP (xi|D). As a result, simply

maximizing the likelihood of data may lead to an overestimation of the parameterQ, a

problem that is often referred to as overfitting in machine learning [20]. We resolve this

problem by replacingp(xi|D) with its leave-one-out (LOO) estimate [163].

We first definepi(xi|cg,D−i), the LOO conditional probability for each held out sample

xi, conditioned on the clusters and the remainingn− 1 samples, as follows

pi(xi|cg,D−i) =
1

∑n
j=1(1− δj,i)q

g
j

n
∑

j=1

(1− δj,i)q
g
j Ki,j, (4.5)

whereD−i = D\{xi} denotes the subset ofD that excludes samplexi. Using the LOO

cluster conditional probabilitypi(xi|cg,D−i), we further define the LOO unconditional (on

cluster) density for each held out samplexi as follows:

pi(xi|D−i) =
G
∑

g=1

γg
i pi(xi|cg, D−i), (4.6)

whereγg
i = P (cg|D−i), and

∑

g γg
i = 1,∀i = 1, . . . , n. Note that unlike the mixture model

in (4.2) where the same set of mixture coefficients{πg}
G
g=1 is used for anyxi, in (4.6),
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mixture coefficients{γg
i }

G
g=1 depend on samplexi, due to the leave-one-out estimation.

We denote byγi = (γ1
i , · · · , γ

G
i ) andΓ = (γ1, . . . , γn)⊤ ∈ R

n×G
+ .

To improve the robustness of the estimation of profile matrixQ, we introduce a Gaus-

sian prior for profile matrixQ, i.e.,

p(Q) ∝ exp

(

−λ
∑

i

∑

g

[qg
i ]

2

)

, (4.7)

whereλ is a hyperparameter that will be determined empirically.

Remark One of the natural choices for the prior on eachqg would be the Dirich-

let distribution, since we have
∑n

i=1 qg
i = 1 for g = 1, · · · , G, that is, Dir(Q|α) ∝

∏G
g=1

∏n
i=1 (qg

i )
α−1 , whereα is a hyper parameter. However, a Gaussian prior makes it

convenient to incorporate the side information (e.g. instance level pairwise constraints [98])

into to the model. For example, if two samples are linked by a must-link constraint, it can

be incorporated into the Gaussian prior with high correlation between the profile values of

the two linked data points. However, since this prior is being specified on a matrixQ, it

needs to use matrix-variate distributions.

Remark The maximum forlog p(Q) under the constraint
∑n

i=1 qg
i , g = 1,. . . ,G , occurs

when allqg
i = 1

n
. This encodes a prior belief that all points equally contribute to all the

clusters. A smaller value ofλ results in a relatively sparser solution forQ. As the value

of λ increases, the solution tends towards being uniform, i.e.qg
i →

1
n

for i = 1, · · · , n.

However, choosingλ = 0 results in several numerical instabilities which are discussed in

detail in Appendix A.

Bayesian interpretation NMM can also be interpreted as a Bayesian model by specify-

ing the following data generation process:

1. Generate the mixture coefficientsγg
i , g = 1, · · · , G from a Dirichlet prior withα = 1.
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n

{xj}
n
j=1,j 6=i

α γi

λ Q

xi

Figure 4.1: Graphical model showing the data generation process using the NMM.

2. Generate the profile coefficientsqg for the clustercg from the prior specified in

Eq (4.7), given the parameterλ.

3. Usingγi andQ, sample the pointxi from the density in Eq (4.5).

Figure 4.1 shows the graphical model corresponding to the data generation process.

For notational convenience, we setKi,i = 0 in Eq (4.5). Now, using the condition
∑n

i=1 qg
i = 1, the LOO log-likelihood of data, denoted byℓLOO(D; Q, Γ), can be expressed

as follows

ℓLOO(D; Q, Γ) = log p(Q) +
n
∑

i=1

log pi(xi|D−i)

= −λ
n
∑

i=1

G
∑

g=1

(qg
i )

2 +
n
∑

i=1

log

(

∑

g

γg
i

∑n
j=1 Ki,jq

g
j

1− qg
i

)

. (4.8)

The parameters in the above simplified model areγg
i andqg

i , for i = 1, · · · , n andg =

1, · · · , G. They are estimated by maximizing the LOO log-likelihoodℓLOO(D; Q, Γ). The

optimal values ofQ andΓ, denoted byQ∗ andΓ∗ can be obtained by solving the following

optimization problem:

{Q∗, Γ∗} = arg max
Q,Γ

ℓLOO(D; Q, Γ) (4.9)

The optimization procedure used is discussed in the following section.
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4.2.3 Optimization methodology

To determine the optimal values ofΓ andQ that maximize the log-likelihood in Eq (4.9),

we apply an alternating optimization strategy [164]. At each iteration, we first optimize

Γ with fixed Q, and then optimizeQ with fixed Γ. Below, we give the procedure for

optimizingΓ andQ.

Optimizing Γ

By fixing Q, the optimal value ofΓ can be obtained using the following proposition.

Proposition 4. For a fixedQ, the LOO log-likelihood of a samplexi is maximized when

γg
i = δ(g, arg max

g′
pi(xi|cg′ ,D−i)), (4.10)

whereδ(., .) = 1 if the arguments are equal to each other, and0, otherwise.

Proof. Collecting the terms containingγg
i from Eq (4.8), the maximization problem forΓ

can be written as follows,

max
Γ

∑n
i=1 log

(

∑

g γg
i

Pn
j=1

Ki,jqg
j

1−qg
i

)

(4.11)

s.t.
∑G

g=1 γg
i = 1, i = 1, · · · , n (4.12)

Since
∑G

g=1 γg
i = 1, Jensen’s inequality can be used to write the above optimization prob-

lem as,

max
Γ

∑n
i=1

∑

g γg
i log

(Pn
j=1

Ki,jqg
j

1−qg
i

)

(4.13)

s.t.
∑G

g=1 γg
i = 1, i = 1, · · · , n (4.14)

This is a linear programming problem, and the solution forΓ can be obtained as stated in

Proposition 1.
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The variableγg
i is closely related to the posterior distributionPr(cg|xi), and therefore

can be interpreted as the cluster label of thei-th sample, i.e.,γg
i = 1 if xi ∈ cg and 0,

otherwise.

Optimizing Q

It is difficult to directly optimize the log-likelihood in Eq(4.8) with respect toQ. We

therefore construct and minimize a convex variational upper bound on the negative log-

likelihood for efficient inference. At each iteration, we maintain a touch point between the

bound and the negative log-likelihood function, which guarantees convergence to at least a

local minima [165].

The log of conditional probabilitypi(xi|cg,Di) in Eq (4.5) results in a log-sum form,

and can be bounded as follows.

Proposition 5. The logarithm of the conditional probability in Eq(4.5)satisfies the follow-

ing concave lower bound,

log pi(xi|cg,Di) = log

(

n
∑

j=1

Ki,jq
g
j

)

− log (1− qg
i ) (4.15)

≥
n
∑

j=1

ηg
i,j log(Ki,jq

g
j )−

1− qg
i

zg
i

− log zg
i + 1 + H(ηg

i,·), (4.16)

wherezg
i ≥ 0 and ηg

i,j,
∑n

j=1 ηg
ij = 1 are the two variational distributions andH(ηg

i,.)

corresponds to the Shannon entropy of the distributionηg
i,..

Proof. Introducing variational distributionsηg
i,., i = 1, · · · , n; g = 1, · · · , G, whosej-

th element isηg
ij and

∑n
j=1 ηg

ij = 1 into the first term of Eq (4.15), and the variational
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Bernoulli distributionzg
i , 0 ≤ zg

i ≤ 1 into the second term, we have,

log pi(xi|cg,Di) = log

(

n
∑

j=1

Ki,jq
g
j

)

− log (1− qg
i ) (4.17)

= log

(

n
∑

j=1

(

ηg
i,j

ηg
i,j

)

Ki,jq
g
j

)

− log (1− qg
i ) (4.18)

= log

(

n
∑

j=1

ηg
i,j

(

Ki,jq
g
j

ηg
i,j

)

)

− log (1− qg
i ) (4.19)

≥

n
∑

j=1

ηg
i,j log

(

Ki,jq
g
j

ηg
i,j

)

− log (1− qg
i ) (4.20)

=
n
∑

j=1

ηg
i,j log

(

Ki,jq
g
j

)

−

n
∑

j=1

ηg
i,j log ηg

i,j − log (1− qg
i ) (4.21)

=
n
∑

j=1

ηg
i,j log(Ki,jq

g
j )−

1− qg
i

zg
i

− log zg
i + 1 + H(ηg

i,·), (4.22)

The bound introduced in the above proposition holds for anyz and η. Clearly, the

tightest bound is achieved by maximizing overzi andη, whose solutions are given below.

Proposition 6. The optimal values for the variables (zg
i and ηg

i,j) introduced in Proposi-

tion 5 are:

zg
i = 1− qg

i and ηg
i,j =

Ki,jq
g
j

∑n
j′=1 Ki,j′q

g
j′

. (4.23)

Proof. The optimal values of the variables in Proposition 2 can be obtained as the stationary

points of the bound. Differentiating the bound from Proposition 2 w.r.tηg
ij, and setting it to

0, we get

log(Kijq
g
j )− 1− log(ηg

ij) = 0,
∑

j

ηg
ij = 1. (4.24)

Solving the above equation forηg
ij, gives us

ηg
ij =

Kijq
g
j

∑n
j=1 Kijq

g
j

. (4.25)
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The optimal value forzi can be obtained similarly,

1− qg
i

(zg
i )

2
−

1

zg
i

= 0, or zg
i = 1− qg

i .

Using the bound from Proposition 5, the maximization of log-likelihood in Eq (4.8) can be

approximated by the following optimization problem.

Proposition 7. Givenγg
i , ηg

ij andzg
i , the optimal value ofQ at each iteration can be ob-

tained by solving the following convex problem.

min
Q

λ

n
∑

i=1

G
∑

g=1

(qg
i )

2 −

n
∑

i=1

G
∑

g=1

γg
i

zg
i

qg
i −

n
∑

j=1

G
∑

g=1

[(

n
∑

i=1

γg
i η

g
i,j

)

log qg
j

]

s. t. 0 ≤ qg
i , i = 1, . . . , n, g = 1, . . . , G,Q⊤1n = 1G. (4.26)

Proof. Combining the bounds and results from propositions 1, 2 and 3,and simplifying the

equation results in the optimization problem forQ.

The convex optimization problem in Eq (4.26) can be solved asfollows. Constructing

a Lagrangian for the problem in Eq (4.26), and setting its derivative w.r.t.qg
i to 0, we have

2λqg
i −

γg
i

zg
i

−
1

qg
i

(

n
∑

j=1

γg
j η

g
j,i

)

− θg = 0. (4.27)

whereθg, g = 1, · · · , G are the Lagrangian multipliers for constraints
∑n

j=1 qg
j = 1. Defin-

ing

ag
i = 2λ, bg

i =
γg

i

zg
i

+ θg, cg
i =

n
∑

j=1

γg
j η

g
j,i,

the above equation can be rewritten as,

ag
i (qg

i )
2 − bg

i q
g
i − cg

i = 0.

