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ABSTRACT

SOME CONTRIBUTIONS TO SEMI- SUPERVISED L EARNING

By

Pavan Kumar Mallapragada

Semi-supervised learning methods attempt to improve tHenpeance of a supervised
or an unsupervised learner in the presence of “side infoomatThis side information can
be in the form of unlabeled samples in the supervised casaipmise constraints in the
unsupervised case. Most existing semi-supervised legapproaches design a new objec-
tive function, which in turn leads to a new algorithm ratheart improving the performance
of an already available learner. In this thesis, the thrassital problems in pattern recog-
nition and machine learning, namely, classification, @usy, and unsupervised feature
selection, are extended to their semi-supervised couantstp

Our first contribution is an algorithm that utilizes unladeldata along with the la-
beled data while training classifiers. Unlike previous apghes that design specialized
algorithms to effectively exploit the labeled and unlabletiata, we design a meta-semi-
supervised learning algorithm call&&miBoostwhich wraps around the underlying super-
vised algorithm and improve its performance using the witbdata and a similarity func-
tion. Empirical evaluation on several standard datasewsla significant improvement in
the performance of well-known classifiers (decision studggision tree, and SVM).

In the second part of this thesis, we address the problemsifnieag a mixture model
for data clustering that can effectively utilize “side-onfnation” in the form of pair-wise
constraints. Popular mixture models or related algoritliisneans, Gaussian mixture
models) are too rigid (strong model assumptions) to resuttifferent cluster partitions
by utilizing the side-information. We propose a non-parimemixture model for data

clustering in order to be flexible enough to detect arbiyataped clusters. Kernel density



estimates are used to fit the density of each cluster. Th&eclng algorithm was tested on
a text clustering application, and performance superigodpular clustering algorithms
was observed. Pair-wise constraints (“must-link” and faadink” constraints) are used
to select key parameters of the algorithm.

The third part of this thesis focuses on performing featwedion from unlabeled
data using instance level pair-wise constraints (i.e. jlegb@xamples labeled as must-link
pair or cannot-link pair). Using the dual-gradient deseeathod, we designed an efficient
online algorithm. Pair-wise constraints are incorpordted the feature selection stage,
providing the user with flexibility to use unsupervised omssupervised algorithms at
a later stage. The approach was evaluated on the task of iohagtering. Using pair-
wise constraints, the number of features was reduced byndr80%, usually with little
or no degradation in the clustering performance on all thassds, and with substantial

improvement in the clustering performance on some datasets
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CHAPTER 1

Introduction

The advent of cheap sensors and storage devices has rasuttexigeneration, storage
and consumption of massive amounts and variety of data ifothe of text, video, image
and speech. Multimedia content generation, which was ooegned to recording studios
or editorial offices, has now become a household activitieriret users contribute to the
media generation through blogs and vlogs (Blogspot), twéetstter), photos (Flickr),
audio and video recordings (Youtube). In addition, useratentionally contribute to this
surge through the records of their online activities sudmiesnet search logs (Google, Ya-
hoo/Bing), advertisement clicks (Google and Yahoo), shagpphmazon, Ebay), network
logs (ISPs), browser logs (ISPs) to name just a prominenit few

It is not surprising then that automatic data analysis pkygentral role for analyz-
ing, filtering and presenting the user with the informatianis searching for. Machine
learning, pattern recognition and data mining are thresedlfields that study and develop
algorithms to perform the necessary data analysis. Toaudilly, data analysis has been

studied in two settings:

Supervised Learning Given a set of input object¥ = {x;}! ,, and a set of correspond-
ing outputs (class labels) for theh object,y; = {yi}& |, whereK is the number of output

variables per input object, supervised learning aims ime$¢ a mapping : X — )’ such



that the output for a test objekt(that was not seen during the training phase) may be pre-
dicted with high accuracy. For instanck,can be a collection of documents, ajiccan be

a collection of labels specifying if a user finds the corregping document interesting (or
not). The algorithm must learn a functigithat predicts if the user will be interested in a

particular document that has not yet been labeled.

Unsupervised Learning Given a set of objectsY = {x;}" ,, and asimilarity measure
between pairs of objects: X x X — R, the goal of unsupervised learning is to partition
the set such that the objects within each group are moreasirndleach other than the
objects between groups. For example, given a set of docsitéetalgorithm must group
the documents into categories based on their content alttheuv any external labels.
Unsupervised learning is popularly knownasstering

Supervised learning expects training data that is conlglé&ibeled. On the other ex-
treme, unsupervised learning is applied on completelyheial data. Unsupervised learn-
ing is more difficult problem than supervised learning du¢hi® lack of a well-defined
user-independent objective [3, 4]. For this reason, it isallg considered an ill-posed
problem that is exploratory in nature [5]; that is, the usesxpected to validate the output
of the unsupervised learning process. Devising a fully maticc unsupervised learning
algorithm that is applicable in a variety of data settingansextremely difficult problem,
and possibly infeasible. On the other hand, supervisedileguiis a relatively easier task
compared to unsupervised learning. The ease comes withdmd adst of creating a la-
beled training set. Labeling a large amount of data may bieulifin practice because data

labeling:

1. is expensivehuman experts are needed to perform labeling. E.g. Expegd to be

paid to label, or tools such as Amazon’s Mechanical turk [6ktbe used.

2. has uncertainty about the level of detdle labels of objects change with the granu-

larity at which the user looks at the object. As an examplectuge of a person can



be labeled as “person”, or at a greater detail “face”,“ey#&s'so” etc.

3. isdifficult sometimes objects must be sub-divided into coherent paftse they can
be labeled. For example, speech signals and images havateimately segmented

into syllables and objects, respectively before labeliag loe performed.

4. can be ambiguougbjects might have non-unique labellings or the labelittgem-

selves may be unreliable due to a disagreement among experts

5. uses limited vocabularylypical labeling setting involves selecting a label frotisa
of pre-specified labels which may not completely or pregiselscribe an object. As
an example, labeled image collections usually come witheaspecified vocabulary
that can describe only the images that are already presém iimaining and testing

data.

Unlabeled data is available in abundance, but it is diffiulearn the underlying struc-
ture of the data. Labeled data is scarce but is easier tofleam Semi-supervised learning
is designed to alleviate the problems of supervised andogmgised learning problems, and

has gained significant interest in the machine learningaresecommunity [7].

1.1 Semi-supervised learning

Semi-supervised learning (SSL) works in situations whieeeatzailable information in data
is in between those considered by the supervised and unssgebidearners; i.e. it can
be approached from both supervised and unsupervisedrgaonbblems by augmenting
their traditional inputs. Various sources of side-infotio@a considered in the literature are

summarized in Table 1.1.



Semi-supervised classification

Semi-supervised classification algorithms train a clasgiiven both labeled and unlabeled
data. A special case of this is the well known transductiaelimg [8], where the goal is to
label only the unlabeled data available during trainingnBgupervised classification can
also be viewed as an unsupervised learning problem with @siyall amount of labeled

training data.

Semi-supervised clustering

Clustering is an ill-posed problem, and it is difficult to comne with a general purpose
objective function that works satisfactorily with an arbity dataset [4]. If any side-
information is available, it must be exploited to obtain arenoseful or relevant clustering
of the data. Most often, side-information in the form of page constraints (“a pair of ob-
jects belong to the same cluster or different clusters™yaslable. The pairwise constraints
are of two typesmust-linkandcannot-linkconstraints. The clustering algorithm must try
to assign the same label to the pair of points participatmg must-link constraint, and
assign different labels to a pair of points participatingicannot-link constraint. These
pairwise constraints may be specified by a user to encodedfesrped clustering. Pairwise
constraints can also be automatically inferred from thecstire of the data, without a user
having to specify them. As an example, web pages that areditd one another may be

considered as participating in a must-link constraint [9].

Semi-supervised feature selection

Feature selection can be performed for both supervised esupervised settings depend-
ing on the data available. Unsupervised feature selecsiaifficult for the same reasons
that make clustering difficult — lack of a clear objective ifieom the model assumptions.
Supervised feature selection has the same limitationsaasifitation, i.e. scarcity of la-

beled data. Semi-supervised feature selection aims teeuphirwise constraints in order



Task Typical input Side-information for References
semi-supervised learning

Classification Labeled data Unlabeled data [11]
Classification Labeled data Weakly related unlabeled date?] [1
Multilabel learning Multi-label data  Unlabeled data [13]
Multilabel learning Multi-label data  Partially labeledaxples [14]
Clustering Unlabeled data  Labeled data [15]
Clustering Unlabeled data  Pairwise constraints [16]
Clustering Unlabeled data  Group constraints [17]
Clustering Similarity metric Balancing constraints [18]
Ranking Similarity metric  Partial ranking [19]

Table 1.1: Different kinds of semi-supervised settingssidered in the literature.

to identify a possibly superior subset of features for tisé.ta

Many other learning tasks, apart from classification andteling, have their semi-
supervised counterparts as well (e.g., semi-supervisadng [10]). For example, page
ranking algorithms used by search engines can utilizeiegigiartial ranking information

on the data to obtain a final ranking based on the query.

1.2 Thesis contributions

Most semi-supervised learning algorithms developed ititi@ture (summarized in Chat-
per 2) attempt to modify existing supervised or unsupedvadgorithms, or devise new ap-
proaches. This is often not desirable since a significanuataf effort may already have
been invested in developing pattern recognition systenfikytuning the parameters, or

incorporating domain knowledge. The high-level goals eftthesis are as follows:

e To design semi-supervised learning methods and algorithatsmprove the existing
and established supervised and unsupervised learningidiges without having to

modify them.



e To develop semi-supervised approaches following the abavepe for each of the
standard pattern recognition problems, namely, supedvisarning, unsupervised

learning and feature selection.

The above goals can be achieved by using the side informiatione of the following

ways:

1. Design wrapper algorithms that use existing learningritiyns as components and

improve them using the side information (e.g. unlabeled @&t classification).
2. Use the side information to select critical parameteth®falgorithm.

3. Incorporate side information directly into the data esantation (features or simi-

larity matrix) so that supervised and unsupervised algorit can be directly used.

This thesis contributes to the field of semi-supervisedsdiaation and clustering by

attempting to answer the following questions:

1. A meta semi-supervised-learning algorithm, caliemiBoostvas developed that
is presented in Chapter 3. It is designed to iteratively impra given supervised

classifier in the presence of a large number of unlabeled data

2. A non-parametric mixture model using kernel densityneation is presented in
Chapter 4. The resulting algorithm can discover arbitrangter structures in the
data. Since the algorithm is probabilistic in nature, saMssues like the number of
clusters, incorporating side information etc., can be keahoh a principled manner.
Side-information in the form of pairwise constraints is dise estimate the critical

parameters of the algorithm.

3. Curse of dimensionality is a well known problem in patteroagnition and machine
learning. Many methods face challenges in analyzing higtedsional data that are

being generated in various applications (e.g, images andrdents represented as



bag-of-words, gene microarray analysis etc.). Given a sentabeled examples,
and an oracle that can label the pairwise constraints aslmistr cannot link, an

algorithm is proposed to select a subset of relevant feafunen the data.



CHAPTER 2

Background

Most semi-supervised learning methods are extensionsistirex supervised and unsu-
pervised algorithms. Therefore, before introducing theetigopments in semi-supervised
learning literature, it is useful to briefly review supeerdsand unsupervised learning ap-

proaches.

2.1 Supervised learning

Supervised learning aims to learn a mapping functionX — ), whereX and) are
input and output spaces, respectively (e.g. classificaimh regression [20, 21]). The
process of learning the mapping function is caltedning and the set of labeled objects
used is called th&raining dataor thetraining set The mapping, once learned, can be used
to predict the labels of the objects that were not seen duhagraining phase. Several
pattern recognition [22, 20, 21] and machine learning [23t@xtbooks discuss supervised
learning extensively. A brief overview of supervised leagalgorithms is presented in this
section.

Supervised learning methods can be broadly divided getaerativeor discriminative
approaches. Generative models assume that the data i®mkyly and identically dis-

tributed and is generated by a parameterized probabilitgidefunction. The parameters



are estimated using methods like the Maximum Likelihoodr&astion (MLE), Maximum
A Posteriori estimation (MAP) [20], Empirical Bayes and \&ional Bayes [21]. Proba-
bilistic methods could further be divided inbl@quentisior Bayesian Frequentist methods
estimate parameters based on the observed data alone Balggsian methods allow for
inclusion of prior knowledge about the unknown parameté&samples of this approach
include the Naive Bayes classifier, Bayesian linear and qtiadfigcriminants to name a
few.

Instead of modeling the data generation process, disaiimenmethods directly model
the decision boundary between the classes. The decisiombouis represented as a para-
metric function of data, and the parameters are learned bymzing the classification
error on the training set [20]. Empirical Risk MinimizatioBRM) is a widely adopted
principle in discriminative supervised learning. Thisaggely the approach taken by Neu-
ral Networks [24] and Logistic Regression [21]. As opposeprtibabilistic methods, these
do not assume any specific distribution on the generatiorata, dut model the decision
boundary directly.

Most methods following the ERM principle suffer from poor gealization perfor-
mance. This was overcome by Vapnik’'s [25] Structural Risk iMiaation (SRM) princi-
ple which adds a regularity criterion to the empirical riskttselects a classifier with good
generalization ability. This led to the development of Supp/ector Machines (SVMs)
which regularize the complexity of classifiers while sinankously minimizing the empir-
ical error. Methods following ERM such as Neural networks] angistic Regression are
extended to their regularized versions that follow SRM [21].

Most of the above classifiers implicitly or explicitly regeithe data to be represented
as a vector in a suitable vector space, and are not diregbliycaple to nominal and ordi-
nal features [26]. Also, most discriminative classifiersénaeen developed for only two
classes. Multiclass classifiers are realized by combiningipte binary (2-class) classi-

fiers, or using coding methods [20].



Decision trees is one of the earliest classifier [23], thatltandle handle a variety of
data with a mix of both real, nominal, missing features anttipla classes. It also provides
interpretable classifiers, which give a user an insight atich features are contributing
for a particular class being predicted for a given input egl@nDecision trees could pro-
duce complex decision rules, and are sensitive to noiseeili#ta. Their complexity can
be controlled by using approaches like pruning, howeveprattice classifiers like SVM

or Nearest Neighbor have been shown to outperform decise@s bn vector data.

Ensemble classifiers are meta-classification algorithmtsdabmbine multiple compo-
nent classifiers (called base classifiers) to obtain a massitier with the hope that they
will perform better than any of the individual componentsslifiers. Bagging [27] and
Boosting [28, 29] are the two most popular methods in thisscl&agging is a short form
for bootstrap aggregation, which trains multiple instanogta classifier on different sub-
samples (bootstrap samples) of the training data. Theidaais an unseen test example
is taken by a majority vote among the base classifiers. Bapstim the other hand, sam-
ples training data more intelligently by sampling examples are difficult for the existing

ensemble to classify with a higher preference.

2.2 Unsupervised learning

Unsupervised learning or clustering, is a significantly endifficult problem than classi-
fication because of the absence of labels on the training daitzen a set of objects, or
a set of pairwise similarities between the objects, the gbalustering is to finchatural
groupings (clusters) in the data. The mathematical dedimitif what is considered a natu-
ral grouping defines the clustering algorithm. A very largenber of clustering algorithms
have already been published, and new ones continue to af§tead, 31]. We broadly
divide the clustering algorithms into groups based on theidamental assumptions, and

discuss a few representative algorithms in each grouprilggnaninor variations within the
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group.

K-means [30, 3], arguably, is the most popular and widelydudastering algorithm.
K-means is an example of a sum of squared error (SSE) miniimizalgorithm. Each
cluster is represented by its centroid. The goal of K-mearns ifind the centroids and
the cluster labels for the data points such that the suntiedi®d error between each data
point and its closest centroid is minimized. K-means isafited with a set of random
cluster centers, that are iteratively updated by assighieglosest data point to each center,
and recomputing the centroids. ISODATA [32] and Linear \decQuantization [33] are
closely related SSE minimization algorithms that are ireaefently proposed in different
disciplines.

Parametric mixture modelare well known in statistics and machine learning commu-
nities [34]. A mixture of parametric distributions, in partlar, GMM [35, 36], has been
extensively used for clustering. GMMs are limited by theuasgtion that each component
is homogeneous, unimodal, and generated using a Gaussisitydéatent Dirichlet Allo-
cation [37] is a multinomial mixture model that has becomedk facto standard for text
clustering.

Several mixture models have been extended to their nonvria form by taking the
number of components to infinity in the limit [38, 39, 40]. Amparametric prior is used
in the generative process of these infinite models (e.g.chlat Process) for clustering
in [38]. One of the key advantages offered by the non-panaengtior based approaches
is that they adjust their complexity to fit the data by chogdime appropriate number of
parametriccomponents. Hierarchical Topic Models [39] are clusterpgproaches that
have seen huge success in clustering text data.

Spectral clusteringlgorithms [41, 42, 43] are popular non-parametric modwesrnin-
imize an objective function of the forni(f) = fTAf, wheref is the function to be
estimated, and is the discrete graph Laplacian operator. Kernel K-meaaseétated ker-

nel based algorithm, which generalizes the Euclideanmiisthased K-means to arbitrary
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metrics in the feature space. Using the kernel trick, tha dafirst mapped into a higher
dimensional space using a possibly non-linear map, and @&nasclustering is performed
in the higher dimensional space. In [44], the explicit ielatlequivalence for a particular
choice of normalization of the kernel) between Kernel K-me&pectral Clustering and
Normalized Cut was established.

Non-parametric densitypased methods are popular in the data mining community.
Mean-shift clustering [45] is a widely used non-parametéensity based clustering al-
gorithm. The objective of Mean-shift is to identify the made the kernel-density, seeking
the nearest mode for each point in the input space. Sevarsitgdased methods like DB-
SCAN also rely on empirical probability estimates, but tiparformance degrades heavily
when the data is high dimensional. A recent segmentatioorighgn [46] uses a hybrid
mixture model, where each mixture component is a convex awatibn of a parametric
and non-parametric density estimates.

Hierarchical clusteringalgorithms are popular non-parametric algorithms thatite
tively build a cluster tree from a given pairwise similarityatrix. Agglomerative algo-
rithms such as Single Link, Complete Link, Average Link [4],3ayesian Hierarchical
Clustering [47], start with each data point in a single clystad merge them succesively
into larger clusters based on different similarity criéedt each iteration. Divisive algo-

rithms start with a single cluster, and successively ditigeclusters at each iteration.

2.3 Semi-supervised algorithms

Semi-supervised learning algorithms (See Section 1.1pedoroadly classified based on
the role the available side information plays in providitg tsolution to supervised or

unsupervised learning.

12



€T

Table 2.1: A comparison of different clustering algorithprteposed in the literature. Given the large number of agkglalgorithms,
only a few representative ones are shown here.

| Method/Family Algorithm | Cluster Definition

Non-parametric density es-Jarvis-Patrick [48], DBSCAN [49], MeanShift [45],Spatially dense and connected regions

timation DENCLUE [50] correspond to clusters.

Spectral Algorithms Min Cut [51], Ratio Cut [52], Normalized Cut [41], Sparse regions correspond to the cluster
Spectral Clustering [42] separation boundaries.

Probabilistic Mixture mod4{ Mixture of Gaussians [53, 36], Latent Dirichlet Allo-Data comes from an underlying proba-

els cation [37], PLSI [54] bilistic mixture model.

Squared-Error K-Means [20, 3], X-means [55], Vector QuantizaData points close to their cluster repre-
tion [33], Kernel K-means [56] sentative belong to the same cluster.

Hierarchical Single Link, Complete Link and Average Link [20],Data points close to each other fall in the
Bayesian Hierarchical Clustering [57], COBWEB [58Fkame cluster.

Information Theoretic Minimum Entropy [59, 60], Information Bottler Clustering is obtained by compressing
neck [61], Maximum entropy [62] the data to retain the maximum amount

of information.




2.3.1 Semi-supervised classification

While semi-supervised classification is a relatively newdfi¢he idea of using unlabeled
samples to augment labeled examples for prediction waseo@tt several decades ago.
The initial work in semi-supervised learning is attributecscudders for his work on “self-
learning” [63]. An earlier work by Robbins and Monro [64] ongsential learning can
also be viewed as related to semi-supervised learning. iKapDverall Risk Minimiza-
tion (ORM) principle [65] advocates minimizing the risk ouée labeled training data as
well as the unlabled data, as opposed to the Empirical RisknMimation, and resulted in
transductive Support Vector Machines.

Fig. 2.1 gives the basic idea of how unlabeled data could b&ulm learning a clas-
sifier. Given a set of labeled data, a decision boundary mdgdreed using any of the
supervised learning methods (Fig. 2.1(a)). When a large eumiunlabeled data is pro-
vided in addition to the labeled data, the true structureamheclass is revealed through
the distribution of the unlabeled data (Fig. 2.1(b)). Théabeled data defines a “natural
region” for each class, and the region is labeled by the éabdhta. The task now is no
longer just limited to separating the labeled data, but frasste the regions to which the
labeled data belong. The definition of this “region” congés some of the fundamental
assumptions in semi-supervised learning.

Existing semi-supervised classification algorithms maglassified into two categories
based on their underlying assumptions. An algorithm is gaisltisfy themanifold as-
sumptionif it utilizes the fact that the data lie on a low-dimensionanifold in the input
space. Usually, the underlying geometry of the data is cagthy representing the data as
a graph, with samples as the vertices, and the pairwisessities between the samples as
edge-weights. Several graph based algorithms such as padpegation [11, 66], Markov
random walks [67], Graph cut algorithms [68], Spectral gréqgansducer [69], and Low
density separation [70] proposed in the literature aredasdhis assumption.

The second assumption is called ttlaster assumptiofi7l]. It states that the data
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unlabeled data learnt

(b)

Figure 2.1: Utility of the unlabeled data in learning a ciiss (a) Classifier learned using
labeled data alone. (b) Utility of unlabeled data. The fikkds show the unlabeled data.
The gray region depicts the data distribution obtained ftieenunlabeled data.

samples with high similarity between them, must share theedabel. This may be equiv-
alently expressed as a condition that the decision bourtzigtyeen the classes must pass
through low density regions. This assumption allows thelbeled data to regularize the
decision boundary, which in turn influences the choice ofdhssification models. Many
successful semi-supervised algorithms like TSVM [72] aethBsupervised SVM [73] fol-
low this approach. These algorithms assume a model for ttiside boundary, resulting

in an inductive classifier.
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Table 2.2: A summary of semi-supervised classificationrdlgms. T or | in the last column denotes Transductive or biie property

of the algorithm, respectively.

