
KERNEL-BASED CLUSTERING OF BIG DATA

By

Radha Chitta

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2015

ABSTRACT

KERNEL-BASED CLUSTERING OF BIG DATA

By

Radha Chitta

There has been a rapid increase in the volume of digital data over the recent years. A study by

IDC and EMC Corporation predicted the creation of 44 zettabytes (1021 bytes) of digital data by

the year 2020. Analysis of this massive amounts of data, popularly known asbig data, necessi-

tates highly scalable data analysis techniques. Clustering is an exploratory data analysis tool used

to discover the underlying groups in the data. The state-of-the-art algorithms for clustering big

data sets arelinear clustering algorithms, which assume that the data is linearly separable in the

input space, and use measures such as the Euclidean distanceto define the inter-point similarities.

Though efficient, linear clustering algorithms do not achieve high cluster quality on real-world data

sets, which are not linearly separable. Kernel-based clustering algorithms employ non-linear simi-

larity measures to define the inter-point similarities. As aresult, they are able to identify clusters of

arbitrary shapes and densities. However, kernel-based clustering techniques suffer from two major

limitations:

(i) Their running time and memory complexity increase quadratically with the increase in the

size of the data set. They cannot scale up to data sets containing billions of data points.

(ii) The performance of the kernel-based clustering algorithms is highly sensitive to the choice

of the kernel similarity function. Ad hoc approaches, relying on prior domain knowledge,

are currently employed to choose the kernel function, and itis difficult to determine the

appropriate kernel similarity function for the given data set.

In this thesis, we develop scalable approximate kernel-based clustering algorithms using random

sampling and matrix approximation techniques. They can cluster big data sets containing billions

of high-dimensional points not only as efficiently as linearclustering algorithms but also as accu-

rately as classical kernel-based clustering algorithms.

Our first contribution is based on the premise that the similarity matrices corresponding to big

data sets can usually be well-approximated by low-rank matrices built from a subset of the data.

We develop an approximate kernel-based clustering algorithm, which uses a low-rank approximate

kernel matrix, constructed from a uniformly sampled small subset of the data, to perform cluster-

ing. We show that the proposed algorithm has linear running time complexity and low memory

requirements, and also achieves high cluster quality, whenprovided with sufficient number of data

samples. We also demonstrate that the proposed algorithm can be easily parallelized to handle

distributed data sets. We then employ non-linear random feature maps to approximate the kernel

similarity function, and design clustering algorithms which enhance the efficiency of kernel-based

clustering, as well as label assignment for previously unseen data points.

Our next contribution is an online kernel-based clusteringalgorithm that can cluster potentially

unbounded stream data in real-time. It intelligently samples the data stream and finds the cluster

labels using these sampled points. The proposed scheme is more effective than the current kernel-

based and linear stream clustering techniques, both in terms of efficiency and cluster quality.

We finally address the issues of high dimensionality and scalability to data sets containing a

large number of clusters. Under the assumption that the kernel matrix is sparse when the number of

clusters is large, we modify the above online kernel-based clustering scheme to perform clustering

in a low-dimensional space spanned by the top eigenvectors of the sparse kernel matrix. The

combination of sampling and sparsity further reduces the running time and memory complexity.

The proposed clustering algorithms can be applied in a number of real-world applications. We

demonstrate the efficacy of our algorithms using several large benchmark text and image data sets.

For instance, the proposed batch kernel clustering algorithms were used to cluster large image

data sets (e.g. Tiny) containing up to 80 million images. Theproposed stream kernel clustering

algorithm was used to cluster over a billion tweets from Twitter, for hashtag recommendation.

To My Family

iv

ACKNOWLEDGMENTS

“Life is a continuous learning process.

Each day presents an opportunity for learning.” - Lailah Gifty Akita, Think Great: Be Great

Every day during my PhD studies has been a great opportunity for learning, thanks to my

advisors, colleagues, friends, and family. I am very grateful to my thesis advisor Prof. Anil K.

Jain, who has been a wonderful mentor. His ability to identify good research problems has always

been my inspiration. I am motivated by his energy, discipline, meticulousness and passion for

research. He has taught me to plan and prioritize my work, andpresent it in a convincing manner.

I am also very thankful to Prof. Rong Jin, with whom I had the privilege of working closely.

Under his guidance, I have learnt how to formalize a problem,and develop coherent solutions to

the problem, using different machine learning tools. I am inspired by his extensive knowledge and

hard-working nature.

I would like to thank my PhD committee members, Prof. Pang-Ning Tan, Prof. Shantanu

Chakrabartty, and Prof. Selin Aviyente for their valuable comments and suggestions. Prof. Pang-

Ning Tan was always available when I needed help, and provided very useful suggestions.

I am grateful to several other researchers who have mentoredme at various stages of my re-

search. I have had the privilege of working with Dr. Suvrit Sra and Dr. Francesco Dinuzzo, at the

Max Planck Institute for Intelligent Systems, Germany. I would like to thank them for giving me

an insight into several emerging problems in machine learning. I thank Dr. Ganesh Ramesh from

Edmodo for providing me the opportunity to learn more about natural language processing, and

building scalable solutions. Dr. Timothy Havens was very helpful when we were working together

during the first year of my PhD.

I would like to thank my lab mates and friends: Shalini, Soweon, Serhat, Zheyun, Jinfeng,

v

Mehrdad, Kien, Alessandra, Abhishek, Brendan, Jung-Eun, Sunpreet, Inci, Scott, Lacey, Charles,

and Keyur. They made my life at MSU very memorable. I would like to specially thank Serhat for

all the helpful discussions, and Soweon for her support and encouragement. I am thankful to Linda

Moore, Cathy Davison, Norma Teague, Katie Trinklein, Courtney Kosloski and Debbie Kruch for

their administrative support. Many thanks to the CSE and HPCC administrators, specially Kelly

Climer, Adam Pitcher, Dr. Dirk Colbry, and Dr. Benjamin Ong.

Last but not the least, I would like to thank my family. I am deeply indebted to my husband

Praveen, without whose support and motivation, I would not have been able to pursue and complete

my PhD. My parents, my sister and my parents-in-law have beenvery supportive throughout the

past five years. I was inspired by my father Ramamurthy to pursue higher studies, and strive to

make him proud. I would like to specially mention my mother Sudha Lakshmi, who has been my

role model and inspiration. I can always count on her to encourage me and uplift my spirits.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES .xiv

LIST OF ALGORITHMS .xxi

Chapter 1 Introduction . 1
1.1 Data Analysis 4
1.1.1 Data Representation 4
1.1.2 Learning 5
1.1.3 Inference 6
1.2 Clustering 7
1.2.1 Clustering Algorithms 8
1.2.2 Challenges in Data Clustering 10
1.3 Clustering Big Data 13
1.3.1 Clustering withk-means . 17
1.4 Kernel Based Clustering 19
1.4.1 Kernelk-means . 25
1.4.2 Challenges 27
1.4.2.1 Scalability 28
1.4.2.2 Choice of kernel 29
1.5 Thesis Contributions 31
1.6 Data sets and Evaluation Metrics 35
1.6.1 Data sets .. . 35
1.6.2 Evaluation Metrics 39
1.7 Thesis Overview 41

Chapter 2 Approximate Kernel-based Clustering . 42
2.1 Introduction 42
2.2 Related Work .. . 43
2.2.1 Low-rank Matrix Approximation 44
2.2.1.1 CUR matrix approximation 45
2.2.1.2 Nystrom matrix approximation 46
2.2.2 Kernel-based Clustering for Large Data sets 47
2.3 Approximate Kernel k-means 49
2.3.1 Parameters 52
2.3.1.1 Sample size 54
2.3.1.2 Sampling strategies 55
2.3.2 Analysis 56

vii

2.3.2.1 Computational complexity 56
2.3.2.2 Approximation error 57
2.3.3 Distributed Clustering 60
2.4 Experimental Results 64
2.4.1 Data sets .. . 65
2.4.2 Baselines 65
2.4.3 Parameters 65
2.4.4 Results .. . 66
2.4.4.1 Running time 66
2.4.4.2 Cluster quality 67
2.4.4.3 Parameter sensitivity 71
2.4.4.4 Sampling strategies 73
2.4.4.5 Scalability analysis 75
2.4.5 Distributed Approximate Kernelk-means . 78
2.5 Summary .79

Chapter 3 Kernel-based Clustering Using Random Feature Maps 80
3.1 Introduction 80
3.2 Background .. . 81
3.3 Kernel Clustering using Random Fourier Features 83
3.3.1 Analysis 86
3.3.1.1 Computational complexity 86
3.3.1.2 Approximate error 86
3.4 Kernel Clustering using Random Fourier Features in Constrained Eigenspace 88
3.4.1 Analysis 90
3.4.1.1 Computational complexity 90
3.4.1.2 Approximation error 91
3.4.2 Out-of-sample Clustering 95
3.5 Experimental Results 96
3.5.1 Data sets .. . 96
3.5.2 Baselines 96
3.5.3 Parameters 97
3.5.4 Results .. . 97
3.5.4.1 Running time 97
3.5.4.2 Cluster quality 99
3.5.4.3 Parameter sensitivity 101
3.5.4.4 Scalability 103
3.5.4.5 Out-of-sample clustering 108
3.6 Summary .112

Chapter 4 Stream Clustering .113
4.1 Introduction 113
4.2 Background .. . 114

viii

4.3 Approximate Kernelk-means for Streams . 117
4.3.1 Sampling .. . 118
4.3.2 Clustering 121
4.3.3 Label Assignment 123
4.4 Implementation and Complexity 124
4.5 Experimental Results 126
4.5.1 Data sets .. . 126
4.5.2 Baselines 126
4.5.3 Parameters 127
4.5.4 Results .. . 128
4.5.4.1 Clustering efficiency and quality 128
4.5.4.2 Parameter sensitivity: 133
4.6 Applications: Twitter Stream Clustering 140
4.7 Summary .144

Chapter 5 Kernel-Based Clustering for Large Number of Clusters145
5.1 Introduction 145
5.2 Background .. . 147
5.3 Sparse Kernel k-means 150
5.4 Analysis .. . 154
5.4.1 Computational Complexity 154
5.4.2 Approximation Error 156
5.5 Experimental Results 162
5.5.1 Data sets .. . 162
5.5.2 Baselines and Parameters 162
5.5.3 Results .. . 164
5.5.3.1 Running time 164
5.5.3.2 Cluster quality 165
5.5.3.3 Parameter sensitivity 167
5.5.3.4 Scalability 172
5.6 Summary .173

Chapter 6 Summary and Future Work .174
6.1 Contributions 175
6.2 Future Work .. . 177

BIBLIOGRAPHY .179

ix

L IST OF TABLES

Table 1.1 Notation. 7

Table 1.2 Clustering techniques for Big Data. 14

Table 1.3 Popular kernel functions. 23

Table 1.4 Comparison of the running times ofk-means and kernelk-means on a100-
dimensional synthetic data set containing10 clusters and exponentially increasing
number of data points, on a 2.8 GHz processor with 40 GB memory. 28

Table 1.5 Description of data sets used for evaluation of theproposed algorithms. 35

Table 2.1 Comparison of the confusion matrices of the approximate kernelk-means, kernel
k-means andk-means algorithms for the two-dimensional semi-circles data set,
containing500 points (250 points in each of the two clusters). The approximate
kernelk-means algorithm achieves cluster quality comparable to that of the kernel
k-means algorithm. 53

Table 2.2 Running time (in seconds) of the proposed approximate kernelk-means and the
baseline algorithms. The sample sizem is set to2, 000, for both the proposed algo-
rithm and the Nystrom approximation based spectral clustering algorithm. It is not
feasible to execute kernelk-means on the large Forest Cover Type, Imagenet-34,
Poker, and Network Intrusion data sets due to their large size. An approximate
value of the running time of kernelk-means on these data sets is obtained by first
executing kernelk-means on a randomly chosen subset of50, 000 data points to
find the cluster centers, and then assigning the remaining points to the closest clus-
ter center. 66