Given coefficientsag
i , bg

i , andcg
i , the solution toqg

i is found as

qg
i =

bg
i +

√

[bg
i ]

2 + 4ag
i c

g
i

2ag
i

.
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We can estimateθg by solving the nonlinear equation
∑n

i=1 qg
i = 1. Note that the function

∑n
i=1 qg

i is monotonically increasing in terms ofθg, and therefore can be solved by bisection

search on the intervalθg ∈ [mini(a− bg
i − ncg

i ), maxi(b
g
i + ncg

i − a)].

Remark One can interpret quantitiesbg
i andcg

i as follows: (i)bg
i essentially measures the

consistency betweenPr(cg|xi) andqg
i . In particular, ifγg

i is large, which impliesxi must

be assigned to clustercg, andzg
i is small, which impliesqg

i is large at the current iteration,

we then will have a largebg
i , which will lead to larger value ofqg

i in the next iteration; (ii)

cg
i measures the consistency between assigning data pointxi to clustercg and its neighbors.

In particular, a largeηg
j,i indicates thatxi has a significant impact in drivingxj to clusterg.

Remark If λ = 0, then we can see that the solution ofqg
i is given by the following

equation:qg
i =

−cg
i

bg
i

. The following non-linear equation must be solved to obtainθg,

n
∑

i=1

cg
i

γg
i

zg
i

+ θg
+ 1 = 0

Sinceθg ∈ R, this function is discontinuous wheneverθg = −
γg

i

zg
i

. Since we requireqg
i ≥ 0,

we needθg+maxi
γg

i

zg
i

< 0. Also,γg
i takes a non-zero value for only one of theg values. This

function is therefore well defined only in the rangeθ ∈ (−∞,−max(γg
i /z

g
i )). Whenever

a point contributes to a cluster by a large amount, the value of γg
i /z

g
i is really large. This

results in several numerical problems while performing a bisection search. Apart from this,

we have observed that the performance withλ = 0 is much inferior to that with a small

positiveλ; resulting function is smoother, and easier to numericallyoptimize.

The procedure for findingQ andΓ that maximizes the log-likelihood in Eq (4.8) is

summarized in Algorithm 1. Upon convergence, the value ofγi determines the cluster

label forxi.
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Algorithm 1 [Q, Γ] = NonParametricMixture(D, G, λ, σ)
Input: DatasetD, no. of clustersG, parametersλ andσ

Output: Cluster labelsΓ and the profile matrixQ
1: Compute the kernel matrixK for the points inD with bandwidthσ. NormalizeK such

that
∑

k Kij = 1.
2: Set the iterationt← 0.

3: Initialize Q(t) ← Q0, such thatQ0 < 0, QT
0 1n = 1G.

4: repeat
5: t← t + 1;
6: Compute the variablesγg

i using Eq (4.10),ηg
i,j andzg

i using Eq (4.23) andQ(t−1).
7: Minimize Eq (4.26) to estimateQ(t).
8: ∆Q← Q(t) −Q(t−1).
9: until ||∆Q||22 ≤ ǫ, (ǫ is pre-set to a desired precision)

10: return Q, Γ
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(a) (b)

(c) (d)

Figure 4.2: Illustration of the non-parametric mixture approach and Gaussian mixture mod-
els on the “two-moon” dataset. (a) Input data with two clusters. (b) Gaussian mixture
model with two components. (c) and (d) the iso-contour plotsof non-parameteric estimates
of the class conditional densities for each cluster. The warmer the color, the higher the
probability.
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(a) NMM (b) K-means (c) Spectral

(d) (e) (f)

Figure 4.3: Illustration of the (a) non-parametric mixtureapproach, (b) K-means and (c) spectral clustering on the example dataset
from [1]. Input data contains 100 points each from three spherical two-dimensional Gaussian clusters with means (0,0),(6,0) and (8,0)
and variances4I2,0.4I2 and0.4I2, respectively. Spectral clustering and NMM useσ = 0.95. Plots (d)-(f) show the cluster-conditional
densities estimated by the NMM.
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4.2.4 Implementation details

Normalization is one of the key issues in kernel density estimation. Convention-

ally, the kernel function is normalized over the entire domain of the data,κσ(x) =

(πσ)−d exp (−||x||2/2σ2). However, this may cause serious problems in density estimation

for high-dimensional data (large values ofd). To overcome this problem, we normalize the

kernel matrix such that each of its columns sum to 1, i.e.
∑

j Ki,j = 1. This essentially

nullifies the effect of dimensionality on the estimation process, and is useful in handling

sparse datasets.

In all kernel based clustering algorithms, the kernel bandwidth σ is the most crucial

parameter. Our empirical results show that, similar to spectral clustering, the choce of

kernel bandwidthσ is critical to the success of the nonparametric mixture algorithm; λ is

not very critical.

in all of our experiments we chooseλ = 10−4, which results in mild smoothing of the

qg
i values, and avoids any numerical instability in the algorithm due to the logarithm.

From Proposition 3, it appears as if the most memory and computationally intensive

part of the algorithm is the storage and computation ofηg
i,j, which requiresO(n2G) space.

However, note thatηg
i,j is always accompanied with the variableγ, as

∑G
g=1 γg

i η
g
i,j. By

exploiting this, the space and computational requirementsmay be simplified by an order of

magnitude. Since only one of theG possibleγg
i s is equal to 1 for eachi = 1, · · · , n, the

only ηG
i,j that needs to be computed is whenγg

i = 1; rest of them will be 0 since they will

be multiplied byγg
i with value equal to 0. The overall space requirement for intermediate

variables is thereforeO(nG), which is much smaller compared to theO(n2) space required

to store the full kernel, in kernel based methods. Usage of sparse kernels can reduce the

computational and space requirements further.

86



4.3 Results and discussion

The NMM algorithm is evaluated on datasets from three different sources (a) synthetic, (b)

UCI and (c) text datasets derived from the 20-newsgroups2 dataset [166]. In the following

section, the baselines used for comparison are discussed. The results and discussion on the

test datasets are presented in the subsequent sections.

4.3.1 Baseline methods:

The proposed non-parametric mixture algorithm is comparedwith three classes of well

known clustering algorithms: (a) K-means and Gaussian mixture model (GMM) with di-

agonal and full covariance matrices, (b) one kernel-based algorithm, namely NJW spectral

clustering [42], and (c) three non-parametric hierarchical clustering algorithms, including

Single Link, Complete Link and Average Link. For (a) and (c), we use the implementations

from the Matlab’s Statistics Toolbox. For the linkage basedmethods, the number of clusters

is externally specified. We chose the spectral clustering algorithm based on [42] because its

performance is shown to be comparable to that of Normalized Cuts, and it has been shown

to be equivalent to Kernel K-means. Comparison with Mean-shift, or related algorithms

is difficult as the number of clusters is not specified aprioriin these algorithms. Note that

clustering approaches like Mean-shift were not designed for clustering high-dimensional

text data and they are known to perform poorly on such datasets. Each algorithm is run 10

times and performance averaged over ten runs of the experiment is reported in Tables 4.2

and 4.4. The best performance for each dataset is shown in bold face in Tables 4.2 and 4.4.

At each run, the NMM, K-means, GMM, and Spectral clustering were initialized with

5 different starting points; only the best performance is reported. We only show the best

performance among the three hierarchical linkage based algorithms, without specifying

which algorithm achieved it.

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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4.3.2 Synthetic Datasets

The NMM algorithm aims at identifying clusters of arbitraryshapes, while estimating their

conditional density. Figure 4.2 illustrates the performance of NMM on a dataset not suit-

able for GMM. Figure 4.2(a) shows the input data. Figure 4.2(b) is shown to contrast the

proposed NMM agains the parametric Gaussian mixture model (GMM) with the number

of mixture components set to two. Figures 4.2(c) and (d) showthe class conditional densi-

ties for each of the two clusters. The proposed algorithm is able to recover the underlying

clusters, as well as estimate the associated conditional densities, which is not possible for

GMM as shown in Figure 4.2(b).

Figure 4.3 illustrates the performance of the proposed algorithm on a dataset that is

known to be difficult for spectral clustering [1]. Both K-means and spectral clustering fail

to recover the clusters due to the difference in the covariances of the three spherical clusters.

Because of the local nature of the NMM (the cluster label of a point is affected only by the

cluster labels of neighboring points), it can succesfully recover the clusters, as shown in

Figure 4.3(a); the cluster conditional densities are shownin Figures 4.3(d)-(f).

4.3.3 UCI Datasets

The proposed algorithm is evaluated on 17 different datasets from the UCI ML reposi-

tory [167]. The details of the datasets are summarized in thefirst four columns of Table 4.2.

The choice of these datasets is motivated by their popularity, variety and previous usage.

For the large UCI datasets, 3000 points are randomly sampled for clustering for compu-

tational feasibility. The pairwise-F1 measure was used for evaluating the clustering qual-

ity [168]. An RBF kernelK(xi, xj) = exp(−||xi − xj||
2/2σ2) is used for the density

estimation and also in the spectral clustering. The parameter σ in the RBF kernel is set to

the 5-th percentile of the pairwise Euclidean distances foreach dataset.

The performances of the baseline algorithms and the NMM algorithm are presented in
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Table 4.2: Mean pairwiseF1 value of the performance of different clustering algorithms
over 10 runs of each algorithm on 17 UCI datasets. The kernel width is chosen as the5th

percentile of the pairwise Euclidean distances for Kernel based algorithms. The best per-
formance for each dataset is shown in bold. The name of the dataset, number of samples
(n), dimension (d), and the number of target clusters (G) areshown in the first 4 columns
respectively. An entry of ’-’ indicates that the algorithm did not converge. The last col-
umn shows the bestF1 value achieved by Single (S), Complete (C) and Average (A) link
algorithms.

NMM K-means GMM NJW-Spec Linkage

Dataset n d G Diag Free max(S,C,A)

adult 3000 47 2 68.94 63.02 59.81 59.61 65.38 61.23
sat 3000 36 6 71.29 63.99 70.82 66.86 50.11 60.93

banana 2000 2 2 86.87 76.69 77.25 83.10 82.85 76.69
bupa 345 6 2 52.78 44.55 50.40 49.94 37.08 44.46
heart 270 9 2 84.08 84.07 53.62 74.89 82.63 82.26
wdbc 569 14 2 90.82 90.92 62.91 77.31 49.18 89.91
glass 214 10 6 66.25 67.07 - - 68.33 66.99

ionosphere 351 34 2 71.54 71.77 - - 50.73 71.36
austra 690 15 2 81.03 82.50 52.53 66.71 39.95 75.71

musk2 3000 166 2 62.02 61.79 60.1062.39 61.81 61.52
house 232 16 2 88.80 88.80 - 68.11 88.80 91.39

digits-389 317 16 3 80.93 62.25 48.4789.34 58.17 73.20
iris 150 4 3 93.26 89.18 93.9896.66 90.53 83.90

letter-ijl 227 16 3 58.15 54.44 53.8864.21 54.98 53.73
magic04 3000 10 2 53.90 50.25 55.96 54.58 52.34 50.40

musk1 476 166 2 52.57 52.67 55.51 52.67 52.57 51.57
german 1000 24 2 55.58 50.99 - - 58.70 51.24

Table 4.2. Overall, the NMM algorithm yields compelling performance compared to the

baseline algorithms.