Group Approach | Summary | T |
Label Propagation [11, 66] Graph-based; Maximize label consistency using Graph lcegola | T
Min-cuts [68] Edge-weight based graph-partitioning algorithm consing nodes| T
Manifold Assumption with same label to be in same partition
MRF [67], GRF [74] Markov random field and Gaussian random field models T
LDS [75] TSVM trained on a dimensionality reduced data using grageed| T
kernel
SGT [69] Classification cost minimized with a Laplacian regularizer

LapSVM [76]

SVM with Laplacian regularization

Cluster Assumption

Co-training [77]

Maximizes predictor consistency among two distinct feattiews

Self-training [78]

Assumes pseudo-labels as true labels and retrains the model

SSMB [79] Maximizes pseudo-margin using boosting
ASSEMBLE [80] Maximizes pseudo-margin using boosting
Mixture of Experts [81] EM based model-fitting of mixture models

EM-Naive Bayes [82]

EM based model-fitting of Naive Bayes

TSVM [72], S3VM [73]

Margin maximization using density of unlabeled data

Gaussian processes [83]

Bayesian discriminative model

Manifold & Cluster As-
sumptions

SemiBoost (Proposed)

Boosting with a graph Laplacian inspired regularization

— === ==|==|==]4




Bootstrapping Classifiers from Unlabeled data

One of the first uses of unlabeled data was to bootstrap atingxsipervised learner using
unlabeled data iteratively. The unlabeled data is labedguua supervised learner trained
on the labeled data, and the training set is augmented by t¢isé confident labeled sam-
ples. This process is repeated until all the unlabeled data been processed. This is pop-
ularly known as “Self-training”, which was first proposed®gudders [63]. Yarowsky [84]
applied self-learning to the “word sense” disambiguatioobfem. Rosenberg et al. [85]
applied self-training for object detection.

Several classifiers proposed later follow the bootstrappirchitecture similar to that
of self-training, but with a more robust and well-guidedestibn procedure for the un-
labeled samples for inclusion in the training data. Serpesused generative models
using EM [53], for instance, the Semi-supervised Naive Bd$6é$, is a “soft” version
of self-training. Many ensemble classification methodgarticular, those following the
semi-supervised boosting approach [79, 87, 88] use spaeilction procedures for the
unlabeled data, and use a weighted combination of classifistead of choosing the final

classifier.

Margin based classifiers

The success of margin based methods in supervised classificaotivated a significant
amount of research in their extension to semi-supervisatiileg. The key idea of margin
based semi-supervised classifiers is to model the change idefinition of margin in the
presence of unlabeled data. Margin based classifiers asdlygxtensions of Support
Vector Machines (SVM). An SVM minimizes the empirical ermor the training set, along
with a regularization term that attemps to select the di@ssvith maximum margin. For a
given set of labeled examplééx;, y;)}" ,, and a loss functiovi : X, — R, SVM finds

a classifierf (=) minimizing the following objective function

17



Joom(f) = ||f||%+2€(f(xi),yi) (2.1)

The first term in Eq (2.1) corresponds to the complexity offtinection computed as
the norm in an appropriate function space (Hilbert space) tlhe second term corresponds
to the empirical error of the classifigron the training set measured using a convex loss
function¢(f(x),y). The loss/(f(x),y) is defined only when the labglof the sample is
known. The key idea behind the semi-supervised extensibegpport vector machines
is to define the loss for unlabeled data/és, y*) = min;_,; £(x, y), wherey is the label
assigned to the unlabeled example during learning (al$edcctide pseudo-label).

Vapnik [8] first formulated this problem and proposed a braand bound algorithm.
A Mixed Integer Programming based solution is presente@®j, [which is called Semi-
supervised SVM or &/M. Fung and Mangasarian [73] proposed a successive linear a
proximation to themin(.) function in the loss function, and proposed *%#1. None of
these methods are applicable to real datasets (even smeatlatasets) owing to their high
computational complexity.

Transductive SVM (TSVM) [90] is one of the early attempts &velop a practically
usable algorithm for semi-supervised SVM. TSVM providesagproximate solution to
the combinatorial optimization problem of semi-superdi§/M by first labeling the un-
labeled data with an SVM trained on the labeled data, foltbiaeswitching the individual
labels of unlabeled data such that the objective functiomismized. Gradient descent was
used in [75] to minimize the same objective function, whifiding an appropriate sub-
gradient for themin(.) function. This approach was call&dTSVM, and its performance

is shown to be comparable to that of the other optimizatidreses discussed above.
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Ensemble Methods

Almost all the early semi-supervised extensions to bogstigorithms relied on the margin
interpretation of AdaBoost [28, 29]. It is well known that tiag algorithms minimize

the following objective function:

ny

Jboost(H) = ZM(—%H(%)), (22)

=1
wherel(.) is a convex cost function. Choosidg = exp(.) results in the well-known Ad-
aBoost algorithm. The quantity H (x;) is the classification margin by definition. Boosting
algorithms like ASSEMBLE [89] and Semi-supervised Margin Bo@SMB) [79] extend
the definition of margin to unlabeled samples. Margin ovdabeled samples is defined
as|H(x;)| by ASSEMBLE and a$H (x;))* by SSMB. This definition of margin is reason-
able since both the modulus and square functions are manatiynincreasing functions
of margin (Maximizing a monotonically increasing functioh margin effectively maxi-
mizes the margin), and they conveniently eliminate the es@iunknown label from the
definition. More detailed discussion of the boosting aldnis with relevance to the pro-
posed SemiBoost algorithm is presented in Chatper 3. In p&atjave note that the margin
over unlabeled data is not a sufficiently good measure fasdiaation performance. ldeas
from highly successful unsupervised methods are combiridtihie boosting algorithm
in Chapter 3 to obtain a powerful boosting classifier, thahm to improve the average

margin.

Graph Connectivity

Graph theory has been known to be powerful tool for modelmgupervised learning (clus-
tering) problems since its inception [100, 101] to reldivecent Normalized Cuts [102]

and Spectral clustering [103], and shown to perform welkracfice [104, 105, 106]. Graph
based methods represent the data as a weighted graph, Weeredes in the graph repre-

sent the data points, and the edge weights represent tHarsiyrtbetween the correspond-
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Table 2.3: Unsupervised learning algorithms and theiresponding semi-supervised counterparts.

Method/Family

Original Unsupervised Algorithm

Semi-supervised Extension \

Non-parametric density es-MeanShift [45] Weakly-supervised Mean-Shift [91]
timation
Spectral Algorithms Min Cut [51]

Ratio Cut [52] and Normalized Cut [41]
Spectral Clustering [42]

SS-Graph Clustering [92, 93, 94]
Spectral Learning [95]

Probabilistic Mixture mod-

Mixture of Gaussians [53, 36], Latent Dirichlet Allg

)-Penalized Probabilistic Clustering [96

els cation [37], PLSI [54] Model based clustering with con
straints [17]

Squared-Error K-Means [20, 3] COP-K-Means [97], HMRF-K-
means [15], PC-K-means, MPCK
means [98]

Hierarchical Single Link, Complete Link and Average Link [20] | [99]

COBWEB [58]

COP-COBWEB [16]

Information Theoretic

Minimum Entropy [59, 60],
neck [61], Maximum entropy [62]

Information Bottlet No semi-supervised extention propos

yet.
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ing pair of data points. The success of graph based algaithmnsupervised learning
motivates its use in semi-supervised learning (SSL) proble

A extension to Min-cut clustering algorithm for transdoctiis presented in [68]. The
edge weight between a pair of samples is settihthey share the same label, to ensure that
they remain in the same partition after partitioning theppraSzummer and Jakkola [67]
and Zhu and Ghaharamani [11] model the graph as a discreteoMeandom field, where
the nomalized weight of each edge represents the prolyabilia label (state) jumping
from one data point to the other. The solution is modeled aptbbability of a label (from
a labeled data point) reaching an unlabeled data point inta fimmber of steps. Zhu et
al., [74] relax the Markov random field with a discrete stgtace (labels) to a Gaussian
random field with continous state space, thereby achiewaingpproximate solution with
lower computational requirements.

Most graph based semi-supervised learning methods arparametric and transduc-
tive in nature, and can be shown as solutions to the discreter function, defined using

the discrete Graph Laplacian.

Definition 1. For a weighted graplg = (V, W), wherell represents the edge weight
matrix, the Graph Laplacian is defined as\ = (D — W), whereD is a diagonal matrix
containing the sums of rows of W.

The quantityy’ Ay measures the inconsistency between the similarity mékriand
the labelingy, and plays a central role in graph based SSL algorithms. iGav@milarity

matrix W, where[W];; = w;;, y'Ay can be expanded as
1
y' Ay = D) Z wij (yi — yj)2- (2.3)
ij

To minimize the inconsistency, the difference betwgeandy; must be small whenever
the similarityw;; is large, and vice versa.
Eqg (2.3) has several useful mathematical properties. Mwogortantly, it is a convex

function of the labels, and hence has a unique minima. NazethCut [102] is an unsu-
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pervised algorithm that minimizes a normalized version@{ZE3) using spectral methods.
Spectral graph transducer [69] minimizes graph Laplacien both labeled and unlabeled
data, with an additional term penalizing the differenceriediction over the labeled sam-
ples. Manifold regularization [107] is a semi-supervisgteasion of SVMs that searches
for a function that minimizes the graph Laplacian in additio the standard SVM objec-
tive function. Unlike all other extensions of SVM, the rasuj optimization function is

convex, and can be optimized very efficiently.

2.3.2 Semi-supervised clustering

Clustering aims to identify groups of data such that the gowithin each group are
more similar to each other than the points between diffegemtips. Clustering problem
is ill-posed, and hence multiple solutions exist that carctesidered equally valid and
acceptable. Semi-supervised clustering utilizes anyt@aaadi information, calledside-
information that is available to disambiguate between the solutiohg. side information
is usually present in the form of instance leyelirwise constraints [16]. Pairwise con-
straints are of two types must-linkconstraints andannot-linkconstraints. Given a pair
of points, must link constraints require the clusteringoalipm to assign the same label to
the points. On the other hand, cannot-link constraintsiregbe clustering algorithm to
assign different labels to the points. However, severarditrms of side-information have
been considered in the literature as summarized in TableFigure 2.2 shows the utility

of pairwise constraints in clustering.

Penalizing Constraints

One of the earliest constrained clustering algorithms waseldped by Wagstaff and
Cardie [16, 97], called the COP K-means algorithm. The clus$signment step of K-
means algorithm was modified with an additional check foist@int violations. However,

when constraints are noisy or inconsistent, it is posshmé there are some points that are
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not assigned to any cluster. This was mitigated in an apprbgdasu et. al. [109] which
penalizes constraint violations instead of imposing thera hard manner. A constrained
clustering problem is modeled using a Hidden Markov RandoefdHHMRF) which is
defined over the data and the labels, with labels as the histdéss that generate the data
points. The constraints are imposed on the values of theehidthtes. Inference is carried
out by an algorithm similar to that of K-means which penalitee constraint violations.

Generative models are very popular in clustering. Gaussiature model (GMM) is
one of the well-known models used for clustering [53, 36]ei@hl et al. [108] incorpo-
rated pairwise constraints into the GMMs. To achieve thisugs of points connected by
must-link constraints are defined @sunkletsand each chunklet is treated as a single point
for clustering purposes. Zhao and Miller [111] proposederesion to GMM which pe-
nalizes constraint violations. A method to automatica#lijiraate the number of clusters in
the data using the constraint information was proposed.ndila&en [96] incorporate the
constraints into the prior over all possible clusteringspérticular, for a clustering, they
use a prior of the forni(z) = >, > °. Wi;1(z;, 2;), wherel (z, y) is the indicator function
which is 1 whenz = y and 0, otherwise, and/; ; is a penalty for violating the constraint
between the-th andj-th data points. Gibbs sampling is used to infer the clusieels.

In many approaches that enforce constraints in a hard mgmuuding those that
penalize them), non-smooth solutions are obtained. Aisolug called non-smooth when
a data point takes a cluster label that is different from itsosurrounding neighbors. As
noted in [112], it is possible that the hypothesis that fits ¢bnstraints well may not fit
the data well. Therefore, a trade off between satisfyingctinestraints and fit to the data
is required. Lange et al. [110] alleviate this problem byoiming all the data points into a

constraint through a smooth label.
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Adapting the Similarity

Several semi-supervised clustering methods operate égthyimodifying the entries of the
pair-wise similarity matrix that are involved in constranAll these algorithms, reudce the
distance between data points connected by must-link @nttrand increase the distance
between those connected by must-not link by a small valuect&d Learning algorithm
by Kamvar et al. [95] modifies the normalized affinity matrix f@placing the values cor-
responding to must-link constraints by 1 and must-not liokstraints by 0. The specific
normalization they use ensures that the resulting matposstive definite. The remaining
steps of the algorithm are the same as the Spectral clugta@gorithm by Ng et al. [103].
Klien et. al. [99] modified the dissimilarity metric by replag the entries participating
in must-link constraints witl) and replaced the entries participating in cannot-link con-
straints by maximum pairwise distance incremented by 1s Ehiollowed by a complete
link clustering on the modified similarity matrix. Kulis ek 3] propose a generalzation
of Spectral Learning via semi-supervised extensions tgtpilar normalized cut [102],
ratio cut and ratio association [52]. To ensure positiveniteiness of the similarity matrix,
they simply add an arbitrary positive quantity to the diagjon

The specific values of increments chosen in the above atgasiimpacts the perfor-
mance of the clustering algorithm. In order to apply spéaftgorithms, we need the
pairwise similarity matrix to be positive semi-definite.bMrary changes (especially decre-
ments) to the similarity matrix may not retain its positiess-definiteness. Some methods
avoid using spectral algorithms, while some update theiaiity matrix carefully to retain
the essential properties. The similarity adaptation nathare adhoc in nature, and are

superseded by the similarity learning approaches pres@mtbe next section.

Learning the Similarity

The performance of a clustering algorithm depends primaiil the similarity metric de-

fined between the samples. It is usually difficult to designnailarity metric that suits
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all the clustering scenarios. For this reason, attempte haen made to directly learn the
similarity metric from the data using the side informatioBimilarity metric learning is
not a new problem, and has been considered before in botlpenssed dimensionality
reduction methods (LLE [113], ISOMAP [114]) and superviseethods like Fisher Lin-
ear Discriminant [20], Large Margin Distance Metric Learqi[115] and Neighborhood
Component Analysis [116]. Only those methods that learn tsi@mice metric in a semi-
supervised setting, i.e., using pairwise constraints antabeled data are reviewed here.

Once a similarity metric is learned, standard clusterilag&ification algorithms may
later be applied with the learned similarity metric. Thetame metric learning problem
can be posed in its generality as follows: learn a funcfiomt’ x X — R such that the dis-
tance between points linked by must-link constraints islenthan that between the points
linked by must-not link constraints overall. The distangedtion is usually parametrized
in its quadratic form, i.ef4(x;,x;) = x; Ax;, whereA is the unknown parameter to be
estimated from the constraints.

Xing et al. [117] formulated distance metric learning as astmined optimization
problem, whereA is estimated such that the sum of distances between pointected
by must-link constraints is minimized, while constrainithge sum of distances between
points connected by must-not link to be greater than a fixedtemt. Bar-Hillel et al. [118]
proposed Relevant Component Analysis (RCA), which estimatdskalgtransformation
of the feature space by reducing the weights of irrelevaatiufes such that the groups of
data points linked by must-link constraints (callgtunklet} are closer to each other. A
modified version of the constrained K-means algorithm thatris a parametrized distance
function is presented in [119].

Yang et al. [120] learn a local distance metric by using aeradting optimization
scheme that iteratively selects the local constraints fissithe distance metric to the con-
straints. They parametrize the kernel similarity matrixerms of the eigenvalues of the

top few eigenvectors of the pairwise similarity matrix cargxd using the RBF kernel. Hoi
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et al. [121] present a non-parametric distance metric iegralgorithm that addresses the
limitations of quadratic distance functions used by alnadisthe other approaches. Lee et
al. [122] proposed an efficient distance metric learningaligm and applied it to a content
based image retrieval task showing significant performagaoes.

There has been a recent surge in the interest in online fepalgorithms due to the
large volume of datasets that need to be processed. Shalartz et al. [123] present
an online distance metric learning algorithm called POLl@atiearns a quadratic distance
function (parametrized by the covariance matrix) from wae constraints. A batch ver-
sion of the algorithm is obtained by multiple epochs of thin@nalgorithm on the training
data. Davis et al. [124] present online and batch versiomm@lgorithm that searches for
the parameterized covariance matrixhat satisfes the constraints maximally. Addition-
ally, a log-determinant regularizer is added to prevéritom moving too far away from

the initial similarity metricA,.

Applications

Clustering with constraints has been applied succesfullseteeral real world problems.

Bar-Hillel et al. [125] used pairwise constraints for clustg as an intermediate step to
speaker identification in a conversation. An applicatiowitteo surveillance, where the
temporal similarity between frames is used to generate-4mikstonstraints between the
pixels is presented in [118]. Wagstaff et al. [97] appliedstoained clustering for GPS lane
finding. Yu and Shi [92] used the constraint information geted from the fact that pix-

els near image boundaries may represent background arld abxee center of the image
may represent the foreground. They automatically genénatpairwise constraints relat-
ing foreground and background pixels and showed that theaetation is significantly

improved with the side-information. Yang et al. [126] applia local distance metric learn-
ing algorithm using pairwise constraints for interactieaich assisted diagonostics (ISAD)

of mammogram images and demonstrated an improved accur#&bgritifying clusters of
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similar patient cases in the database.

Acquiring the Constraints

Most of the papers in semi-supervised clustering liteeatlgscribe how to utilize the con-
straints once they are available, but relatively few meshaohsider automatic acugisition
of constraints. While it is generally easier for a user to e\pairwise constraints com-
pared to assigning class labels, it is still tedious if it tkmbe done for a large number of
object pairs.

Automatic constraint acqusition aims at encoding humanseage in the form of
pairwise constraints or to minimize the number of constsam user has to specify by
selecting the most important set of pairs of points to bel&abe When the necessary
domain knowledge is not available to automatically derive pairwise constraints, it is
desirable to present the user the most informative paireioitpto label. Active learning
approaches [127, 128, 129] aim to select the most inform@kairs of points or such that a

large performance gain is obtained from as few constrassasible.

2.4 Does side-information always help?

There is a significant gap between theoretical analysistan@ractice of semi-supervised
learning. Most theoretical analyses aim to derive the dmrdi under which the side-
information will always improve the performance of the l@ag algorithm. The available
results are limited and applicable to narrow and ideal iegrscenarios. Most results
emphasize that the relation between the underlying streictiuboth labeled and unlabeled
data (which is different from label smoothness assumptga)major factor in determining

the performance of a semi-supervised learner.
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2.4.1 Theoretical observations

Semi-supervised Classification

Castelli and Cover [130] provide an analysis of the utility loé tunlabeled data from a
Bayes Risk perspective for a two-class classification propath known class conditional
densitiesP(x|y), wherexe RY, andy € {w;,ws}. In particular, they establish that the
labeled samples reduce Bayes error exponentially, whilebahd samples reduce Bayes
error linearly. For instance, in a trivial scenario wherelaloeled samples are available,
the Bayes risk of a classifier on the two-class problem is etqug| since any example
might be labeled as any class. However, when a single sasgleivn from each class,
the Bayes risk become@s(1 — ¢), wheree is the Bayes risk for the two class problem if all
the data are labeled.

Zhang [131] analyzed the utility of unlabeled data from tleespective of Fisher In-
formation. Cramer-Rao inequality states that for any unkizstimatort,, of o based on
n i.i.d samples, the covariance of satisfiescov(t,) > (nl(a))”'. When the data dis-
tribution and the conditional label distribution share gagameters, unlabeled data help
in reducing the variance:¢v(t,)) of the estimator. This is the case for generative mod-
els. However, in discriminative modelg,(y|z) is directly modeled disregarding the data
density P(x), and therefore, unlabeled data do not help in this situatibhis analysis
is not applicable to non-probabilistic discriminiativengesupervised classification algo-
rithms like TSVM since they use the(x) to avoid keeping the decision boundary where
the value ofP(x) is very high, thereby following the input-dependent regaktion frame-
work of [132]

Semi-supervised learning algorithms incorporating sidermation may not necessar-
ily result in improved performance. In many cases, the perémce of a learner may even
degrade with the use of side information. In the case of ggiverclassifiers, Cozman and
Cohen [133] summarize their empirical observations regagrthie performance degrada-

tion as follows. Unlabeled data helps to improve the paramettimates, and in turn the
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predictive performance of classifiers, when the model apsioms match the data. How-

ever, when the model assumptions do not match the structuhe alata, unlabeled data
potentially degrade the performance significantly. Howewepractice, it is not possible

to evaluate the match between structure of the data and tdelpmeccessitating the need
for caution when incorporating unlableled data into getinganodels.

Ben-David et al. [134] noted that under Probably Approxirtya@orrect (PAC) learn-
ing setting, unlabeled data does not improve the worst Gas@le complexity of a clas-
sifier compared to that of labeled data by more than a confstetiotr, unless strict assump-
tions are made about the label distribution.

Balcan and Blum [135] proposed the notion of “compatiabilipdtion” which mea-
sures how “nicely” the classifier fits the unlabeled dataim&eof a measure (e.g. margin).
Since this reduces the hypothesis class to only those anwxthat fit the unlabled data
well, the generalization error bounds improve. Howevethére is a mismatch between
the label structure of the unlableled data and the labeléa, diais reduction in the hy-
pothesis class retains only the poor performing classifiestilting in a degradation in the

empirical performance of the resulting classifier.

Semi-supervised Clustering

Semi-supervised clustering is a harder problem comparseito-supervised classification,
and it has not yet been amenable to theoretical analysisorétieal results pertaining to
semi-supervised clustering aim to answer how and when tih@ipa constraints are useful,
or if they are useful at all. Davidson et al. [136] empirigatibserved that pairwise con-
straints can significantly degrade the performance of theteting algorithm. They define
two measures in an attempt to quantify the constraint séyutalled informativenesand

coherence Informativeness measures the mismatch between the ungezkclustering

algorithm and the constraint set. Coherence measures graahtonsistency of the con-

I'Sample complexity of a classifier is the number of samplesquired to be sure with a probability- 6,
that the test error of the classifier will not be more than a&igiv
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straint set. However, a greater value of informativene&s chmt necessarily mean that the
clustering algorithm will perform better. Our experiendgoasuggests that it is very diffi-
cult to conclude a priori whether a set of constraints wilpnove or degrade the clustering

performance.

2.5 Summary

Semi-supervised classification has received significamiuguinof interest, as it provides a
way to utilize the large amount of readily available unlaoediata for improving the clas-
sifier performance. Semi-supervised classification has beecessfully applied to various
applications in computer vision and machine learning, actext classification [86], hu-
man computer interaction [137], content based image velrj&38] , object detection [85],
person identification [139], relevance feedback [140], patational linguistics [141] and
protein categorization [7], to name a few. Similarity, sid@®rmation such as pairwise
constraints has been utilized to improve the performanctustering algorithms by aiding
them in arriving at a clustering desired by the user. Serpestised learning continues to
pose both theoretical and pracitcal questions to researainéhe machine learning. There
is also an increasing interest in the fields of cognitiverstés and human psychology since

there are demonstrated settings where humans performegsparvised learning [142].
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(c) Different clustering of the same data obtained usingfaréint set
of pairwise constraints.

Figure 2.2: Utility of pairwise constraints in data cluster. (a) Input unlabeled data to be
clustered into two clusters. Figures (b) and (c) show twiedkht clusterings of data in (a)

obtained by using two different sets of pairwise constgint
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CHAPTER 3

SemiBoost: Boosting for
Semi-supervised Classification

3.1 Introduction

Most semi-supervised learning approaches, as discussedapter 1, design specialized
learning algorithms to effectively utilize both labeleddamnlabeled data. However, it is
often the case that a user already has a favorite (wellejustgpervised learning algorithm
for his application, and would like to improve its perforncanby utilizing the available
unlabeled data. In this light, a more practical approach design a technique to utilize
the unlabeled samples, regardless of the underlying leguadgorithm. Such an approach
would accommodate for the task-based selection of a classivhile providing it with
an ability to utilize unlabeled data effectively. We referthis problem of improving the
performance oanysupervised learning algorithm using unlabeled dataeasi-supervised
Improvementto distinguish our work from the standard semi-supervieadning prob-
lems.