Table 2.3 Effect of the sample sizem on the running time (in seconds) of the proposed
approximate kernelk-means clustering algorithm. 74

Table 2.4 Comparison of sampling times (in milliseconds) ofthe uniform, column-norm
andk-means sampling strategies on the CIFAR-10 and MNIST data sets. Parameter
m represents the sample size. .. . 76

Table 2.5 Performance of the distributed approximate kernel k-means algorithm on the
Tiny image data set and the concentric circles data set, withparametersm = 1, 000
andP = 1024. 78

Table 3.1 Comparison of the confusion matrices of the RFF, kernelk-means, andk-means
algorithms for the two-dimensional semi-circles data set,containing500 points
(250 points in each of the two clusters). .. . 84

x

Table 3.2 Running time (in seconds) of the RFF and SV clustering algorithms on the six
benchmark data sets. The parameterm, which represents the number of Fourier
components for the RFF and SV clustering algorithms, and thesample size for the
approximate kernelk-means and Nystrom approximation based spectral clustering
algorithms, is set tom = 2, 000. It is not feasible to execute kernelk-means on the
large Forest Cover Type, Imagenet-34, Poker, and Network Intrusion data sets due
to their large size. An approximate of the running time of kernel k-means on these
data sets is obtained by first executing kernelk-means on a randomly chosen subset
of 50, 000 data points to find the cluster centers, and then assigning the remaining
points to the closest cluster center. 98

Table 3.3 Effect of the number of Fourier componentsm on the running time (in seconds)
of the RFF and SV clustering algorithms on the six benchmark data sets. Parameter
m represents the number of Fourier components for the RFF and SV clustering
algorithms, and the sample size for the approximate kernelk-means and Nystrom
approximation based spectral clustering algorithms. 104

Table 3.4 Running time (in seconds) and prediction accuracy(in %) for out-of-sample data
points. Parameterm represents the sample size for the approximate kernelk-means
algorithm and the number of Fourier components for the SV clustering algorithm.
The value ofm is set to1, 000 for both the algorithms. It is not feasible to execute
the WKPCA algorithm on the large Forest Cover Type, Imagenet-34, Poker, and
Network Intrusion data sets due to their large size. 111

Table 4.1 Major published approaches to stream clustering.. 115

Table 4.2 Effect of the maximum buffer sizeM on the running time (in milliseconds) of
the proposed approximate stream kernelk-means algorithm. Parameter settings:
m = 5, 000, τ = 1. 137

Table 4.3 Effect of the maximum buffer sizeM on the Silhouette coefficient of the pro-
posed approximate stream kernelk-means algorithm. Parameter settings:m =
5, 000, τ = 1. 137

Table 4.4 Effect of the maximum buffer sizeM on the NMI (in %) of the proposed ap-
proximate stream kernelk-means algorithm. Parameter settings:m = 5, 000, τ = 1. 137

Table 4.5 Effect of the cluster lifetime thresholdη = exp(−γτ) on the running time (in
milliseconds) of the proposed approximate stream kernelk-means algorithm. Pa-
rameter settings:m = 5, 000, M = 20, 000. 138

Table 4.6 Effect of the cluster lifetime thresholdη = exp(−γτ) on the Silhouette coeffi-
cient of the proposed approximate stream kernelk-means algorithm. Parameters:
m = 5, 000, M = 20, 000. 138

xi

Table 4.7 Effect of the cluster lifetime thresholdη = exp(−γτ) on the NMI (in %) of the
proposed approximate stream kernelk-means algorithm. Parameters:m = 5, 000,
M = 20, 000. 138

Table 4.8 Comparison of the performance of the approximate stream kernelk-means algo-
rithm with importance sampling and Bernoulli sampling. 139

Table 5.1 Complexity of popular partitional clustering algorithms: n andd represent the
size and dimensionality of the data respectively, andC represents the number
of clusters. Parameterm > C represents the size of the sampled subset for the
sampling-based approximate clustering algorithms.nsv ≥ C represents the num-
ber of support vectors. DBSCAN and Canopy algorithms are dependent on user-
defined intra-cluster and inter-cluster distance thresholds, so their complexity is not
directly dependent onC. 146

Table 5.2 Running time (in seconds) of the proposed sparse kernel k-means and the three
baseline algorithms on the four data sets. The parameters ofthe proposed algorithm
were set tom = 20, 000, M = 50, 000, andp = 1, 000. The sample sizem for the
approximate kernelk-means algorithm was set equal to20, 000 for the CIFAR-100
data set and10, 000 for the remaining data sets. It is not feasible to execute kernel
k-means on the Imagenet-164, Youtube and Tiny data sets due totheir large size.
The approximate running time of kernelk-means on these data sets is obtained by
first executing the algorithm on a randomly chosen subset of50, 000 data points
to find the cluster centers, and then assigning the remainingpoints to the closest
cluster center. .164

Table 5.3 Silhouette coefficient (×e − 02) of the proposed sparse kernelk-means and the
three baseline algorithms on the CIFAR-100 data set. The parameters of the pro-
posed algorithm were set tom = 20, 000, M = 50, 000, andp = 1, 000. The
sample sizem for the approximate kernelk-means algorithm was set equal to
m = 20, 000. 166

Table 5.4 Comparison of the running time (in seconds) of the proposed sparse kernelk-
means algorithm and the approximate kernelk-means algorithm on the CIFAR-100
and the Imagenet-164 data sets. Parameterm represents the initial sample set size
for the proposed algorithm, and the size of the sampled subset for the approximate
kernelk-means algorithm. The remaining parameters of the proposedalgorithm
are set toM = 50, 000, andp = 1, 000. Approximate kernelk-means is infeasible
for the Imagenet-164 data set whenm > 10, 000 due to its large size. 168

xii

Table 5.5 Comparison of the silhouette coefficient (×e−02) of the proposed sparse kernel
k-means algorithm and the approximate kernelk-means algorithm on the CIFAR-
100 data set. Parameterm represents the initial sample set size for the proposed
algorithm, and the size of the sampled subset for the approximate kernelk-means
algorithm. The remaining parameters of the proposed algorithm were set toM =
50, 000, andp = 1, 000. 168

Table 5.6 Effect of the size of the neighborhoodp on the running time (in seconds), the
silhouette coefficient and NMI (in %) of the proposed sparse kernelk-means algo-
rithm on the CIFAR-100 and Imagenet-164 data sets. The remaining parameters of
the proposed algorithm were set tom = 20, 000, andM = 50, 000. 170

xiii

L IST OF FIGURES

Figure 1.1 Emerging size of the digital world. Image from [2]. 2

Figure 1.2 Growth of Targeted Display Advertising. Image from [59]. 3

Figure 1.3 A two-dimensional example to demonstrate hierarchical and partitional clus-
tering techniques. Figure (a) shows a set of points in two-dimensional space, con-
taining three clusters. Hierarchical clustering generates a dendrogram for the data.
Figure (b) shows a dendrogram generated using the complete-link agglomerative
hierarchical clustering algorithm. The horizontal axis represents the data points
and the vertical axis represents the distance between the clusters when they first
merge. By applying a threshold on the distance at4 units (shown by the black
dotted line), we can obtain the three clusters. Partitionalclustering directly finds
theC clusters in the data set. Figure (c) shows the three clusters, represented by
the blue, green and red points, obtained using thek-means algorithm. The starred
points in black represent the cluster centers. 8

Figure 1.4 A two-dimensional example that demonstrates thelimitations ofk-means clus-
tering.500 two-dimensional points containing two semi-circular clusters are shown
in Figure (a). Points numbered1 − 250 belong to the first cluster and points
numbered251 − 500 belong to the second cluster. The clusters obtained using
k-means (using Euclidean distance measure) do not reflect thetrue underlying
clusters (shown in Figure (b)), because the clusters are notlinearly separable as
expected by thek-means algorithm. On the other hand, the kernelk-means algo-
rithm using the RBF kernel (with kernel widthσ2 = 0.4) reveals the true clusters
(shown in Figure (c)). Figures (d) and (e) show the500 × 500 similarity matrices
corresponding to the Euclidean distance and the RBF kernel similarity, respec-
tively. The RBF kernel similarity matrix contains distinctblocks which distinguish
between the points from different clusters. The similaritybetween the points in the
same true cluster is higher than the similarity between points in different clusters.
The Euclidean distance matrix, on the other hand, does not contain such distinct
blocks, which explains the failure of thek-means algorithm on this data. 20

Figure 1.5 Similarity of images expressed through gray level histograms. The histogram
of the intensity values of the image of a website (Figure (b))is very different from
the histograms of the images of butterflies (Figures (d) and (f)). The histograms of
the two butterfly images are similar to each other. 21

xiv

Figure 1.6 Sensitivity of the kernelk-means algorithm to the choice of kernel function.
The semi-circles data set (shown in Figure (a)) is clusteredusing kernelk-means
with the RBF kernel. When the kernel width is set to0.4, the two clusters are
correctly detected (shown in Figure (b)), whereas when the kernel width is set to
0.1, the points are clustered incorrectly (shown in Figure (c)). Figure (d) shows the
variation in the clustering error of kernelk-means, defined in (1.10), with respect
to the kernel width. .30

Figure 1.7 Scalability of clustering algorithms in terms ofn, d andC, and the contribution
of the proposed algorithms in improving the scalability of kernel-based clustering.
The plot shows the maximum size of the data set that can be clustered with less
than100 GB memory on a2.8 GHz processor with a reasonable amount of cluster-
ing time (less than10 hours). The linear clustering algorithms are represented in
blue, current kernel-based clustering algorithms are shown in green, parallel clus-
tering algorithms are shown in magenta, and the proposed clustering algorithms are
represented in red. Existing kernel-based clustering algorithms can cluster only up
to the order of10, 000 points with100 features into100 clusters. The proposed
batch clustering algorithms (approximate kernelk-means, RFF clustering, and SV
clustering algorithms) are capable of performing kernel-based clustering on data
sets as large as10 million, with the same resource constraints. The proposed on-
line clustering algorithms (approximate stream kernelk-means and sparse kernel
k-means algorithms) can cluster arbitrarily-sized data sets with dimensionality in
the order of1, 000 and the number of clusters in the order of10, 000. 32

Figure 2.1 Illustration of the approximate kernelk-means algorithm on the two-
dimensional semi-circles data set containing500 points (250 points in each of the
two clusters). Figure (a) shows all the data points (in red) and the uniformly sam-
pled points (in blue). Figures (b)-(e) show the process of discovery of the two
clusters in the data set and their centers in the input space (represented by x) by the
approximate kernelk-means algorithm. 53

Figure 2.2 Example images from three clusters in the Imagenet-34 data set. The clusters
represent (a) butterfly, (b) odometer, and (c) website images. 67

Figure 2.3 Silhouette coefficient values of the partitions obtained using approximate ker-
nel k-means, compared to those of the partitions obtained using the baseline algo-
rithms. The sample sizem is set to2, 000, for both the proposed algorithm and the
Nystrom approximation based spectral clustering algorithm. 68

xv

Figure 2.4 NMI values (in %) of the partitions obtained usingapproximate kernelk-means,
with respect to the true class labels. The sample sizem is set to2, 000, for both
the proposed algorithm and the Nystrom approximation basedspectral clustering
algorithm. It is not feasible to execute kernelk-means on the large Forest Cover
Type, Imagenet-34, Poker, and Network Intrusion data sets due to their large size.
The approximate NMI values of kernelk-means on these data sets are obtained by
first executing kernelk-means on a randomly chosen subset of50, 000 data points
to find the cluster centers, and then assigning the remainingpoints to the closest
cluster center. .69

Figure 2.5 Example images from the clusters found in the CIFAR-10 data set using approx-
imate kernelk-means. The clusters represent the following objects: (a) airplane,
(b) automobile, (c) bird, (d) cat, (e) deer, (f) dog, (g) frog, (h) horse, (i) ship, and
(j) truck. 70

Figure 2.6 Effect of the sample sizem on the NMI values (in %) of the partitions obtained
using approximate kernelk-means, with respect to the true class labels. 72

Figure 2.7 Effect of the sample sizem on the Silhouette coefficient values of the partitions
obtained using approximate kernelk-means. 73