• NMM significantly outperforms K-means on 9 of the 17 datasets; on the remain-

ing 8 datasets, the performance of NMM is still comparable tothe best performing

algorithm.

• NMM significantly outperforms GMM with diagonal covariances on 14 of the 17

datasets, and outperforms GMM with full covariances on 11 ofthe 17 datasets.
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• NMM performs significantly better than spectral clusteringon 11 of the 17 datasets,

and significantly worse on only 1 of the 17 datasets.

• Hierarchical clustering is outperformed significantly on 14 of the 17 datasets.

4.3.4 Text Datasets

Table 4.3: Text datasets used in the evaluation. The datasets were composed of articles from
three or four different newsgroups; the number of clusters (G) is assumed to be known. The
number of samples and number of features is denoted byn andd respectively.

Dataset n d G

cmu-different-1000 2975 7657 3
cmu-similar-1000 2789 6665 3

cmu-same-1000 2906 4248 3
cmu-different-100 300 3251 3

cmu-similar-100 288 3225 3
cmu-same-100 295 1864 3
cmu-classic300 300 2372 3
cmu-classic400 400 2897 3

4newsgroups 3000 500 2

We use 9 high dimensional text datasets to show the efficacy ofthe algorithm.

Eight of the text datasets are from [169], which are prefixed by cmu.We selected four

of the 20-newsgroups datasets to create the dataset4newsgroups with multimodal

clusters. The task is to partition the 4 newsgroups into two clusters, politics

vs. religion. The politics cluster is a combination of documents from

the newsgroupstalk.politics.mideast and talk.politics.guns. The

religion cluster contains documents from the newsgroupstalk.religion.misc

andsoc.religion.christianity. Features are extracted from these datasets by

considering only those words that appear at least 10 times inthe whole dataset. This reduces

the dimensionality of the dataset by restricting the vocabulary size. The4newsgroups
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dataset is preprocessed to select 500 features with the maximum mutual information with

the desired class labels. A summary of the text datasets is presented in Table 4.3. In addi-

tion, NMM performs particularly well for some of the text data sets compared to the other

baseline clustering algorithms. The difficulty of clustering the text datasets arises from its

high dimensionality. It is however generally believed thattext data, despite its high dimen-

sionality in the original space, tends to exist in a manifoldof low dimensionality [170]. The

success of the NMM algorithm with text data indicates that itis suitable for handling high

dimensional data that are embedded in a manifold of low dimensions. These manifolds

are rarely compact, and hence algorithms that prefer globular clusters cannot capture the

structure of the data. This explains why K-means and GMM failto find good clusters in the

text data becuase these two algorithms are essentially designed to prefer compact clusters.

Table 4.4: Mean pairwiseF1 value of the performance of different clustering algorithms
over 10 runs of each algorithm on 9 high-dimensional text datasets. The kernel width is
chosen as the5th percentile of the pairwise Euclidean distances for Kernel based algo-
rithms. The best performance for each dataset is shown in bold. The name of the dataset,
number of samples (n), dimension (d), and the number of target clusters (G) are shown in
the first 4 columns, respectively. An entry of ’-’ indicates that the algorithm did not con-
verge. The last column shows the bestF1 value achieved by Single (S), Complete (C) and
Average (A) link algorithms.

NMM K-means GMM NJW-Spec Linkage
Dataset Diag Free max(S,C,A)

cmu-different-1000 95.86 87.74 - - 94.37 40.31
cmu-similar-1000 67.04 49.86 - - 45.16 37.28

cmu-same-1000 73.79 49.40 - - 48.04 30.01
cmu-different-100 95.27 79.22 - - 87.47 75.74

cmu-similar-100 50.89 40.10 - - 38.35 43.82
cmu-same-100 48.97 44.85 - - 46.99 41.79

cmu-classic300 85.32 86.32 - - 86.02 80.61
cmu-classic400 61.26 60.13 - - 51.01 53.31

4newsgroups 76.81 73.88 - - 74.13 68.25

Table 4.4 shows that the NMM algorithm performs significantly better (paired t-test,
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95% confidence) than the baseline clustering methods on all the text datasets, except for

cmu-classic-300 where its performance is slightly inferior to K-means. Gaussian

mixture models are prone to numerical estimation problems when the number of dimen-

sions is larger than the number of samples. For this reason, these text datasets cannot be

clustered by GMM, as indicated by the ‘-’ entries in Table 4.4.

4.3.5 Discussion

Kernel density estimation (also known as non-parameteric density estimation, Parzen win-

dow estimation [20]) is a popular approach for density estimation. It aids in estimating

the probability density of the data when the underlying density of the data is not known.

In most real world data analysis tasks, the densities are notknown, or may not even be

closely approximated by any parameteric density. Furthermore, non-parameteric density

estimates asymptotically converge to the true densities [163]. These estimates usually have

a single parameter called the bandwidth, that controls the smoothness of the distribution.

By changing the value of the bandwidth density estimates of varying smoothness can be

obtained. In high dimensions, when the data is sparse, and when no assumptions about the

density can be made, non-parameteric density estimates result in a smooth estimate of the

density. This is one of the key reasons why the NPM algorithm performs well when the

data is high-dimensional and sparse.

4.3.6 Sensitivity to parameters:

There are two parameters in the NMM algorithm: the regularizer weightλ and the kernel

width σ. The parameterσ is set to theρth percentile of the pairwise Euclidean distances. A

useful range forρ is 5-10%, as suggested in [41]. Figure 4.4 compares the performance of

the NMM algorithm toK-means, Spectral clustering and Hierarchical clustering on 9 of the

26 datasets used (including both text and UCI) for different values of the kernel bandwidth.

92



Four of these datasets (Different-100, Similar-100, Same-100 and Classic-400) are chosen

from the text datasets, and the remaining ones are chosen from the UCI datasets. For these

datasets, the NMM algorithm exhibits superior performanceover the baseline algorithms.

The plots show that there exists a range of kernel bandwidth values for which the NMM

algorithm performs significantly better than the competingmethods. Figures 4.4(c), 4.4(d)

and 4.4(i) show the datasets where the NMM algorithm performs better than the baseline

algorithms only in a specific range ofρ, namely(0, 0.1). For some datasets (e.g., Different-

100, Classic-400), the NMM algorithm is more stable comparedto that of other datasets.

The NMM algorithm is not sensitive to the value ofλ, over a larger range (10−4 to 104).

For almost all the datasets, the change in performance is negligible with varying values

of λ. However,λ does play a role in determining the sparsity of the profile matrix. As

λ increases, the solution tends to get smoother. The performance of the clustering might

degrade with larger values ofλ. The key role ofλ is to provide numerical stability to the

algorithm. Therefore a small value ofλ ( 10−4) is preferred.
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Figure 4.4: Performance of the NMM on nine of the 26 datasets used, with varying value

of the percentile (ρ) used for choosing the kernel bandwidth (σ). The NMM algorithm is

compared with NJW (Spectral Clustering), K-means and the best of the three linkage based

methods.
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Figure 4.4: (Continued from previous page)
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Figure 4.4: (Continued from previous page.)

96



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Percentile (ρ) for σ

P
ai

rw
is

e 
F 1 M

ea
su

re

classic
4
00s

 

 

Propsed

NJW

K−Means

Hier

(f) Classic-400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Percentile (ρ) for σ

P
ai

rw
is

e 
F 1 M

ea
su

re

 

 

Propsed

NJW

K−Means

Hier

(g) Similar-100

Figure 4.4: (Continued from previous page.)
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Figure 4.4: (Continued from previous page.)

98



4.4 Parameter selection

The kernel bandwidthσ is the most crucial parameter in kernel based clustering algorithms.

Almost all kernels (except linear kernel) have a bandwidth parameter. In this section we

define a heuristic for selecting the bandwidth parameter using pairwise constraints.

4.4.1 Maximum Pairwise Constraint Satisfaction Heuristic

For a given dataset withn data points, letm be the number of pairwise constraints that are

randomly generated by sampling pairs of data points from thedataset with replacement.

The set of must-link constraints is denoted byM and the set of cannot-link constraints is

denoted byC. The dataset is clustered by changing the value ofσ each time. For each

σ the clustering algorithm is run 10 times with different initializations. We define the

pairwise constraint satisfaction measureξσ(y) as the fraction of constraints satisfied by the

clustering algorithm for a particular value ofσ and clusteringy. That is,

ξσ(y) =

∑

xi,xj∈M
I(yi = yj) +

∑

xi,xj∈C
I(yi 6= yj)

m
(4.28)

Since RBF kernel is popularly used with spectral clustering and other kernel based

methods, the parameter selection heuristic is evaluated for selecting the bandwidth of

the RBF kernel for spectral clustering and the proposed non-parametric mixture ap-

proach. The value ofσ is chosen as theρ-th percentile of the pairwise similarities, and

ρ ∈ {0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. Figures 4.5 (a) and (b) show the performance

of the clustering algorithm vs.ρ. In our experiments we setm = n
4
. The clustering

performance is measured using the pairwiseF1 measure [171] averaged over 10 runs of

clustering algorithm with different initializations. In each plot, the horizontal axis shows

the percentileρ used for selecting the sigma and the vertical axis shows the performance.

The solid line shows the performance of the clustering algorithm and the dashed line shows

the constraint satisfactionξσ. The value ofσ corresponding to the value ofρ with the largest
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constraint satisfaction is chosen as the parameter for the clustering algorithm. In almost all

the cases, the constraint satisfaction plot has similar peaks and valleys as the clustering

performance plot. In the cases where this does not hold, the clustering performance is very

low, almost close to that of random assignment of labels. Figures 4.7 (a) and (b) compare

the performance of Spectral Clustering with the proposed algorithm for the same range of

values forσ. In almost all the datasets, even if the proposed non-parametric mixture ap-

proach does not outperform the spectral clustering for the whole range ofσ, there exists

a value ofσ for which the proposed algorithm outperforms spectral clustering irrespective

theσ value chosen by the spectral clustering. Since pairwise constraint based parameters

selection provides a way to identify this particularσ, the proposed algorithm outperformed

spectral clustering on almost all the datasets.

Table 4.5 compares the performance of spectral clustering with NPM. The bandwidth

parameterσ is chosen using the maximum pairwise constraint satisfaction heuristic for both

the approaches.