To address the semi-supervised improvement, we proposeostitg framework,
termedSemiBoostfor improving a given supervised learning algorithm withlabeled
data. Similar to most boosting algorithms [28], SemiBoogtrioves the classification ac-

curacy iteratively. At each iteration, a number of unladed®amples are selected and used
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to train a new classification model using the given supedvisarning algorithm. The
trained classification models from each iteration are coeatbiinearly to form a final clas-
sification model. An overview of the SemiBoost is presenteBigure 3.1. The key diffi-
culties in designing SemiBoost are: (1) how to sample thehaha examples for training
a new classification model at each iteration, and (2) whasdiabels should be assigned
to the selected unlabeled examples. It is important to rieteunlike supervised boosting
algorithms where we select labeled examples that are diftwalassify, SemiBoost needs
to select unlabeled examples, at each iteration.

One way to address the above questions is to exploit bothltiséedng assumption
and the large margin criterion. One can improve the classifinc margin by selecting the
unlabeled examples with the highest classification conideand assign them the class
labels that are predicted by the current classifier. Thegasdilabels are hereafter referred
to as thepseudo-labels The labeled data, along with the selected pseudo-label&al d
are utilized in the next iteration for training a second sifisr. This is broadly the strat-
egy adopted by approaches like Self-training [78], ASSEMB&® and Semi-supervised
MarginBoost [79]. However, a problem with this strategy iattthe introduction of exam-
ples with predicted class labels may only help to increaseldssification margin, without
actually providing any novel information to the classifi®ince the selected unlabeled
examples are the ones that can be classified confidentlyoftey are far away from the
decision boundary. As a result, the classifier trained bys#itected unlabeled examples is
likely to share the same decision boundary with the origitessifier that was trained only
by the labeled examples. This is because by adjusting thside®doundary, the examples
with high classification confidence will gain even higher fad@nce. This implies that we
may need additional guidance for improving the base classdlong with the maximum
margin criterion.

To overcome the above problem, we propose to use the paisiviskirity measure-

ments to guide the selection of unlabeled examples at eaddtidan, as well as for as-
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signing class labels to them. For each unlabeled example compute the confidence
of assigning the exampte; to the positive class as well as the confidence of assigning it
to the negative class. These two confidences are computed bashe prediction made
by the boosted classifier and the similarity among diffeex@mples. We then select the
examples with the highest classification confidence togetiith the labeled examples to
train a new classification model at each iteration. The nessification model will be
combined linearly with the existing classification modelstiake improved predictions.
Note that the proposed approach is closely related to goagkd semi-supervised learn-
ing approaches that exploit the manifold assumption. THevitng section discusses the

existing semi-supervised learning methods, and theitiogiship with SemiBoost.

3.2 Related work

In Table 1.2 a brief summary of the existing semi-supervigadning methods and the
underlying assumptions was presented. Recall that an indwadgorithm can be used to
predict the labels of samples that are unseen during tia{immespective of it being labeled
or unlabeled). On the other hand, transductive algorithmdimited to predicting only the
labels of the unlabeled samples seen during training.

Graph-based approaches represent both the labeled andléieled examples by a
connected graph, in which each example is represented bstexyand pairs of vertices
are connected by an edge if the corresponding examples ame similarity. The well
known approaches in this category include Harmonic Fundiased approach [74], Spec-
tral Graph Transducer (SGT) [69], Gaussian process baggdagh [83], Manifold Reg-
ularization [76] and Label Propagation approach [11, 6@je dptimal class labels for the
unlabeled examples are found by minimizing their incoesisy with respect to both the
supervised class labels and the graph structure.

A popular way to define the inconsistency between the lapels{y; }I , of the sam-
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ples{x;}_,, and the pairwise similaritie$, ; is the quadratic criterion,

F(y) =) Sityi—v;)’=y"Ly

i=1 j=1
where L is the combinatorial graph Laplacian. Given a semi-sugervisetting, only a

few labels in the above consistency measure are assumedkioola, and the rest are
considered unknown. The task is to assign values to the wrkitabels in such a way that
the overall inconsistency is minimized. The approach priegkein [68] considers the case
wheny; € {£1}, thereby formulating it as a discrete optimization probland solve it
using a min-cut approach. Min-cuts are however prone tortegée solutions, and hence
the objective was minimized using a mixed integer prograngnaipproach in [89], which
is computationally prohibitive [73]. A continuous relaiat of this objective function,
wherey; € [0, 1] has been considered in several approaches, which is sadusgl Markov
random fields [67], Gaussian random fields and harmonic ioms{74].

The proposed framework is closely related to the graphébapproaches in the sense
that it utilizes the pairwise similarities for semi-supieed learning. The inconsistency
measure used in the proposed approach follows a similaritit@finexcept that an expo-
nential cost function is used instead of a quadratic costifdating the labels. Unlike most
graph-based approaches, we create a specific classificatidel by learning from both the
labeled and the unlabeled examples. This is particularpontant for semi-supervised im-
provement, whose goal is to improve a given supervised ilegualgorithm with massive
amounts of unlabeled data.

The approaches built on cluster assumption utilize thehaidal data to regularize the
decision boundary. In particular, the decision boundaay plasses through the region with
low density of unlabeled examples is preferred to the oneishdensely surrounded with
unlabeled examples. These methods specifically extend SMiglated maximum margin
classifiers, and are not easily extensible to non-margiadeakssifiers like decision trees.
Approaches in this category include transductive suppector machine (TSVM) [72],

Semi-supervised Support Vector Machine (S3VM) [73], and$3&n processes with null
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category noise model [83]. The proposed algorithm, on therohand, is a general ap-
proach which allows the choice of a base classifier welleslib the specific task.

Finally, we note that the proposed approach is closelyadltd the family of ensemble
approaches for semi-supervised learning. Ensemble metege gained significant pop-
ularity under the realm of supervised classification, whi availability of algorithms such
as AdaBoost [143]. The semi-supervised counter parts ohelisealgorithms rely on the
cluster assumption, and prime examples include ASSEMBLE 80 Semi-supervised
MarginBoost (SSMB) [79]. Both these algorithms work by assigra pseudo-label to the
unlabeled samples, and then sampling them for training aso@ervised classifier. SSMB
and ASSEMBLE are margin-based boosting algorithms whichrmae a cost function of
the form

J(H) = Cy:H (z:)) + C(|H(z:)]),

whereH is the ensemble classifier under construction,@rsla monotonically decreasing
cost function. The termy, H(x;) corresponds to the margin definition for labeled samples.
A margin definition involves the true label, which is not available for the unlabeled
samples. A pseudo-margin definition is used suchis;)| in ASSEMBLE, orH (x;)* in
SSMB, thereby getting rid of thg term in the objective function using the fact thate
{+£1}. However, the algorithm relies on the prediction of pselab®ls using the existing
ensemble classifier at each iteration. In contrast, theqsexgb algorithm combines the
similarity information along with the classifier prediati®to obtain more reliable pseudo-
labels, which is notably different from the existing apprioas. SSMB on the other hand
requires the base learner to be a semi-supervised algantitself [79, 80]. Therefore, it
is solving a different problem of boosting semi-superviaigbrithms, in contrast with the
proposed algorithm.

In essence, the SemiBoost algorithm combines the advantdgeaph based and en-
semble methods, resulting in a more general and powerfubaph for semi-supervised

learning.
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e Start with an empty ensemble.
e Until o < 0, at each iteration,

— Compute the peusdolabel (and its confidence) for each un-

labeled example (using existing ensemble, and the pairwise

similarity).

— Sample the most confident pseudolabeled examples; combine

them with the labeled samples and train a component classi-

fier using the supervised learning algoritbdn

— Update the ensemble by including the component classifier

with an appropriate weight.

Figure 3.2: An outline of the SemiBoost algorithm for sempaityvised improvement.

3.3 Semi-supervised boosting

We first describe the semi-supervised improvement probtemdlly, and then present the

SemiBoost algorithm.

3.3.1 Semi-supervised improvement

Let D = {x;,xs,...,X,} denote the entire dataset, including both the labeled a@d th
unlabeled examples. Suppose that the firsexamples are labeled, given ky =
(1,94, ---,yh,), where each class labg] is either+1 or —1. We denote byy, =

(vt y3.-- ..y ), the imputed class labels of unlabeled examples, whegre= n — n;.

Let the labels for the entire dataset be denotest as [y;; y.]. LetS = [S; ;].x, denote
the symmetric similarity matrix, wher§; ; > 0 represents the similarity betweean and

x;. Let 4 denote the given supervised learning algorithm. The goakdfi-supervised
improvement is to improve the performance Afiteratively by treatingA4 like a black
box, using the unlabeled examples and the pairwise sintyil&ari A brief outline of the
SemiBoost algorithm for semi-supervised improvement isgméed in Figure 3.2.

It is important to distinguish the problem of semi-supeedismprovement from the

existing semi-supervised classification approaches. #audsed in section 2, any ensem-
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ble based algorithm must rely on the pseudo-labels for imglithe next classifier in the
ensemble. On the other hand, graph based algorithms usaitirese similarities between
the samples, and assign the labels to unlabeled sampleshaidhey are consistent with
the similarity. In the semi-supervised improvement prohleve aim to build an ensemble
classifier which utilizes the unlabeled samples in the wayaply based approach would

utilize.

3.3.2 SemiBoost

To improve the given learning algorithm, we follow the idea of boosting by running the
algorithm A iteratively. A new classification model will be learned atledteration using
the algorithmA, and the learned classification models at different iteretwill be linearly

combined to form the final classification model.

Objective function

The unlabeled samples must be assigned labels followingwibemain criteria: (a) the
points with high similarity among unlabeled samples muststihe same label, (b) those
unlabeled samples which are highly similar to a labeled $ammust share its label. Our
objective functionF'(y, S) is a combination of two terms, one measuring the inconsigten
between labeled and unlabeled examgigy, S), and the other measuring the inconsis-
tency among the unlabeled examplégy.., S).

Inspired by the harmonic function approach, we defi¢y, S), the inconsistency
between class labejsand the similarity measuremefif as

Fu(ywS) = > Sijexp(y —yl). (3.1)
ij=1

Many objective functions using similarity or kernel ma&®; require the kernel to be posi-
tive semi-definite to maintain the convexity of the objeetiunction (e.g., SVM). However,

sinceexp(z) is a convex functioh and we assume that ; is non-negative/i, j, the func-

1Our choice ofF'(y, S) is a mixture of exponential loss functions, and is motivatgdthe traditional
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tion F,(y.,S) is convex irrespective of the positive definiteness of tineilarity matrix.
This allows similarity matrices which are asymmetric (esgmilarity computed using KL-
divergence) without changing the convexity of the objexfiynction. Asymmetric similar-
ity matrices arise when using directed graphs for modeliagsification problems, and are
shown to perform better in certain applications relateexb tategorization [144].

Though this approach can work for general similarity masiave assume that the sim-
ilarity matrix provided is symmetric. Note that Eq (3.1) daaexpanded aB,(y,, S) =
32 Siiexp(yt —yt) + 3 > Sijexp(yl — ), and due to the symmetry 6f, we have

Fu(ywS) = > Sijcosh(y! —yb), (3.2)

ij=1

wherecosh(y; —y;) = (exp(—v; +y;) +exp(y; —y;))/2 is the hyperbolic cosine function.
Note thatcosh(x) is a convex function with its minimum at = 0. Rewriting Eq (3.1)
using thecosh(.) function reveals the connection between the quadraticltyensed in
the graph Laplacian based approaches, and the exponeeatialty used in the current
approach. Using aosh(.) penalty function not only facilitates the derivation of Isting
based algorithms but also increases the classificationimarge utility of an exponential
cost for boosting algorithms is well known [145].

The inconsistency between labeled and unlabeled examlesS) is defined as

ny

By, S) =33 8, exp(~24ly?). (3.3)

i=1 j=1

Combining Egs (3.1) and (3.3) leads to the objective fungtion
F(y,S) = F(y,S) + CFu(yu, 5). (3.4)

The constant' is introduced to weight the importance between the labehelitlae unla-
beled data. Given the objective function in (3.4), the ogticlass labejy, is found by

minimizing F.

exponential loss used in Boosting and the resulting larggimalassifier. However, any convex (monotonic)
loss function should work with the current framework.
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Let ¢!, = 1,---,n; denote the labels predicted by the learning algorithm over t
labeled examples in the training data. Note that in Eq (3¥)e is no term corresponding
to the inconsistency between predicted labels of the ldbsdenples and their true labels,
which would bef; = >~ exp(y}, 9!). Adding this term would make the algorithm reduce
to AdaBoost when no unlabeled samples are present. Sincactiqa, there is a limited
amount of labeled data available, thg term is usually significantly smaller thah and
F,, and therefore it is omitted in the formulation in Eq (3.4).

selecting an even smaller subset of samples to train theifitsmay not be effec-
tive. Our approach, includes the prediction on the labebgd th the form of constraints,
thereby utilizing all the available labeled data at eactatten of training a classifier for

the ensemble. The problem can now be formally expressed as,
min  F(y,S)
st gl=yli=1,-- n. (3.5)
This is a convex optimization problem, and therefore candbeed effectively by nu-
merical methods. However, since our goal is to improve thergiearning algorithm4
by the unlabeled data and the similarity matsixwe present a boosting algorithm that can

efficiently minimize the objective functiof'. The following procedure is adopted to derive

the boosting algorithm.
e The labels for the unlabeled samplgsare replaced by the ensemble predictions

over the corresponding data sample.

e A bound optimization based approach is then used to find tsereble classifier

minimizing the objective function.

e The bounds are simplified further to obtain the sampling se&hend other required

parameters.

The above objective function is strongly related to sevgraph based approaches,

manifold regularization and ensemble methods.

41



3.3.3 Algorithm

We derive the boosting algorithm using the bound optimaraipproach. An alternate,
conventional way to derive the boosting algorithm usingRbeaction Gradient method is
presented in [146]. This method may also be viewed as a itabaxthat approximates
the original objective function by a linear function. Suahapproach however, involves
specification of a parametric step size. In our derivatiba,step size is automatically de-
termined thus overcoming the difficulty in determining thepssize. SemiBoost algorithm
is briefly summarized in Figure 3.3.

Leth®(x) : X — {—1,+1} denote the 2-class classification model that is learned at
the¢-th iteration by the algorithrod. Let H(x) : X — R denote the combined classifica-
tion model learned after the firgtiterations. It is computed as a linear combination of the

first T classification models, i.e.,

H(x) = > ah(x),

whereq, is the combination weight. At th€l" + 1)-st iteration, our goal is to find a new
classifierh(x) and the combination weight that can efficiently minimize the objective
function F'.

This leads to the following optimization problem:

ny Ny
arg min ZZSM exp(—2yL(H; + ahj))
hx.o 21 =1
+ C Z Si,j GXp(HZ' — H]) exp(a(hi — h])) (36)
ij=1
st h(x)=9yLi=1,---,n, (3.7)

whereH; = H(x;) andh; = h(x;).
This expression involves products of variableandh;, making it non-linear and hence
difficult to optimize. The constraints, however, can be lgasitisfied by including all the

labeled samples in the training set of each component fiexssto simplify the compu-
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tation, we construct the upper bound of the objective fum;tdescribed in Proposition

1.

Proposition 1. Minimizing Eq(3.7)is equivalent to minimizing the function

F, = Zexp(—Qahi)pi+exp(20&hz’)q2' (3.8)
=1
where
ny
i = ZS’J 2H15 y]’ ZSHGH —H (3.9)
j=1
ny
G = Y Sieo(y;, 1) + steH —H (3.10)
j=1

andj(z,y) = 1 whenz = y and0 otherwise.

Proof Sketch By substitutingd; < H; + ah; into F(y, .S) and regrouping the terms, we
obtain the desired result. O

The quantitiep; andg; can be interpreted as the confidence in classifying the afddb
examplex; into the positive class and the negative class, respegtivel

The expression in Eq (3.8) is difficult to optimize since theigita and the classifier
h(z) are coupled together. We simplify the problem using the ujppend stated in the

following proposition.

Proposition 2. Minimizing Eq (3.8) is equivalent to minimizing

Fy < Z(pz + @) (e + e —1) — Z 2ahi(pi — ¢i)-
=1 )
Proof See [147]. O

We denote the upper bound in the above equatioR by

Proposition 3. To minimizeF,, the optimal class labet; for the examplex; is z; =
signp; — ¢;), and the weight for sampling exampte is |p; — ¢;|. The optimala that
minimizesF; is

llnzyilpz ( i )+Zz 1% ( i _1)'
Z:l:ul pzé(hw - ) + 2?21 q; (hu 1)

(3.11)
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e Compute the pairwise similarity; ; between any two examples.
e Initialize H(x) =0
e Fort=1,2,...,T
— Computep; andg; for every example using Equations (3.9)
and (3.10)
— Compute the class labe] = sign(p; — ¢;) for each example
— Sample example; by the weightp;, — ¢;|

— Apply the algorithmA to train a binary classifief;(x) using
the sampled examples and their class labgls

— Computen, using Equation (3.11)

— Update the classification function d¥(x) «— H(x) +
Oétht(X)

Figure 3.3: The SemiBoost algorithm

Proof Sketch Expression in Eq 3.11 can be obtained by differentiatingw.r.t o and
setting it equal to 0. Observe that the above function islirie &, (p; —¢;) and is minimized
when we choosk; = sign(p; — ¢;), for maximum values dp; — ¢;|. O

Propositions 1-3 justify the relaxations made in the déiovaof the SemiBoost. At
each relaxation, the “touch-point” is maintained betwe®s @bjective function and the
upper bound. As a result, the procedure guarantees: (a)bjeetive function always
decreases through iterations and (b) the final solutionexg®s to a local minimum. For
more details, see [148]. Proposition 3 establishes thergrgdients required for a boosting
algorithm. Using these, the SemiBoost algorithm is preskmé&igure 3.3.

Let ¢; be the weighted error made by the classifier, where

Zz 1 Di 6(hi, — )"’Zz 19 (hial)‘

€t =

> (i + @)
As in the case of AdaBoost [146},can be expressed as
1 1-—
a; = - 1In ( Et) (3.12)
4 €¢
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which is very similar to the weighting factor of AdaBoost,fdiing only by a constant
factor of%. Also, if AdaBoost encounters a situation where the baseifi@shas an error
rate more than random, i.e..; > % it returns the current classifiéf,. This situation has
a direct correspondence with the condition in SemiBoost wliee algorithm stops when
a < 0. From Eq (3.11) (or rather directly from Eq (3.12)), we cae gt this happens only
when the denominator exceeds the numerator, which mgeans> % is equivalent to the

conditiona < 0. However, since this condition may not be satisfied untilrgdanumber

of classifiers are trained, usually there is a parametelifgpegthe number of classifiers
to be used. It has been empirically determined that usinged ftumber (usually 20) of
classifiers for AdaBoost gives good performance [145].

The sampling scheme used in SemiBoost is significantly éiffefrom that of Ad-
aBoost. AdaBoost is given the true labels of the data, and heaceproceed to in-
crease/decrease the weights assigned to samples basedpyewious iteration. In Semi-
Boost we do not have the true class labels for the unlabeled @hich makes it challeng-
ing to estimate the difficulty of classification. Howeverpposition 2 gives us the result
that selecting the most confident unlabeled data samplgsimeal for reducing the objec-
tive function. Intuitively, using the samples with highlgrdident labeling is a good choice
because they are consistent with the pairwise similarftyrmation along with their classi-
fications. The values of; andg; tend to be large if (ix; can’t be classified confidently, i.e.,
|H;| is small, and one of its close neighbors is labeled. Thisespwnds to the first term
in Eqg. (3.9) and Eq. (3.10). (ii) the exampteis very similar to some unlabeled examples
that are already confidently classified, i.e., lasge and |H;| for unlabeled example;.
This corresponds to the second term in Eq. (3.9) and Eqg. X3 Iis indicates that the
similarity information plays an important role in guidiniget sample selection, in contrast
to the previous approaches like ASSEMBLE and SSMB, where tmles are selected to
increase the value of7;| alone.

Similar to most boosting algorithms, we can show that theppsed semi-supervised
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boosting algorithm reduces the original objective funttio exponentially. This result is
summarized in the following Theorem.

Theorem 1. Let aq, ..., a; be the combination weights that are computed by running the
SemiBoost algorithm (Fig 1). Then, the objective functibfr a 1)st iteration, i.e.,F}, 1,
is bounded as follows:

t
Fii1 < kgexp (— Z%) )
=1

wherekg = [Z?gl <Z;”:1 Sij+C Y0 Si,jﬂ and~; = log(cosh(«;)).

Proof. Similar to the supervised Boosting algorithms, we can shattie proposed semi-
supervised boosting algorithm is able to reduce the oldtinction exponentially. Let
F; denote the objective function at theh iteration. Leta; > 0 denote the combination
weight of thetth iteration. We first show that

Fia

2
d (exp(QOzt) + exp(—2at)> : (3.13)

The above equality indicates that the reduction factay {sxp(2a;) + exp(—2ay)), which
is guaranteed to be less than 1 whers positive. The proof of the equality in Eq (3.13) is
straightforward. According to the derivation in the prawscsection,

zn

Fo = Z exp(—2aqh;)p; + exp(2ah;)g;

=1
By replacinga; with the expression in Eq (3.11) , and by defining the quasii =
Zl 1 Di ( iy ) + ZZ 14 (hu 1)! andnt = lez + qi, We have

Fryn =2y (n — e)er - (3.14)
Using the fact that, = r,, we have

F; € —€
Fi= 277_1:\/ (e — €r)er = 2Ftn—t (nt t)- (3.15)
¢

€t

Using the relationy, = %log(nt — ¢;/€;), we prove the equality in Eq (3.13) as follows:

Fy
cosh(2a;)’

Extending this equality td}, we have the final expression féf,; in terms of the initial
value of the objective functiofy, i.e.,

t
Fipn = Foexp <—Z%> ; (3.17)
i=1

1
Frog =2F———exp(2y) =

exp(dat) + 1 (3.16)
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where [y = 370 370 S;; andy; = log(cosh(2«4)). As indicated in Eq (3.17), the
objective functionf’ is reduced exponentially as the number of iterations isased. [
The above theorem shows that the objective function follawsexponential decay,

despite the relaxations made in the above propositions.

Corollary 1  The objective function dt + 1)st iteration is bounded in terms of the error
1/4
€t aski1 < kg HE:I <1Z_;t) :

Proof. The corollary can be verified by substituting Eq. (3.12) d@iin Theorem 1. The
connection between; and the erroe; may be used to bound the objective function in terms
of classification error at each iteration. From the theorem havey, = log(cosh(ay)).
Note that,

7 = log(cosh(ay)) > log(exp(ay)) = ay.