Figure 2.8 Comparison of Silhouette coefficient values of the partitions obtained from ap-
proximate kernelk-means using the uniform, column-norm andk-means sampling
strategies, on the CIFAR-10 and MNIST data sets. Parameterm represents the
sample size. 76

Figure 2.9 Comparison of NMI values (in %) of the partitions obtained from approximate
kernelk-means using the uniform, column-norm andk-means sampling strategies,
on the CIFAR-10 and MNIST data sets. Parameterm represents the sample size. . . 77

Figure 2.10 Running time of the approximate kernelk-means algorithm for different values
of (a)n, (b) d and (c)C. 77

Figure 3.1 A simple example to illustrate the RFF clusteringalgorithm. (a) Two-
dimensional data set with500 points from two clusters (250 points in each cluster),
(b) Plot of the matrixH obtained by samplingm = 1 Fourier component. (c)
Clusters obtained by executingk-means onH. 84

Figure 3.2 Silhouette coefficient values of the partitions obtained using the RFF and SV
clustering algorithms. The parameterm, which represents the number of Fourier
components for the RFF and SV clustering algorithms, and thesample size for the
approximate kernelk-means and Nystrom approximation based spectral clustering
algorithms, is set tom = 2, 000. 100

xvi

Figure 3.3 NMI values (in %) of the partitions obtained usingthe RFF and SV clustering
algorithms, with respect to the true class labels. The parameterm, which represents
the number of Fourier components for the RFF and SV clustering algorithms, and
the sample size for the approximate kernelk-means and Nystrom approximation
based spectral clustering algorithms, is set tom = 2, 000. It is not feasible to
execute kernelk-means on the large Forest Cover Type, Imagenet-34, Poker, and
Network Intrusion data sets due to their large size. The approximate NMI values
of kernelk-means on these data sets are obtained by first executing kernel k-means
on a randomly chosen subset of50, 000 data points to find the cluster centers, and
then assigning the remaining points to the closest cluster center. 102

Figure 3.4 Effect of the number of Fourier componentsm on the silhouette coefficient val-
ues of the partitions obtained using the RFF and SV clustering algorithms. Param-
eterm represents the number of Fourier components for the RFF and SV clustering
algorithms, and the sample size for the approximate kernelk-means and Nystrom
approximation based spectral clustering algorithms. 103

Figure 3.5 Effect of the number of Fourier componentsm on the NMI values (in %) of
the partitions obtained using the RFF and SV clustering algorithms, on the six
benchmark data sets. Parameterm represents the number of Fourier components
for the RFF and SV clustering algorithms, and the sample sizefor the approximate
kernelk-means and Nystrom approximation based spectral clustering algorithms. . 107

Figure 3.6 Running time of the RFF clustering algorithm for different values of (a)n, (b)
d and (c)C. 108

Figure 3.7 Running time of the SV clustering algorithm for different values of (a)n, (b) d
and (c)C. 109

Figure 4.1 Schema of the proposed approximate stream kernelk-means algorithm. 117

Figure 4.2 Illustration of importance sampling on a two-dimensional synthetic data set
containing1, 000 points along10 concentric circles (100 points in each cluster),
represented by “o” in Figure (a). Figure (b) shows50 points sampled using im-
portance sampling, and Figures (c) and (d) show50 and100 points selected using
Bernoulli sampling, respectively. The sampled points are represented using “*”.
All the 10 clusters are well-represented by just50 points sampled using importance
sampling. On the other hand,50 points sampled using Bernoulli sampling are not
adequate to represent these10 clusters (Cluster4 in red has no representatives). At
least100 points are needed to represent all the clusters. 119

xvii

Figure 4.3 Running time (in milliseconds) of the stream clustering algorithms. The pa-
rameters for the proposed approximate stream kernelk-means algorithm are set to
m = 5, 000, M = 20, 000, andτ = 1. The coreset size for the StreamKM++ algo-
rithm, and the chunk size of the sKKM algorithm are set to5, 000. It is not feasible
to execute kernelk-means on the Forest Cover Type, Imagenet-34, Poker, and Net-
work Intrusion data sets due to their large size. The approximate running time of
kernelk-means on these data sets is obtained by first executing kernel k-means on
a randomly chosen subset of50, 000 data points to find the cluster centers, and then
assigning the remaining points to the closest cluster center. 129

Figure 4.4 Silhouette coefficient values of the partitions obtained using the proposed ap-
proximate stream kernelk-means algorithm. The parameters for the proposed al-
gorithm were set tom = 5, 000, M = 20, 000, andτ = 1. The coreset size for
the StreamKM++ algorithm, and the chunk size of the sKKM algorithm were set
to 5, 000. 130

Figure 4.5 NMI (in %) of the clustering algorithms with respect to the true class labels.
The parameters for the proposed approximate stream kernelk-means algorithm are
set tom = 5, 000, M = 20, 000, andτ = 1. The coreset size for the StreamKM++
algorithm, and the chunk size of the sKKM algorithm are set to5, 000. It is not
feasible to execute kernelk-means on the Forest Cover Type, Imagenet-34, Poker,
and Network Intrusion data sets due to their large size. The approximate NMI
values of kernelk-means on these data sets is obtained by first executing kernel
k-means on a randomly chosen subset of50, 000 data points to find the cluster
centers, and then assigning the remaining points to the closest cluster center. 131

Figure 4.6 Change in the NMI (in %) of the proposed approximate stream kernelk-means
algorithm over time. The parametersm, M andτ were set tom = 5, 000, M =
20, 000 andτ = 1, respectively. 132

Figure 4.7 Effect of the initial sample sizem on the running time (in milliseconds) of the
proposed approximate stream kernelk-means algorithm. Parameterm represents
the initial sample set size, the coreset size and the chunk size for the approximate
stream kernelk-means, StreamKM++ and sKKM algorithms, respectively. The
parametersM andτ are set toM = 20, 000 andτ = 1, respectively. 134

Figure 4.8 Effect of the initial sample sizem on the silhouette coefficient values of the
proposed approximate stream kernelk-means algorithm. Parameterm represents
the initial sample set size, the coreset size and the chunk size for the approximate
stream kernelk-means, StreamKM++ and sKKM algorithms, respectively. The
parametersM andτ are set toM = 20, 000 andτ = 1, respectively. 135

xviii

Figure 4.9 Effect of the initial sample sizem on the NMI (in %) of the proposed approx-
imate stream kernelk-means algorithm. Parameterm represents the initial sample
set size, the coreset size and the chunk size for the approximate stream kernelk-
means, StreamKM++ and sKKM algorithms, respectively. The parametersM and
τ are set toM = 20, 000 andτ = 1, respectively. 136

Figure 4.10 Sample tweets from theASP.NETcluster. 141

Figure 4.11 Sample tweets from theHTML cluster. 142

Figure 4.12 Trending clusters in Twitter. The horizontal axis represents the timeline in days
and the vertical axis represents the percentage ratio of thenumber of tweets in
the cluster to the total number of tweets obtained on the day.Figure (a) shows
the trends obtained by the proposed approximate stream kernel k-means algorithm,
and Figure (b) shows the true trends. 143

Figure 5.1 Illustration of kernel sparsity on a two-dimensional synthetic data set contain-
ing 1, 000 points along10 concentric circles. Figure (a) shows all the data points
(represented by “o”) and Figure (b) shows the RBF kernel matrix corresponding to
this data. Neighboring points have the same cluster label when the kernel is defined
correctly for the data set. 148

Figure 5.2 Sample images from three of the100 clusters in the CIFAR-100 data set ob-
tained using the proposed algorithm. 165

Figure 5.3 NMI (in %) of the proposed sparse kernelk-means and the three baseline al-
gorithms on the CIFAR-100 and Imagenet-164 data sets. The parameters of the
proposed algorithm were set tom = 20, 000, M = 50, 000, andp = 1, 000.
The sample sizem for the approximate kernelk-means algorithm was set equal to
20, 000 for the CIFAR-100 data set and10, 000 for the Imagenet-164 data set. It is
not feasible to execute kernelk-means on the Imagenet-164 data set, due to its large
size. The approximate NMI value achieved by kernelk-means on the Imagenet-164
data set is obtained by first executing the algorithm on a randomly chosen subset
of 50, 000 data points to find the cluster centers, and then assigning the remaining
points to the closest cluster center. 166

Figure 5.4 Comparison of the NMI (in %) of the proposed sparsekernelk-means algo-
rithm and the approximate kernelk-means algorithm on the CIFAR-100 and the
Imagenet-164 data sets. Parameterm represents the initial sample set size for the
proposed algorithm, and the size of the sampled subset for the approximate kernel
k-means algorithm. The remaining parameters of the proposedalgorithm were set
toM = 50, 000, andp = 1, 000. Approximate kernelk-means is infeasible for the
Imagenet-164 data set whenm > 10, 000 due to its large size. 169

xix

Figure 5.5 Effect of the number of clustersC on the running time (in seconds) of the
proposed sparse kernelk-means algorithm. 171

Figure 5.6 Effect of the number of clustersC on the NMI (in %) of the proposed sparse
kernelk-means algorithm. 171

Figure 5.7 Running time of the sparse kernelk-means clustering algorithm for different
values of (a)n, (b) d and (c)C. 172

xx

L IST OF ALGORITHMS

Algorithm 1 k-means 18

Algorithm 2 Kernelk-means 26

Algorithm 3 Approximate Kernelk-means. .52

Algorithm 4 Distributed Approximate Kernelk-means . 61

Algorithm 5 Meta-Clustering Algorithm 62

Algorithm 6 RFF Clustering .. 83

Algorithm 7 SV Clustering .. 89

Algorithm 8 Approximate Stream Kernelk-means . 125

Algorithm 9 Sparse Kernelk-means .. . 151

Algorithm 10 Approximatek-means .. . 154

xxi

Chapter 1

Introduction

Over the past couple of decades, great advancements have been made in data generation, collection

and storage technologies. This has resulted in adigital data explosion. Data is uploaded everyday

by billions of users to the web in the form of text, image, audio and video, through various media

such as blogs, e-mails, social networks, photo and video hosting services. It is estimated that

204 million e-mail messages are exchanged every minute1; over a billion users on Facebook share

4.75 billion pieces of content every half hour, including350 million photos and4 million videos2;

and300 hours of videos are uploaded to YouTube every minute3. In addition, a large amount of

data about the web users and their web activity is collected by a host of companies like Google,

Microsoft, Facebook and Twitter. This data is now popularlytermed asBig Data[105].

Big data is formally defined as “high volume, high velocity, and/or high variety information

assets that require new forms of processing to enable enhanced decision making, insight discovery

and process optimization”. It is characterized by the3V’s - Volume, Velocity, and Variety. Volume

indicates the scale of the data. A study by IDC and EMC Corporation predicted the creation

of 44 zettabytes (1021 bytes) of digital data by the year 2020 (See Figure 1.1) [2]. This boils

1http://mashable.com/2014/04/23/data-online-every-minute
2http://www.digitaltrends.com/social-media /according-to-facebook-there-are-350-million-photos-uploaded

-on-the-social- network-daily-and-thats-just-crazy
3https://www.youtube.com/yt/press/statistics.html

1

http://mashable.com/2014/04/23/data-online-every-minute
http://www.digitaltrends.com/social-media/according-to-facebook-there-are-350 -million-photos-uploaded-on-the-social-network-daily-and-thats-just-crazy
http://www.digitaltrends.com/social-media/according-to-facebook-there-are-350- million-photos-uploaded-on-the-social-network-daily-and-thats-just-crazy
https://www.youtube.com/yt/press/statistics.html

Figure 1.1 Emerging size of the digital world. Image from [2].

down to about 2.3 zettabytes of data generated every day. Velocity relates to real-time processing

of streaming data in applications like computer networks and stock exchanges. The New York

Stock Exchange captures about1 TB of trade information during each trading session. Real-time

processing of this data can aid a trader in making important trade decisions. Variety pertains

to the heterogeneity of the digital data. Both structured data such as census records and legal

records, and unstructured data like text, images and videosfrom the web form part of big data.