Goldberger and Roweis [172] present an algorithm to cluster agiven dataset using a

Mixture of Gaussians with a large number of components, and further clustering the com-

ponents into a reduced mixture with lesser number of components. They achieve this by

minimizing the KL divergence between the learnt mixture with large number of compo-

nents, and another mixture with smaller number of components. The proposed approach

can be related to an extreme case of [172], where each point istreated as a separate clus-

ter with a Gaussian density of fixed variance and mean equal tothe data point, and these

clusters are further clustered.

4.5 Connection with K-means

In this section, we show that two simplifications of the proposed objective function

(Eq (4.8)) lead to objective functions that correspond to K-means and Spectral cluster-

100



Dataset Spectral MeanF1 (std) NMM MeanF1 (std)

ionosphere 69.83 (0.0) 71.31 (0.1)
adult 79.43 (0.0) 76.21 (8.6)

austra 80.63 (0.0) 81.87 (0.1)
bupa 52.26 (0.0) 53.25 (0.3)

german 54.69 (0.0) 54.23 (0.0)
heart 73.44 (13.2) 83.59 (0.2)

texture 73.71 (10.7) 95.68 (0.0)
uci image 34.20 (4.7) 56.62 (1.7)

vehicle 31.39 (0.1) 40.25 (2.1)
classic300 86.02 (0.0) 86.36 (0.0)

different-100 93.31 (0.1) 95.64 (0.2)
same-100 53.95 (3.4) 52.38 (1.9)

similar-100 54.67 (1.1) 62.01 (3.1)
different-1000s 94.20 (0.1) 95.86 (0.0)

similar-1000s 65.58 (5.7) 67.72 (5.5)
same-1000s 66.80 (8.6) 72.16 (2.1)

Table 4.5: Mean and standard deviation of the performance ofSpectral Clustering vs.
NMM approach. The bandwidth is selected using the maximum pairwise constraint sat-
isfaction heuristic. Significant differences (paired t-test, 95% confidence) are shown in
boldface.
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Figure 4.5: Clustering performance and Constraint Satisfaction on UCI datasets for the
proposed NPM algorithm.
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Figure 4.5: (Continued from previous page...) Clustering performance and Constraint
Satisfaction on UCI datasets for the proposed NPM algorithm.
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Figure 4.6: Clustering performance and Constraint Satisfaction on UCI datasets for spec-
tral clustering.
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Figure 4.6: (Continued from previous page...) Clustering performance and Constraint
Satisfaction on UCI datasets for spectral clustering.
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Figure 4.7: Performance comparison between spectral clustering and the proposed non-
parametric mixture model.
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Figure 4.7: Performance comparison between spectral clustering and the proposed non-
parametric mixture model.
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ing. However, these simplifications are based on some approximations, so we cannot claim

the superiority of non-parametric mixture model for clustering over spectral clustering and

K-means. Still, this connection at the objective function level between the three clustering

algorithms opens up avenues for further exploration of non-parametric mixture models.

4.5.1 Approximation to weighted K-means

A slightly different relaxation of Eq (4.8) results in the conventional weighted K-means

clustering. Since we have the constraint that
∑

i qi = 1, we can use the Jensen’s inequality

to take the log inside,

log P (D) ≥
n
∑

i=1

G
∑

g=1

γg
i

n
∑

j=1

qg
j log Kij.

For a Gaussian kernel, we havelog Kij = −(xi−xj)
T Σ−1(xi−xj). Simplifying it further,

we havelog Kij = − 1
σ2 ||xi − xj||

2. Therefore,

log P (D) ≥ −
1

σ2

n
∑

i=1

G
∑

g=1

n
∑

j=1

γg
i q

g
j ||xi − xj||

2.

Using the definition ofγg
i and the inequality

∑n
j=1 qg

j |xi − xj|
2 ≥ |xi −

∑n
j=1 qg

j xj|
2, we

could further simplify the above equation as follows

− log P (D) ≤
G
∑

g=1

∑

xj∈Cg

||xj − µg||
2,

whereµk =
∑n

j=1 qg
j xj. The right hand side in the above equation is the objective function

for weighted K-means. Maximizing the likelihood in the proposed approach, therefore

loosely minimizes the scatter between the data points. The key step here is the use of

Jensen’s inequality; the log eliminates the effect of the exponential in the kernel, thereby

removing the “localization” introduced by the kernel. Notethat the effect ofσ is completely

lost. As a result, all the points have the same effect on each other.
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4.6 Summary

We have proposed a non-parametric mixture model, called NMM, for data clustering. It is

a probablistic model that clusters the data by fitting kerneldensity estimate to each cluster.

We have evaluated its performance on 26 standard datasets with large differences in dimen-

sionality, number of data points and cluster structure. Experimental results show that the

NMM based clustering performs well against some of the well known clustering algorithms

(K-means, spectral, GMM and hierarchical). The non-parametric mixture model opens up

a wide range of possible theoretical analysis related to data clustering.
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CHAPTER 5

Incremental Algorithm for Feature

Selection

5.1 Introduction

Online algorithms provide an efficient way to continuously learn from examples as and

when they become available. In this chapter, we address the problem of feature selection

using an incremental algorithm. In particular, we aim to perform feature selection on im-

ages represented as abag of visual words[157]. The algorithm is derived using the frame-

work of online learning [173]. Therefore, most of the chapter follows the online learning

terminology. However, the algorithm is applied in an incremental fashion as described in

Section 5.5.

Representing images using a bag of visual words [174] has received significant at-

tention. In this approach, each image is represented as a distribution over a set of visual

vocabulary. The vocabulary itself is a set of prototypes obtained by clustering the set of key

points (e.g., using SIFT operator) pooled from a collectionof training images. Several ap-

plications such as image clustering [156], large scale image [175] and video retrieval [159]
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Figure 5.1: Steps involved in constructing a bag-of-visual-words representation of images. (a) Given collection of images. (b) Features
at key points are extracted (the SIFT operator [2] is a popular choice). (c) The key points are pooled togheter. (d) The keypoints are
clustered using hierarchical K-means algorithm. The centroids obtained after clustering the key points are called thevisual words. (e)
The features in the key points in each image are assigned a cluster label, and the image is represented as a frequency histogram over
the cluster labels. The centroids sharing common parent areconsidered similar to each other, and are calledvisual synonyms. Visual
synonyms are shown using the same color in the table.
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have shown this method to be promising in both performance and scalability.

Recent studies have shown that the choice of vocabulary size can have a significant

impact on the performance of learning algorithms [176]. A small vocabulary size may

result in a feature space not rich enough to capture the variability in the images in the

database, while a large vocabulary may cause two keypoints that are similar to be mapped

to two different visual words leading to suboptimal performance. Further, a large number

of visual words results in the well known problems of curse ofdimensionality, complex

hypothesis spaces and large computational requirements. Feature selection, or vocabulary

pruning, is an important step that retains only those salient words needed for subsequent

image matching or retrieval [177].

Visual vocabularies are usually constructed using recursive partitional clustering algo-

rithms such as bisecting K-means, resulting in a cluster hierarchy [175, 160]. This causes

the visual words at the leaf nodes that are children of a common parent to be similar to each

other. If one of the visual words is not informative, it is an indication that its siblings may

not be informative as well. One of the basic premises of this work is to exploit what we call

visual synonymsfor feature selection. Visual synonyms are identified as thevisual words

sharing a common parent in the cluster hierarchy.

We propose to use pairwise constraints to encode the relationship between images.

The pairwise constraints are used to identify the subset of visual words that explain the

similiarity or dissimilarity between the corresponding images. Since we perform feature

selection using unlabeled images and the given pairwise constraints for a small number

of images, the input setting resembles a semi-supervised clustering scenario. However, it

should be noted that the feature selection is performed onlyusing the labeled pairs, and

hence is somewhat supervised. The pairwise constraints areof two types:must-linkand

cannot-link. A pairwise constraint is a natural way to encode a user’s perceived visual

similarity between a pair of images. It is easier to specify aconstraint between two images

than labeling them explicitly with some keywords based on all the objects present in it.
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Figure 5.2 illustrates the goal of the proposed approach using an image pair labeled as

must-link. Loosely speaking, the common key points between a pair of images need to be

discarded if they form a cannot-link pair, and need to be retained if they are a must-link

pair.

In this paper, we propose an efficient online algorithm that takes in a stream of images

and the associated pairwise constraints, and selects a subset of visual words. Since each key

point in an image is mapped to one of the visual words, pruningthe vocabulary results in a

reduction in the number of key-points in an image. The feature group information obtained

from the cluster hierarchy is exploited to shrink the feature weights at a group level. The

quality of the selected features is evaluated using an imageclustering application.

5.2 Related work

Dimensionality reduction is a classical problem in multivariate statistics and pattern recog-

nition. All disciplines of learning, i.e. supervised, unsupervised, and semi-supervised usu-

ally perform some sort of dimensionality reduction. Dimensionality reduction techniques

can be broadly classified into feature selection or feature extraction. In feature selection,

the goal is to obtain the most salient subset of features fromthe available feature set. The

size of the subset is usually specified by the user. An introduction to feature or variable

selection can be found in [178, 177, 179]. Feature extraction, in contrast with feature se-

lection, identifies a (non)linear combination of existing features. This could be followed

by a feature selection to reduce the dimensionality of the extracted feature vector Most

feature extraction methods aim to learn a transformation from the input feature space to

a sub-space of smaller dimensionality such that a desirablecriterion is maximized. For

example, Principal Component Analysis (PCA) [20] is an unsupervised linear dimension-

ality reduction method that retains the maximum possible variance of the data in the input

space when projected into the sub-space. Linear Discriminant Analysis (LDA) [20] is a
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supervised linear dimensionality reduction technique that finds a projection to a subspace

such that the separation between the classes is maximized while the within class variance is

minimized. In applications requiring interpretability ofthe features used, feature selection

is preferred to feature extraction.

Feature selection methods can be broadly classified intosearch basedmethods (e.g.

floating search [179]),feature ranking, andshrinkagemethods such as LASSO [180] and

Group LASSO [181]. Feature selection by ranking sorts the features based on a score,

such as correlation coefficient or mutual information, computed between the feature and

the class labels. While feature ranking is commonly used as a baseline, features that are

correlated with the labels are possibly correlated among themselves as well, resulting in

the selection of a set of redundant features [177].

Search based methods are further classified intofilter and wrapper methods. They

operate by incrementally modifying a selected set of features by adding or deleting fea-

tures one by one. These approaches are greedy in nature, and are affected by the order of

adding/deleting features to/from the set. Moreover, they are computationally expensive as

the learning algorithm is run every time the selected feature set is modified. Branch and

bound algorithms tend to be more accurate, but are limited intheir ability to handle only

a small set of features due to computational reasons. Searchbased algorithms are batch

mode, and require all the labeled data examples be present before they can be used, and are

not applicable to an online setting.

Shrinkage methods are widely used for variable selection inmultivariate regression.