1/4
Using the definition ofy, from Eq (3.12), we havexp(—y;) < (t—fﬁ) . Using this
inequality with the bound in the Theorem 1 results in

t 1— ¢ 1/4
Fi < HSH ( c > .
t

=1

[

In the above derivation, we constrained the objective foncsuch that the prediction
of the classifier on the labeled samples must match the thedslgprovided. However,
if the true labels are noisy, the resulting semi-supervidadsifier might not perform its
best. An algorithm similar to SemiBoost may be derived in saichse by including a term
penalizing the solution, if the predicted labels of the ladesamples are different from the
true labels. We assume that the given labels are correathvidnreasonable given the fact

that there are very few labeled samples.

3.3.4 Implementation

Sampling

Sampling is the most important step in SemiBoost, just like @her boosting algorithm.

The criterion for sampling usually considers the followisgues: (a) How many samples
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() Iter. 3 (86.4%) (d) Iter. 12 (94.6%)

Figure 3.4: Decision boundary obtained by SemiBoost attitara 1, 2, 3 and 12, on the
two concentric rings dataset, using Decision Stump as tke bkassifier. There are 10
labeled samples per clasg ). The transductive performance (i.e., performance on the
unlabeled data used for training) of SemiBoost is given &t &acation in parentheses.

must be selected from the unlabeled samples availabledmirig? and (b) What is the
distribution according to which the sampling must be done?

Supervised boosting algorithms like AdaBoost have the tabels available, which
makes it easy to determine which samples to choose or nobimseh On the other hand,
the labels assigned during the SemiBoost iteration are pdabels, and may be prone to
errors. This suggests that we should choose only a small euofilthe most confident data
points for SemiBoost. But selecting a small number of samplghthmake the conver-
gence slow, and selecting too large a sample might includeimformative samples into

the training set. The choice currently is made empiricadigiecting the top 10% of the
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samples seems to work well in practice. From Proposition 8edluceF, it is preferable
to select the samples with a large valueof— ¢;|. This selection provides highly reliable
pseudo-labeled samples to the classifier. The samplingzapilistically done according

to the distribution,
|Pi - Qi|
Zzil |Pi - Qz‘| 7

whereP;(x;) is the probability that the data poirt is sampled from the transduction set.

P5<Xi) =

Stopping Criterion

According to the optimization procedure, SemiBoost stopsmwh < 0, indicating that

addition of that classifier would increase the objectivection instead of decreasing it.
However, the value ofv decreases rapidly in the beginning, and eventually the ohte
decrease falls down, taking a large number of iterationstoadly make it negative. We
currently use an empirically chosen fixed number of clagsifie the ensemble, specified

as a parametér. We set the value df' = 20.
Similarity Matrix

We use the Radial Basis Function similarity inspired from itscgss in graph based ap-
proaches. For any two samples and x;, the similarity S; ; is computed assS;;, =
exp(||x; — x;]|3/0?), whereo is the scale parameter controlling the spread of the radial
basis function. It is well known that the choice@has a large impact on the performance
of the algorithm [74]. We set the scale parameter to the anityl values at the0-th per-
centile to the 100-th percentile, varied in steps of 10, wheris the average value of the
similarity matrix.S. Experimental results revealed that the transductive addcative per-
formances are stable for the chosen range.ofhis is a desirable property given the fact

that choosing the right scale parameter is a difficult pnoble
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3.4 Results and discussion

The focus of SemiBoost is to improve any given (superviseasifier using the unlabeled
data. Therefore, our primary aim is to evaluate SemiBoostdas the improvement
achieved in the inductive performance of base classifiers.

An illustration of improvement in the performance of a syisxd learner (Decision
Stump) using SemiBoost on the “ring-norm” dataset is showRigure 3.4. The dataset
has 2 classes, with 500 samples each. There are 10 labelptesgrer class, indicated by
symbols @, A). The solid line shows the decision boundary and the darkightiregions
indicate the two class regions. The performance of SemiBatostch iteration is given
in parentheses below each of the plots. Figures 3.4(a)a(my she classifier obtained by
SemiBoost at the first three iterations, and Figure 3.4(dyshbe final classifier obtained

at the 12 iteration.

3.4.1 Datasets

SemiBoost was evaluated on 16 different datasets: 4 ben&htatasets provided in [71],
10 UCI datasets and 2 datasets from ethnicity classificatimm face images [149] and
texture classification [150]. Since SemiBoost is applicdbletwo-class problems, we
chose the two-class datasets from these benchmark datisetsulticlass datasets in UCI
are converted into two-class datasets by choosing the tveb populated classes. The name
of the dataset used, the classes chosen, the number of sgargdent in the selected classes
n, and the dimensionality of the datagetre summarized in the first columnin Table 3.1. In
addition to this, we also evaluated the proposed approatéxboategorization problems.
The transductive performance of semi-supervised learratgprithms is well-
studied [71, Chapter 21]. However, semi-supervised legrisimot limited to transductive
learning, and out-of-sample extensions have attractetfisignt attention. In fact, induc-
tive learning is important, given that only a portion of thdabeled samples are seen during

the training phase. The real utility of learning in such salges in the ability to classify
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unseen test samples. With this motivation, we compare thi@rp@gance of SemiBoost
with three state-of-the-art inductive semi-superviseppbathms: Transductive SVM [69],
an inductive version of Low Density Separation (LDS) [70fdraplacian-SVM from the
Manifold Regularization approach [76]. LDS is not an induetalgorithm as it involves a
graph-based dimensionality reduction step. We use théslabedicted by the LDS on the

transduction set to train an inductive classifier on theinalgdata.

3.4.2 Experimental setup

The experimental setup aims to study the improvement inopadnce of a supervised
learner, by using unlabeled data and compare the perfomrafitbe SemiBoost algorithm
with three state of the art semi-supervised learning algms.

We use classification accuracy as the evaluation measuean€&han and standard devi-
ation of the accuracy are reported over 20 runs of each erpatj with different subsets
of training and testing data. To measure the inductive perdoce, we randomly split the
dataset into two halves. We call them the training and test SEhe training set has 10
labeled points along with all the given unlabeled sampldse @nsemble classifier learnt
by SemiBoost on the training set is evaluated by its perfonaam predicting the labels
of the test set.

SemiBoost samples the unlabeled data, labels them at eaatioiteof boosting and
builds a classifieh,(x). The number of such classifiers built will depend on the numbe
of iterationsT in boosting. 7" was set to 10 and we stop the boosting when weights
computed from Eq (3.11) become negative. We set the valGeiofthe objective function
(Eq (3.4)) to be the ratio of number of labeled samples to thmbyer of unlabeled samples
C =ny/n,.

The first experiment studies the improvement in the perfoceaf three different base
classifiers f;(x)) after applying SemiBoost: Decision Stump (DS), the J48glecitree

algorithm (J48), and the Support Vector Machine with theusedjal minimal optimization
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(SVM) algorithm. Software WEKA [151] was used to implemerittaé three classifiers.
All the algorithms are run with their default parameterg(elefault C and a linear kernel
was used for SVM algorithm). We chose decision trees (DS 48fahd SVM as the base

classifiers because of their success in the supervisedrigditerature, for learning tasks.

3.4.3 Results

Choice of base classifier

Table 3.1 compares the supervised and the three benchnrmarsspervised algorithms to
the SemiBoost algorithm. The columns DS, J48 and SVM give #réopnances of the
base classifiers on the induction set. The column SB-X givesntiuctive performances
of SemiBoost with base classifier X. The last three columnsaibler 3.1 correspond to
the inductive performances of benchmark semi-superviggarithms TSVM, LDS and
LapSVM. Note that the idea is not to build the best classifienrdividual classification
problem, but to show the possible improvement in the peréme of supervised classifiers
using SemiBoost on all the classification problems. Resulis@te that SemiBoost signif-
icantly improves the performance of all the three base iflessfor nearly all the datasets.
Using an independent sample paired t-test, we observe@#rmiBoost significantly im-
proved the performance of Decision Stump on 12 out of 16 d&tad he performance of
J48 is improved significantly on 13 out of 16 datasets, witligaicant degradation on
the house dataset. For SVM, there is a significant improvéreery out of 16 datasets,
while a significant degradation for 3 of the 16 datasets. Tineetcases where SVM with
SemiBoost degraded, the benchmark algorithms performed quoopared to the super-
vised classifiers, suggesting that unlabeled data is npfuieh these cases. The ensemble
classifier obtained using SemiBoost is relatively more stad its classification accuracy

has lower standard deviation when compared to the basefidass
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Performance comparison of SemiBoost with Benchmark Algoritims

Performance of SemiBoost is compared with three differegoréghms, namely TSVM,
LapSVM and ILDS (inductive version of the LDS algorithm). rEi@oost achieves per-
formance comparable to that of the benchmark algorithmaniB@ost performs better
than ILDS on almost all the datasets, and significantly beite4 of the datasets, 2 using
Decision Stump and 2 using SVM as the base classifier. SemiBapsficantly outper-
forms TSVM on 10 out of 16 datasets using SVM, and 8 out of 1&gkt using Decision
Stump. Also, TSVM had difficulty converging on three datasata reasonable amount
of time (20 hours). SemiBoost performs comparably to LapS\@B:DS outperformed
LapSVM significantly on 2 datasets, and performed worse ttegppSVM on 1 dataset.
Similarly, SB-SVM and LapSVM significantly outperform eactiher on 3 out of the 16
datasets. There are datasets where one of the base classitigerforms SemiBoost. But
in these cases, one of the base classifiers outperformseadietini-supervised algorithms
(e.g., SVM outperforms all the algorithms on COIL2, vehiglat and house datasets). This
indicates that the unlabeled data do not always improve éise blassifier, or in general,
are not guaranteed to help in the learning process. When ackesssfier outperforms
the semi-supervised learning algorithms, we observeditegdemiBoost tends to perform

close to the baseline compared to the other SSL algorithmmost cases.

Performance with respect to number of unlabeled data

Figs. 3.5(a)-(b) show the performance of SemiBoost on twdefWCl datasets. Each
dataset is split into two equal parts, one for training and for inductive testing. Ten
samples in the training set are labeled. The performancé&/bf,$rained on the labeled
data and with default parameters, on the test set is shovwnandiotted line in each plot.
The unlabeled examples in the training set are incremgradted to the labeled examples
in units of 10%. The solid line shows the performance of theiBeost algorithm with

addition of unlabeled data. The dashed line shows the pe&ioce obtained by the SVM
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Figure 3.5: Performance of baseline algorithm SVM with Ifelad samples, with increas-
ing number of unlabeled samples added to the labeled sét (s@), and with increasing
number of labeled samples added to the training set (dasted |
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Table 3.1: Inductive performance of SemiBoost and the thesmetimark algorithms. The
first column shows the dataset and the two classes chosemuhhiger of samples and
the dimensionality/ are shown below the name of each dataset. The algorithmemrhos
as base classifiers for boosting are Decision Stump (DS)sbecTree (J48) and Support
Vector Machine (SVM). For each algorithm, the SB- prefixecuowh indicates using the
SemiBoost algorithm on the base classifier. The columns TSVBPS and LapSVM show
the inductive performance of the three benchmark algosthiyi-’ indicates that we could
not finish running the algorithm in a reasonable time (20 Bpdue to convergence issues.
Each entry shows the mean classification accuracy and sthdeaiation (in parentheses)
over 20 trials.

Dataset DS | SB-DS| J48 | SB-J48|| SVM | SB- || TSVM | ILDS | Lap
(n,d) SVM SVM
Digitl (1,2) 57.15| 78.09 || 57.21 | 74.97 || 74.81| 77.89 || 79.52 | 79.53 | 74.06
(1500, 241) (7.0) | (3.6) || (7.1) | (43) || (6.2) | (4.6) (5.00 | (7.0) | (4.2)
COIL2 (1,2) 55.14 | 55.84 || 54.81| 55.27 || 59.75| 55.42 || 50.23 | 54.62 | 55.64
(1500, 241) (31) | (4.0) || 34 | (29 | 33| (4.3 (4.9 | (4.0 | (5.6)
BCI(1,2) 51.27 | 49.38 || 51.42 | 50.67 || 52.45| 52.02 || 50.50 | 50.73 | 54.37
(400, 117) 42| 29 | 41| 38 || 31| 41 (36) | (2.4) | (3.6)
0g241n(1,2) 50.73 | 54.54 || 50.57 | 54.71 || 57.55| 57.93 || 51.14 | 50.25| 53.65
(1500, 241) B1) | 28 || 29 | 25 || (2.6) | (3.4 (35) | (1.5) | (3.1)
austrai,2) 60.39 | 73.46 || 60.12 | 73.36 || 65.64| 71.36 || 73.38 | 66.00 | 74.38
(690, 15) (13.0)| (7.9) || (12.7)| (7.4) || (8.2) | (8.8) || (12.6) | (14.5)| (8.7)
ethn(1,2) 65.72 | 66.42 || 64.98 | 63.98 || 67.04| 67.57 - 67.16 | 74.60
(2630, 30) (8.6) | (6.4) || (79 | (6.3) || 4.8) | (5.7) (16.7)| (5.8)
heart(1,2) 68.26 | 79.48 || 67.67 | 78.78 || 70.59| 79.00 || 77.63 | 77.11| 77.96
(270, 9) (14.3)| (3.6) || (15.0)| (3.8) || (7.9 | (4.1) (6.6) | (9.6) | (4.8
wdbc(1,2) 79.47 | 88.98 || 75.95| 89.82 || 75.74| 88.82 || 86.40 | 85.07 | 91.07
(569, 14) (16.3) | (6.5) || (17.1)| (4.0) || (9.7) | (9.9) (8.6) | (8.7) | (3.4
vehicle(2,3) | 60.48| 69.31 || 60.89 | 70.25 || 78.28| 72.29 || 63.62 | 66.28 | 71.38
(435, 26) (76) | (6.7) || 81) | (7.7) || (6.2) | (9.4) (8.6) | (85) | (6.7)
texture(2,3) | 95.67 | 98.90 || 89.46 | 98.50 || 98.44| 99.91 - 98.38 | 99.11
(2026, 19) (5.6) | (0.6) || (6.7) | (0.9) | (1.4) | (0.1) (7.2) | (0.92)
image(1,2) 89.64 | 100.00 || 87.03 | 99.79 || 99.92| 100.00| 91.91 [ 100 | 99.95
(660, 18) (11.2) | (0.0) || (9.3) | (0.3) || (0.2) | (0.0) (8.2) | (0.0) | (0.2)
isolet(1,2) 64.23 | 91.92 || 64.48 | 90.20 || 89.58| 95.12 || 90.38 | 92.07 | 93.93
(600, 51) (12.7)| (21) || (12.8)| (3.4) || (5.3) | (2.3) (8.0) | (11.4)| (3.4)
mfeat(1,2) 82.25| 96.25 || 85.90 | 96.00 || 98.78| 99.85 || 95.32 | 96.5 | 100.00
(400, 76) (2.6) | (2.0) || (12.9)| (1.8) || (1.1) | (0.3) (75) | 10.8 | (0.0)
optdigits(2,4) | 65.91 | 93.22 || 65.59 | 93.33 || 90.31| 96.35 || 92.34 | 96.40 | 98.34
(1143, 42) (13.4)| (3.0) || (13.1)| (2.6) | (3.6) | (2.4) (9.0) | (11.1)| (2.4)
sat(1,6) 82.77 | 85.99 || 83.80| 86.55 || 99.13| 87.71 - 94.20 | 99.12
(3041, 36) (55) | 37 | 6.1) | 3.0 || 0.7)] (2.9 (14.2) | (0.5)
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when all these added samples are labeled using their groutind tt is observed that the
performance of SemiBoost improves with the addition of mare @ore unlabeled data,

whenever such an improvement is possible.

Sensitivity to parameter o

Fig. 3.6 shows the performance of the SemiBoost-SVM, witlyingr value of the pa-
rametero. The parametes was chosen to be theth percentile of the distribution of
similarities, with p varying between 10-th percentile to 100-th percentile.e&elg the
value ofco is one of the most difficult aspects of graph construction, sgveral heuristics
have been proposed to determine its value. On most of theatatahown, SemiBoost is
relatively stable with respect to the scale parameter. Hewa choice ot between 10-th
percentile to 20-th percentile of the pairwise distanceséemmended, based on empirical

observations.

Margin and Confidence

In this experiment we empirically demonstrate that SemiBbas a tendency to maximize

the mean-margin. For unlabeled data, a popular definitiomargin is|H (x;)| [80, 79].

The mean margin is the empirical averagéféfx;)| over the unlabeled data used for train
ing. Figs. 3.7, 3.8, and 3.9 show the mean-margin value odigitst dataset (classes 2,4)
over the iterations using Decision Stump, J48 and SVM asdke blassifiers, respectively.
The value of the mean-margin increases over the iteratimaspective of the choice of the
base classifier. However, it is important to note that themmim margin may not increase
at each iteration, although the test error decreases. Wleetraiming data consists of a
small number of labeled samples which can be perfectly ifledsthe margin is largely
decided by the unlabeled data. Considering the margin oeeunttabeled data, the clas-
sifier at iteration 1 has a margin of; for all the unlabeled data, wheres at the second
iteration, the minimum margin isiin,, |H® (x;)| = a1 — as] < oy = min,, |[HV(x;)].

In fact, over the iterations, the value of the minimum mangiay be traded off to obtain
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Figure 3.7: The mean-margins over the iterations, on aeingi of SemiBoost on optdigits
dataset (classes 2,4), using Decision Stump as the basdielas
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Figure 3.8: The mean-margins over the iterations, on asingl of SemiBoost on optdigits
dataset (classes 2,4), using J48 as the base classifier.
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Figure 3.9: The mean-margins over the iterations, on asingl of SemiBoost on optdigits
dataset (classes 2,4), using SVM as the base classifier.

a gain in the performance, i.e. being in agreement with thélasiity matrix. It has been
shown in [152] that maximizing the value of minimum margiredmot necessarily trans-
late to a better performance of a classifier. It is argued encibntext of boosting that an
approach that maximizes the mean-margin in a greedy fasbipreferable to those that
maximize the minimum margin. Fig. 3.11 shows the distrimutf the value of (x;) over
the iterations. The light and dark bars in the histogrameasgnt the two classes (2 and 4),
in the optdigits dataset. Note that as iterations progteeswo classes get more and more

separated.

3.4.4 Convergence

According to Theorem 1, SemiBoost converges exponentidlty.illustrate the conver-
gence, we chose the two most populous classes in the optdigiaset, namely digits 2

and 4. The change in the objective function as new classHdieraidded over iterations is
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demonstrated in Fig. 3.13. which follows an exponentialotidn. Fig. 3.12 shows the
value ofa over the iterations. Initially, the value affalls rapidly, and after around 20 iter-
ations, the value is insignificantly small relative to thatrotial classifiers. This suggests
that although SemiBoost still needs more iterations to cqyayeghe new classifiers added
in boosting will not significantly change the decision vallég. 3.14 shows the accuracy

of the SemiBoost with Decision Stump as the base classifier,tbe iterations.

3.4.5 Comparison with AdaBoost

Table 3.2: Performance of different classifiers and theisibed versions on 6 UCI datasets.
X-small stands for the classifier trained on a set of 10 labs#enples chosen from the data.
The prefix AB-X stands for AdaBoost with base classifier X. SB-ahsls for SemiBoost
with base classifier X. X-large stands for the classifiengdiby labeling all the unlabeled
data used in SB-X.

| Classifier | | austra| bupa | wdbc | optdigits | mfeat-fou | isolet |
small 60.39 | 54.94| 79.47| 65.91 82.25 64.23

AB-small | 62.55| 56.45| 70.02| 63.20 77.62 64.82

Decision Stump SemiBoost| 73.46 | 55.78 | 88.98| 93.22 96.25 | 91.92
large 79.36 | 57.71| 90.42| 90.26 99.72 92.57

AB-large 81.70 | 68.44| 94.44| 99.98 99.72 97.68

small 60.12 | 54.97| 75.95| 65.59 85.90 64.48

AB-small | 60.68 | 55.09| 68.86| 61.40 75.80 65.33

J48 SemiBoost| 73.36 | 54.74| 89.82| 93.33 96.00 90.20
large 79.97 | 62.49| 92.68| 97.18 99.12 92.90

AB-large 82.42 | 66.21| 94.96| 98.97 99.12 96.68

small 65.64 | 52.05| 75.74| 90.31 98.78 89.58

AB-small | 63.29 | 53.50| 73.53| 87.11 93.80 88.48

SVM SemiBoost| 71.36 | 54.02| 88.82| 96.35 99.85 95.12
large 85.57 | 58.15| 94.81| 99.66 100.00 | 99.72

AB-large 84.29 | 65.64| 95.89| 99.65 100.00 | 99.72

To evaluate the contribution of unlabeled data in improwimg performance of a base
classifier, we compared the performance of SemiBoost withahadaBoost on the same

base classifier (or weak learner) and using a similar exmetiah procedure as in Sec-
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tion 3.4.2. Table 3.2 shows the performance of three bassifikxs Decision Stump, J48
and SVM (shown in column 1) on 6 datasets shown in the top raw. elach classifier,
the first two rows show the inductive performance of the di@ssand its boosted version
(using AdaBoost) trained on 10 labeled samples. The thirdstoows the performance of
SemiBoost when unlabeled data is added to the same set oédak@inples. The fourth
and fifth rows, labeledarge and AB-large show the performance of the classifier and its
boosted version trained after labeling the unlabeled dsgd in SemiBoost.

From Table 3.2, we can see that the performance of SemiBowstsins of the clas-
sifiers (SB-DS, SB-J48, and SB-SVM) is significantly better thassifiers trained using
only labeled data, boosted (using AdaBoost) or unboostegs(loand 2 for each classifier
section). Naturally, when all the unlabeled data are lahdlee performance of the clas-
sifiers and their boosted versions are significantly bektan SemiBoost (rows 4 and 5).
The reduction in the inductive performance of AB-small conepleto the base classifier on
several datasets may be attributed to the overfitting duentdl siumber of training sam-
ples. The addition of unlabeled data as a regularizing meshain SemiBoost avoids the

overfitting, thereby achieving an improved classifier.

3.5 Performance on text-categorization

We further evaluate the SemiBoost algorithm on the Text Caizaimon problem using
the popular 20-newsgroups datds®¥e performed the evaluation of SemiBoost algorithm
with Decision Stump, J48 and SVM as the base classifiers @mpproblems created using
the 10 most popular classes of the 20-newsgroups datasettidm this experimental setup
is different from some of the other studies in semi-supexviearning in which the one-vs-
rest approach is used for evaluation. Compared to one-tsthesone-vs-one evaluation

has the following advantages:

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 3.3: Comparison of the inductive performance (measase% accuracy) of Semi-
Boost, TSVM, ILDS and LapSVM on pairwise binary problems teeldfrom 5 classes of
the 20-newsgroups dataset.