Specialized techniques may be needed to handle different formats of the data. Other attributes

such as reliability, volatility and usefulness of the data have been added to the definition of big

data over the years. Virtually every large business is interested in gathering large amounts of data

from its customers and mining it to extract useful information in a timely manner. This information

helps the business provide better service to its customers and increase its profitability.

About23% of this humongous amount of digital data is believed to contain useful information

that can be leveraged by companies, government agencies andindividual users4. For instance, a

partial “blueprint” of every user on the web can be created bycombining the information from

their Facebook/Google profiles, status updates, Twitter tweets, metadata of their photo and video

uploads, webpage visits, and all sorts of other minute data.This gives an insight into the interests

4http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation

2

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation

Figure 1.2 Growth of Targeted Display Advertising. Image from [59].

and needs of the users, thereby allowing companies to targeta select group of users for their prod-

ucts. Users prefer online advertisements that match their interests over random advertisements.

Figure 1.2 shows the tremendous growth that has been achieved in targeted advertising over the

years, as a consequence of using data analytics5 to understand the behavior of web users [59].

Big Data analytics has also lead to the development of new applications and services like

Microsoft’s HealthVault6, a platform that enables patients to compile personal health information

from multiple sources into a single online repository, and coordinate their health management

with other users. Applications such as Google Flu Trends7 and Dengue Trends8 predicted the

disease outbreak well before the official CDC (US Centers forDisease Control and Prevention)

5Data analytics is the science of examining data with the purpose of inferring useful information, and making
decisions and predictions based on the inferences. It encompasses a myriad of methodologies and tools to perform
automated analysis of data [1].

6https://www.healthvault.com/us/en/overview
7http://www.google.org/flutrends
8http://www.google.org/denguetrends

3

https://www.healthvault.com/us/en/overview
http://www.google.org/flutrends
http://www.google.org/denguetrends

and EISS (European Influenza Surveillance Scheme) reports are published, based on aggregated

search activity, reducing the number of people affected by the disease [71].

1.1 Data Analysis

Data analysis is generally divided into exploratory and confirmatory data analysis [174]. The pur-

pose of exploratory analysis is to discover patterns and model the data. Exploratory data analysis is

usually followed by a phase of confirmatory data analysis which aims at model validation. Several

statistical methods have been proposed to perform data analysis. Statistical pattern recognition and

machine learning is concerned with predictive analysis, which involves discovering relationships

between objects and predicting future events, based on the knowledge obtained. Pattern recogni-

tion comprises of three phases: data representation, learning and inference.

1.1.1 Data Representation

Data representation involves selecting a set of features todenote the objects in the data set. A

d-dimensional vectorx = (x1, . . . , xd)
⊤ denotes each object, wherexp, p ∈ [d] represents a

feature. The features may be numerical, categorical or ordinal. For instance, a document may

be represented using the words in the document; in which caseeachxp denotes a word in the

document. An image may be represented using the pixel intensity values. In this case,xp is

the numerical intensity value at thepth pixel. The representation employed dictates the kind of

analysis the can be performed on the data set, and the interpretation of the results of analysis.

Therefore, it is important to select the correct representation. In most applications, prior domain

knowledge is useful in selecting the object representation. Recently, deep learning techniques have

been employed to automatically learn the representation for objects [20].

4

1.1.2 Learning

After a suitable representation is chosen, the data is inputto a learning algorithm which fits a model

to the data.

The simplest learning task is that ofsupervised learning, also termed as classification [97].

The goal of supervised learning is to derive a function that maps the set of input objects to a set of

targets (classes), usinglabeledtraining data. For instance, given a set of tagged images, the learner

analyzes the images and learns a function mapping the imagesto their tags. Supervised learning

finds use in many applications such as object recognition, spam detection, intrusion detection, and

machine translation.

Unfortunately, only about3% of the potentially useful data on the web is labeled (e.g. tags for

objects in images), and it is extremely expensive to obtain the labels for the massive amount of data,

making supervised learning difficult in most big data applications [2]. Of late, crowdsourcing tools

such as Amazon Mechanical Turk9 have been used to obtain labels for the data items, from multiple

users over the web [29]. However, labels obtained through such approaches can be unreliable and

ambiguous. For example, in the task of image tagging throughcrowdsourcing, one user may tag

the image of a poodle with the label “dog”, whereas another user may label it as “animal” (i.e.

usage of hypernyms versus hyponyms). The same tag “jaguar” could apply to both the car as well

as the animal (polysemy). Spammers can intentionally generate wrong labels leading to noise in

the data. Additional efforts are needed to handle these issues [138,185].

Semi-supervised learningtechniques alleviate the need for labeling large data sets by utiliz-

ing a large pool of unlabeled objects in conjunction with a relatively small set of labeled objects to

learn a classifier [189]. It has been found that the classifiers learnt through semi-supervised learn-

ing methods can be more accurate than those learnt using labeled data alone, because the unlabeled

data allows the learner to explore the underlying structureof the data. Though semi-supervised

learning methods mitigate the labeling problem associatedwith supervised learning methods to

9https://www.mturk.com/mturk

5

https://www.mturk.com/mturk

some extent, they are still susceptible to same issues as thesupervised learning techniques. More-

over, it is expensive to obtain supervision in applicationssuch as stock market analysis, where high

level of expertise is required to identify the stock trends [130].

Unsupervised learningtasks involve finding the hidden structure in data. Unlike supervised

and semi-supervised learning, these tasks do not require the data to be labeled, thereby avoiding

the cost of tagging the data and allowing one to leverage the abundant data corpus. Examples of

unsupervised learning tasks include density estimation, dimensionality reduction, feature selection

and extraction, and clustering [83].

Clustering, also known as unsupervised classification, is one of the primary approaches to

unsupervised learning. The purpose of clustering is to discover the natural grouping of the input

objects. One of the goals of clustering is to summarize and compress the data, leading to efficient

organization and convenient access of the data. It is often employed as a precursor to classification.

The data is first compressed using clustering, and a supervised learning model is built using only

the compressed data. For instance, in the image tagging problem, if the learner was only provided

with a large number of untagged images, the images can be grouped into clusters based on a pre-

defined similarity. Each cluster can be represented by a small set of prototype images, and the

labels for these representative images obtained through crowdsourcing, which can then be used to

learn a tagging function in a supervised manner. This process is cheaper and more reliable than

obtaining the labels for all the images. Clustering finds usein a multitude of applications such

as web search, social network analysis, image retrieval, gene expression analysis, market analysis

and recommendation systems [90].

1.1.3 Inference

In this phase, the learnt model is used for decision making and prediction, as required by the ap-

plication. For example, in the image tagging problem, the model comprising the mapping function

can be used to predict the tags corresponding to an image the learner has not seen previously. In

6

Table 1.1 Notation.

Symbol Description

D = {x1, . . . ,xn} Input data set to be clustered
xi ith data point
χ Input space
Hκ Feature space/ Reproducing Kernel Hilbert Space (RKHS)

‖ · ‖Hκ
Functional norm in RKHS

d Dimensionality of the input space
n Number of points in the data set
C Number of clusters

U = (u1, . . . ,uC)
⊤ Cluster membership matrix(C × n)

P = {U ∈ {0, 1}C×n : U⊤1 = 1} Set of valid cluster membership matrices
Ck kth cluster
ck kth cluster center
nk Number of points in thekth cluster
ϕ Mapping function fromχ toHκ

κ(·, ·) Kernel function
K Kernel matrix(n× n)

social networks, clustering is employed to group users based on their gender, occupation, web

activity, and other attributes, to automatically find user communities [128]. Based on the commu-

nities identified, recommendations for new connections andcontent can be made to the users.

In this thesis, we focus on the clustering problem. Notations used throughout this thesis are

summarized in Table 1.1.

1.2 Clustering

Clustering, one of the primary approaches to unsupervised learning, is the task of grouping a set

of objects into clusters based on some user-defined similarity. Given a set ofn objects represented

by D = {x1, . . . ,xn}, where each pointxi ∈ χ andχ ⊆ ℜd, the objective of clustering, in most

applications, is to group the points intoC clusters, represented by{C1, . . . , CC}, such that the

clusters reflect the natural grouping of the objects. The definition of natural grouping is subjective,

7

(a)

 1 5 23 18 26 7 13 22 4 12 2 15 6 16 3 11 10 9 8 14 17 19 25 20 21 24 30 27 29 28

1

2

3

4

5

6

(b) (c)

Figure 1.3 A two-dimensional example to demonstrate hierarchical and partitional clustering tech-
niques. Figure (a) shows a set of points in two-dimensional space, containing three clusters. Hier-
archical clustering generates a dendrogram for the data. Figure (b) shows a dendrogram generated
using the complete-link agglomerative hierarchical clustering algorithm. The horizontal axis rep-
resents the data points and the vertical axis represents thedistance between the clusters when they
first merge. By applying a threshold on the distance at4 units (shown by the black dotted line),
we can obtain the three clusters. Partitional clustering directly finds theC clusters in the data set.
Figure (c) shows the three clusters, represented by the blue, green and red points, obtained using
thek-means algorithm. The starred points in black represent thecluster centers.

and dependent on a number of factors including the objects inthe data set, their representation,

and the goal of cluster analysis. The most common objective is to group the points such that the

similarity between the points within the same cluster is greater than the similarity between the

points in different clusters. The structure of the clustersobtained is determined by the definition of

the similarity. It is usually defined in terms of a distance functiond : χ× χ → ℜ.

1.2.1 Clustering Algorithms

Historically, two type of clustering algorithms have been developed: hierarchical and parti-

tional [88].

• Hierarchical clustering algorithms, as the name suggests,build a hierarchy of clusters; the

root of the tree contains all then points in the data set, and the leaves contain the individual

points. Agglomerative hierarchical clustering algorithms start withn clusters, each with one

8

point, and recursively merge the clusters which are most similar to each other. Divisive

hierarchical clustering algorithms, on the other hand, start with the root containing all the

data points, and recursively split the data into clusters ina top-down manner. The most

well-known hierarchical clustering algorithms are the single-link, complete-link and Ward’s

algorithms [88]. The single-link algorithm defines the similarity between two clusters as the

similarity between their most similar members, whereas thecomplete-link algorithm defines

the similarity between two clusters as the similarity of their most dissimilar members. The

Ward’s clustering algorithm recursively merges the clusters that leads to the least possible

increase in the intra-cluster variance after merging. Figure 1.3(b) shows the complete-link

dendrogram corresponding to the clusters in the two-dimensional data set in Figure 1.3(a).

• Partitional clustering algorithms, directly partition the data intoC clusters, as shown in Fig-

ure 1.3(c). Popular partitional clustering algorithms include centroid-based (k-means,k-

medoids) [87, 94], model-based (Mixture models, Latent Dirichlet Allocation) [24], graph-

theoretic (Minimum Spanning Trees, Normalized-cut, Spectral clustering) [77, 161], and

density and grid-based (DBSCAN, OPTICS, CLIQUE) algorithms [61].

From a statistical viewpoint, clustering techniques can also be categorized as parametric and

non-parametric [127]. Parametric approaches to clustering assume that the data is drawn from

a densityp(x) which is a mixture of parametric densities, and the goal of clustering is to iden-

tify the component densities. The centroid-based and model-based clustering algorithms fall in

this category. Non-parametric approaches are based on the premise that the clusters represent the

modes of the densityp(x), and the aim of clustering is to detect the high-density regions in the

data. The modal structure ofp(x) can be summarized in acluster tree. Each level in the cluster

tree represents the feature spaceL(γ, p) = {x | p(x) > γ}. Cluster trees can be constructed using

the single-link clustering algorithm to build neighborhood graphs, and finding the connected com-

ponents in the neighborhood graphs. Density-based partitional clustering algorithms such as DB-

9

SCAN and OPTICS, are specialized non-parametric clustering techniques, which find the modes

at a fixed user-defined density threshold. Mean-shift clustering algorithms estimate the density

locally at eachx, and find the modes using a gradient ascent procedure on the local density.