These tend to be more principled, and amenable to theoretical analysis with a predictable

behavior. In general, supervised learners such as SVM, learn the weights of features. Fea-

ture selection, however differs from feature weighting. Shrinkage methods such as LASSO

perform feature selection by driving as many weights to zeroas possible. In a supervised

setting, several algorithms such as 1-norm SVMs [182],F∞ SVM[183] and Lasso Boost-

ing [184], ridge regression employ shrinkage strategy. To the best of our knowledge, there
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is no feature selection method proposed in the literature that employs LASSO shrinkage

with pairwise constraints.

Distance metric learning (DML) is another related area where the features weights are

learnt from labeled examples [123, 185]. DML methods learn aquadratic distance func-

tion parameterized using ad× d weight matrix, whered is the dimensionality of the data.

Online DML algorithms such as POLA [123] involve a projection step to ensure positive

definiteness of the feature matrices, and are computationally expensive. Even using a di-

agonal weight matrix, they tend to prefer uniform feature weights, contrary to our goal.

The proposed algorithm can be shown to be a generalization ofthe POLA algorithm with

diagonal weight matrix, when all the visual words are put in asingle group.

5.2.1 Review of Online Learning

Learning algorithms can be divided into two groups based on how they recieve (or utilize)

the input data –batch algorithmsandonline algorithms. Batch techniques (e.g. MLE,

MAP) require the processing of all the input training data ata time. This could be inefficient

(or even infeasible) for large datasets. On the other hand, online learning techniques process

only one data item at each time. This has two advantages:

• They are computationally more efficient for large datasets.

• They are applicable to scenarios where all the data is not available at once, but arrives

in a stream (e.g. images uploaded to the Internet on a daily basis, video streams from

surveilance cameras etc.).

Given a hypothesis spaceH, batch mode algorithms select a classification function

from H such that the training error on a given datasetX is minimized, while optionally

satisfying an additional regularity condition on the hypothesis. This error minimization

can be performed using gradient descent methods. Batch mode algorithms compute the
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Algorithm 2 SupervisedOnlineLearning
input: examplesxt, one per round of learning.
parameters: loss functionℓ(f(w,x), y), stepsizeλ, hypothesis setH
output: parameters of the classification modelw ∈ H.
Initialize w← 0, t← 0

for each roundt = 1, 2, · · · do
Observext and Predictyt = f(w,xt).
if ℓ(f(xt, yt), yt) ≥ 0 then

w′
t ← UpdateW(wt−1,xt, λ)

wt ← Project(w′
t,H)

end if
t← t + 1

end for

gradient of the training error (or a surrogate) on all the examples at each descent step. In

contrast, online algorithms performstochastic gradient descent(under the assumption that

the samples arei.i.d.), where the gradient of the training error (or its surrogate) is computed

using only one example each time. This example is selected orreceived randomly and

hence the namestochastic. The gradient computed using one data item may be seen as a

coarse approximation to thetruegradient computed using all the exmaples.

Let the data point at timet be represented usingxt ∈ X and the output space be

represented byY. Let f : X → Y ∈ H is a function that we want to estimate such that the

lossℓ(f(xt), yt) is minimized. Further, let us assume that the functions in the spaceH are

parametrized by parametersw ∈ S. For example, the class of binary linear classification

functions, i.e.,X ,S ⊂ R
d, whered is the dimension of the input feature space, where

f(w,x) = w′x, x ∈ X andw ∈ S. The general structure of the online algorithms for this

setting is summarized in Algorithm 2.

The motivation for the further analysis and theory of onlinelearning comes from the

following special case. Consider a set up where there ared experts (corresponding tod-

features) and the task is to learn a set of weights to combine the experts where the weighted

average of the experts is a more accurate prediction than anyof the individual experts. In

this case,xtinX ⊂ R
d is ad-dimensional vector containing decisions of experts decisions.
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We can now define a useful quantity called theinstantaneous regret vectorrt ∈ R
d as the

loss of individual experts at timet,

rt = (r1,t, r2,t, . . . , rd,t) (5.1)

whereri,t is the regret (or loss) of not choosing thei-th expert’s decision as final decision.

Thecumulative regret vectorcan now be defined as the sum of instantaneous regrets over

all the rounds fromt = 1, · · · , T ,

Rt =
T
∑

t=1

rt (5.2)

These regret vectors perform an important function in determining the weights of individual

experts. Naturally, the higher the regret of a particular expert, the more the weight it should

be assigned in the next round. Therefore, one can assign the weights to the experts based

on the cumulative regret vectors, that is,

wt = Rt−1 (5.3)

Let Φ : A ⊂ R
d → R be a strongly convex function with some additional properties

(Legendre function). Since the gradient ofΦ(.) is monotonically increasing, we may also

assign the weights as

wt = ∇Φ(Rt−1). (5.4)

The functionΦ is called the potential function, and is useful in incorporating useful

properties intow. Many existing online learning algorithms such as Perceptron algo-

rithm [20] or the Exponential-Gradient algorithm can be shown as specializations of a

single algorithm with different choices ofΦ.

SinceΦ is chosen to be a Legendre function [173], we can compute the aLegendre dual

of Φ, denoted byΦ∗ as follows:

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) . (5.5)
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The following relationship holds true between a functionΦ and its Legendre dualΦ∗,

and is used heavily in the subsequent theory and algorithms:

∇Φ∗ = (∇Φ)−1. (5.6)

Using the relation from Eq (5.6), the dual relationship between regret and the weight

vector can be written as,

wt = ∇Φ(Rt) (5.7)

Rt = ∇Φ∗(wt). (5.8)

Potential-Based Gradient Descent

The goal of online learning is to minimize the regret. By definition of cumulative regret

vector, we know that,

Rt = Rt−1 + rt. (5.9)

Using the duality relation, we can write

∇Φ∗(wt) = ∇Φ∗(wt−1) + rt. (5.10)

The key idea of potential based gradient descent is that the problem of regret mini-

mizationin the weight spacew is converted to a gradient minimization in the regret space.

Further, since the loss function is chosen to be convex, minimizing the gradient implies

minimizing the loss. Since we want to minimize the regret, writing the cumulative regret

vectorRt as a paratmeterθt (for convenience of notation), the dual gradient update canbe

written as,

θt = θt−1 − λ∇ℓt(wt−1). (5.11)

From the relation betweenθt andwt expressed in Eq (5.7), can be written as,

∇Φ∗ (wt) = ∇Φ∗(wt−1)− λ∇ℓt(wt−1). (5.12)
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Potential Name Algorithm
1
2
‖u‖2 Polynomial potential Perceptron, Widrow-Hoff

∑

i exp ui Exponential potential Exponential gradient

Table 5.1: Choice of potential and the resulting classical online learning algorithms

The weights at iterationt, wt, can be obtained using the following equation:

wt = (∇Φ∗)−1 (∇Φ∗(wt−1)− λ∇ℓt(wt−1)) (5.13)

= ∇Φ (∇Φ∗(wt−1)− λ∇ℓt(wt−1)). (5.14)

Online algorithms can be derived by specifying appropriateΦ to encode the desired char-

acteristics of the solution.

5.3 Problem formulation

LetD = {I1, . . . , In} be the given collection ofn images represented as a distribution over

the visual vocabularyV = (v1, . . . , vm) containingm visual words. Since the visual words

are often generated by a recursively bisecting K-means algorithm, we can derive a group

structure for the visual words. In particular, we assume thevisual words are divided into

s groups. Letvg = (vmg−1+1, . . . , vmg
) be the collection of visual words belonging to the

g-th group, forg = 1, · · · , s, where(mg−1 + 1) is the index of the first element in theg-th

group. Note that even when no group structure is available, our method is still applicable

where each feature forms its own group, ands = m. Given the visual words, each image

Ii is represented by a vector of visual word histogram, denotedby xi = (xi,1, . . . , xi,m).

Further, letxg
i denote the feature sub-vector of imageIi corresponding to the vocabulary

vg. Let w = (w1, . . . , wm) denote the weights for visual words. The squared distance

between two visual word histogramsx andx′ given the feature weightsw, denoted by
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|x− x′|2
w

, is computed as

|x− x′|2
w

=
m
∑

i=1

wi(xi − x′
i)

2. (5.15)

It is necessary that the weights are non-negative,wj ≥ 0, j = 1, . . . ,m, for Eq (5.15)

to be a metric. The visual similarity between a pair of imagesis provided in the form

of a pairwise constraint – a must-link constraint indicatestwo images are visually similar

whereas a cannot-link constraint indicates two images are visually different. LetT =

{(xt,x
′
t, yt), t = 1, . . . , T} denote the collection of pairwise constraints that will be used

for learning the weights, wherext andx′
t are visual word histograms corresponding to two

images, andyt = ±1, where+1 indicates the two images are visually similar and−1,

otherwise.

The goal is to learn weightsw for the visual words such that the following criteria are

met:

1. The distance between the two images computed using Eq (5.15) reflects the visual

similarity between the images.

2. Select a small subset of features by driving as many entries in the vectorw to 0 as

possible.

For a given a pairwise constraint(xt,x
′
t, yt), if yt = 1, the distance betweenxt andx′

t

must be less than a thresholdb (which can either be learnt, or specified by the user). On the

other hand, ifyt = −1, the distance computed using the selected features must be greater

thanb. We define a loss function measuring the error made by a weightvectorw on an

example pair(xt,x
′
t) with true labelyt as follows:

ℓ(w;xt,x
′
t, yt) = max

(

0, 1− yt(b− |xt − x′
t|

2
w
)
)

. (5.16)

In order to encode the hierarchical structure among visual words, we introduce amixed

normfor weight vectorw, denoted by‖w‖1,2, that is defined as follows:

‖w‖1,2 =
s
∑

g=1

√

√

√

√

mg
∑

j=mg−1+1

w2
j (5.17)
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The above norm is introduced to enforce feature selection ata group level, i.e., if multiple

visual words within a group are assigned small weight, the entire group of visual words

may be deemed irrelevant and can be discarded. This mixed norm is often referred to as

group-lasso or theL1,2 norm and is widely used for feature selection [186].

Using the norm defined in Eq (5.17) as the regularizer and the loss defined in Eq (5.16),

the feature weights can be learnt by minimizing the following objective function:

min
w∈R

m
+

‖w‖21,2 + λ

T
∑

t=1

ℓ(w;xt,x
′
t, yt) (5.18)

whereb > 0 is a predefined constant. Our goal is to present an online algorithm to minimize

Eq (5.18).

5.4 Online algorithm using projections

Our online feature selection algorithm is presented in Section 5.4.1, followed by a theo-

retical analysis in Section 5.4.2. For conciseness, we define ∆xt = xt − x′
t and use the

notationℓt(w) to denote the lossℓ(w;xt,x
′
t, yt) at thet-th round of learning. Algorithm 3

summarizes the general online feature selection framework.

5.4.1 Algorithm

Step 1. Given a pair of images(xt,x
′
t), predict whether they are in the same cluster using

the existing weight vectorwt and Eq (5.15). Observe the true outputyt, and compute

the lossℓt(w).