Classes DS | SBDS| J48 | SBJ48] SVM | SBSVM | TSVM | ILDS | LapSVM
(d)
1,2 55.82| 82.30 | 56.93| 72.86 | 71.02| 70.74 | 75.44 | 55.10| 68.23
(3736) | (14.0)| (12.3) | (15.5)| (8.0) | (87)| (5.6) | (13.2) | (16.6)| (3.9)
1,3 54.61| 85.95 | 56.24 | 77.05 | 72.17| 74.83 | 89.34 | 58.88| 71.34
(3757) | (10.6)| (9.6) | (10.7)| (8.0) | 82 | (5.4) | (5.9) | (20.2)| (4.8)
1,4 51.35| 87.36 | 54.71| 80.65 | 77.22| 78.47 | 88.71 | 61.72| 74.67
(3736) | (7.1) | (11.4) | (13.4)| (5.7) | 9.0)| (3.6) | (6.8) | (9.4) | (3.1)
1,5 55.72| 91.37 | 57.55| 86.65 | 74.84| 82.64 | 92.35 | 66.45| 78.01
(3979) | (11.4)| (7.8) | (12.6)| (6.7) | (9.8) | (4.3) | (55) | (16.7)| (4.1)
2,3 48.94| 73.33 | 49.43| 64.52 | 63.12| 64.06 | 66.05 | 50.76 | 61.68
(4154) | 2.3) | (11.6) | (21) | (78) | (52)| (45 | (10.6)| (1.8) | (3.8)
2,4 49.60 | 88.43 | 49.40| 78.07 | 69.47| 74.85 | 81.50 | 50.32| 70.95
(4143) | (4.0) | 95) | (3.8) | 5.0) | (7.0)| (3.2) | (135 | 21) | 3.2
2,5 49.38| 94.65 | 49.24| 83.87 | 71.62| 80.12 | 84.94 | 53.94| 74.79
(4406) | (1.9) | (6.5) | (1.6) | (6.0) | (6.6) | (4.8) | (124)| (7.3) | (3.4)
3,4 51.16| 90.22 | 51.46 | 77.34 | 72.22| 7526 | 81.98 | 50.08| 71.45
(4130) | 31) | 86) | 37| (72 | G4 | 1) | 127 | @7) | 3.8)
3,5 51.67| 92.93 | 51.71| 81.16 | 73.65| 78.31 | 77.38 | 53.83| 74.91
(4426) | (4.0) | (65) | (4.9) | (7.0) | 83)| (3.9) | (162 | (81) | (4.2
4,5 51.68| 79.51 | 51.53| 68.27 | 62.08| 68.07 | 67.54 | 52.39| 65.05
(4212) | 4.1) | (11.5)| (3.9) | (84) | (58)| (5.3) | (127)| (65) | (5.0)

e There is a large variation in the best performing supervidasisifier for the binary
tasks. This enables us to show that when SVM is not the besstifitx for a problem,
then the methods that improve SVM using unlabeled data magenthe best semi-

supervised algorithms to use.

e Semi-supervised learning algorithms rely on certain ag$iams about the structure
of the data and the classes. In one-vs-rest approaches,dahssmptions are likely
to be violated. For instance, many semi-supervised algostassume a large cluster

gap between the two classes. By aggregating multiple clagsesne negative class,
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we expect to see a large cluster gap amongst the negatigdtsialé. Violation of the

manifold assumption can be explained similarily.

e There is a large imbalance in the data in a one-vs-rest titzggyn. While a knowl-
edge of priors may be used to incorporate this imbalancesina-supervised learn-
ing to improve the performance, we assume no prior inforonais available about
the data other than the similarity information and a smathhar of training exam-

ples.

e One-vs-one has been a popular approach for creating naskiclassifiers. The test-
ing time can be significantly reduced in a one-vs-one setiingsing a DAG based

architecture [153].

We generate all the 45 possible binary problems of the 1Gsetas For simplicity,
we include only results on 10 binary problems created fronf the classes in the 20
newsgroups, summarized in Table 3.3. These results arastmithe results on the other
35 binary problems.The first column in Table 3.3 shows thesda chosen for creating
the binary problems. Each classification task contains aséatvith approximately 2,000
documents. We use the popular tf-idf features computed tnewords which occur at
least 10 times in total, in all the 2,000 documents. Theftfedtures are later normalized
per document. The dimensionality of each dataset is showsoluimn 2 of Table 3.3.
We follow the same inductive evaluation procedure as ini&e@&.4.2. We use 2 labeled
samples per class for training the classifier. We use tharikernel (dot product between
the feature vectors) as the similarity measure, populanenext classification tasks. The
inductive performance of the different algorithms Deais®tump, J48, SVM and their
SemiBoosted versions, Transductive SVM, Inductive LDS, laean SVM are shown in
Table 3.3. To allow a fair comparison, the parameter vdlutor all SVMs is set to 1.
The mean and standard deviation of the performance overrZalithe experiment are

reported.
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Table 3.3 shows that in the case of Decision Stump and J48iB®est significantly
(at a 95% confidence level, measured using independent sqnaipéd t-test) improves the
performance on all the pairs of classes. The performanc¥®FiS improved significantly
on 5 out of the 10 class pairs. Also, we notice that SemiBod3tsasion stump performs
signficantly better than SemiBoosted SVM on all the pairsassks. Comparing the SVM
based methods, SB-SVM significantly outperforms LapSVM onagxpairs and ILDS
on all the 10 pairs. TSVM outperforms SB-SVM on 5 out of the 1&sslpairs. Overall,
the performance of SB-SVM is comparable to TSVM and it is digantly better than
LapSVM and ILDS. SB-DS outperforms TSVM significantly on 5 ofithe 10 class pairs,
and LapSVM and ILDS on all the class pairs. The poor perfograf ILDS may be as-
cribed to the use of a graph based kernel, which may not betableufor text classification
based tasks as a linear kernel. These results show that SestiBpDecision Stumps is a

viable alternative to the SVM based semi-supervised lagrapproaches.

3.6 Conclusions and future work

An algorithm for semi-supervised learning using a boostraghework is presented. The
strength of SemiBoost lies in its ability to improve the penfance of any given base
classifier in the presence of unlabeled samples. Overallgbults on both UCI datasets
and the text categorization using 20-newsgroups datasebmgrate the feasibility of

this approach. The performance of SemiBoost is comparalileetstate-of-the-art semi-

supervised learning algorithms. The observed stabilit$@miBoost suggests that it can
be quite useful in practice. SemiBoost, like almost all og®mni-supervised classification
algorithms, is designed for two-class classification. Midss extension of SemiBoost is
presented in [154]. We are working towards obtaining thicaeresults that will guarantee
the performance of SemiBoost, when the similarity matrixeeds the underlying structure

of data (e.g., the probability that two points may share #raesclass).
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CHAPTER 4

Non-parametric Mixtures for Clustering

4.1 Introduction

Clustering is applicable to many central problems in datdyais specifically in computer
vision such as image segmentation [155, 46], clusteringg@ad156], visual word con-
struction for image annotation [157], motion segmentaf®8], image retrieval [159],
and visual object recognition [160].

The lack of a universal definition of a cluster, and its taskata dependent nature has
resulted in publication of a very large number of algoritheech with slightly different as-
sumptions about the cluster structure. A brief categaoratf the existing algorithms was
presented in Table 2.1, and some of their major propertee$sied in Table 4.1. Broadly,
the proposed approaches can be classifiedgatametricvs. non parametriapproaches.
Parametric approaches impose a structure on the data, agheom-parametric methods
infer the underlying structure from the data itself. Sineegmeteric models assume a spe-
cific structure in the dataset (e.g. K-means prefers spdilesiasters), they tend to be less
flexbile compared to the non-parameteric approaches.

Probabilistic models are highly effective when the undadydistribution of the data
is either known, or can be closely approximated by the thstion assumed by the model.
One of the most widely used probabilistic clustering methdthe finite mixture mod-

eling [35, 36]. Several probabilistic models like Gausdiditure Models (GMM) [36]
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and Latent Dirichlet Allocation [37] have been shown to becassful in a wide variety of
applications concerning the analysis of continuous ancrelis data, respectively. Proba-
bilistic models are advantageous since they allow softetusemberships and provide a
principled way to address issues like the number of clusteissing feature values, etc. In
addition, the probabilistic memberships are often usechaatarnative representation of
objects, leading to effective dimensionality reductiorheTmost well known example of
this case is the Probabilistic Latent Semantic IndexingSIp[54], which is widely used in
the dimensionality reduction of text data. The main shorticgy of most mixture models
is the assumption that data is generated from a finite mbabiarametric distributions
e.g., Gaussian, multinomial etc. However, it is well knowattclusters in real data are
not always of the same shape and rarely follow a “nice” dstion like Gaussian [4].
In a general setting, each cluster may follow its own distitn that is unknown a priori.
Therefore, there is a need for algorithms that are more flekbterms of their assumptions
such that they are able to detect clusters of arbitrary shape

The limitations of parametric mixture models can be overedmyg the use of non-
parametric density estimation methods. Several algostisoch as Mean-shift [45], DEN-
CLUE [50] and DBSCAN [49] were developed to exploit non-parainetensity estimates
for data clustering. These methods find a single kernelieestimate of the data, and de-
tect clusters by identifying modes or regions of high dgnisithe estimated density [45].
Despite their success, most of these approaches do notipesfell consistently on high-
dimensional datasets. The performance of DBSCAN is highlgddent on the parameters
that are used to define the neighborhood. Since it is difftcuttefine the neighborhood
of the data points in a high-dimensional space due to thescnfrslimensionality [21],
DBSCAN performs rather poorly in clustering high dimensiodata; applications of DB-
SCAN cluster data with dimensionality upto 5 [161]. Furthexany of these methods
require specifying appropriate values for some paramétetoften need to be decided in

a rather ad-hoc manner. Finally, for most of these denstigneion based approaches, it
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is not possible to specify the number of clusters. Althoughk property may be viewed
as an advantage since the number of clusters is determirgdithy, it is clearly a disad-
vantage as any prior information about the number of clastan not be incorporated into
the clustering algorithm. A hybrid clustering approachegreaent images using a combi-
nation of parametric and non-parametric mixture modelspvasented in [46], which can
incorporate the number of clusters into the non-parametadel.

In this chapter, an extension of the non-parametric derstynation to the mixture
models for data clustering is presented. It is assumed #dht eluster is generated by its
own density that is unknown. The density of each cluster neagrbitrary and multimodal
and hence it is modeled using a non-parametric kernel geesiimate. The overall data
is modeled as a mixture of the individual cluster densiti8snce the NMM algorithm,
unlike other non-parametric algorithms (e.g., Spectrastering), constructs an explicit
probabilistic model for each cluster, it can naturally hanout-of-samplé clustering by
computing the posterior probabilities for new data poiffsbles 4.2 and 4.4 compare the
NMM algorithm to several well known clustering algorithmsa. summary, we emphasize

that:

e The NMM algorithm for data clustering offers several adegats compared to the
other non-parametric approaches (e.g., hierarchicatesing, spectral clustering,
etc.) that are not based on probabilistic models: (a) itnaltor probabilistic assign-
ments of data points to different clusters (b) it can effexdyi explore probabilistic
tools such as Dirichlet process and Gaussian process fepa@mmetric priors, and

(c) the model naturally supports out of sample cluster assents

e Contrary to most existing mixture models, the NMM approachsdnot make any
explicit assumption about the parametric form of the undegl density function,

and therefore is flexible in modeling arbitrarily shapedstus.

LA clustering algorithm can perforwut-of-samplelustering if it can assign a cluster label to a data point
unseen during the learning phase.
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Table 4.1: Properties of different clustering methods téype-based clustering methods
are approaches that use a single data point to representetiehclusters (e.g. K-means
uses centroid of the cluster to represent each cluster)

Method/Family Non- Prototype-| Out Of | Output
parametric| based [4] | Sample

Squared-Error No Yes Yes Labels
Parametric mixture models | No Yes Yes Probabilities
Non-parametric density estl-Yes No No Labels
mation

Spectral Algorithms Yes No No Scores
Hierarchical Yes No No Labels
Information Theoretic Yes Some Some | Labels
Non-parametric Mixture Yes No Yes Probabilities

The performance of the NMM algorithm is shown on a large nunabeext and UCI
datasets. Experimental results demonstrate that, cochparseveral widely used clus-
tering algorithms such as K-means and spectral clustetimegNMM algorithm performs
significantly better when data is of high dimensionalityjratext and image data.

There is no clustering algorithm that is optimal, i.e. it liaes best performance on all
the datasets [3]. However, depending on the data charstatsridifferent algorithms are
appropriate for capturing the underlying structure of taead Furthermore, each clustering
algorithm has certain crucial pararameters that are afitacthe performance of the algo-
rithm. There is generally no guidance available to selex$d¢tparameters. In this chapter,
we propose to use any additional information to evaluateoalgess measure for each value
of the parameter, and select the parameter with the higloestngss value. We call this

approactsemi-supervised parameter selection
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4.2 Non-parametric mixture model

4.2.1 Model description

LetD = {x,...,z,} be acollection of, data points to be clustered, where eagle R?
is a vector ofd dimensions. Letz be the number of clusters. The aim is to fit the data
points inD by a non-parametric mixture model. Let, ) : R? x R? — R be the kernel
function for density estimation. We further assume thatkisel function is stationary,
i.e., k(x;, ;) = ks(x; — x;), where [ k,(z)dx = 1. Let the matrixK = [k(x;, ;)] nxn €
R?*™ denote the pairwise kernel similarity for data pointgin

Let{c,},g = 1,...,G be the set of7 clusters that forms a partition @. We specify
the conditional density functiop, (x|c,, D) for each clustee, as follows:

pg(x|cy, D \c | Z K(z, ;) (4.1)
I zi€cq

where|c,| is the number of samples in clustgr and} |c,| = n. The unconditional (on

clusters) density(z|D) is then written as

G
D) = Zﬂgpg(a:|cg,2)) (4.2)

wherer, = P(c,) is the mixture coefficient for clustey. We generalize the cluster condi-
tional densityp(z|c,, D) in Eq. (4.1) by considering soft cluster memberships. Weotken
by w? = (wf,...,w?) the probability of assigning data points to clustgr Evidently, we

havew! > 0,i=1,...,n,9g=1,...,G, andz ", w{ = 1. Using the soft memberships

w9, g =1,...,G, we can then generalizg(z|c,, D) as
pg(x|cy, D) = 1 zn:wgﬁ(xi ) (4.3)
Di Wy i1 '

Letq! = wi /(> 7_, w}). This simplifiesp,(z|c,, D) as
pg(x|cy, D ZqZ k(x, (4.4)
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We refer tog? = (¢f, ..., q%) as theprofile vectorfor clusterc,, andQ = (¢*,...,¢“) as
the profile matrix The objective of our clustering model is to learn the prafilatrix )
for data seD. We emphasize that due to the normalization step, ..., ¢/ = 1, ¢/ can
no longer be interpreted as the probability of assigningo clusterc,. Instead, it only
indicates the relative importance of to the density function for cluster,. We finally
note that density function in Eq. (4.4) is also referred tdhesdensity estimate in “dual

form” [162].

4.2.2 Estimation of profile matrix @) by leave-one-out method

To estimate the profile matrig), we follow the idea of maximum likelihood, i.e., to find
the matrix@ by solving the optimization problemmaxg >, log p(z;|D). One major
problem with this approach is that, when estimatiig;|D), z; is already an observed
data point inD that is used to construct the density functiBfi;|D). As a result, simply
maximizing the likelihood of data may lead to an overestiorabf the parametef), a
problem that is often referred to as overfitting in machireenéng [20]. We resolve this
problem by replacing(z;|D) with its leave-one-out (LOO) estimate [163].
We first definep; (x;|c,, D_;), the LOO conditional probability for each held out sample

x;, conditioned on the clusters and the remaining 1 samples, as follows

1 n
(1—10,,)¢° Z(l - 53',1')(]?[(1',;'7 (4.5)
Jii) 45

j=1

pi(mi‘cga D—Z) = ZTL

j=1
whereD_; = D\{z;} denotes the subset @f that excludes sample;. Using the LOO
cluster conditional probability; (z;|c,, D_;), we further define the LOO unconditional (on

cluster) density for each held out sampleas follows:
G
pi(zi|D-i) = Zﬁpi(fﬂcg, D_), (4.6)
g=1

wherey/ = P(c,|D-;),and)_ ~/ = 1,Vi =1,...,n. Note that unlike the mixture model

in (4.2) where the same set of mixture coefficie{v@}‘ff:1 is used for anyz;, in (4.6),
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mixture coefficients{y/}%, depend on sample;, due to the leave-one-out estimation.
We denote byy; = (7}, ,7¢) andl’ = (71,...,7,) " € R™C.
To improve the robustness of the estimation of profile mafyjxve introduce a Gaus-

sian prior for profile matrix, i.e.,

p(Q) o exp (—AZZ[Qf]2>, (4.7)

where) is a hyperparameter that will be determined empirically.

Remark One of the natural choices for the prior on eaghwould be the Dirich-

let distribution, since we hav® ! ¢/ = 1forg = 1,--- G, thatis, Di(Q|a)
HQG:1 T, (¢))*", wherea is a hyper parameter. However, a Gaussian prior makes it
convenient to incorporate the side information (e.g. ims¢devel pairwise constraints [98])
into to the model. For example, if two samples are linked byustrink constraint, it can

be incorporated into the Gaussian prior with high corretabetween the profile values of
the two linked data points. However, since this prior is gespecified on a matrix), it

needs to use matrix-variate distributions.

Remark The maximum fodog p(Q) under the constraint_; , ¢/, g =1,...,G , occurs
when all¢! = % This encodes a prior belief that all points equally conigbto all the
clusters. A smaller value of results in a relatively sparser solution fQr As the value
of \ increases, the solution tends towards being uniform,d’e— % fori =1,--- n.

However, choosing = 0 results in several numerical instabilities which are désad in

detail in Appendix A.

Bayesian interpretation NMM can also be interpreted as a Bayesian model by specify-

ing the following data generation process:

1. Generate the mixture coefficient§ ¢ = 1, -- - , G from a Dirichlet prior witha: = 1.
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Figure 4.1: Graphical model showing the data generatiooga®using the NMM.

2. Generate the profile coefficientg for the clusterc, from the prior specified in

Eq (4.7), given the parametar
3. Using~; and@, sample the point; from the density in Eq (4.5).

Figure 4.1 shows the graphical model corresponding to theegkneration process.
For notational convenience, we s&t; = 0 in Eq (4.5). Now, using the condition
> . q] = 1,the LOO log-likelihood of data, denoted Byoo (D; Q,T'), can be expressed

as follows

lL00(D;Q.T) = logp(Q)+ Y _logp;(x;|D_;)
=1

IR - o 2i—1 K]
= A D @y s | Y WET ) 48)
i=1 g=1 i=1 9 4
The parameters in the above simplified model gtand¢/, fori = 1,--- ;n andg =

1,--+,G. They are estimated by maximizing the LOO log-likelihdggo (D; Q,T"). The
optimal values of) andI’, denoted by)* andI™* can be obtained by solving the following

optimization problem:

{Q*, T} = arg IgaFXELOO(D;Q,F) (4.9

The optimization procedure used is discussed in the foligwiection.
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4.2.3 Optimization methodology

To determine the optimal values Bfand @ that maximize the log-likelihood in Eq (4.9),
we apply an alternating optimization strategy [164]. Atle#eration, we first optimize
I' with fixed @@, and then optimize) with fixed I". Below, we give the procedure for
optimizingI" and@.

Optimizing T’

By fixing ), the optimal value of' can be obtained using the following proposition.

Proposition 4. For a fixed(, the LOO log-likelihood of a sample is maximized when

v = 0(g,argmax p;(xi|cy, D)), (4.10)
g/

whered(.,.) = 1if the arguments are equal to each other, anatherwise.

Proof. Collecting the terms containing’ from Eq (4.8), the maximization problem for

can be written as follows,

max 37, log (Zg % &) (4.11)

1—q;

st. S0 Af=1li=1-,n (4.12)

Sincezg’;1 v{ =1, Jensen’s inequality can be used to write the above optiioizarob-

lem as,
n 21 Kija]
max D ic1 2247 log <T§q> (4.13)
st Mg =Li=1---.n (4.14)

This is a linear programming problem, and the solutionlfaran be obtained as stated in

Proposition 1.
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[

The variabley! is closely related to the posterior distributi®n(c,|z;), and therefore
can be interpreted as the cluster label of the sample, i.e.p] = 1if z; € ¢, and O,

otherwise.

Optimizing @

It is difficult to directly optimize the log-likelihood in E¢4.8) with respect ta). We
therefore construct and minimize a convex variational ufgmeind on the negative log-
likelihood for efficient inference. At each iteration, we imain a touch point between the
bound and the negative log-likelihood function, which gudees convergence to at least a
local minima [165].

The log of conditional probability;(z;|c,, D;) in Eq (4.5) results in a log-sum form,

and can be bounded as follows.

Proposition 5. The logarithm of the conditional probability in £d.5) satisfies the follow-

ing concave lower bound,
log pi(ilcy, D;) = log <Z Kmqg) —log (1 —¢) (4.15)

_ g
> Zn log(Kijq?)

—logz! + 14 H(n] ), (4.16)

wherez! > 0 andn/;,> "7  n/, = 1 are the two variational distributions and (n/ )

corresponds to the Shannon entropy of the distribution

Proof. Introducing variational distributionaz.,z‘ =1,---,n;9g = 1,--- ,G, whosej-

th element iy, and "7, nf; = 1 into the first term of Eq (4.15), and the variational
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Bernoulli distributionz?, 0 < z/ < 1 into the second term, we have,

log pi(i|cg, D;) = log ZKi,jq;?') —log (1 —¢Y) (4.17)
non
= log > (n—g]> Ki,jqjg) —log (1 —¢f) (4.18)
j=1 Nl
= log an,j (quj>) —log (1 —¢7) (4.19)
= Mij
> anj log< ) log (1 - gf) (4.20)

= anjlog Kijql) = > nf;logn!; —log(1—¢f) (4.21)

J=1
g

1_
= Z" log (K ;q?) T log 2! + 1+ H(n!), (4.22)
O

The bound introduced in the above proposition holds for amnd . Clearly, the

tightest bound is achieved by maximizing ovgeandn, whose solutions are given below.
Proposition 6. The optimal values for the variables/(and ;) introduced in Proposi-

tion 5 are:

g
Kz‘,jqj‘

n g -

Zj’:l Ky q;

Proof. The optimal values of the variables in Proposition 2 can liainbd as the stationary

zl=1-¢q] and n}; = (4.23)

points of the bound. Differentiating the bound from Propiosi2 w.r.tnfj, and setting it to

0, we get

log(Kyjqf) — 1 —log(nf;) = Zm]—l (4.24)

Solving the above equation faf;, gives us

Kz'j%g

K ivar) 429
J=17"14
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The optimal value for; can be obtained similarly,

1—¢ 1
B —;:0, or z/=1-g¢q.

[

Using the bound from Proposition 5, the maximization of lixglihood in Eq (4.8) can be

approximated by the following optimization problem.

Proposition 7. Given~/, nf; and z/, the optimal value of) at each iteration can be ob-

tained by solving the following convex problem.

min AZZ %) —ZZVZ%Q iiKZw”)logq?]

i=1 g=1 zlgll j=1 g=1 i=1

s.t. 0<¢li=1,....,n,9=1,....G,Q"1, = 1¢. (4.26)

Proof. Combining the bounds and results from propositions 1, 2 aad@simplifying the

equation results in the optimization problem @r ]

The convex optimization problem in Eq (4.26) can be solvefbbews. Constructing

a Lagrangian for the problem in Eq (4.26), and setting itévdéve w.r.t.¢/ to 0, we have

NG — L — = (Z 0% nﬂ> — 6, =0, (4.27)

whered,, g =1, --- , G are the Lagrangian multipliers for constrai@sﬂ"‘:1 qj = 1. Defin-
ing

al =2\, b = +6’g, d —Z%nﬂ,
the above equation can be rewritten as,

2
al (¢) — ba? — =0,

Given coefficients!, b/, andc!, the solution tg;! is found as

1 7

g

b + /b2 + 4alc!
q; = .

g
2a;
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We can estimaté, by solving the nonlinear equation;_, ¢/ = 1. Note that the function
>, ¢ ismonotonically increasing in terms @f, and therefore can be solved by bisection

search on the intervad, € [min;(a — b — nc}), max; (b + nc! — a)].