1.2.2 Challenges in Data Clustering

Data clustering is a difficult problem, as reflected by the hundreds of clustering algorithms that

have been published, and the new ones that continue to appear. Due to the inherent unsupervised

nature of clustering, there are several factors that affectthe clustering process.

• Data representation.The data can be input to clustering algorithms in two forms: (i) the

n × d pattern matrixcontaining thed feature values for each of then objects, and (ii)

then× n proximity matrix, whose entries represent the similarity/dissimilarity between the

corresponding objects. Given a suitable similarity measure, it is easy to convert a pattern

matrix to the proximity matrix. Similarly, methods like singular value decomposition and

multi-dimensional scaling can been used to approximate thepattern matrix corresponding to

the given proximity matrix [47]. Conventionally, hierarchical clustering algorithms assume

input in the form of the proximity matrix, whereas partitional clustering algorithms accept

the pattern matrix as input.

The features used to represent the data in the pattern matrixplay an important role in clus-

tering. If the representation is good, the clustering algorithm will be able to find compact

clusters in the data. Dimensionality of the data set is also crucial to the quality of clusters ob-

tained. High-dimensional representations with redundantand noisy features not only lead to

long clustering times, but may also deteriorate the clusterstructure in the data. Feature selec-

tion and extraction techniques such as forward/backward selection and principal component

analysis are used to determine the most discriminative features, and reduce the dimensional-

ity of the data set [89]. Deep learning techniques [20] and kernel learning techniques [112]

10

can be employed to learn the data representation from the given data set.

• Number of clusters.Most clustering algorithms require the specification of thenumber of

clustersC. While centroid-based, model-based and graph-theoretic algorithms directly ac-

cept the number of clusters as input, density and grid-basedalgorithms accept other param-

eters such as the maximum inter-cluster distance, which areindirectly related to the number

of clusters. Automatically determining the number of clusters is a difficult problem and,

in practice, domain knowledge is used to determine this parameter. Several heuristics have

been proposed to estimate the number of clusters. In [172], the number of clusters is deter-

mined by minimizing the “gap” between the clustering error10 for each value ofC, and the

expected clustering error of a reference distribution. Cross-validation techniques can be used

to find the value ofC at which the error curve corresponding to the validation data exhibits

a sharp change [68].

• Clustering Algorithm.The objective of clustering dictates the algorithm chosen for clus-

tering, and in turn, the quality and the structure of the clusters obtained. Centroid-based

clustering algorithms such ask-means aim at minimizing the sum of the distances between

the points and their representative centroids. This objective is suitable for applications where

the clusters are compact and hyper-spherical or hyper-ellipsoidal. Density based algorithms

aim at finding the dense regions in the data. The single-link hierarchical clustering algorithm

finds long elongated clusters called “chains”, as the criterion for merging clusters is local,

whereas the complete-link hierarchical clustering algorithm finds large compact clusters.

Each clustering algorithm is associated with a different similarity measure.

• Similarity measures.The similarity measure employed by the clustering algorithm is crucial

to the structure of the clusters obtained. The choice of the similarity function depends on the

data representation scheme, and the objective of clustering. A popular distance function is

10Refer to Section 1.3.1 for the definition of clustering error.

11

the squared Euclidean distance defined by

d2 (xa,xb) = ||xa − xb||22 , (1.1)

wherexa,xb ∈ D. However, the Euclidean distance is not suitable for all applications.

Other distance measures such as Mahalanobis, Minkowski andnon-linear distance measures

have been applied in the literature to improve the clustering performance in many applica-

tions [171] (See Section 1.4).

• Clustering Tendency, Quality and Stability.Most clustering algorithms will find clusters in

the given data set, even if the data does not contain any natural clusters. The study of clus-

tering tendency deals with examining the data before executing the clustering algorithm, to

determine if the data contains any clusters. Clustering tendency is usually assessed through

visual assessment techniques which reorder the similaritymatrix to examine whether or not

the data contains clusters [85]. These techniques can also be used to determine the number

of clusters in the data set.

After obtaining the clusters, we need to evaluate the validity and quality of the clusters.

Several measures have been identified to evaluate the clusters obtained, and the choice of the

quality criterion depends on the application. Cluster validity measures are broadly classified

as either internal or external measures [88]. Internal measures such as the value of the

clustering algorithm’s objective function and the inter-cluster distances assess the similarity

between the cluster structure and the data. As clustering isan unsupervised task, it is logical

to employ internal measures to evaluate the partitions. However, these measures are difficult

to interpret and often vary from one clustering algorithm toanother. On the other hand,

external measures such as prediction accuracy and cluster purity use prior information like

the true class labels to assess the cluster quality. External measures are more popularly used

to evaluate and compare the clustering results of differentclustering algorithms, as they are

12

easier to interpret than internal validity measures.

Cluster stability measures the sensitivity of the clustersto small perturbations in the data

set [119]. It is dependent on both the data set and the algorithm used to perform clustering.

Clustering algorithms which generate stable clusters are preferred as they will be robust to

noise and outliers in the data. Stability is typically measured using data resampling tech-

niques such as bootstrapping. Multiple data sets of the samesize, generated from the same

probability distribution, are clustered using the same algorithm and the similarity between

the partitions of these data sets is used as a measure of the algorithm’s stability.

• Scalability. In addition to the cluster quality, the choice of the clustering algorithm is also

determined by the scalability of the algorithm. This factorbecomes all the more crucial

when designing systems for big data analysis. Two importantfactors that determine the scal-

ability of a clustering algorithm are its running time complexity and its memory footprint.

Clustering algorithms which have linear or sub-linear running time complexity, and require

minimum amount of memory are desirable.

1.3 Clustering Big Data

When the size of the data setn is in the order of billions and the dimensionality of the datad is

in the order of thousands, as is the case in many big data analytics problems, the scalability of

the algorithm becomes an important factor while choosing a clustering algorithm. Hierarchical

clustering algorithms are associated with at leastO(n2d + n2 log(n)) running time andO(n2)

memory complexity, which renders them infeasible for largedata sets. The same holds for many

of the partitional clustering algorithms such as the model based algorithms like Latent Dirichlet

Allocation, graph-based algorithms such as spectral clustering and density-based algorithms like

DBSCAN. They have running time complexities ranging fromO(n log(n)) toO(n3) in terms of the

number of points in the data, and at least linear time complexity with respect to the dimensionality

13

Table 1.2 Clustering techniques for Big Data.

Clustering approaches Running time complexity Memory complexity

Linear clustering k-means O(nCd) O(nd)

Sampling-based CLARA [94] O(Cm2 + C(n− C)) O(n2)
clustering with CURE [80] O(m2 log(m)) O(md)
sample sizem ≪
n

Coreset [82] O(n+ Cpolylog(n)) O(nd)

Compression BIRCH [197] O(nd) M †

CLARANS [136] O(n2) O(n2)

Stream cluster-
ing

Stream [79],
ClusTree [98]

O(nCd) M †

Scalable k-
means [30],
Single-pass
k-means [62]

O(nd)

StreamKM++ [6] O(dns)* O(ds log(n/s))*

Distributed clus-
tering

Parallel k-
means [60,199]

O(nCd) O(PC2nδ), δ > 0

with P tasks MapReduce
based spectral
clustering [35]

O(n2d/P + r3 + nr + nC2)** O(n2/P)

Nearest-
neighbor cluster-
ing [115]

O(n log(n)/P) O(n/P)

*s = O(dC log(n) logd/2(C log(n)))

** r represents the the rank of the affinity matrix

†M is a user-defined parameter representing the amount of memory available

d and the number of clustersC. Several clustering algorithms have been modified and special

algorithms have been developed in the literature, to scale up to large data sets. Most of these

algorithms involve a preprocessing phase to compress or distribute the data, before clustering is

performed. Some of the popular methods to efficiently cluster large data sets (listed in Table 1.2)

can be classified based on their preprocessing approach, as follows:

• Sampling-based methods reduce the computation time by firstchoosing a subset of the given

data set and then using this subset to find the clusters. The key idea behind all sampling-based

14

clustering techniques is to obtain the cluster representatives, using only the sampled subset,

and then assign the remaining data points to the closest representative. The success of these

techniques depends on the premise that the selected subset is an unbiased sample and is

representative of the entire data set. This subset is choseneither randomly (CLARA [94],

CURE [80]) or through an intelligent sampling scheme such ascoreset sampling [82, 183].

Coreset-based clustering first finds a small set of weighted data points called the coreset,

which approximates the given data set, within a user-definederror margin, and then obtains

the cluster centers using this coreset. In [63], it is provedthat a coreset of sizeO(C2/ǫ4) is

sufficient to obtain anO(1 + ǫ) approximation, whereǫ is the error parameter.

• Clustering algorithms such as BIRCH [197] and CLARANS [136]improve the clustering

efficiency by encapsulating the data set into special data structures like trees and graphs for

efficient data access. For instance, BIRCH defines a data structure, called the Clustering-

Feature Tree (CF-Tree). Each leaf node in this tree summarizes a set of points whose inter-

point distances are less than a user-defined threshold, by the sum of the points, sum of the

squares of the data points, and the number of points. Each non-leaf node summarizes the

same statistics for all its child nodes. The points in the data set are added incrementally to the

CF-Tree. The leaf entries of the tree are then clustered using an agglomerative hierarchical

clustering algorithm to obtain the final data partition. Other approaches summarize the data

into kd-trees and R-trees for fastk-nearest neighbor search [115].

• Stream clustering [8] algorithms are designed to operate ina single pass over an arbitrary-

sized data set. Only the sufficient statistics (such as the mean and variance of the clusters,

when the clusters are assumed to be drawn from a Gaussian mixture) of the data seen so far

are retained, thereby reducing the memory requirements. One of the first stream clustering

algorithms was proposed by Guhaet al. [79]. They first summarize the data stream into a

larger number of clusters than desired, and then cluster thecentroids obtained in the first step.

15

Stream clustering algorithms such as CluStream [8], ClusTree [98], scalablek-means [30],

and single-passk-means [62] were built using a similar idea, containing an online phase

to summarize the incoming data, and an offline phase to cluster the summarized data. The

summarization is usually in the form of trees [8, 30], grids [32, 36] and coresets [6, 63]. For

instance, the CluStream algorithm summarizes the data set into a CF-Tree, in which each

node stores the linear sum and the squared sum of a set of points which are within a user-

defined distance from each other. Each node represents a micro-cluster whose center and

radius can be found using the linear and squared sum values. Thek-means algorithm is the

algorithm of choice for the offline phase to obtain the final clusters.

• With the evolution of cloud computing, parallel processingtechniques for clustering have

gained popularity [48, 60]. These techniques speed up the clustering process by first divid-

ing the task into a number of independent sub-tasks that can be performed simultaneously,

and then efficiently merging these solutions into the final solution. For instance, in [60],

the MapReduce framework [148] is employed to speed up thek-means and thek-medians

clustering algorithms. The data set is split among many processors and a small representa-

tive data sample is obtained from each of the processors. These representative data points

are then clustered to obtain the cluster centers or medians.In parallel latent Dirichlet allo-

cation, each task finds the latent variables corresponding to a different component of the

mixture [133]. The Mahout platform [143] implements a number of parallel clustering

algorithms, including parallelk-means, latent Dirichlet allocation, and mean-shift cluster-

ing [37, 133, 135, 199]. Billions of images were clustered using an efficient parallel nearest-

neighbor clustering in [115].

Data sets of sizes close to a billion have been clustered using the parallelized versions of thek-

means, nearest neighbor and spectral clustering algorithms. To the best of our knowledge, based on

the published articles, the largest data set that has been clustered consisted of a1.5 billion images,

16

each represented by a100-dimensional vector containing the Haar wavelet coefficients [115]. They

were clustered into50 million clusters using the distributed nearest neighbor algorithm in10 hours

using2, 000 CPUs. Data sets that are big in both size (n) and dimensionality (d), like social-

network graphs and web graphs, were clustered using subspace clustering algorithms and parallel

spectral clustering algorithms [35,181].