Step 2. For convenience, define temporary weightsθt = (θ1
t ,θ

2
t , · · · ,θ

s
t), whereθ

g is

the subvector corresponding to groupg, as follows:

θ
g
t = ‖wt‖1,2

w
g
t

‖wg
t ‖2

, g = 1, · · · s. (5.19)
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Step 3. Since the gradient of the loss function∇wℓt(w) = yt∆xt indicates the direction

for updating weights, the temporary weights are updated using the following rule

θt+1 = θt − λ∇wℓt(wt) = θt − λyt∆xt (5.20)

whereλ is a prespecified stepsize or the learning rate.

Step 4. To perform group level feature selection, each group is weighted by a factor

that depends on the norm of the feature weights within the group. In particular, we

compute the weight of each group using a soft-max function. That is, the weight of

groupg, qg is obtained as,

qg =
exp(‖θg‖22/2µ)

∑s
k=1 exp(‖θk‖22/2µ)

. (5.21)

The smoothing parameterµ in the softmax function controls the distribution of group

weights. For a largeµ all groups are weighted equally irrespective of their utility, and

asµ goes to zero, only one group whose weights have the largest norm is selected.

Step 5. Since the weights for the features must be positive, replaceall the negative

elements inθ with 0. Compute the weight vectorwt+1from the temporary weightsθ

as follows:

w
g
t+1 = qg θ

g
t

‖θg
t‖

2
2

, g = 1, · · · , s. (5.22)

wherewg
t+1 is theg-th subvector ofw corresponding to the vocabulary ofg-th group,

vg.

Eq (5.22) gives the solution for the weight vectorwt+1 for the next iteration. Steps 1-5 are

repeated as each example pair (constraint) becomes available. The features corresponding

to non-zero weights inw are considered relevant, and form the selected subset of features.

5.4.2 Theoretical analysis

Potential based gradient descent [173, Chapters 2,11] is an online learning framework that

generalizes several classical algorithms like Widrow-Hoff, Winnow and the recent Expo-
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nentiated Gradient (EG) algorithm [173]. However, classical analysis presented in [173] is

applicable only to potential functions that are strictly convex. The potential generating the

L1,2 norm considered in the proposed approach is not strictly convex. In this section, we

propose a smooth approximation to the mixed norm‖ · ‖21,2 for weight estimation. We be-

gin with the following lemma that allows us to rewrite‖w‖21,2 as a variational minimization

problem.

Lemma 1. The group-LASSO norm can be shown to be the exact minimizer of the varia-

tional problem

1

2
‖w‖21,2 =

1

2
min
p∈R

s
+

{

s
∑

g=1

‖wg‖22
pg

:
s
∑

g=1

pg = 1

}

(5.23)

Proof. Introducing the Lagrangian multiplierλ and setting the partial derivative of the

Lagrangian function to be zero, we have

pg =
|wj|2

∑s
k=1 |w

k|2

Plugging the above expression into
∑s

g=1 |w
g|22/pg, we have the result in the lemma.

A smoothing term is now introduced to ensure that the norm‖ · ‖21,2 is strictly convex.

The smooth normΦ(x, µ) is defined as follows:

Φ(w; µ) = min
p∈R

s
+

{

s
∑

g=1

‖wg‖22
2pg

− µH(p) :
s
∑

g=1

pg = 1

}

(5.24)

whereH(p) is the Shannon entropy defined asH(p) = −
∑s

g=1 pg ln pg, andµ is the

smoothnessparameter. Also, we have1
2
‖w‖21,2 − µ ln s ≤ Φ(w; µ) ≤ 1

2
‖w‖21,2.

Lemma 2. The approximate potential functionΦ(w, µ) is a strictly convex function.

Proof. DefineQ = {p ∈ R
s
+ :

∑s
g=1 pg = 1}. According to the definition, we have

123



Φ∗(w, µ) computed as

Φ∗(w, µ) = max
v
〈w, v〉 − Φ(v, µ)

= max
p∈Q

max
v

s
∑

k=1

〈wk, vk〉 −
|vk|22
2pk

− µpk ln pk

= max
p∈Q

s
∑

k=1

pk

2
|wk|22 − µpk ln pk

= µ ln

(

s
∑

k=1

exp

[

|wk|22
2µ

]

)

The following lemma shows the convex conjugate of the smoothnorm, which is shown

to be strictly convex in the subsequent lemma.

Lemma 3. The convex conjugate of the smooth normΦ(w, µ), denoted byΦ∗(w, µ) is

computed as

Φ∗(w, µ) = µ ln

(

s
∑

g=1

exp

[

‖wg‖22
2µ

]

)

Proof. It suffices to show that for anyv, we have〈v,H∗(w, µ)v〉 > 0. We thus compute

〈v,H∗(w, µ)v〉 as

〈v,H∗(w, µ)v〉 =
s
∑

k=1

qk|v
k|22 +

1

µ





s
∑

k=1

qk[〈vk, wk〉]
2 −

[

s
∑

k=1

qk〈vk, wk〉

]2




where

qk =
exp

(

|wk|2/[2µ]
)

∑s
j=1 exp (|wj|2/[2µ])

Note that asµ goes to zero,Φ∗(w, µ) becomesmax1≤g≤s |w
g|22, which is the square of

the mixture of theL∞ andL2 norm. This is interesting sinceL∞ norm is the dual ofL1

norm. Lemma 4 below shows thatΦ∗(w, µ) is a strict convex function
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Lemma 4. The Hessian matrix ofΦ∗(w, µ), denoted byH∗(w, µ), is positive definite

i.e.,H∗(w, µ) ≻ 0. Furthermore, if‖w‖2 ≤ R, we haveH∗(w, µ) � (1 + R2/µ)I

Proof. Note that

(

s
∑

k=1

qk[〈vk, wk〉]
2

)(

s
∑

k=1

qk

)

≥

(

s
∑

k=1

qk〈vk, wk〉

)2

Hence,

〈v,H∗(w, µ)v〉 ≥
s
∑

k=1

qk|v
k|22 ≥ exp

(

−
‖w‖22
2µ

)

> 0

To show the upper bound ofH∗(w, µ), we have

〈v,H∗(w, µ)v〉 ≤ (1 + R2/µ)|v|22

Given that both potentialΦ(w, µ), and its convex conjugateΦ∗(w, µ) are strictly con-

vex functions, the potential based gradient descent algorithm presented in [173, Chapter 11]

can be used. The algorithm is described in Algorithm 4, whereΩ = {w ∈ R
m
+ : |w|2 ≤ R}

is the domain for feature weights andR ∈ R is a predefined constant. Step 4 involves a

projection of an estimate of weight vectorw′
t+1 into Ω, such that the Bregman divergence

generated by the potential functionΦ, denoted byDΦ(wt+1,wt) is minimized.

An online learning algorithm performs a weight update whenever it makes a mistake

in its prediction. Online learning algorithms are characterized by mistake bounds [173],

which bound the number of mistakes made by an algorithm compared to those made by

the knowledge of optimal weight vector in retrospect. The following theorem shows the

mistake bound for the above online algorithm.

Theorem 2. For any convex loss functionℓ, learning rateλ, andX∞ = maxt ‖∆xt‖where

∆xt = xt − x′
t, let κ = (1 + R2/µ), andλ = ǫ/(κX2

∞). For all u ∈ Ω, the number of
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mistakesM made by the proposed algorithm is bounded as follows:

M ≤
1

1− ǫ

(

κX2
∞ (‖u‖2 + µ ln s)

2ǫ
+

T
∑

t=1

ℓt(u)

)

(5.25)

Proof. For each training example(∆xt, yt) that was misclassified bywt, we consider

ℓt(wt)− ℓt(u) ≤ 〈u−wt,∇ℓt(wt)〉

=
1

λ
〈u−wt,θ

′
t+1 − θt〉

=
1

λ
〈u−wt,∇Φ(w′

t+1, µ)−∇Φ(wt, µ)〉

=
1

λ

(

DΦ(u,wt)−DΦ(u,w′
t+1) + DΦ(wt,w

′
t+1)

)

≤
1

λ

(

DΦ(u,wt)−DΦ(u,wt+1) + DΦ(wt,w
′
t+1)

)

whereDΦ(u,v) stands for the Bregman distance fromv to u. The second step follows

the factθ′
t+1 = ∇Φ(w′

t+1, µ), and the third step follows the property of Bregman distance

function, i.e.,

DΦ(u,v) + DΦ(v,w) = DΦ(u,w) + 〈u− v,∇Φ(w)−∇Φ(v)〉

The last step follows the fact thatwt+1 is the projection ofw′
t+1 onto the domain[0, +∞)m

based on the Bregman distanceDΦ(u, v). LetS include the indices of the trials where the

training examples are misclassified. We have

∑

t∈S

ℓt(wt) ≤
T
∑

t=1

ℓt(u) +
1

λ
DΦ(u,w1) +

1

λ

∑

t∈S

DΦ(wt, w
′
t+1)

Using the propertyDΦ(wt,wt+1) = DΦ∗(θt,θt+1), we have

∑

t∈S

ℓt(wt) ≤
T
∑

t=1

ℓt(u) +
1

λ
DΦ(u,w1) +

1

λ

∑

t∈S

DΦ∗(θt,θ
′
t+1)
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According to Lemma 3, we have

DΦ∗(θt,θ
′
t+1) ≤ (1 + R2/µ)|∆xt|

2

We thus have

M
(

1− λ(1 + R2/µ)|∆x|2
)

≤

T
∑

t=1

ℓt(u) +
1

λ
DΦ(u,w1)

whereX∞ = |∆x| = maxt |∆xt|. Finally, by choosingw1 = arg min
w∈Ω

Φ(w, µ) = 0, we

have

DΦ(u,w1) ≤ Φ(u)− Φ(w1) ≤
1

2
‖u‖2 + µ ln s

Finally, we have

M ≤
1

1− λ(1 + R2/µ)X2
∞

min
u∈Ω

(

1

λ

‖u‖2

2
+ µ ln s +

T
∑

t=1

ℓt(u)

)

Substituting theλ defined in the Theorem 1, will give the above bound in terms ofǫ.

For ǫ = 0.5, the above theorem shows that the number of mistakesM made byw

is no more than twice the mistakes made by the optimal weight vectoru, and a constant

depending onu, the smoothing parameterµ and the logarithm of the number of groupss.