Remark One can interpret quantitié$ andc; as follows: (i)b] essentially measures the
consistency betweeRr(c,|z;) andg/. In particular, if+/ is large, which implies:; must
be assigned to clusteg, andz{ is small, which implieg;] is large at the current iteration,
we then will have a largé], which will lead to larger value of; in the next iteration; (ii)
¢! measures the consistency between assigning dataspdamtlusterc, and its neighbors.

In particular, a Iarge;ji indicates that; has a significant impact in driving; to clusterg.

Remark If A = 0, then we can see that the solutiondfis given by the following

equation:¢! = bf. The following non-linear equation must be solved to obtdin

Since#? € R, this function is discontinuous whenewr= —Z—j Since we require! > 0,
we need’? +max; Z—Z < 0. Also,~/ takes a non-zero value for only one of thealues. This
function is therefore well defined only in the range (—oo, — max(v7/z7)). Whenever
a point contributes to a cluster by a large amount, the valug 6:; is really large. This
results in several numerical problems while performingsatiion search. Apart from this,
we have observed that the performance with- 0 is much inferior to that with a small
positive \; resulting function is smoother, and easier to numericgpiymize.

The procedure for finding) andI" that maximizes the log-likelihood in Eq (4.8) is
summarized in Algorithm 1. Upon convergence, the value,ofietermines the cluster

label forz;.
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Algorithm 1 [@, I'] = NonParametricMixturé, G, \, o)

Input: DatasetD, no. of clustersy, parameters ando
Output: Cluster labeld” and the profile matrix)

1:

-
e

© o N o gk wh

Compute the kernel matrik for the points inD with bandwidtho. NormalizeK” such
thaty, K;; = 1.
Set the iteratiort < 0.
Initialize Q® « Q,, such that), = 0, QI'1,, = 1¢.
repeat
t—t+1;
Compute the variableg’ using Eq (4.10);¢; andz{ using Eq (4.23) an@ V.
Minimize Eq (4.26) to estimat@®.

AQ — QW — Q-1
until [|AQ||3 < ¢, (e is pre-set to a desired precision)
return @Q,T
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Figure 4.2: lllustration of the non-parametric mixture eggrh and Gaussian mixture mod-
els on the “two-moon” dataset. (a) Input data with two cluste(b) Gaussian mixture

model with two components. (c) and (d) the iso-contour pdtson-parameteric estimates
of the class conditional densities for each cluster. Thanearthe color, the higher the

probability.
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Figure 4.3: lllustration of the (a) non-parametric mixtagproach, (b) K-means and (c) spectral clustering on thenpleadataset
from [1]. Input data contains 100 points each from three spaktwo-dimensional Gaussian clusters with means (@g)9) and (8,0)

and varianced/,,0.41, and0.41,, respectively. Spectral clustering and NMM use- 0.95. Plots (d)-(f) show the cluster-conditional
densities estimated by the NMM.



4.2.4 Implementation details

Normalization is one of the key issues in kernel densitynestion. Convention-
ally, the kernel function is normalized over the entire domaf the data,x,(x) =
(mro)~4exp (—]|x||?/20?%). However, this may cause serious problems in density estima
for high-dimensional data (large values®f To overcome this problem, we normalize the
kernel matrix such that each of its columns sum to 1, )¢, K; ; = 1. This essentially
nullifies the effect of dimensionality on the estimation gass, and is useful in handling
sparse datasets.

In all kernel based clustering algorithms, the kernel badtwo is the most crucial
parameter. Our empirical results show that, similar to spéclustering, the choce of
kernel bandwidthr is critical to the success of the nonparametric mixture ratigm; X is
not very critical.

in all of our experiments we choose= 10—, which results in mild smoothing of the
¢} values, and avoids any numerical instability in the aldpnitdue to the logarithm.

From Proposition 3, it appears as if the most memory and ctatipoally intensive
part of the algorithm is the storage and computation/of which requiresD(n*G) space.
However, note that;; is always accompanied with the variable as ZQGZI ving;. By
exploiting this, the space and computational requiremeatg be simplified by an order of
magnitude. Since only one of th possibley/s is equal to 1 for each= 1,--- ,n, the
only nZGJ that needs to be computed is whegh= 1; rest of them will be 0 since they will
be multiplied by with value equal to 0. The overall space requirement forméezliate
variables is therefor® (nG), which is much smaller compared to thén?) space required
to store the full kernel, in kernel based methods. Usage afsgpkernels can reduce the

computational and space requirements further.
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4.3 Results and discussion

The NMM algorithm is evaluated on datasets from three difiesources (a) synthetic, (b)
UCI and (c) text datasets derived from the 20-newsgrbdataset [166]. In the following
section, the baselines used for comparison are discusbedesults and discussion on the

test datasets are presented in the subsequent sections.

4.3.1 Baseline methods:

The proposed non-parametric mixture algorithm is compavigd three classes of well
known clustering algorithms: (a) K-means and Gaussianurexinodel (GMM) with di-
agonal and full covariance matrices, (b) one kernel-bakgatithm, namely NJW spectral
clustering [42], and (c) three non-parametric hierardhitastering algorithms, including
Single Link, Complete Link and Average Link. For (a) and (cg use the implementations
from the Matlab’s Statistics Toolbox. For the linkage basedhods, the number of clusters
is externally specified. We chose the spectral clusteriggrathm based on [42] because its
performance is shown to be comparable to that of Normalized,@uad it has been shown
to be equivalent to Kernel K-means. Comparison with Meaft;shi related algorithms
is difficult as the number of clusters is not specified apiilothese algorithms. Note that
clustering approaches like Mean-shift were not designedlfcstering high-dimensional
text data and they are known to perform poorly on such dataketch algorithm is run 10
times and performance averaged over ten runs of the exparimesported in Tables 4.2
and 4.4. The best performance for each dataset is showndrfdu# in Tables 4.2 and 4.4.
At each run, the NMM, K-means, GMM, and Spectral clusteriregevnitialized with
5 different starting points; only the best performance moreed. We only show the best
performance among the three hierarchical linkage baseatitdms, without specifying

which algorithm achieved it.

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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4.3.2 Synthetic Datasets

The NMM algorithm aims at identifying clusters of arbitreslyapes, while estimating their
conditional density. Figure 4.2 illustrates the perforocenf NMM on a dataset not suit-
able for GMM. Figure 4.2(a) shows the input data. Figurel).& shown to contrast the
proposed NMM agains the parametric Gaussian mixture md@al\) with the number
of mixture components set to two. Figures 4.2(c) and (d) sth@xclass conditional densi-
ties for each of the two clusters. The proposed algorithniblis o recover the underlying
clusters, as well as estimate the associated conditiomaitges, which is not possible for
GMM as shown in Figure 4.2(b).

Figure 4.3 illustrates the performance of the proposedriélgo on a dataset that is
known to be difficult for spectral clustering [1]. Both K-mesaand spectral clustering fail
to recover the clusters due to the difference in the coveeisnf the three spherical clusters.
Because of the local nature of the NMM (the cluster label ofiatge affected only by the
cluster labels of neighboring points), it can succesfullgaver the clusters, as shown in

Figure 4.3(a); the cluster conditional densities are shiowrigures 4.3(d)-(f).

4.3.3 UCI Datasets

The proposed algorithm is evaluated on 17 different dagasem the UCI ML reposi-
tory [167]. The details of the datasets are summarized ifirgtdour columns of Table 4.2.
The choice of these datasets is motivated by their popylagtiety and previous usage.

For the large UCI datasets, 3000 points are randomly sampitexdifstering for compu-
tational feasibility. The pairwiséy measure was used for evaluating the clustering qual-
ity [168]. An RBF kernelK (x;,z;) = exp(—||z; — z;||*/20?) is used for the density
estimation and also in the spectral clustering. The pammen the RBF kernel is set to
the 5-th percentile of the pairwise Euclidean distancegfmh dataset.

The performances of the baseline algorithms and the NMMrdlgo are presented in
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Table 4.2: Mean pairwisé) value of the performance of different clustering algorighm
over 10 runs of each algorithm on 17 UCI datasets. The kerrdthvis chosen as thg”
percentile of the pairwise Euclidean distances for Keralda algorithms. The best per-
formance for each dataset is shown in bold. The name of tleseathumber of samples
(n), dimension (d), and the number of target clusters (Gghosvn in the first 4 columns
respectively. An entry of -’ indicates that the algorithnd chot converge. The last col-
umn shows the bedft; value achieved by Single (S), Complete (C) and Average (A) link
algorithms.

NMM K-means GMM NJW-Spec Linkage

Dataset n d G Diag Free max(S,C,A)
adult 3000 47 2 6894 63.02 59.81 59.61 65.38 61.23
sat 3000 36 6 71.29 6399 70.82 66.86 50.11 60.93
banana 2000 2 2 86.87 76.69 77.25 83.10 82.85 76.69
bupa 345 6 2 5278 4455 50.40 49.94 37.08 44.46
heart 270 9 2 84.08 84.07 53.62 74.89 82.63 82.26
wdbc 569 14 2 90.82 90.92 6291 77.31 49.18 89.91
glass 214 10 6 66.25 67.07 - - 68.33 66.99
ionosphere 351 34 2 7154 71.77 - - 50.73 71.36
austra 690 15 2 81.03 8250 5253 66.71 39.95 75.71
musk2 3000 166 2 62.02 61.79 60.162.39 61.81 61.52
house 232 16 2 88.80 88.80 - 68.11 88.80 91.39
digits-389 317 16 3 80.93 62.25 48.489.34  58.17 73.20
ins 150 4 3 93.26 89.18  93.9896.66 90.53 83.90
letter-ijl 227 16 3 58.15 54.44  53.8864.21 54.98 53.73
magic0O4 3000 10 2 53.90 50.25 55.96 54.58 52.34 50.40
muskl 476 166 2 52.57 52.67 55.51 52.67 52.57 51.57
german 1000 24 2 55.58 50.99 - - 58.70 51.24

Table 4.2. Overall, the NMM algorithm yields compelling fe#mance compared to the

baseline algorithms.

e NMM significantly outperforms K-means on 9 of the 17 datasets the remain-
ing 8 datasets, the performance of NMM is still comparabléhtobest performing

algorithm.

e NMM significantly outperforms GMM with diagonal covariargcen 14 of the 17

datasets, and outperforms GMM with full covariances on 1thefl7 datasets.
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e NMM performs significantly better than spectral clusterargll of the 17 datasets,

and significantly worse on only 1 of the 17 datasets.

¢ Hierarchical clustering is outperformed significantly ahdf the 17 datasets.

4.3.4 Text Datasets

Table 4.3: Text datasets used in the evaluation. The datase¢ composed of articles from
three or four different newsgroups; the number of clustéjsg assumed to be known. The
number of samples and number of features is denoteddnydd respectively.

Dataset n d G\

cmu-different-1000 2975 7657 3
cmu-similar-1000 2789 6665 3
cmu-same-1000 2906 4248 |3
cmu-different-100 300 3251 3
cmu-similar-100 288 3225 3
cmu-same-100 295 1864 (3
3
3
P

cmu-classic300 300 2372
cmu-classic400 400 2897
4newsgroups 3000 500

We use 9 high dimensional text datasets to show the efficacthefalgorithm.
Eight of the text datasets are from [169], which are prefixgdcbu.We selected four
of the 20-newsgroups datasets to create the datasetsgr oups with multimodal
clusters. The task is to partition the 4 newsgroups into twesters, politics
vs. religion. The politics cluster is a combination of documents from
the newsgroupd al k. politics. m deast andtal k. politics.guns. The
rel i gi on cluster contains documents from the newsgrougkk. r el i gi on. m sc
andsoc.religion.christianity. Features are extracted from these datasets by
considering only those words that appear at least 10 tintbgiwhole dataset. This reduces

the dimensionality of the dataset by restricting the vo&alyusize. Thednewsgr oups
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dataset is preprocessed to select 500 features with themaaximutual information with
the desired class labels. A summary of the text datasetesepted in Table 4.3. In addi-
tion, NMM performs particularly well for some of the text dagets compared to the other
baseline clustering algorithms. The difficulty of clustegyithe text datasets arises from its
high dimensionality. It is however generally believed ttext data, despite its high dimen-
sionality in the original space, tends to exist in a manifafitbw dimensionality [170]. The
success of the NMM algorithm with text data indicates th& guitable for handling high
dimensional data that are embedded in a manifold of low dgoes. These manifolds
are rarely compact, and hence algorithms that prefer gholmllisters cannot capture the
structure of the data. This explains why K-means and GMMddiind good clusters in the

text data becuase these two algorithms are essentiallgrassio prefer compact clusters.

Table 4.4: Mean pairwisé) value of the performance of different clustering algorithm
over 10 runs of each algorithm on 9 high-dimensional texaskts. The kernel width is
chosen as thé'" percentile of the pairwise Euclidean distances for Kerraalel algo-
rithms. The best performance for each dataset is shown th Gd¢le name of the dataset,
number of samples (n), dimension (d), and the number of tatgsters (G) are shown in
the first 4 columns, respectively. An entry of ’-’ indicatdést the algorithm did not con-
verge. The last column shows the bégtvalue achieved by Single (S), Complete (C) and
Average (A) link algorithms.

NMM K-means GMM NJW-Spec  Linkage
Dataset Diag Free max(S,C,A)
cmu-different-1000 95.86 87.74 - - 94.37 40.31
cmu-similar-1000 67.04  49.86 - - 45.16 37.28
cmu-same-1000 73.79  49.40 - - 48.04 30.01
cmu-different-100 95.27  79.22 - - 87.47 75.74
cmu-similar-100 50.89  40.10 - - 38.35 43.82
cmu-same-100 48.97 44.85 - - 46.99 41.79
cmu-classic300 85.32 86.32 - - 86.02 80.61
cmu-classic400 61.26  60.13 - - 51.01 53.31
4newsgroups 76.81  73.88 - - 74.13 68.25

Table 4.4 shows that the NMM algorithm performs significaftétter (paired t-test,
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95% confidence) than the baseline clustering methods ohelieixt datasets, except for
cnu- cl assi ¢c- 300 where its performance is slightly inferior to K-means. Gaas
mixture models are prone to numerical estimation problefnsenathe number of dimen-
sions is larger than the number of samples. For this reabesgttext datasets cannot be

clustered by GMM, as indicated by the ‘-’ entries in Table.4.4

4.3.5 Discussion

Kernel density estimation (also known as non-parametemsity estimation, Parzen win-
dow estimation [20]) is a popular approach for density egtiom. It aids in estimating
the probability density of the data when the underlying dgre the data is not known.
In most real world data analysis tasks, the densities ar&mmin, or may not even be
closely approximated by any parameteric density. Furtbegmnon-parameteric density
estimates asymptotically converge to the true densiti@3][IThese estimates usually have
a single parameter called the bandwidth, that controls itih@oghness of the distribution.
By changing the value of the bandwidth density estimates ofing smoothness can be
obtained. In high dimensions, when the data is sparse, ard wh assumptions about the
density can be made, non-parameteric density estimatels irea smooth estimate of the
density. This is one of the key reasons why the NPM algoritlemigoms well when the

data is high-dimensional and sparse.

4.3.6 Sensitivity to parameters:

There are two parameters in the NMM algorithm: the regudainzeight\ and the kernel
width o. The parameter is set to theo' percentile of the pairwise Euclidean distances. A
useful range fop is 5-10%, as suggested in [41]. Figure 4.4 compares thepeaftce of
the NMM algorithm to/-means, Spectral clustering and Hierarchical clusterimg of the

26 datasets used (including both text and UCI) for differethi@s of the kernel bandwidth.
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Four of these datasets (Different-100, Similar-100, S40@and Classic-400) are chosen
from the text datasets, and the remaining ones are chogsartlieUCI datasets. For these
datasets, the NMM algorithm exhibits superior performaover the baseline algorithms.
The plots show that there exists a range of kernel bandwidlilneg for which the NMM
algorithm performs significantly better than the competimgthods. Figures 4.4(c), 4.4(d)
and 4.4(i) show the datasets where the NMM algorithm persdogtter than the baseline
algorithms only in a specific range pfnamely(0, 0.1). For some datasets (e.g., Different-
100, Classic-400), the NMM algorithm is more stable compaoetthat of other datasets.
The NMM algorithm is not sensitive to the value »f over a larger rangel(—* to 10%).
For almost all the datasets, the change in performance igyitdg with varying values
of A. However,\ does play a role in determining the sparsity of the profilermatAs

A increases, the solution tends to get smoother. The perfarenaf the clustering might
degrade with larger values of The key role of) is to provide numerical stability to the

algorithm. Therefore a small value af( 10~*) is preferred.
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Figure 4.4: Performance of the NMM on nine of the 26 datassésl uwith varying value
of the percentile ) used for choosing the kernel bandwidth).( The NMM algorithm is

compared with NJW (Spectral Clustering), K-means and thedf¢ise three linkage based

methods.
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4.4 Parameter selection

The kernel bandwidth is the most crucial parameter in kernel based clusteringyigtgns.
Almost all kernels (except linear kernel) have a bandwidihameter. In this section we

define a heuristic for selecting the bandwidth parametergusairwise constraints.

4.4.1 Maximum Pairwise Constraint Satisfaction Heuristic

For a given dataset with data points, letn be the number of pairwise constraints that are
randomly generated by sampling pairs of data points frondttaset with replacement.
The set of must-link constraints is denoted.by and the set of cannot-link constraints is
denoted byC. The dataset is clustered by changing the value efich time. For each
o the clustering algorithm is run 10 times with different ializations. We define the
pairwise constraint satisfaction measgy€y) as the fraction of constraints satisfied by the

clustering algorithm for a particular value @fand clustering/. That is,

i, X5 € I i = Yj + X, X5 € I i J
gg(y):Ewa (Wi = Y5) + 2, xyec L (Wi # 45) (4.28)

m

Since RBF kernel is popularly used with spectral clusterindg atiner kernel based
methods, the parameter selection heuristic is evaluateddiecting the bandwidth of
the RBF kernel for spectral clustering and the proposed noaapetric mixture ap-
proach. The value of is chosen as thg-th percentile of the pairwise similarities, and
p € {0.01,0.05,0.10,0.15,0.20,0.25,0.30}. Figures 4.5 (a) and (b) show the performance
of the clustering algorithm vsp. In our experiments we set = 7. The clustering
performance is measured using the pairwi$emeasure [171] averaged over 10 runs of
clustering algorithm with different initializations. Iraeh plot, the horizontal axis shows
the percentilep used for selecting the sigma and the vertical axis showsehenmnance.

The solid line shows the performance of the clustering algorand the dashed line shows

the constraint satisfactiay. The value otr corresponding to the value pfwith the largest
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constraint satisfaction is chosen as the parameter folltiséecing algorithm. In almost all
the cases, the constraint satisfaction plot has similakgpaad valleys as the clustering
performance plot. In the cases where this does not holddilséecing performance is very
low, almost close to that of random assignment of labelsureig 4.7 (a) and (b) compare
the performance of Spectral Clustering with the proposedrdlgn for the same range of
values foro. In almost all the datasets, even if the proposed non-pdrenmeixture ap-
proach does not outperform the spectral clustering for thelevrange otr, there exists
a value ofo for which the proposed algorithm outperforms spectralteltisg irrespective
the o value chosen by the spectral clustering. Since pairwisstcaint based parameters
selection provides a way to identify this particubgrthe proposed algorithm outperformed
spectral clustering on almost all the datasets.

Table 4.5 compares the performance of spectral clusterittg\WM. The bandwidth
parametes is chosen using the maximum pairwise constraint satisfatteuristic for both
the approaches.

Goldberger and Roweis [172] present an algorithm to clus@iven dataset using a
Mixture of Gaussians with a large number of components, arnttiér clustering the com-
ponents into a reduced mixture with lesser number of compusnerhey achieve this by
minimizing the KL divergence between the learnt mixturehwdrge number of compo-
nents, and another mixture with smaller number of companehhe proposed approach
can be related to an extreme case of [172], where each pdmeaied as a separate clus-
ter with a Gaussian density of fixed variance and mean equbktdata point, and these

clusters are further clustered.

4.5 Connection with K-means

In this section, we show that two simplifications of the pregd objective function

(Eq (4.8)) lead to objective functions that correspond ton&ans and Spectral cluster-
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Dataset| Spectral Mearf;  (std) || NMM Mean 7y (std) |

ionosphere 69.83 (0.0) 71.31 (0.1)
adult 79.43 (0.0) 76.21 (8.6)

austra 80.63 (0.0) 81.87 (0.2)

bupa 52.26 (0.0) 53.25 (0.3)
german 54.69 (0.0) 54.23 (0.0)
heart 73.44 (13.2) 83.59 (0.2)

texture 73.71 (20.7) 95.68 (0.0)

uci image 34.20 (4.7) 56.62 a.7)
vehicle 31.39 (0.2) 40.25 (2.2)
classic300 86.02 (0.0) 86.36 (0.0)
different-100 93.31 (0.1 95.64 (0.2)
same-100 53.95 (3.4) 52.38 (1.9)
similar-100 54.67 (1.2) 62.01 (3.2)
different-1000s| 94.20 (0.2) 95.86 (0.0)
similar-1000s 65.58 (5.7) 67.72 (5.5)
same-1000s 66.80 (8.6) 72.16 (2.1)

Table 4.5: Mean and standard deviation of the performancgpettral Clustering vs.

NMM approach. The bandwidth is selected using the maximuimwjse constraint sat-

isfaction heuristic. Significant differences (paired st1e€95% confidence) are shown in
boldface.
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ing. However, these simplifications are based on some appations, SO we cannot claim
the superiority of non-parametric mixture model for clustg over spectral clustering and
K-means. Still, this connection at the objective functiewdl between the three clustering

algorithms opens up avenues for further exploration of parametric mixture models.