1.3.1 Clustering withk-means

Among the variousO(n) running time clustering algorithms in Table 1.2, the most popular algo-

rithm for clustering large scale data sets is thek-meansalgorithm [87]. It is easy to implement,

simple and efficient. It is easy to parallelize, has relatively few parameters when compared to the

other algorithms, and yields clustering results similar tomany other clustering algorithms [192].

Millions of points can be clustered usingk-means within minutes. Extensive research has been

performed to solve thek-means problem and obtain strong theoretical guarantees with respect to

its convergence and accuracy. For these reasons, we focus onthek-means algorithm in this thesis.

The key idea behindk-means is to minimize theclustering error, defined as the sum of the

squared distances between the data points and the center of the cluster to which each point is

assigned. This can be posed as the following min-max optimization problem:

min
U∈P

max
ck∈χ

C∑

k=1

n∑

i=1

Uk,id
2 (ck,xi) , (1.2)

whereU = (u1, . . . ,uC)
⊤ is the cluster membership matrix,ck ∈ χ, k ∈ [C] are the cluster

centers, and domainP = {U ∈ {0, 1}C×n : U⊤1 = 1}, where1 is a vector of all ones. The

most commonly used distance measured (·, ·) is the squared Euclidean distance measure, defined

in (1.1). Thek-means problem with the squared Euclidean distance measureis defined as

min
U∈P

max
ck∈χ

C∑

k=1

n∑

i=1

Uk,i ||ck − xi||22 . (1.3)

17

Algorithm 1 k-means
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• C: the number of clusters

2: Output : Cluster membership matrixU ∈ {0, 1}C×n

3: Randomly initialize the membership matrixU with zeros and ones, ensuring thatU⊤1 = 1.
4: repeat

5: Compute the cluster centersck = 1
u
⊤

k
1

n∑
i=1

Uk,ixi, k ∈ [C].

6: for i = 1, . . . , n do
7: Find the closest cluster centerk∗ for xi, by solving

k∗ = argmin
k∈[C]

||ck − xi||22 .

8: Update theith column ofU byUk,i = 1 for k = k∗ and zero, otherwise.
9: end for

10: until convergence is reached

The above problem (1.3) is an NP-complete integer programming problem, due to which it is

difficult to solve [121]. A greedy approximate algorithm, proposed by Lloyd solves (1.3) itera-

tively [116]. The centers are initialized randomly. In eachiteration, every data point is assigned to

the cluster whose center is closest to it, and then the cluster centers are recalculated as the means

of the points assigned to the cluster, i.e. thekth centerck is obtained as

ck =
1

nk

n∑

i=1

Uk,ixi, k ∈ [C], (1.4)

wherenk = u⊤
k 1 is the number of points assigned to thekth cluster. These two steps are repeated

until the cluster labels of the data points do not change in consecutive iterations. This proce-

dure is described in Algorithm 1. It hasO(ndCl) running time complexity andO(nd) memory

complexity, wherel is the number of iterations required for convergence. Several methods have

been developed in the literature to initialize the algorithm intelligently and ensure that the solution

obtained is a(1 + ǫ)-approximation of the optimal solution of (1.3) [12,101].

18

1.4 Kernel Based Clustering

The issue of scalability can be addressed by using the large scale clustering algorithms described

in Section 1.3. However, most of these algorithms, including k-means, are linear clustering algo-

rithms, i.e. they assume that the clusters are linearly separable in the input space (e.g. the data set

shown in Figure 1.3(a)) and define the inter-point similarities using measures such as the Euclidean

distance. They suffer from the following two main drawbacks:

(i) Data sets that contain clusters that cannot be separatedby a hyperplane in the input space

cannot be clustered by linear clustering algorithms. For this reason, all the clustering algo-

rithms in Table 1.2, with the exception of spectral clustering, are only able to find compact

well-separated clusters in the data. They are also not robust to noise and outliers in the data.

Consider the example shown in Figure 1.4. The data set in Figure 1.4(a) contains500 points

in the form of two semi-circles. We expect a clustering algorithm to group the points in each

semi-circle, and detect the two semi-circular clusters. The clusters resulting fromk-means

with Euclidean distance are shown in Figure 1.4(b). Due to the use of Euclidean distance,

the two-dimensional space is divided into two half-spaces and the resulting clusters are sep-

arated by the black dotted line. Other Euclidean-distance based partitional algorithms also

find similar incorrect partitions.

(ii) Non-linear similarity measures can be used to find arbitrarily shaped clusters, and are more

suitable for real-world applications. For example, suppose two images are represented by

their pixel intensity values. The images may be considered more similar to each other if

they comprise of similar pixel values, as shown in Figure 1.5. Thus the difference between

the images is reflected better by the dissimilarity of image histograms than by the Euclidean

distance between the pixel values [14,106].

19

(a)

(b) (c)

100 200 300 400 500

100

200

300

400

500

2

4

6

8

(d)

100 200 300 400 500

100

200

300

400

500

0.2

0.4

0.6

0.8

(e)

Figure 1.4 A two-dimensional example that demonstrates thelimitations of k-means clustering.
500 two-dimensional points containing two semi-circular clusters are shown in Figure (a). Points
numbered1− 250 belong to the first cluster and points numbered251− 500 belong to the second
cluster. The clusters obtained usingk-means (using Euclidean distance measure) do not reflect the
true underlying clusters (shown in Figure (b)), because theclusters are not linearly separable as
expected by thek-means algorithm. On the other hand, the kernelk-means algorithm using the RBF
kernel (with kernel widthσ2 = 0.4) reveals the true clusters (shown in Figure (c)). Figures (d) and
(e) show the500 × 500 similarity matrices corresponding to the Euclidean distance and the RBF
kernel similarity, respectively. The RBF kernel similarity matrix contains distinct blocks which
distinguish between the points from different clusters. The similarity between the points in the
same true cluster is higher than the similarity between points in different clusters. The Euclidean
distance matrix, on the other hand, does not contain such distinct blocks, which explains the failure
of thek-means algorithm on this data.

20

(a)

0

1000

2000

3000

0 100 200
(b)

(c)

0

100

200

300

0 100 200
(d)

(e)

0

100

200

300

0 100 200
(f)

Figure 1.5 Similarity of images expressed through gray level histograms. The histogram of the
intensity values of the image of a website (Figure (b)) is very different from the histograms of the
images of butterflies (Figures (d) and (f)). The histograms of the two butterfly images are similar
to each other.

21

The issue of non-linear separability is tackled usingkernel functions11. The key behind the

success of kernel-based learning algorithms is the fact that any data set becomes linearly separable

when projected to an appropriate high dimensional space. Consider a non-linear functionϕ : χ →

Hκ, which maps the points in theinput spaceχ to a high dimensionalfeature spaceHκ. The

distance between the data points in this feature space can bedefined in terms of the dot products

of the projected points. For instance, the Euclidean distance between two pointsxa andxb in Hκ

is defined as

||ϕ(xa)− ϕ(xb)||22 = 〈ϕ(xa), ϕ(xa)〉+ 〈ϕ(xb), ϕ(xb)〉 − 2〈ϕ(xa), ϕ(xb)〉.

In practical applications, the dimensionality ofHκ is extremely high, possibly infinite. Hence,

the explicit computation of the mappingϕ is highly computationally intensive and, in most cases,

infeasible. This computation is avoided by replacing the dot product with a non-linear kernel

distance functionκ(·, ·) : χ × χ → ℜ. The distance between any two points is now defined in

terms of the kernel functionκ as

d2
κ(xa,xb) = κ(xa,xa) + κ(xb,xb)− 2κ(xa,xb). (1.5)

A kernel functionκ is admissible if and only if it satisfies the Mercer’s condition [159, Theorem

2.10]. Informally stated, Mercer’s theorem asserts that there exists a mappingϕ and an expansion

κ(xa,xb) = ϕ(xa)
⊤ϕ(xb) if and only if, for any functiong(x) such that

∫
g(x)2dx is finite, we

have ∫
κ(xa,xb)g(xa)g(xb)dxadxb ≥ 0.

Such a kernel is known as the Mercer kernel or Reproducing Kernel, and the feature spaceHκ is

called theReproducing Kernel Hilbert Space (RKHS). The matrixK = [κ(xi,xj)],xi,xj ∈ D is

11http://crsouza. blogspot.com/2010/03/kernel-functions-for-machine-learning. html

22

http://crsouza. blogspot.com/2010/03/kernel-functions-for-machine-learning. html

Table 1.3 Popular kernel functions.

Linear κ(xa,xb) = x⊤
a xb + c for constantc

Polynomial κ(xa,xb) =
(
x⊤
a xb + c

)d
, d is the degree of the polynomial kernel

RBF κ(xa,xb) = exp
(
− ||xa−xb||22

2σ2

)
, σ > 0 is the kernel width parameter

Laplacian κ(xa,xb) = exp
(
− ||xa−xb||

σ

)

Chi-square κ(xa,xb) = 1−
d∑

i=1

(xi
a−x

i
b)

2

0.5(xi
a+x

i
b)

Histogram Intersection κ(xa,xb) =
∑

min (hist(xa) , hist(xb))
String kernel Number of common subsequences between string sequencesxa andxb

known as the kernel matrix or Gram matrix. The simplest kernel functions are positive definite

kernels whose corresponding kernel matrix is Hermitian andpositive-definite. The Radial Basis

Function (RBF) kernel defined by

κ(xa,xb) = exp

(
−||xa − xb||22

2σ2

)
, σ > 0 (1.6)

is a popular positive-definite kernel function. It performswell on a large number of benchmark

data sets. The parameterσ2, known as the kernel width, scales the distance between the points. Ta-

ble 1.3 lists some of the popular kernel functions. Chi-square kernel, histogram intersection kernel

and their variants are commonly used in image and video-related applications. String kernels are

popular in text-mining applications. The remaining kernels in Table 1.3 are generic kernels. Using

the linear kernel is the same as using the Euclidean distancemeasure.

Kernel based clustering techniques use (1.5) to define the similarity between objects. Conse-

quently, when provided with the appropriate kernel function, they have the ability to capture the

non-linear structure in real world data sets and, thus, usually perform better than the linear cluster-

ing algorithms, in terms of cluster quality [95]. Various kernel-based clustering algorithms have

been developed, including kernelk-means, spectral clustering, support vector clustering, maximum

margin clustering, kernel self-organizing maps and kernelneural gas [65].

23

Spectral clustering [118] is based on the idea of spectral graph partitioning. The data points

are represented as nodes in a graph and the affinity between the nodes is defined by the kernel

similarity between the points. The graph is partitioned into C components by first computing

the graph Laplacian matrix and the eigenvectors corresponding to its smallestC eigenvalues, and

then clustering the eigenvectors intoC clusters usingk-means. The data partition is obtained via

the graph partition. Spectral clustering is widely employed for image segmentation and graph

partitioning problems.

Support vector clustering [19] involves projecting the data to a high dimensional feature space

and searching for a minimum enclosing sphere in this space. This enclosing sphere is projected

back into the input space and the support vectors are used to define the cluster boundaries. All

points that lie within a cluster boundary are assigned to thesame cluster. The maximum margin

clustering technique [190] finds the cluster labeling whichwhen used to find a maximum margin

classifier (e.g. Support Vector Machines) for the given data, results in a margin that is maximal

over all possible cluster labelings. A convex optimizationproblem with the cluster labels and the

margin of the Support Vector Machine as variables, and constraints on the number of points per

cluster and the difference in the cluster sizes, is formulated. The labels and the classifier margin

are optimized simultaneously to find the optimal cluster labels.

The kernel self-organizing map [120] algorithm extends theself-organizing map [96] algo-

rithm to use kernel distance measures. The key idea behind this algorithm is to construct a low-

dimensional (typically two-dimensional) topology-preserving map of the input data set through

competitive learning. A self-organizing map, also known asthe Kohenen map, consists of a two-

layer network, the input layer containingd nodes and an output layer containing at leastC nodes.

Each output node is randomly initialized with a weight. Whena new data point is input to the

network, the node whose weight is closest to the input data point in terms of the kernel distance is

determined. This node is called the Best Matching Unit. The weights of the best matching unit and

its neighboring nodes are updated, based on a pre-defined neighborhood function. After a number

24

of passes over the data set, the weights of the nodes convergeto form distinctive regions in the

output layer from which the clusters in the data can be read off.