5.4.3 Implementation details

For the potential function defined in Eq (5.24), steps 3 and 4 of Algorithm 4 are computa-

tionally complex. In particular, the computation of∇Φ(wt, µ) involves solving a non-linear

optimization problem defined in Eq (5.24). To avoid this, we use the originalL1,2 norm in-

stead of the smooth norm. Further, the projection step 4 in Algorithm 4 is difficult. The

projection inL1,2 is performed approximately by projecting weights in each group‖wg‖

into a unit ball using anL2 norm. This results in significant computational gains, with

negligible difference in empirical evaluation. This choice results in a normalized weight
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Algorithm 3 IncrementalFeatureSelection
Initialize w← 0, t← 0

for each roundt = 1, 2, · · · do
Observe(xt,x

′
t) and Predictdt ← |xt − x′

t|w
if yt(b− dt) ≤ 0 then

wt ← DualGradientDescentStep(xt,x
′
t,wt−1)

end if
t← t + 1

end for

Algorithm 4 DualGradientDescentStep(wt)
1. θt ← ∇Φ(wt, µ)

2. θ′t+1 ← θt − λ∇ℓt(wt)

3. w′
t+1 ← ∇Φ∗(θ′t+1, µ)

4. wt+1 ← πΩ(w′
t+1, Φ) = arg min

w∈Ω DΦ(w,w′
t+1)

vector, fixing the value ofR = 1. The solution is given in Eq (5.22), and the detailed

derivations of the solution are presented in [187].

5.5 Experiments

Datasets: The proposed algorithm is evaluated using the PASCAL VOC challenge 2007

dataset [188]. This dataset has 9,963 images labeled using 20 classes of objects. The train-

ing and validation set contains 5,011 images. A detailed description of the data including

the number of images per class is provided in [188]. The images in the dataset have multi-

ple labels, and hence it is not directly suitable for evaluating image clustering. We ignore

infrequently occurring objects in images and consider onlythe images containing one of

the 6 most popular classes in the dataset, namely,bicycle (243),bird (330),car (713),

cat (337),chair (445), andperson (2008). The number of samples in each of these six

classes is shown in brackets. For objects with multiple labels, one of the labels is chosen

randomly.
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Table 5.2: Performance of the proposed algorithm measured using pairwise-F1 measure.
The first two columns show the target clusters, subsequent columns show the mean pair-
wise F1 measure, expressed as percentage. Significant differences(paired t-test at 95%
confidence) compared to the K-means algorithm are indicatedby a+ or a−.

Task Classes Proposed Online Baseline Batch Baseline

# c1 c2 K-means L1,2 L1 POLA(L2) BestFirst

1 bird cat 34.25 54.77+ 51.18+ 41.89− 56.40+
2 bird bicycle 46.88 45.79− 49.30+ 46.55 48.83+
3 bird chair 57.51 57.97 60.22+ 50.55− 61.10+
4 bird car 55.74 63.24+ 66.99+ 58.32+ 66.01+
5 bird person 79.34 78.78 76.54− 75.34− 73.47−
6 cat bicycle 42.55 53.81+ 61.73+ 53.00+ 59.73+
7 cat chair 41.85 46.16+ 48.04+ 47.18+ 55.24+
8 cat car 55.37 55.10 55.72 55.50 55.15
9 cat person 78.98 78.45 73.48− 74.92− 66.47−

10 bicycle chair 62.83 64.18+ 64.58+ 60.73− 56.85−
11 bicycle car 66.25 67.78+ 68.97+ 65.69− 66.76
12 bicycle person 84.09 83.76 78.44− 79.96− 84.10
13 chair car 50.35 51.03 52.02+ 53.51+ 55.73+
14 chair person 73.67 76.68+ 68.84− 71.87− 64.91−
15 car person 62.65 62.73 59.97− 63.74+ 57.03−

Summary 8+/1− 9+/5− 5+/8− 7+/5−

5.5.1 Feature extraction

SIFT (Version 4) key points [2] are extracted from each image. Each key-point is repre-

sented using a 128-dimensional feature vector. The key-points extracted from images in the

training set are pooled together resulting in around 4.5 million key points. These key-points

are clustered into 5,000 clusters using approximate hierarchical K-means algorithm from

the FLANN library [189], with a branching factor of 20, resulting in a visual vocabulary of

size 5000. Key point histograms are computed for each image in the training set. The group

information of the visual vocabulary is obtained during theclustering phase by identifying

all the visual words with common parents.
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Experimental setup: Group-LASSO is a general norm which can be specialized to both

L2 or L1 using appropriate group definition. If the number of groups is equal to the number

of features, then Group-LASSO is equivalent to performing feature selection using an L1

norm. If all the features are put in a single group, the proposed algorithm is equivalent to

the online distance metric learning algorithm POLA [123], which uses anL2 norm as a

regularizer. The performance of proposed algorithm with and without group structure (L1,2

andL1) is evaluated. The proposed algorithm is compared with theL2 distance metric

learning algorithm POLA. To compare the performance of the online algorithm with the

batch mode algorithms, the classical Best First Search algorithm is used. However, note

that batch mode algorithms assume that all examples are available a priori, and therefore

they usually have better performance. The performance of clustering can be compared after

applying an unsupervised dimensionality reduction algorithm such as principle component

analysis. However, the performance of theK-means clustering will not be significantly

different on the data with reduced dimensionality comparedto the original dimensionality.

This is because, the clustering obtained byK-means algorithm lies in the span of the top

few (≥ K in number) eigenvectors of the similarity matrix (linear kernel) [190]. There-

fore, we do not show the results of clustering the data with dimensionality reduced using

unsupervised linear dimensionality reduction algorithms.

For each pair of classes from the PASCAL VOC dataset, 300 randomly selected pair-

wise constraints are specified. The online learning algorithm is run for 10 epochs with

the same 300 constraints shuffled each time. The number of images used for generating

the pairwise constraints is specified in the dataset description in Section 5.5. The num-

ber of constraints considered in our algorithm is orders of magnitude smaller than those

considered by other approaches [123, 185], which used around 10,000 constraints.

K-means algorithm is used to cluster the images with the selected features. Different

sub-tasks from the PASCAL VOC dataset are chosen based on their class labels. The

pairwise constraints provided to the proposed feature selection algorithm are derived from
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the true labels of the examples. To alleviate the variability due to local minima in the K-

means algorithm, it is run with ten different initializations. The cluster labels corresponding

to the run with the lowest value of objective function are used for evaluation. Pairwise-F

measure is used as the evaluation metric.

Parameters: The proposed algorithm has two parameters – the learning rate (or step size

in the sequential gradient descent)λ and the norm-smoothness parameterµ. We setλ = s
2

wheres is the number of groups in the visual words. The value ofµ is set to 1. The value

of b is chosen empirically to be 4. Ideally, ifw is unconstrained, the value ofb does not

matter since it compensates for a scale factor inw. The approximation used for Step 4

of Algorithm 2 (see Section 5.4.3) results inR = 1 constraining the domain ofw to the

unit L1,2 ball. In this case, forb > X∞, there is now that satisfies any of the cannot link

constraints. Therefore a choice ofb must satisfy0 < b < X∞. The domain sizeR is not a

parameter, and need not be specified.

The values of the parameter are selected using cross validation on one of the clustering

tasks (bird vscat), which are then used for all the tasks. The range of values for these

parameters to perform cross validation was motivated by Theorem 2. It may appear that

selectingµ close to 0 would reduce theµ ln s term in the mistake bound in Eq (5.25).

However, settingµ to be small results in a smallλ small, rendering the updates insignificant.

Moreover, too small or too large a value forλ increases the the bound significantly resulting

in poor learning, and hence is not recommended.

5.5.2 Results and discussion

Figure 5.3 illustrates the features selected by the proposed algorithm on six example images

from the VOC 2007 dataset. The left image in each pair shows the original set of key points

extracted by the SIFT algorithm with its default settings. The right image in the pair shows

the key points corresponding to the visual words, selected by the proposed algorithm. Note
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that in almost all the images, the key points in the background are drastically reduced as

a result of keyword selection. However, in the examples containingbird in Figure 5.3,

the key points corresponding to the tree branches are also retained by the feature selection

algorithm. In a large fraction ofbird images in the dataset, tree branches co-occur with

a bird. Unless a sufficient number of cannot-link constraints are given between images

containingbirds and tree-branches, corresponding key points would not be eliminated.

Such cases did not occur frequently in the dataset considered.

Table 5.2 shows the performance of the K-means clustering algorithm on 15 clustering

tasks created from the VOC dataset. Table 5.3 shows the mean and standard deviation of the

visual words selected by the proposed algorithm and the baselines. Group-LASSO based

feature selection always resulted in the least number of features, followed by LASSO. The

variance of Group-LASSO is higher since the features are discarded in groups of large

size. In most cases, the performance drop is not significant (using paired t-test at 95%

confidence). The cases where there is a significant difference in performance are marked

by + or− accordingly.

In three out of the five clustering tasks involving theperson class, the performance

after feature selection is lower than that of K-means. This is attributed to the large differ-

ence in the number of samples in each class in the dataset. Thedegradation of the proposed

method however, is less severe compared to the baselines. The classperson is not only

the most frequent but also frequently co-occurs with the other classes in the dataset. This

imbalance in the number of samples results in a large bias towards positive or negative con-

straints, resulting in relatively poor feature selection.This can be alleviated by balancing

the number of positive and negative constraints.

Overall, the proposed feature selection method, using bothgroup-LASSO and LASSO,

results in a vocabulary pruning of about 75-80%, on average for two-class problems. A

larger number of classes may retain a larger fraction of key-points. Since the key-points are

clustered using a larger number of images than those considered for each clustering task,
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one might observe that there are naturally irrelevant key points for each task. However,

that is not the case. In almost all the clustering tasks, mostof all the visual keywords are

observed.

5.6 Summary and conclusions

An online algorithm is presented for pruning the vocabularyin image analysis tasks that use

the bag of words representation. Online algorithms are computationally efficient since they

learn incrementally. Vocabulary pruning aids in representing images using a feature vector

of low dimensionality, which naturally reduces the computation time required for subse-

quent clustering, classification or retrieval. The qualityof pruned vocabulary is evaluated

using a clustering task, and is compared to the performance of batch learning algorithms. A

controlled study was performed to evaluate the merits of theproposed algorithm. Although

the proposed algorithm is evaluated on visual vocabulary pruning task, it is applicable to

other feature selection tasks as well. It is possible to derive the pairwise constraints auto-

matically in some application domains from auxiliary information (e.g. text in web pages),

where one may also be able to exploit the degree of relation between images.
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Task Proposed Baseline
# Group LASSO LASSO(L1) POLA(L2)

1 1148 509 1263 91 4929 187
2 986 449 1082 113 4982 30
3 1133 602 1204 310 4995 2
4 816 372 1170 82 4994 2
5 682 536 943 64 4834 473
6 1134 363 1156 124 4991 4
7 1283 537 1268 102 4996 2
8 1050 446 1213 124 4799 616
9 682 377 971 100 4943 163

10 1118 435 1092 45 4994 2
11 790 336 1025 92 4985 23
12 495 198 847 245 4921 215
13 999 377 1180 92 4978 34
14 729 391 940 55 4992 9
15 665 347 969 84 4982 37

Table 5.3: Mean and standard deviation of the number of visual words (from a total of
5,000) selected by the proposed LASSO and Group-LASSO method vs theL2 DML al-
gorithm. POLA is not a feature selection technique, and hence learns the weights for all
the features. The batch mode forward search algorithm always selected 150 features, and
hence is not reported in the table. The tasks are defined in Table 5.2
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Input image pair labeled asmust-link(related)
↓ ↓

Extracted SIFT Key-points and theirgroups.
Keypoints falling in a group (visual synonyms) use

the same color marker in the plot.
↓ ↓

Selected features explaining themust-linkconstraint.
Note the irrelevant groups missing in the background.