4.5.1 Approximation to weighted K-means

A slightly different relaxation of Eq (4.8) results in thers@ntional weighted K-means
clustering. Since we have the constraint thatg; = 1, we can use the Jensen'’s inequality

to take the log inside,

n G n

log P(D) > ZZW?ZQ? log K;.

i=1 g=1  j=1
For a Gaussian kernel, we havg K,; = —(z; — ;)X (x; — z;). Simplifying it further,
we havelog K;; = — 2 ||z; — z;||%. Therefore,

n G n

log P(D) > ——5 35" S5t — .

i=1 g=1 j=1
Using the definition ofy/ and the inequalityy ", g |z; — z;* > |z, — 327 qfx;[*, we
could further simplify the above equation as follows

G
—log P(D) <> > [l — gl %,

g=1 z;€C,
wherep, = Z;;l qjx;. The right hand side in the above equation is the objectimetfan
for weighted K-means. Maximizing the likelihood in the posed approach, therefore
loosely minimizes the scatter between the data points. Hyeskep here is the use of
Jensen’s inequality; the log eliminates the effect of theomential in the kernel, thereby
removing the “localization” introduced by the kernel. Ndtat the effect ob is completely

lost. As a result, all the points have the same effect on etr.o
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4.6 Summary

We have proposed a non-parametric mixture model, called NMMdata clustering. It is
a probablistic model that clusters the data by fitting kedegisity estimate to each cluster.
We have evaluated its performance on 26 standard datasbtiawge differences in dimen-
sionality, number of data points and cluster structure. efixpental results show that the
NMM based clustering performs well against some of the wadhitn clustering algorithms
(K-means, spectral, GMM and hierarchical). The non-pateammixture model opens up

a wide range of possible theoretical analysis related ta dastering.
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CHAPTER 5

Incremental Algorithm for Feature

Selection

5.1 Introduction

Online algorithms provide an efficient way to continuousdarin from examples as and
when they become available. In this chapter, we addressriixem of feature selection
using an incremental algorithm. In particular, we aim tofg@en feature selection on im-
ages represented avag of visual word$157]. The algorithm is derived using the frame-
work of online learning [173]. Therefore, most of the chapt#lows the online learning
terminology. However, the algorithm is applied in an incegrtal fashion as described in
Section 5.5.

Representing images using a bag of visual words [174] hasvestsignificant at-
tention. In this approach, each image is represented adrdbdi®n over a set of visual
vocabulary. The vocabulary itself is a set of prototypesimiad by clustering the set of key
points (e.g., using SIFT operator) pooled from a collectbtraining images. Several ap-

plications such as image clustering [156], large scale @1&@5] and video retrieval [159]
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Figure 5.1: Steps involved in constructing a bag-of-visuatds representation of images. (a) Given collection afges. (b) Features
at key points are extracted (the SIFT operator [2] is a popzHaice). (c) The key points are pooled togheter. (d) Thedawpts are
clustered using hierarchical K-means algorithm. The cgtiérobtained after clustering the key points are calledvitigal words. (e)
The features in the key points in each image are assignedsteclabel, and the image is represented as a frequencygitasicover
the cluster labels. The centroids sharing common parertareidered similar to each other, and are callisdal synonymsVisual
synonyms are shown using the same color in the table.



have shown this method to be promising in both performandeseaalability.

Recent studies have shown that the choice of vocabulary sizéhnave a significant
impact on the performance of learning algorithms [176]. AaBmocabulary size may
result in a feature space not rich enough to capture thebibtyain the images in the
database, while a large vocabulary may cause two keyptiatate similar to be mapped
to two different visual words leading to suboptimal perfamoe. Further, a large number
of visual words results in the well known problems of cursaimhensionality, complex
hypothesis spaces and large computational requiremeeggurié selection, or vocabulary
pruning, is an important step that retains only those salemds needed for subsequent
image matching or retrieval [177].

Visual vocabularies are usually constructed using receigartitional clustering algo-
rithms such as bisecting K-means, resulting in a clusteali@y [175, 160]. This causes
the visual words at the leaf nodes that are children of a compacent to be similar to each
other. If one of the visual words is not informative, it is adlication that its siblings may
not be informative as well. One of the basic premises of tlugkws to exploit what we call
visual synonymfor feature selection. Visual synonyms are identified asvibeal words
sharing a common parent in the cluster hierarchy.

We propose to use pairwise constraints to encode the neddtijp between images.
The pairwise constraints are used to identify the subseisofal words that explain the
similiarity or dissimilarity between the correspondingages. Since we perform feature
selection using unlabeled images and the given pairwisst@nts for a small number
of images, the input setting resembles a semi-supervisetiecing scenario. However, it
should be noted that the feature selection is performed wsilyg the labeled pairs, and
hence is somewhat supervised. The pairwise constraintsfdve types: must-linkand
cannot-link A pairwise constraint is a natural way to encode a user'sgd visual
similarity between a pair of images. It is easier to specifpastraint between two images

than labeling them explicitly with some keywords based drthe objects present in it.
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Figure 5.2 illustrates the goal of the proposed approaahguan image pair labeled as
must-link Loosely speaking, the common key points between a pair afjés need to be
discarded if they form a cannot-link pair, and need to beimethif they are a must-link
pair.

In this paper, we propose an efficient online algorithm thkeés in a stream of images
and the associated pairwise constraints, and selects etgiésual words. Since each key
point in an image is mapped to one of the visual words, prutiiegzocabulary results in a
reduction in the number of key-points in an image. The feagmoup information obtained
from the cluster hierarchy is exploited to shrink the featweights at a group level. The

guality of the selected features is evaluated using an irolgering application.

5.2 Related work

Dimensionality reduction is a classical problem in multise statistics and pattern recog-
nition. All disciplines of learning, i.e. supervised, upswised, and semi-supervised usu-
ally perform some sort of dimensionality reduction. Dimienslity reduction techniques
can be broadly classified into feature selection or featxteetion. In feature selection,
the goal is to obtain the most salient subset of features fhenavailable feature set. The
size of the subset is usually specified by the user. An intbol to feature or variable
selection can be found in [178, 177, 179]. Feature extractiocontrast with feature se-
lection, identifies a (non)linear combination of existirgatures. This could be followed
by a feature selection to reduce the dimensionality of thteaeted feature vector Most
feature extraction methods aim to learn a transformatiomfthe input feature space to
a sub-space of smaller dimensionality such that a desi@aiikrion is maximized. For
example, Principal Component Analysis (PCA) [20] is an unstiped linear dimension-
ality reduction method that retains the maximum possibteanae of the data in the input

space when projected into the sub-space. Linear DiscrimiAaalysis (LDA) [20] is a
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supervised linear dimensionality reduction techniqué finals a projection to a subspace
such that the separation between the classes is maximizedthdwithin class variance is
minimized. In applications requiring interpretability thfe features used, feature selection
is preferred to feature extraction.

Feature selection methods can be broadly classifiedse#&och basedanethods (e.g.
floating search [179])feature ranking andshrinkagemethods such as LASSO [180] and
Group LASSO [181]. Feature selection by ranking sorts tlauies based on a score,
such as correlation coefficient or mutual information, cabted between the feature and
the class labels. While feature ranking is commonly used asseline, features that are
correlated with the labels are possibly correlated amoegtelves as well, resulting in
the selection of a set of redundant features [177].

Search based methods are further classified fitter and wrapper methods. They
operate by incrementally modifying a selected set of femtiny adding or deleting fea-
tures one by one. These approaches are greedy in naturereaafiezted by the order of
adding/deleting features to/from the set. Moreover, threycamputationally expensive as
the learning algorithm is run every time the selected featat is modified. Branch and
bound algorithms tend to be more accurate, but are limitedeir ability to handle only
a small set of features due to computational reasons. Seassgd algorithms are batch
mode, and require all the labeled data examples be predene bleey can be used, and are
not applicable to an online setting.

Shrinkage methods are widely used for variable selectiomuitivariate regression.
These tend to be more principled, and amenable to thedratiedysis with a predictable
behavior. In general, supervised learners such as SVM tearweights of features. Fea-
ture selection, however differs from feature weightingritage methods such as LASSO
perform feature selection by driving as many weights to zerpossible. In a supervised
setting, several algorithms such as 1-norm SVMs [182],SVM[183] and Lasso Boost-

ing [184], ridge regression employ shrinkage strategy.h®oest of our knowledge, there
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is no feature selection method proposed in the literatuaie @mploys LASSO shrinkage
with pairwise constraints.

Distance metric learning (DML) is another related area wlibe features weights are
learnt from labeled examples [123, 185]. DML methods leagquadratic distance func-
tion parameterized usingdax d weight matrix, wherel is the dimensionality of the data.
Online DML algorithms such as POLA [123] involve a projectistep to ensure positive
definiteness of the feature matrices, and are computalyoegbensive. Even using a di-
agonal weight matrix, they tend to prefer uniform featuraghts, contrary to our goal.
The proposed algorithm can be shown to be a generalizatitred®OLA algorithm with

diagonal weight matrix, when all the visual words are put sirggle group.

5.2.1 Review of Online Learning

Learning algorithms can be divided into two groups basedamthey recieve (or utilize)
the input data -batch algorithmsand online algorithms Batch techniques (e.g. MLE,
MAP) require the processing of all the input training data tine. This could be inefficient
(or eveninfeasible) for large datasets. On the other hariohelearning techniques process

only one data item at each time. This has two advantages:

e They are computationally more efficient for large datasets.

e They are applicable to scenarios where all the data is ndaal@aat once, but arrives
in a stream (e.g. images uploaded to the Internet on a dasig,badeo streams from

surveilance cameras etc.).

Given a hypothesis spadé€, batch mode algorithms select a classification function
from H such that the training error on a given data&eis minimized, while optionally
satisfying an additional regularity condition on the hypegis. This error minimization

can be performed using gradient descent methods. Batch nhgaigttans compute the
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Algorithm 2 SupervisedOnlineLearning
input: examples;, one per round of learning.
parameters: loss function/( f(w,x),y), stepsize\, hypothesis set{
output: parameters of the classification mosek H.
Initialize w < 0,t <+ 0
for eachround =1,2,--- do
Observex; and Predicy; = f(w,x;).
it £(f(x¢, ), y¢) = 0 then
w, « UpdateWw;_1,x;, \)
w; «— Projectw), H)
end if
t—t+1
end for

gradient of the training error (or a surrogate) on all thenapi@s at each descent step. In
contrast, online algorithms perforstochastic gradient descefiinder the assumption that

the samples arei.d.), where the gradient of the training error (or its surroysteomputed
using only one example each time. This example is selectedomived randomly and
hence the namstochastic The gradient computed using one data item may be seen as a
coarse approximation to theue gradient computed using all the exmaples.

Let the data point at time be represented using € X and the output space be
represented by. Let f : X — Y € H is a function that we want to estimate such that the
loss?(f(x:),y:) is minimized. Further, let us assume that the functionsénsihace are
parametrized by parametexs € S. For example, the class of binary linear classification
functions, i.e.,X,S C R? whered is the dimension of the input feature space, where
f(w,x) =w'x,x € X andw € S. The general structure of the online algorithms for this
setting is summarized in Algorithm 2.

The motivation for the further analysis and theory of onliearning comes from the
following special case. Consider a set up where therel aeperts (corresponding ¢
features) and the task is to learn a set of weights to comb@mexperts where the weighted
average of the experts is a more accurate prediction thaofaie individual experts. In

this casex,inX C R?is ad-dimensional vector containing decisions of experts decss
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We can now define a useful quantity called thstantaneous regret vectey ¢ R? as the

loss of individual experts at timi

ry = (7°1,t, T2ty - ,Td,t) (5-1)

wherer; , is the regret (or loss) of not choosing thth expert’s decision as final decision.
The cumulative regret vectatan now be defined as the sum of instantaneous regrets over

all the rounds fromt =1,--- . T,
T
R =31 (5.2)
t=1

These regret vectors perform an important function in deteing the weights of individual
experts. Naturally, the higher the regret of a particulgregk the more the weight it should
be assigned in the next round. Therefore, one can assigndights to the experts based

on the cumulative regret vectors, that is,
wy = Iy (5-3)

Letd : A c R? — R be a strongly convex function with some additional projstti
(Legendre function). Since the gradientd®f.) is monotonically increasing, we may also
assign the weights as

w, = VO(R,_y). (5.4)

The function® is called the potential function, and is useful in incorgiorg useful
properties intow. Many existing online learning algorithms such as Perceptlgo-
rithm [20] or the Exponential-Gradient algorithm can bewhaas specializations of a
single algorithm with different choices df.

Since® is chosen to be a Legendre function [173], we can computeltleg@ndre dual
of ®, denoted byb* as follows:

d*(u) = ‘Sllelg (u-v—=>(v)). (5.5)
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The following relationship holds true between a functib@nd its Legendre duah*,

and is used heavily in the subsequent theory and algorithms:
Vo = (Vo). (5.6)

Using the relation from Eq (5.6), the dual relationship bew regret and the weight

vector can be written as,

w, = V&R (5.7)

R, = V& (w,). (5.8)

Potential-Based Gradient Descent

The goal of online learning is to minimize the regret. By ddilom of cumulative regret
vector, we know that,

Rt = Rt_l -+ Iy. (59)

Using the duality relation, we can write
Vo* (Wt) = V@*(Wt_l) + ry. (510)

The key idea of potential based gradient descent is that ritlelgm of regret mini-
mizationin the weight spacev is converted to a gradient minimization in the regret space.
Further, since the loss function is chosen to be convex,minmg the gradient implies
minimizing the loss. Since we want to minimize the regreiting the cumulative regret
vectorR, as a paratmetél, (for convenience of notation), the dual gradient updatelsan
written as,

91& == Qt_l - /\Vft(wt_l). (511)

From the relation betweeh andw, expressed in Eq (5.7), can be written as,

VOo* (wy) = VO (wy_1) — AV(wy_q). (5.12)
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Potential Name Algorithm

slul*  Polynomial potential ~Perceptron, Widrow-Hoff
> ;expu; Exponential potential Exponential gradient

Table 5.1: Choice of potential and the resulting classicahernearning algorithms

The weights at iteration, w;, can be obtained using the following equation:

w, = (V&) (VO (w, 1) — A\VL(w, 1)) (5.13)

= VO (VO (wi_1) — AVL(Wi1)). (5.14)

Online algorithms can be derived by specifying appropriate encode the desired char-

acteristics of the solution.

5.3 Problem formulation

LetD = {7,,...,Z,} be the given collection of images represented as a distribution over
the visual vocabulary = (v, ..., v,,) containingm visual words. Since the visual words
are often generated by a recursively bisecting K-meangitign we can derive a group
structure for the visual words. In particular, we assumevibeal words are divided into

s groups. Letv? = (vp, ,41,...,vm,) be the collection of visual words belonging to the
g-th group, forg = 1,--- , s, where(m,_; + 1) is the index of the first element in theth
group. Note that even when no group structure is availalleeethod is still applicable
where each feature forms its own group, ang m. Given the visual words, each image
7, is represented by a vector of visual word histogram, denbyes;, = (z;1,...,%;m).
Further, letx! denote the feature sub-vector of imagecorresponding to the vocabulary
vi. Letw = (wy,...,w,) denote the weights for visual words. The squared distance

between two visual word histogramxsand x’ given the feature weightes, denoted by
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|x — x'|%,, is computed as
x = X3 =Y wilw; — af)’. (5.15)
i=1

It is necessary that the weights are non-negative> 0, j = 1,...,m, for Eq (5.15)

to be a metric. The visual similarity between a pair of imageprovided in the form
of a pairwise constraint — a must-link constraint indicdtes images are visually similar
whereas a cannot-link constraint indicates two images egally different. Let7 =
{(x¢,%x},4:),t = 1,..., T} denote the collection of pairwise constraints that will lsed
for learning the weights, whese andx; are visual word histograms corresponding to two
images, and;, = +1, where+1 indicates the two images are visually similar and,
otherwise.

The goal is to learn weights for the visual words such that the following criteria are
met:

1. The distance between the two images computed using EB) (®flects the visual
similarity between the images.

2. Select a small subset of features by driving as many entrithe vectow to O as
possible.

For a given a pairwise constraifx;, x;, v:), if y; = 1, the distance between andx;
must be less than a threshaél@which can either be learnt, or specified by the user). On the
other hand, ify, = —1, the distance computed using the selected features museatg
thanb. We define a loss function measuring the error made by a weggtiorw on an

example paifx;, x;) with true labely; as follows:
O(wixe, X;, y) = max (0,1 — (b — |x¢ — x)[%,)) - (5.16)

In order to encode the hierarchical structure among visoatis; we introduce mixed

normfor weight vectorw, denoted by|w||; 2, that is defined as follows:

(5.17)




The above norm is introduced to enforce feature selectiangadup level, i.e., if multiple
visual words within a group are assigned small weight, theeegroup of visual words
may be deemed irrelevant and can be discarded. This mixed isooften referred to as
group-lasso or thé; , norm and is widely used for feature selection [186].

Using the norm defined in Eq (5.17) as the regularizer ando$gedefined in Eq (5.16),

the feature weights can be learnt by minimizing the follayvobjective function:

T

: 2 . /
min [wliEs + A3 6w, 01) (5.18)

t=1
whereb > 0 is a predefined constant. Our goal is to present an onlingitiigoto minimize

Eq (5.18).

5.4 Online algorithm using projections

Our online feature selection algorithm is presented iniSed.4.1, followed by a theo-
retical analysis in Section 5.4.2. For conciseness, we eléfiq = x; — x} and use the
notation?,(w) to denote the los§ w; x;, x}, y;) at thet-th round of learning. Algorithm 3

summarizes the general online feature selection framework

5.4.1 Algorithm

Step 1. Given a pair of imageéx;, x}), predict whether they are in the same cluster using
the existing weight vectow; and Eq (5.15). Observe the true outpytand compute

the loss/;(w).

Step 2. For convenience, define temporary weigbts= (0;,67,--- ,07), where? is

the subvector corresponding to grogpas follows:

g wi
Ot = HWtHLQ—gag: 1a”'8- (519)
[will2
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Step 3. Since the gradient of the loss functi®h, ¢, (w) = v, Ax, indicates the direction

for updating weights, the temporary weights are updateaguie following rule
0111 = 0; — A\Vyli(w;) = 0; — Ay Ax, (5.20)
where is a prespecified stepsize or the learning rate.

Step 4. To perform group level feature selection, each group is hteidj by a factor
that depends on the norm of the feature weights within themgrdn particular, we
compute the weight of each group using a soft-max functidratTs, the weight of
groupg, ¢¢ is obtained as,

g2
21 exp([[07]3/21)
The smoothing parametgrin the softmax function controls the distribution of group

weights. For a large all groups are weighted equally irrespective of their tytiland

asu goes to zero, only one group whose weights have the largestisselected.

Step 5. Since the weights for the features must be positive, repddicéne negative
elements ir@ with 0. Compute the weight vectaev, . ;from the temporary weight@

as follows:
g

0
Wi, = qg—HBftH%’ g=1,--,s. (5.22)
wherew? , is theg-th subvector ofv corresponding to the vocabulary gth group,
va.
Eq (5.22) gives the solution for the weight vecteoy, ; for the next iteration. Steps 1-5 are
repeated as each example pair (constraint) becomes dgaildie features corresponding

to non-zero weights i are considered relevant, and form the selected subsettofésa

5.4.2 Theoretical analysis

Potential based gradient descent [173, Chapters 2,11] islaredearning framework that

generalizes several classical algorithms like WidrowfHéfinnow and the recent Expo-
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nentiated Gradient (EG) algorithm [173]. However, clagkanalysis presented in [173] is
applicable only to potential functions that are strictiyngex. The potential generating the
L, > norm considered in the proposed approach is not strictlyeanin this section, we
propose a smooth approximation to the mixed nqunﬂ(‘{,2 for weight estimation. We be-
gin with the following lemma that allows us to rewrife||; , as a variational minimization

problem.

Lemma 1. The group-LASSO norm can be shown to be the exact minimizee obtia-

tional problem

LT RN
Slwliiz = rgﬂlg {Z Y py=1 (5.23)
g=1 g=1
Proof. Introducing the Lagrangian multipliek and setting the partial derivative of the

Lagrangian function to be zero, we have

P, = |w?]
Y E

Plugging the above expression iXQ’ _, [w?[3/p,, we have the result in the lemma. [J

A smoothing term is now introduced to ensure that the nprrij? , is strictly convex.

The smooth norn®(x, p) is defined as follows:

[[we|[3 '~
@(w; k) = min {Z 3, M) > py=1 (5.24)
g=1 g=1
where H(p) is the Shannon entropy defined &%p) = — Z;leg Inp,, andp is the

smoothnesparameter. Also, we havg|w||i, — plns < ®(w; ) < 4f|wfi,
Lemma 2. The approximate potential functieh(w, 1) is a strictly convex function.

Proof. Define@ = {p € R : Z;leg = 1}. According to the definition, we have
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¢*(w, ) computed as

" (w, )

mgx(w,v) — O(v, p)

- [0*[3

Pk
max T [wbl; — pp Inpy

wln iexp w
k=1 2

[

The following lemma shows the convex conjugate of the smootim, which is shown

to be strictly convex in the subsequent lemma.

Lemma 3. The convex conjugate of the smooth nobitw, 1), denoted byd*(w, i) is

computed as

& (w, ) = uln (Z esxp [%D

Proof. It suffices to show that for any, we have(v, H*(w, u)v) > 0. We thus compute

(v, H*(w, p)v) as

(v, H*(w, p)v) = Z%W%ﬂL% > arl(vn, wi)] — [qu@k,wk)]

where

o (2 20)
S, exp (Jud2/[24)

[

Note that ag: goes to zerod*(w, ;1) becomesnax; < < |[w?|3, which is the square of

the mixture of thelL . and L, norm. This is interesting sinck,, norm is the dual of_,

norm. Lemma 4 below shows thét (w, 1) is a strict convex function
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Lemma 4. The Hessian matrix o®*(w, 1), denoted byH*(w, i), is positive definite

i.e.,H*(w,u) = 0. Furthermore, if||w|, < R, we haveld*(w, ) < (1 + R*/u)I

Proof. Note that

Hence,
S 2
(o) = Sl = exp (<1512 ) >0
o
k=1

To show the upper bound &f*(w, 1), we have
(v, H(w, p)v) < (1+ R*/p)|vf;

[

Given that both potentiab(w, 1), and its convex conjugate*(w, i) are strictly con-
vex functions, the potential based gradient descent dlgogpresented in [173, Chapter 11]
can be used. The algorithm is described in Algorithm 4, whete {w € R : |w|, < R}
is the domain for feature weights artle R is a predefined constant. Step 4 involves a
projection of an estimate of weight vecter, ,, into €2, such that the Bregman divergence
generated by the potential functidn denoted byDg (w1, w;) iS minimized.

An online learning algorithm performs a weight update whendt makes a mistake
in its prediction. Online learning algorithms are charagtel by mistake bounds [173],
which bound the number of mistakes made by an algorithm cosdp@® those made by
the knowledge of optimal weight vector in retrospect. Thiofeing theorem shows the

mistake bound for the above online algorithm.