The kernel neural gas algorithm [145], inspired by the self-organizing map algorithm, also

creates a map of the input data. The difference between the two methods is that while, only the

weights of a few neighboring nodes of the best matching unit are updated in a self-organizing map,

the weights of all the nodes are updated in the neural gas algorithm. The nodes are ranked based on

their proximity to the best matching unit, and their weightsupdated on the basis of their rank. The

nearest node is updated by a higher factor than the farthest node. This update mechanism leads to

neural gas converging faster than self-organizing maps.

Similar to thek-means algorithm, the kernelk-means algorithm [160] is the most popular

kernel-based clustering algorithm due to it simplicity. Several studies have also established the

theoretical equivalence of kernelk-means and other kernel-based clustering methods, suggesting

that they yield similar results [51,52].

1.4.1 Kernelk-means

The kernelk-means algorithm can be viewed as a non-linear extension of the k-means algo-

rithm. It replaces the Euclidean distance function (1.1) employed in thek-means algorithm with a

non-linear kernel distance function defined in (1.5).

Let K ∈ ℜn×n be the kernel matrix withKi,j = κ(xi,xj), whereκ(·, ·) is the kernel function.

Let Hκ be the Reproducing Kernel Hilbert Space (RKHS) endowed by the kernel functionκ(·, ·),

and||·||Hκ
be the functional norm forHκ. Similar to thek-means problem, the objective of kernel

k-means is to minimize the clustering error. Hence, the kernel k-means problem can be cast as the

following optimization problem:

min
U∈P

max
{ck(·)∈Hκ}Ck=1

C∑

k=1

n∑

i=1

Uk,i‖ck(·)− κ(xi, ·)‖2Hκ
, (1.7)

25

Algorithm 2 Kernelk-means
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• κ(·, ·) : χ× χ 7→ ℜ: the kernel function
• C: the number of clusters

2: Output : Cluster membership matrixU ∈ {0, 1}C×n

3: Compute the kernel matrixK = [κ(xi,xj)]n×n.
4: Randomly initialize the membership matrixU with zeros and ones, ensuring thatU⊤1 = 1.
5: repeat
6: for i = 1, . . . , n do
7: Find the closest cluster centerk∗ for xi, by solving

k∗ = argmin
k∈[C]

||ck(·)− κ(xi, ·)||2Hκ

= argmin
k∈[C]

u⊤
k Kuk(
u⊤
k 1
)2 − 2

u⊤
k Ki

u⊤
k 1

,

whereuk is thekth column ofU⊤, andKi is theith column ofK.
8: Update theith column ofU byUk,i = 1 for k = k∗ and zero otherwise.
9: end for

10: until convergence is reached

whereU = (u1, . . . ,uC)
⊤ is the cluster membership matrix,ck(·) ∈ Hκ, k ∈ [C] are the cluster

centers, and domainP = {U ∈ {0, 1}C×n : U⊤1 = 1}, where1 is a vector of all ones. The above

problem is also NP-complete. A simplified version of the problem, which relaxes the constraints

on U , is solved to obtain the solution [72, 192]. Letnk = u⊤
k 1 be the number of data points

assigned to thekth cluster, and

Û = (û1, . . . , ûC)
⊤ = [diag(n1, . . . , nC)]

−1U,

Ũ = (ũ1, . . . , ũC)
⊤ = [diag(

√
n1, . . . ,

√
nC)]

−1U, (1.8)

denote theℓ1 andℓ2 normalized membership matrices, respectively.

It is easy to verify that, given theC × n cluster membership matrixU , the optimal solution for

26

the cluster centers is

ck(·) =
n∑

i=1

Ûk,iκ(xi, ·), k ∈ [C]. (1.9)

As a result, we can formulate (1.7) as the following optimization problem overU :

min
U∈P

tr(K)− tr(ŨKŨ⊤), (1.10)

which can be further reformulated as the following trace maximization problem:

max
U∈P

tr(ŨKŨ⊤). (1.11)

Note that thek-means optimization problem in (1.3) can also be written as the following trace

maximization problem:

max
U∈P

tr(ŨXX⊤Ũ⊤), (1.12)

whereX = (x1, . . . ,xn)
⊤ is then×d pattern matrix corresponding to the data setD. Therefore, a

greedy iterative algorithm similar to thek-means algorithm can be employed to solve (1.11), with

the Euclidean distance function replaced by the kernel similarity function.

The kernelk-means algorithm is described in Algorithm 2. Figure 1.4(c)shows the result of

applying the kernelk-means algorithm to the synthetic semi-circles data set in Figure 1.4(a) using

the RBF kernel function in (1.6), with the kernel widthσ2 set to0.4. It can be observed that kernel

k-means is able to detect the two semi-circles correctly, unlike thek-means algorithm.

1.4.2 Challenges

Though kernel based clustering algorithms achieve better cluster quality, they suffer from two

major limitations.

27

Table 1.4 Comparison of the running times ofk-means and kernelk-means on a100-dimensional
synthetic data set containing10 clusters and exponentially increasing number of data points, on a
2.8 GHz processor with 40 GB memory.

Data set size 104 105 106 107 108

Running time k-means 0.03 0.17 2.30 34.90 5508.50
in seconds Kernel k-means 3.09 320.10 > 48 hours

1.4.2.1 Scalability

A naive implementation of kernelk-means requires the computation of then × n kernel matrix

K (Step 3 in Algorithm 2) which takesO(n2) time and memory. Clustering millions of objects

using kernelk-means requires more than8, 000 GB of memory and large amount of computing

resources. Table 1.4 compares the running times of thek-means and the kernelk-means algorithms

on a100-dimensional synthetic data set containing10 clusters and exponentially increasing number

of points. The algorithms were executed on a2.8 GHz processor with40 GB memory. It can be

seen that running kernelk-means is far more expensive than runningk-means, especially on large

data sets.

It is also expensive to assign previously unseen data pointsto clusters using kernelk-means,

often termed as theout-of-sample-problem. To find the cluster label for a new data pointx, we

need to compute the distance betweenx and all the cluster centers as follows:

d2κ (x, ck) = ||ck(·)− κ(x, ·)||2Hκ

=
u⊤
k Kuk(
u⊤
k 1
)2 − 2

u⊤
k Kx

u⊤
k 1

, k ∈ [C], (1.13)

whereKx = (κ(x,x1), . . . , κ(x,xn))
⊤. It requires the computation of theO(n)-sized vectorKx

in addition to the kernel matrixK. This is due to the fact that there is no explicit representation for

the cluster centers. If there was ad-dimensional representation for the cluster centersck (as in the

case ofk-means), the distanced2κ (x, ck) can be computed inO(d) time.

Clearly, scalability is a major challenge faced by kernelk-means. Other kernel-based algo-

28

rithms also have high running time complexity. For instance, spectral clustering involves the com-

putation of the topC eigenvectors of the kernel matrix, which is ofO(n3) complexity.

In the literature, the issue of scalability has largely beenaddressed through the use of cloud

computing and parallel algorithms. The Mahout platform [143] implements the parallel spectral

clustering algorithm which uses the distributed Lanczos eigensolver to obtain the eigenvectors of

the Laplacian matrix [35]. Distributed implementations ofSupport Vector Machines have been

developed to perform clustering [78, 169]. However, parallelization of kernel based algorithms is

not simple due to their non-linear nature [15]. For instance, in order to parallelize kernelk-means,

one must replicate the data to all the tasks, leading to largeresource and communication overheads.

Approximate clustering techniques are useful in alleviating this issue. Sampling methods, such

as the Nystrom method [187], have been employed to obtain lowrank approximation of the kernel

matrix to address this challenge [67, 113]. Low-dimensional projection combined with sampling

have been used to further improve the clustering efficiency and tackle the out-of-sample prob-

lem [11,153].

1.4.2.2 Choice of kernel

The role of the kernel function is to reflect the true structure of the data set. However, if the kernel

function is chosen wrongly, the performance of the clustering algorithm degrades. The RBF kernel

defined in (1.6) performs well on most benchmark data sets. However, even for the RBF kernel,

the kernel width parameter has to be chosen carefully. Figure 1.6 demonstrates the sensitivity of

kernelk-means to the kernel width parameter. Kernelk-means is executed on the semi-circles data

set shown in Figure 1.4(a), using the RBF kernel with kernel width values:0.4 and0.1. The clusters

obtained are shown in Figures 1.6(b) and 1.6(c) respectively. Whenσ2 = 0.4, the true clusters are

revealed. On the other hand, whenσ2 = 0.1, the clusters are distorted. Figure 1.6(d) plots the

clustering error of kernelk-means, defined in (1.10), against the RBF kernel width. It isclear that

the performance depends on the choice of the kernel width. Hence, another challenge associated

29

(a) (b)

(c)

0 0.5 1
498.5

499

499.5

500

Kernel width σ
2

C
lu
st
er
in
g
er
ro
r

(d)

Figure 1.6 Sensitivity of the kernelk-means algorithm to the choice of kernel function. The semi-
circles data set (shown in Figure (a)) is clustered using kernelk-means with the RBF kernel. When
the kernel width is set to0.4, the two clusters are correctly detected (shown in Figure (b)), whereas
when the kernel width is set to0.1, the points are clustered incorrectly (shown in Figure (c)). Figure
(d) shows the variation in the clustering error of kernelk-means, defined in (1.10), with respect to
the kernel width.

30

with kernel based algorithms is the choice of the kernel function and the kernel parameters.

Kernel learning techniques aim at learning a positive semi-definite kernel matrix that reflects

the true similarity between the points in the data set [4]. Inthe supervised learning setting, the

kernel is optimized to align with the true class structure ofthe data. This is achieved by either

minimizing the error of the classifier for the chosen kernel,or maximizing the similarity between

the kernel and the class matrix. As the class labels are not available in the setting of unsupervised

learning, other criterion such as compactness of the clusters in the feature space, and degree of

alignment with the structure of the data are utilized [112,177,200].

1.5 Thesis Contributions

The objective of this thesis is to design clustering algorithms that can accurately identify the clus-

ters in data sets containing billions of points, thousands of features and thousands of clusters. As

kernel-based clustering algorithms generally achieve high cluster quality, provided the correct ker-

nel function is chosen, we address the scalability challenge associated with kernel based clustering

algorithms. Our main contribution is the development of efficient approximations of the kernelk-

means algorithm to enable kernel based clustering of large data sets. We demonstrate analytically

and empirically that the proposed approximate algorithms are comparable to kernelk-means in

terms of accuracy and, at the same time, comparable tok-means in terms of efficiency, achieving

the desired trade-off between scalability and accuracy. Wethen extend the proposed approximate

algorithms to handle distributed and streaming data, pushing the limits on the number of objects

that can be clustered accurately with limited computing andmemory resources. Figure 1.7 shows

the scalability of some of the popular linear and kernel-based clustering algorithms in terms ofn,

d andC, and the contribution of the proposed clustering algorithms in improving the scalability of

kernel-based clustering.

In the following, we describe the specific contributions of each chapter:

31

10
0

10
20

10
0

10
2

10
4

10
0

10
2

10
4

10
6

C

nd

Figure 1.7 Scalability of clustering algorithms in terms ofn, d andC, and the contribution of
the proposed algorithms in improving the scalability of kernel-based clustering. The plot shows
the maximum size of the data set that can be clustered with less than100 GB memory on a2.8
GHz processor with a reasonable amount of clustering time (less than10 hours). The linear clus-
tering algorithms are represented in blue, current kernel-based clustering algorithms are shown
in green, parallel clustering algorithms are shown in magenta, and the proposed clustering algo-
rithms are represented in red. Existing kernel-based clustering algorithms can cluster only up to
the order of10, 000 points with100 features into100 clusters. The proposed batch clustering al-
gorithms (approximate kernelk-means, RFF clustering, and SV clustering algorithms) are capable
of performing kernel-based clustering on data sets as largeas10 million, with the same resource
constraints. The proposed online clustering algorithms (approximate stream kernelk-means and
sparse kernelk-means algorithms) can cluster arbitrarily-sized data sets with dimensionality in the
order of1, 000 and the number of clusters in the order of10, 000.