↓ ↓

Figure 5.2: Illustration of SIFT key points, visual synonyms and feature selection at a
group level. The first row shows a pair of images input for feature selection. Note that
the key points occur in groups. Same colored marker is used for key points belonging to a
group. Feature selection by the proposed feature selectionalgorithm acts at a group level
by removing the entire group of unrelated features.
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#kp = 821 (217 groups) #kp = 75 (55 groups) #kp = 401 (128 groups) #kp = 29 (27 groups)

#kp = 507 (44 groups) #kp = 193 (36 groups) #kp = 337 (166 groups) #kp = 20 (21 groups)

#kp = 532 (189 groups) #kp = 20 (21 groups) #kp = 351 (161 groups) #kp = 32 (21 groups)

Figure 5.3: Feature selection using group-LASSO. In each pair of images, the left image
shows the key points extracted from the original image and the right image shows the
selected key points using the proposed feature selection algorithm. The number below
each image indicates the number of key points (kp), and the number of groups (shown in
brackets).
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CHAPTER 6

Summary and Conclusions

In this thesis, three classical problems in pattern recognition, namely, classification, clus-

tering and unsupervised feature selection have been extended to a semi-supervised learning

setting.

6.1 Contributions

The semi-supervised boosting framework presented in Chapter 3 makes the following con-

tributions:

• Semi-supervised improvement framework:A new semi-supervised learning setting,

calledsemi-supervised improvementis proposed whose goal is to improve any ex-

isting supervised classifier when unlabeled data is available. Several well-known

semi-supervised learning algorithms like self-training,ASSEMBLE etc. can be uni-

fied under this framework.

• Semi-supervised Boosting Algorithm:SemiBoost is a semi-supervised learning al-

gorithm following the semi-supervised improvement framework. Drawing inspira-

tion from successful ideas from graph based algorithms (Laplacian regularization),

a new boosting algorithm was developed that utilizes the unlabeled data and a pair-

wise similarity matrix to improve the performance of any given supervised learning

algorithms.
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• New regularizer for utilizing unlabeled data:Graph Laplacian is a key concept

in graph based semi-supervised learning. The quadratic cost function in the graph

Laplacian is replaced with an exponential function. This helps in designing the

SemiBoost algorithm along lines similar to the supervised boosting algorithms (e.g.

AdaBoost).

The non-parametric mixtures algorithm presented in Chapter4 makes the following

contributions:

• Mixture model based on kernel density estimates:An extension of kernel density

(Parzen window) estimation to the mixture models is proposed for data clustering.

Each cluster is assumed to be generated by its own density function, and may have

an arbitrary shape. Proposed model inherits the advantagesof mixture models such as

out-of-sample label assignment and probabilistic clusterassignments, without mak-

ing any restrictive assumptions about the cluster shape.

• Leave-one-out likelihood maximization:A leave-one-out likelihood maximization

approach is used to estimate the parameters of the algorithm, as opposed to the con-

ventional maximum likelihood estimation.

• Weighted kernel density estimate:We introduced weighted kernel density estimates

for modeling the density function of the clusters. It is possible to impose different

constraints on the weights to achieve different clusteringresults. For instance, semi-

supervision in the form of pairwise constraints can be incorporated by imposing the

constraints on the weights.

• Parameter selection from side-information:Kernel bandwidth is one of the most

important parameters of kernel based clustering algorithms. A novel approach for

selecting critical parameters (bandwidth) of the kernel using pairwise constraints is

presented. This approach is applicable to any kernel based algorithm (e.g., spec-
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tral clustering, kernelk-means, etc) including the proposed non-parameteric mixture

approach.

The feature selection algorithm proposed in Chapter 5 makes the following contribu-

tions:

• Feature selection using pairwise constraints:Given a set of unlabeled data points,

and a set of pairwise constraints, an efficient online algorithm that selects a subset of

features is proposed. The features are selected such that the distances between points

in must-link constraints are less than the distances between points in cannot-link

constraints.

• Incorporating side information into the data:While several approaches have been

proposed to modify the clustering algorithms to include side-information, semi-

supervised clustering is still largely an unsolved problemsince the utility and the

effect of the constraints are not well understood. We have proposed an alternate way

to utilize the side-information, that is to incorporate it into the data itself through

feature sub-space selection.

• Online feature selection algorithm:An online learning algorithm based on potential

based gradient descent is presented to perform feature selection. Online algorithms

are computationally efficient since they learn incrementally.

• Group-LASSO:A Group-LASSO regularizer is used to perform the feature selec-

tion. An application setting where the groups required in group LASSO are naturally

available is explored.

• Non-strongly convex regularizers in online learning:Online learning algorithms and

theory require the regularizer to be strongly convex. However, the proposed Group-

LASSO regularizer is not strongly convex. A convex surrogate function for Group-

139



LASSO was introduced, and the related theoretical guarantees on the performance

have been derived.

• Application to Vocabulary Pruning:The proposed online feature selection algorithm

is applied to prune the vocabulary for clustering images represented using the bag

of words representation. Given that the vocabularies constructed from general image

collections are of large size, the proposed approach aids inrepresenting images using

smaller feature vectors. This reduces the computation timerequired for subsequent

clustering, classification or retrieval. The quality of pruned vocabulary is evaluated

using a clustering task that is comparable to that of batch learning algorithms.

• Generality of the algorithm:Although the proposed algorithm is evaluated on visual

vocabulary pruning task, it is applicable to other feature selection tasks as well. Real

world applications may derive the pairwise constraints automatically from auxiliary

information (e.g. text in web pages), where one may also be able to exploit the degree

of relationship between images.

6.2 Future Work

The studies conducted during the course of this dissertation raised questions that point to

several important theoretical and empirical research directions.

• Utility of unlabeled data for classification

Existing studies on the utility of unlabeled data for semi-supervised classification

suggest that there are two sources of possible degradation in supervised algorithms:

1. a mismatch between thecluster structurein the unlabeled data and that assumed

by the model (similar tocluster validation)

2. a misalignment between the true classes and the cluster structure.
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The impact of unlabeled data on the classification algorithms can be analyzed by

decomposing the generalization error of the classifier trained using partially labeled

data, into the above two terms. Existing analyses do not explicitly study the decom-

position of error into the aforementioned two terms, and is apotential area of study.

Further, a priori evaluation of the two sources of error is difficult since it involves

solving a harder problem of cluster validity. Currently, cross-validation against a la-

beled validation set is the only reliable way to assess the utility of side-information.

• Utility of pairwise constraints:

Most empirical studies, including the experiments performed during the development

of this thesis, indicate that the addition of pairwise constraints may occasionally

degrade the performance of the corresponding supervised orunsupervised learner.

An important question isCan the effect of side-information be predicted a priori

for a given learning task?, or equivalently,Can the factors affecting the utility of

side-information to a clustering algorithm be explicitly enumerated, and its exact

impact be studied?This is related to the nature of the dataset and the quality of

side-information.

• Mixture of sparse kernel density estimates:

The mixture of kernel density estimates presented in Chapter4 uses all the data

points to define the density function of each cluster. However, most often a small

subset of the examples should be sufficient to express the same density. This can

be achieved by introducing anL1 regularizer on the profile vectors instead of the

currentL2 regularizer. This has several benefits such as increased efficiency in out-

of-sample cluster assignment, and use of a simpler model as opposed to a complex

model (Occam’s razor).

• Efficient algorithm for non-parameteric mixtures:
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The number of parameters in the non-parameteric mixture algorithm depends on the

number of examples. While it is efficient compared to the Gaussian Mixture model

andK-means for high-dimensional datasets, the number of parameters can be large

for datasets with small dimension and large number of examples. This can be avoided

by developing algorithms that use anL1 regularizer to discard data points in each

iteration that are not necessary to express the density function of a cluster.

• Exploring relationship with spectral clustering:

The non-parameteric mixtures algorithm outperforms spectral clustering in most

cases studied in our thesis, but under-performs in some cases. The proposed al-

gorithm, however, has some advantages such as the ease of out-of-sample cluster

assignment. It would be useful to study the theoretical relationship between spectral

clustering and non-parameteric mixtures. The explanationmay lead to a probabilis-

tic interpretation for spectral clustering, and the intuition behind kernel density esti-

mates may reveal why spectral clustering performs better orworse compared to the

proposed algorithm.

• Incorporating pairwise constraints into mixture of non-parameteric densities:

Side information such as pairwise constraints can be incorporated into the non-

parameteric mixture algorithm.

• Estimating the number of clusters:

Estimating the number of clusters present in the data is one of the most difficult

problems in data clustering [3]. Any available side-information can only help in

deciding the number of clusters. For instance, providing labels for a few examples

may reveal the number of clusters. Most often, however, the labeled data could

have originated only from a small number of the classes underconsideration. The

problem gets more complicated when a weaker form of side-information such as

pairwise constraints is available, although it still is easier compared to the lack of
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any side-information. This could be calledsemi-supervised class discovery, which is

still an unexplored and difficult area. Throughout this thesis, we have assumed that

the number of clusters is known.

• Online algorithms using nested potentials:

The group-lasso based online learning algorithm presentedin Chapter 5 can be gen-

eralized to nested potentials which provide a general framework for online learning

with mixed norms.

• Online clustering and applications:

Large scale data clustering is gaining interest due to the availability of massive

datasets. Many applications such as visual vocabulary construction, use clustering

algorithms to choose visual words. However, recent (unpublished) research shows

that choosing these cluster centers randomly is equally helpful. In this light, a mid-

dle ground, where an efficient clustering algorithm is used to cluster the data to come

up with visual vocabulary could provide the advantages of both – cluster quality and

computational efficiency. Online algorithms can prove to beuseful in large scale

clustering applications where speed is more important compared to the quality of

clusters.

• Semi-supervised online learning:

Online learning algorithms are usually supervised. Exploiting the use of unlabeled

data for online classification algorithms could be beneficial. No such algorithm exists

at this point of time.

6.3 Conclusions

This thesis presents semi-supervised algorithms for threeclassical problems in pattern

recognition and machine learning, namely, supervised learning, unsupervised learning,
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and unsupervised feature selection. The thesis makes significant contributions to semi-

supervised learning by developing algorithms that advancethe state-of-the-art in semi-

supervised classification and clustering. Several applications of semi-supervised learning

algorithms such as text classification and image clusteringwere shown, and the potential of

utilizing side-information to achieve better learning andprediction performance is demon-

strated. Several directions for future work in semi-supervised learning are identified.
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