Theorem 2. For any convex loss functidgi learning rate\, and X, = max; || Ax;|| where

Ax, = x; — x}, letk = (1 + R*/p), and\ = ¢/(kX2). For all u € €, the number of
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mistakes\/ made by the proposed algorithm is bounded as follows:

2 2
M < 1 (nX (||u|| + plns) th ) (5.25)

—1—c€

Proof. For each training example\x;, y;) that was misclassified by, we consider

li(wy) — li(u) < (u—wy, V(W)
<u - Wy, 0;-4-1 - 0t>
(= Wi, V(w1 ) — V(v 1)

(D‘i)(u7 w;) — Dg(u, W£+1) + Do (Wi, W£+1))

IN

(D@(u, wt) — Dq>(u, Wt+1) + D@(Wu W1/5+1))

where Dg(u, v) stands for the Bregman distance framo u. The second step follows
the fact9,, , = V&(w,,, i), and the third step follows the property of Bregman distance

function, i.e.,
Dg(u,v) + Dg(v,w) = Dg(u,w) + (u — v, VO(w) — VO(v))

The last step follows the fact that,. ; is the projection ofv;, , onto the domaif0, +-00)™
based on the Bregman distanbeg(u, v). LetS include the indices of the trials where the
training examples are misclassified. We have
Zﬁt(wt) < th(u) + %Dq; (u, wy) ZD‘I’ Wi, Wy, 1)
tes t=1 A
Using the propertyDg (w;, Wy 1) = Dg«(0y,0,.1), we have
T

> lbw) < D li(u )+iD¢uw1 qu) (0,,0,.,)

tesS t=1 tGS

126



According to Lemma 3, we have
Dg+(0y,0;,,) < (1+ R?/p)|Ax, |
We thus have
M (1= X1+ R?/u)|Ax]?) th + Dq> u, wy)

where X, = |Ax| = max; |Ax;|. Finally, by choosingy; = arg min ®(w, ) = 0, we
wes
have

1
Do (u, w1) < ®(u) = (w1) < Sful® + plns

Finally, we have

1 1 ulf?
M < 1
_1—/\(1+R2/M)X§O%1618(/\ 5 +uns+Z€t

Substituting the\ defined in the Theorem 1, will give the above bound in terms of [

For e = 0.5, the above theorem shows that the number of mistdkesiade byw
is no more than twice the mistakes made by the optimal weigbtovu, and a constant

depending oni, the smoothing parametgrand the logarithm of the number of groups

5.4.3 Implementation details

For the potential function defined in Eq (5.24), steps 3 antiAlgorithm 4 are computa-
tionally complex. In particular, the computation'éfb (w,, 1) involves solving a non-linear
optimization problem defined in Eq (5.24). To avoid this, vge the original; » norm in-
stead of the smooth norm. Further, the projection step 4 godthm 4 is difficult. The
projection inL, , is performed approximately by projecting weights in eacbugr||w?||
into a unit ball using an., norm. This results in significant computational gains, with

negligible difference in empirical evaluation. This chmi@sults in a normalized weight
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Algorithm 3 IncrementalFeatureSelection
Initialize w < 0,t «+— 0
for eachround =1,2,--- do
Observex,, x;) and Predictl; < |x; — X}|w
if y.(b —d;) < 0then
w, < DualGradientDescentStep(x;, w;_1)
end if
t—t+1
end for

Algorithm 4 DualGradientDescentStep()
1.0, — VO(wy, p)
2.0, «— 0y — AVl (wy)
3. Wiy — VO (b, 1)
4. Wiy — mo(wi,, @) = argmingq Do (W, Wi )

vector, fixing the value ol = 1. The solution is given in Eq (5.22), and the detailed

derivations of the solution are presented in [187].

5.5 Experiments

Datasets: The proposed algorithm is evaluated using the PASCAL VOClehgé 2007
dataset [188]. This dataset has 9,963 images labeled uBidg&ses of objects. The train-
ing and validation set contains 5,011 images. A detailedrggsn of the data including
the number of images per class is provided in [188]. The imagéhe dataset have multi-
ple labels, and hence it is not directly suitable for evahgaimage clustering. We ignore
infrequently occurring objects in images and consider ahé/images containing one of
the 6 most popular classes in the dataset, narbelyycl e (243),bi r d (330),car (713),

cat (337),chai r (445), andper son (2008). The number of samples in each of these six
classes is shown in brackets. For objects with multiplel&alme of the labels is chosen

randomly.
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Table 5.2: Performance of the proposed algorithm measuwsieg) ypairwise-F1 measure.
The first two columns show the target clusters, subsequémtncs show the mean pair-
wise F; measure, expressed as percentage. Significant differ¢paresd t-test at 95%
confidence) compared to the K-means algorithm are indidate or a—.

Task Classes Proposed Online Baseling/| Batch Baseling
# c1 | 2 | K-means| L1, | Ly POLA(L) BestFirst
1 bird cat | 34.25 5477 | 51.18+ || 41.89- 56.40+
2 bird | bicycle | 46.88 45.79- | 49.30+ || 46.55 48.83+
3 bird chair | 57.51 57.97 | 60.22+ || 50.55- 61.10+
4 bird car | 55.74 63.24+ | 66.99+ || 58.32+ 66.01+
5 bird | person| 79.34 78.78 | 76.54- || 75.34- 73.47-
6 cat | bicycle | 42.55 53.8% | 61.73+ || 53.00+ 59.73+
7 cat| chair| 41.85 46.16+ | 48.04+ || 47.18+ 55.24+
8 cat car | 55.37 55.10 | 55.72 55.50 55.15
9 cat | person| 78.98 78.45 | 73.48- || 74.92- 66.47—
10 | bicycle chair | 62.83 64.18+ | 64.58+ || 60.73- 56.85-
11 | bicycle car | 66.25 67.78+ | 68.97+ || 65.69- 66.76
12 | bicycle | person| 84.09 83.76 | 78.44- || 79.96- 84.10
13| chair car | 50.35 51.03 | 52.02+ || 53.51+ 55.73+
14 chair | person| 73.67 76.68+ | 68.84- || 71.87— 64.91—
15 car | person| 62.65 62.73 | 59.97 || 63.74+ 57.03-

Summary 8+/1— | 9+/5— || 5+/8— 7+/5—

5.5.1 Feature extraction

SIFT (Version 4) key points [2] are extracted from each imagach key-point is repre-
sented using a 128-dimensional feature vector. The keytpektracted from images in the
training set are pooled together resulting in around 4.5anikey points. These key-points
are clustered into 5,000 clusters using approximate tubieal K-means algorithm from
the FLANN library [189], with a branching factor of 20, reng in a visual vocabulary of
size 5000. Key point histograms are computed for each inratieitraining set. The group
information of the visual vocabulary is obtained during thestering phase by identifying

all the visual words with common parents.
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Experimental setup: Group-LASSO is a general norm which can be specialized to bot
Lo or Ly using appropriate group definition. If the number of growgosdual to the number
of features, then Group-LASSO is equivalent to performiegttdire selection using an L1
norm. If all the features are put in a single group, the prepdasgorithm is equivalent to
the online distance metric learning algorithm POLA [123high uses ar., horm as a
regularizer. The performance of proposed algorithm witth&ithout group structurel(; -
and L,) is evaluated. The proposed algorithm is compared with/thelistance metric
learning algorithm POLA. To compare the performance of thine algorithm with the
batch mode algorithms, the classical Best First Searchitdigois used. However, note
that batch mode algorithms assume that all examples arkalleaa priori, and therefore
they usually have better performance. The performanceusteling can be compared after
applying an unsupervised dimensionality reduction atbarisuch as principle component
analysis. However, the performance of tiemeans clustering will not be significantly
different on the data with reduced dimensionality compdoeitie original dimensionality.
This is because, the clustering obtainedAymeans algorithm lies in the span of the top
few (> K in number) eigenvectors of the similarity matrix (lineartel) [190]. There-
fore, we do not show the results of clustering the data witheshisionality reduced using
unsupervised linear dimensionality reduction algorithms

For each pair of classes from the PASCAL VOC dataset, 300 ralydselected pair-
wise constraints are specified. The online learning algarits run for 10 epochs with
the same 300 constraints shuffled each time. The number gfeisnased for generating
the pairwise constraints is specified in the dataset desurign Section 5.5. The num-
ber of constraints considered in our algorithm is orders agnitude smaller than those
considered by other approaches [123, 185], which used drbdy®00 constraints.

K-means algorithm is used to cluster the images with thectedefeatures. Different
sub-tasks from the PASCAL VOC dataset are chosen based anctass labels. The

pairwise constraints provided to the proposed featuresetealgorithm are derived from
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the true labels of the examples. To alleviate the varighdiie to local minima in the K-
means algorithm, it is run with ten different initializati®. The cluster labels corresponding
to the run with the lowest value of objective function areduf® evaluation. Pairwise-F

measure is used as the evaluation metric.

Parameters: The proposed algorithm has two parameters — the learniagaastep size
in the sequential gradient desceRtand the norm-smoothness parameteWe seth = 7
wheres is the number of groups in the visual words. The valug ¢ set to 1. The value
of b is chosen empirically to be 4. Ideally, ¥ is unconstrained, the value bfdoes not
matter since it compensates for a scale factowin The approximation used for Step 4
of Algorithm 2 (see Section 5.4.3) results fh= 1 constraining the domain of to the
unit L, 5 ball. In this case, fob > X, there is now that satisfies any of the cannot link
constraints. Therefore a choicetomust satisfy0 < b < X.,. The domain siz&? is not a
parameter, and need not be specified.

The values of the parameter are selected using cross vahdat one of the clustering
tasks bi rd vscat ), which are then used for all the tasks. The range of valuethése
parameters to perform cross validation was motivated byofidra 2. It may appear that
selectingu close to O would reduce theln s term in the mistake bound in Eq (5.25).
However, setting: to be small results in a smallsmall, rendering the updates insignificant.
Moreover, too small or too large a value fomcreases the the bound significantly resulting

in poor learning, and hence is not recommended.

5.5.2 Results and discussion

Figure 5.3 illustrates the features selected by the prapalg@rithm on six example images
from the VOC 2007 dataset. The leftimage in each pair showettiginal set of key points
extracted by the SIFT algorithm with its default settingheTight image in the pair shows

the key points corresponding to the visual words, selecygtidproposed algorithm. Note
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that in almost all the images, the key points in the backgioanme drastically reduced as
a result of keyword selection. However, in the examplesaiairigbi r d in Figure 5.3,

the key points corresponding to the tree branches are alioed by the feature selection
algorithm. In a large fraction dbi r d images in the dataset, tree branches co-occur with
a bird. Unless a sufficient number of cannot-link constsaeate given between images
containingbi r ds and tree-branches, corresponding key points would notibenglted.
Such cases did not occur frequently in the dataset considere

Table 5.2 shows the performance of the K-means clustergayigthm on 15 clustering
tasks created from the VOC dataset. Table 5.3 shows the meastandard deviation of the
visual words selected by the proposed algorithm and thdibase Group-LASSO based
feature selection always resulted in the least number t¢iifes, followed by LASSO. The
variance of Group-LASSO is higher since the features areadi®d in groups of large
size. In most cases, the performance drop is not signifiasihg paired t-test at 95%
confidence). The cases where there is a significant differenperformance are marked
by + or — accordingly.

In three out of the five clustering tasks involving ther son class, the performance
after feature selection is lower than that of K-means. Thiatiributed to the large differ-
ence in the number of samples in each class in the datasetliegnadation of the proposed
method however, is less severe compared to the baselinescld$gper son is not only
the most frequent but also frequently co-occurs with theothasses in the dataset. This
imbalance in the number of samples results in a large biaartts\positive or negative con-
straints, resulting in relatively poor feature selectidimis can be alleviated by balancing
the number of positive and negative constraints.

Overall, the proposed feature selection method, usingdpaitp-LASSO and LASSO,
results in a vocabulary pruning of about 75-80%, on averagéwo-class problems. A
larger number of classes may retain a larger fraction ofg@wpts. Since the key-points are

clustered using a larger number of images than those coesider each clustering task,
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one might observe that there are naturally irrelevant kegtpdor each task. However,
that is not the case. In almost all the clustering tasks, miall the visual keywords are

observed.

5.6 Summary and conclusions

An online algorithm is presented for pruning the vocabuialiynage analysis tasks that use
the bag of words representation. Online algorithms are coatipnally efficient since they
learn incrementally. Vocabulary pruning aids in repreisgnimages using a feature vector
of low dimensionality, which naturally reduces the compiotatime required for subse-
qguent clustering, classification or retrieval. The quatifypruned vocabulary is evaluated
using a clustering task, and is compared to the performafrzztch learning algorithms. A
controlled study was performed to evaluate the merits optbposed algorithm. Although
the proposed algorithm is evaluated on visual vocabulaupipg task, it is applicable to
other feature selection tasks as well. It is possible tovddhe pairwise constraints auto-
matically in some application domains from auxiliary infation (e.g. text in web pages),

where one may also be able to exploit the degree of relatiomdss images.
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Task Proposed Baseline
# | Group LASSO| LASSO(L;) || POLA(L,)
11148 509| 1263 91|| 4929 187
2| 986 449| 1082 113|| 4982 30
31133 602| 1204 310|| 4995 2
4| 816 372| 1170 82| 4994 2
5| 682 536 943 64| 4834 473
6| 1134 363| 1156 124/ 4991 4
7| 1283 537| 1268 102| 4996 2
8 | 1050 446| 1213 124| 4799 616
9| 682 377 971 100 4943 163
10| 1118 435| 1092 45| 4994 2
11| 790 336| 1025 92| 4985 23
12| 495 198| 847 245| 4921 215
13| 999 377| 1180 92| 4978 34
14| 729 391| 940 55| 4992 9
15| 665 347 969 84| 4982 37

Table 5.3: Mean and standard deviation of the number of Visoads (from a total of
5,000) selected by the proposed LASSO and Group-LASSO methdhe L, DML al-
gorithm. POLA is not a feature selection technique, and adearns the weights for all
the features. The batch mode forward search algorithm alwsalected 150 features, and

hence is not reported in the table. The tasks are defined e Bab
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Input image pair labeled amust-link(related)

| [ - 7l
Extracted SIFT Key-points and thejroups
Keypoints falling in a group (visual synonyms) use

the same color marker in the plot.

\ & [ .'u 5
Selected features explaining threust-linkconstraint.
Note the irrelevant groups missing in the background.

Figure 5.2: lllustration of SIFT key points, visual synonyrand feature selection at a
group level. The first row shows a pair of images input for deatselection. Note that

the key points occur in groups. Same colored marker is ugekdefopoints belonging to a

group. Feature selection by the proposed feature selealgmmithm acts at a group level
by removing the entire group of unrelated features.
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L

#kp = 532 (189 groups)  #kp =20 (21 groups)  #kp = 351 (161 grpugkp = 32 (21 groups)

Figure 5.3: Feature selection using group-LASSO. In eaaghgb@amages, the left image
shows the key points extracted from the original image amdripht image shows the
selected key points using the proposed feature selectgoritdm. The number below
each image indicates the number of key points (kp), and th&eu of groups (shown in

brackets).
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CHAPTER 6

Summary and Conclusions

In this thesis, three classical problems in pattern redmgninamely, classification, clus-
tering and unsupervised feature selection have been eede¢ad semi-supervised learning

setting.

6.1 Contributions

The semi-supervised boosting framework presented in Chaptekes the following con-

tributions:

e Semi-supervised improvement framework:new semi-supervised learning setting,
called semi-supervised improvemedstproposed whose goal is to improve any ex-
isting supervised classifier when unlabeled data is aJailaBeveral well-known
semi-supervised learning algorithms like self-trainlAGSEMBLE etc. can be uni-

fied under this framework.

e Semi-supervised Boosting AlgorithnSemiBoost is a semi-supervised learning al-
gorithm following the semi-supervised improvement frarogw Drawing inspira-
tion from successful ideas from graph based algorithmslécégn regularization),

a new boosting algorithm was developed that utilizes thahaled data and a pair-
wise similarity matrix to improve the performance of anyagivsupervised learning

algorithms.
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e New regularizer for utilizing unlabeled data: Graph Laplacian is a key concept
in graph based semi-supervised learning. The quadraticfwostion in the graph
Laplacian is replaced with an exponential function. Thi$psen designing the
SemiBoost algorithm along lines similar to the superviseadsting algorithms (e.g.

AdaBoost).

The non-parametric mixtures algorithm presented in Chapterakes the following

contributions:

e Mixture model based on kernel density estimatesn extension of kernel density
(Parzen window) estimation to the mixture models is progdse data clustering.
Each cluster is assumed to be generated by its own densityidanand may have
an arbitrary shape. Proposed model inherits the advanthgegture models such as
out-of-sample label assignment and probabilistic cluassignments, without mak-

ing any restrictive assumptions about the cluster shape.

e Leave-one-out likelihood maximizationA leave-one-out likelihood maximization
approach is used to estimate the parameters of the algorihpposed to the con-

ventional maximum likelihood estimation.

e Weighted kernel density estimat&Ve introduced weighted kernel density estimates
for modeling the density function of the clusters. It is pbisto impose different
constraints on the weights to achieve different clustergsyllts. For instance, semi-
supervision in the form of pairwise constraints can be ipocaited by imposing the

constraints on the weights.

e Parameter selection from side-informationKernel bandwidth is one of the most
important parameters of kernel based clustering algosth/ novel approach for
selecting critical parameters (bandwidth) of the kernehgipairwise constraints is

presented. This approach is applicable to any kernel bdgedtam (e.g., spec-
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tral clustering, kernet-means, etc) including the proposed non-parameteric maxtu

approach.

The feature selection algorithm proposed in Chapter 5 mdie$otlowing contribu-

tions:

e Feature selection using pairwise constraint§&iven a set of unlabeled data points,
and a set of pairwise constraints, an efficient online algorithat selects a subset of
features is proposed. The features are selected suchétdisthnces between points
in must-link constraints are less than the distances betyets in cannot-link

constraints.

¢ Incorporating side information into the data//hile several approaches have been
proposed to modify the clustering algorithms to includeesidformation, semi-
supervised clustering is still largely an unsolved probkante the utility and the
effect of the constraints are not well understood. We hagpgsed an alternate way
to utilize the side-information, that is to incorporatenta the data itself through

feature sub-space selection.

¢ Online feature selection algorithmAn online learning algorithm based on potential
based gradient descent is presented to perform featuraiealeOnline algorithms

are computationally efficient since they learn increméytal

e Group-LASSO:A Group-LASSO regularizer is used to perform the featurecel
tion. An application setting where the groups required mugrLASSO are naturally

available is explored.

¢ Non-strongly convex regularizers in online learnin@nline learning algorithms and
theory require the regularizer to be strongly convex. Harethe proposed Group-

LASSO regularizer is not strongly convex. A convex surredanction for Group-
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LASSO was introduced, and the related theoretical guagare the performance

have been derived.

e Application to Vocabulary PruningThe proposed online feature selection algorithm
is applied to prune the vocabulary for clustering imagesesgnted using the bag
of words representation. Given that the vocabularies coctgtd from general image
collections are of large size, the proposed approach aigpresenting images using
smaller feature vectors. This reduces the computation tegeired for subsequent
clustering, classification or retrieval. The quality of ped vocabulary is evaluated

using a clustering task that is comparable to that of batainieg algorithms.

e Generality of the algorithm:Although the proposed algorithm is evaluated on visual
vocabulary pruning task, it is applicable to other featwlestion tasks as well. Real
world applications may derive the pairwise constraint®angtically from auxiliary
information (e.g. text in web pages), where one may also leetalexploit the degree

of relationship between images.

6.2 Future Work

The studies conducted during the course of this dissentasised questions that point to

several important theoretical and empirical researclctoes.

e Utility of unlabeled data for classification

Existing studies on the utility of unlabeled data for senparvised classification

suggest that there are two sources of possible degradatsupervised algorithms:

1. amismatch between tletuster structuren the unlabeled data and that assumed

by the model (similar t@luster validation)

2. a misalignment between the true classes and the clusietse.
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The impact of unlabeled data on the classification algomstiman be analyzed by
decomposing the generalization error of the classifiené@using partially labeled
data, into the above two terms. Existing analyses do noia@ttplstudy the decom-
position of error into the aforementioned two terms, andpetential area of study.
Further, a priori evaluation of the two sources of error #idilt since it involves
solving a harder problem of cluster validity. Currently, €sevalidation against a la-

beled validation set is the only reliable way to assess tifig/udf side-information.

o Utility of pairwise constraints:

Most empirical studies, including the experiments peridrduring the development

of this thesis, indicate that the addition of pairwise coaists may occasionally
degrade the performance of the corresponding supervisedsupervised learner.
An important question i€an the effect of side-information be predicted a priori
for a given learning task?or equivalently,Can the factors affecting the utility of
side-information to a clustering algorithm be explicithpienerated, and its exact
impact be studied?This is related to the nature of the dataset and the quality of

side-information.

e Mixture of sparse kernel density estimates:

The mixture of kernel density estimates presented in Chaptgeses all the data
points to define the density function of each cluster. Howewmst often a small
subset of the examples should be sufficient to express the dansity. This can
be achieved by introducing ah, regularizer on the profile vectors instead of the
currentL, regularizer. This has several benefits such as increaseedy in out-
of-sample cluster assignment, and use of a simpler modgb@ssed to a complex

model (Occam’s razor).

o Efficient algorithm for non-parameteric mixtures:
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The number of parameters in the non-parameteric mixtui@idhgn depends on the
number of examples. While it is efficient compared to the Gausdlixture model
and K-means for high-dimensional datasets, the number of paessean be large
for datasets with small dimension and large number of exasadihis can be avoided
by developing algorithms that use @n regularizer to discard data points in each

iteration that are not necessary to express the densityifunaf a cluster.

Exploring relationship with spectral clustering:

The non-parameteric mixtures algorithm outperforms spedustering in most

cases studied in our thesis, but under-performs in somes.cabee proposed al-
gorithm, however, has some advantages such as the easeafsarple cluster

assignment. It would be useful to study the theoreticatimiahip between spectral
clustering and non-parameteric mixtures. The explanatiay lead to a probabilis-
tic interpretation for spectral clustering, and the inarntbehind kernel density esti-
mates may reveal why spectral clustering performs betteroose compared to the

proposed algorithm.

Incorporating pairwise constraints into mixture of non-pareteric densities:

Side information such as pairwise constraints can be imgatpd into the non-

parameteric mixture algorithm.

Estimating the number of clusters:

Estimating the number of clusters present in the data is értbeomost difficult

problems in data clustering [3]. Any available side-infation can only help in
deciding the number of clusters. For instance, providihgls for a few examples
may reveal the number of clusters. Most often, however, dbeled data could
have originated only from a small number of the classes uodesideration. The
problem gets more complicated when a weaker form of sidesmétion such as

pairwise constraints is available, although it still isieagompared to the lack of
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any side-information. This could be callsdmi-supervised class discovemhich is
still an unexplored and difficult area. Throughout this thewe have assumed that

the number of clusters is known.

e Online algorithms using nested potentials:

The group-lasso based online learning algorithm preseant€tapter 5 can be gen-
eralized to nested potentials which provide a general fraoriefor online learning

with mixed norms.

e Online clustering and applications:

Large scale data clustering is gaining interest due to tlaladoility of massive
datasets. Many applications such as visual vocabularytwai®n, use clustering
algorithms to choose visual words. However, recent (uripbtl) research shows
that choosing these cluster centers randomly is equalpfiielin this light, a mid-
dle ground, where an efficient clustering algorithm is ugeduster the data to come
up with visual vocabulary could provide the advantages ¢ bacluster quality and
computational efficiency. Online algorithms can prove toulseful in large scale
clustering applications where speed is more important esetpto the quality of

clusters.

e Semi-supervised online learning:

Online learning algorithms are usually supervised. Expigithe use of unlabeled
data for online classification algorithms could be bendfitia such algorithm exists

at this point of time.

6.3 Conclusions

This thesis presents semi-supervised algorithms for thiagsical problems in pattern

recognition and machine learning, namely, supervisedchiegs unsupervised learning,
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and unsupervised feature selection. The thesis makedisagicontributions to semi-
supervised learning by developing algorithms that advaheestate-of-the-art in semi-
supervised classification and clustering. Several apmita of semi-supervised learning
algorithms such as text classification and image clusteverg shown, and the potential of
utilizing side-information to achieve better learning gmvddiction performance is demon-

strated. Several directions for future work in semi-suEad learning are identified.
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