32

• Chapters 2 and 3 address the scalability of kernelk-means using kernel approximation tech-

niques. The computational demand of kernelk-means stems from the fact that it computes

ann × n kernel matrixK, leading toO(n2) running time and memory complexity. This

can be alleviated by replacing the kernel matrixK with an approximate matrix which can

be computed more efficiently. In Chapter 2, we first present a randomized algorithm, called

approximate kernel k-meanswhich replacesK, with a low rank approximate kernel matrix.

Its complexity is linear in terms ofn, while its clustering performance is equivalent to that

of kernelk-means. We then extend the proposed approximate algorithm to handle large data

sets in a distributed environment. In Chapter 3, we propose two clustering algorithms:RFF

clusteringandSV clustering, which employrandom feature maps[92, 147] to obtain low-

dimensional representations for the data points, such thatthe dot product of any two points

in the low-dimensional space approximates the kernel similarity between them. This allows

us to execute a linear clustering algorithm on the transformed data points. The SV clustering

algorithm has a lower running time than the approximate kernel k-means algorithm. It also

allows the explicit computation of the cluster centers, leading to an efficient solution to the

out-of-sample clustering problem. We demonstrate that it is possible to cluster billions of

data points efficiently and accurately using the algorithmsproposed in these two chapters.

For instance, we were able to cluster a synthetic data set containing1 billion 10-dimensional

points using the distributed approximate kernelk-means algorithm in15 minutes (on a com-

puting cluster with1, 024, 2.8 GHz processors and shared40 GB memory), with high cluster

quality (80% accuracy in terms of NMI12). It would take many days to cluster this data set

using kernelk-means and other kernel-based clustering algorithms, while linear clustering

algorithms likek-means cannot achieve comparable accuracy.

• Batch clustering algorithms such ask-means and kernelk-means are iterative in nature and

need to access the input data points multiple times. However, many data sets are too large

12Refer to Section 1.6.2 for the definition of NMI.

33

to load into the memory, so it would not only be prohibitivelyexpensive to perform multiple

passes over the data, but also infeasible to compute the kernel matrix. Some applications

such as social network analysis and intrusion detection in networks, involve potentially un-

bounded sequences of data points called data streams. Only asmall subset of the data can be

stored, depending on the size of the data buffer. Due to this,each data point can be accessed

at most once. This data also evolves over time, so the data points that arrived recently have

higher relevance than the older data. There have been relatively few efforts to apply kernel

based clustering to data streams, due to the cost of computing the kernel. In Chapter 4, we

present an efficient algorithm calledapproximate stream kernel k-means, to perform kernel

clustering on stream data. The key idea is to construct the kernel matrix dynamically using

importance sampling, and assign labels to the incoming datapoints in real-time. We use sev-

eral benchmark data sets to simulate stream data sets, and evaluate the performance of the

proposed algorithm on these data sets. We demonstrate that our algorithm is able to cluster

stream data sets in real-time with speeds up to8 MBps.

• Document and image data sets, contain millions of high-dimensional points and usually be-

long to a large number of categories. Finding clusters in such data sets is computationally

expensive using kernel-based clustering techniques because they have quadratic running time

complexity in terms of the number of data points, and linear time complexity in terms of the

number of dimensions and the number of clusters. Although the approximate kernel clus-

tering algorithms discussed in Chapters 2-4 reduce the running time complexity in terms of

the number of data points, their clustering time grows linearly with the number of clusters.

In Chapter 5, we present thesparse kernel k-means algorithmwhich can efficiently cluster

large data sets into thousands of clusters with significantly lower processing and memory re-

quirements, with high clustering accuracy. It assumes thatthe kernel matrix is sparse when

the number of clusters is large, and constructs a sparse kernel matrix for a subset of the data

set, sampled incrementally using importance sampling. Cluster labels are obtained by clus-

34

Table 1.5 Description of data sets used for evaluation of theproposed algorithms.

Data set Number of data pointsn Dimensionality d Number of clustersC

CIFAR-10 [99] 60,000 384 10
CIFAR-100 [99] 60,000 384 100
MNIST [108] 70,000 784 10

Forest Cover Type [23] 581,012 54 7
Imagenet-34 [49] 949,401 900 34
Imagenet-164 [49] 1,262,102 900 164

Poker [33] 1,025,010 30 10
Network Intrusion [167] 4,897,988 50 10

Youtube 10,143,254 6,647 N/A
Tiny [173] 79,302,017 384 N/A

Twitter 1,000,000,000 8,042 N/A
Concentric circles 100 to 1,000,000,000 10 to 1,000 10 to 1,000

tering this sparse kernel matrix in a low dimensional space spanned by its top eigenvectors.

This algorithm has running time complexity linear in the size and the dimensionality of the

data set, and logarithmic in the number of clusters.

1.6 Data sets and Evaluation Metrics

1.6.1 Data sets

To demonstrate the effectiveness of the proposed algorithms, we use several benchmark data sets

of different sizes and dimensionalities, from several domains. The description of the data sets is

summarized in Table 1.5.

• MNIST [108]: The MNIST data set is a subset of the database of handwritten digits available

from NIST. It contains70, 000 images from10 classes, each class representing one of the

digits,0 − 9. Each image is represented as a784-dimensional feature vector containing the

pixel intensity values.

• Forest Cover Type [23]:This data set is composed of cartographic variables obtained from

35

the US Geological Survey (USGS) and the US Forest Service (USFS) data. Each of the

581, 012 data points represents the attributes of a30 × 30 square meter cell of the forest

floor. There are a total of12 attributes, including qualitative measures like soil typeand

wilderness area, and quantitative measures like slope, elevation, and distance to hydrology.

These12 attributes are represented using54 features. The data are grouped into7 classes,

each representing a different forest cover type. The true cover type was determined from the

USFS Region 2 Resource Information System (RIS) data.

• Imagenet [49]: The Imagenet data set contains about14 million images organized accord-

ing to the Wordnet hierarchy [64]. Each node in this hierarchy represents a concept known

as a “synset”. We downloaded1, 262, 102 images from1, 000 synsets, merged the leaf nodes

in the synset tree based on their similarity to form a 164-class data set. We call this data

set Imagenet-164 and use it to demonstrate the effectiveness of the sparse kernelk-means

algorithm in Chapter 5. By filtering out the classes with fewer than500 images, we formed

a balanced data set containing949, 401 images from34 classes, which we call Imagenet-34

data set. This data set is used to evaluate the remaining clustering algorithms. We com-

puted the Scale Invariant Feature Transform (SIFT) descriptors [117] of the images using

the VLFeat library [178], and clustered a randomly chosen subset of 10 million SIFT fea-

tures to form a visual vocabulary. Each SIFT descriptor was then quantized into a visual

word using the nearest cluster center. We obtained a 900-dimensional vector representation

for each image, which was then normalized to lie in the range[0, 1].

• Poker [33]: This data set, available in the UCI repository [13], contains 1, 025, 010 data

points. Each data point is an example of a “hand” consisting of five playing cards drawn

from a standard deck of52. Each card is described using two attributes: suit and rank.These

attributes are represented using a30-dimensional categorical feature vector. There are10

classes in the data set, each depicting a type of poker hand.

• Network Intrusion [167]: The Network Intrusion data set contains4, 898, 431 50-

36

dimensional data points representing the TCP dump data fromseven weeks of a local-area

network traffic. The data is classified into 23 classes, one class representing legitimate traffic

and the remaining 22 classes representing different types of illegitimate traffic. We filtered

out the data from classes which contain fewer than500 data points, to form a data set with

4, 897, 988 data points from 10 classes.

• Youtube13: Youtube is a video hosting website which allows users to upload, view and share

videos over the web. It has over one billion users uploading over 300 hours of videos ev-

ery minute, on a wide range of topics. We used the Youtube Search API14 to download

the meta-data corresponding to10, 143, 254 videos using26, 000 non-abstract nouns from

Wordnet [64] as search queries. We used the video title, description and the video thumbnail

(which usually contains the key frame in the video) to extract features for each record. For

each video, we eliminated stop words from the title and description to obtain a vocabulary

containing6, 135 terms, and extracted the corresponding tf-idf (term frequency-inverse doc-

ument frequency) features [125]. Feature valuexr,t, representing the weight assigned to the

term t in recordr, measures how important the term is to the record in the data set. It is

defined as

xr,t = tf(r, t) ∗ idf(t,D) (1.14)

=





1+log f(r,t)
logn−log f(t)

if f(r, t) > 0

0 otherwise
, (1.15)

wheref(r, t) represents the number of times the termt occurs in the recordr and f(t)

represents the number of records containing the termt. We then downloaded the thumbnail

of the video and extracted the global GIST features [141] of the image. The final6, 647-

dimensional feature vector was obtained by concatenating the tf-idf and GIST features. We

13www.youtube.com
14https://developers.google.com/youtube/v3

37

www.youtube.com
https://developers.google.com/youtube/v3

use this data set to evaluate the performance of the sparse kernelk-means algorithm proposed

in Chapter 5 on large high dimensional data sets.

• Tiny, CIFAR-10 and CIFAR-100 [99,173]: The Tiny Image data set contains79, 302, 017

unique32× 32 color images, downloaded from the Internet. They were obtained by extract-

ing 75, 062 non-abstract English nouns from the Wordnet database [64] and using them to

search for images in7 independent image search engines. These images were downloaded

and down-sampled to32 × 32. We represented each image using a384-dimensional GIST

descriptor [141]. Though the search queries can be used to loosely label the images, these

labels are unreliable. To evaluate the accuracy of the proposed algorithms, we used the

CIFAR-10 and CIFAR-100 data sets, manually labeled subsetsof the Tiny data set. The

CIFAR-10 data set contains60, 000 images from10 classes (bird, truck, deer, dog, cat, frog,

car, plane, horse and ship). The CIFAR-100 also contains60, 000 images from100 classes.

• Twitter 15: Twitter is a social network with over 100 million active users posting over

100, 000 short messages (calledtweets) per minute. The tweets contain personal updates,

real-time information about events, news etc. Each tweet contains a text message limited

to 140 characters and can include user-mentions, links, emoticons, and hashtags in addi-

tion to plain text. We downloaded over a billion tweets usingthe Twitter streaming search

API using20 programming languages (Python, Perl, C#, Java, Ruby, C++, JavaScript, VB-

Script, Scala, Objective C, PHP, SQL, Postgresql, GO, Julia, Erlang, HTML, XML, Swift,

and ASP.NET) as search terms. We filtered out the non-Englishtweets, removed the hash-

tags, eliminated the stop words and represented each tweet with the tf-idf features, defined

in (1.15), corresponding to8, 042 terms. We use this data set to demonstrate the efficiency of

the approximate stream kernelk-means algorithm in Chapter 4 on fast streaming data sets.

In addition to the above real-world data sets, we use a synthetic data set, which we call thecon-

centric circles data set, to demonstrate the scalability of the proposed algorithms. The data set

15www.twitter.com

38

www.twitter.com

containing circular clusters of varying radii, was generated with different number of points, rang-

ing from 100 to 1 billion. The data dimensionality ranges from10 to 1, 000 and the number of

clusters ranges from10 to 1, 000. Each cluster contains the same number of points. An example

data set containing1, 000 two-dimensional points along10 concentric circles (100 points in each

cluster) is shown in Figure 4.2(a).

1.6.2 Evaluation Metrics

The goal of our research is to reduce the resources needed forkernel clustering, with minimal

reduction in the cluster quality. In order to evaluate the reduction in running time and memory

complexity, we measured the time taken for clustering the data points, and the amount of memory

used.

The cluster quality of the proposed algorithms were evaluated using two types of measures:

(a) internal measures evaluate the structure and compactness of the clusters, while (b) external

measures evaluate how well the cluster labels match with thetrue class labels. We used the internal

Silhouette coefficient[151] and the externalNormalized Mutual Information (NMI)[104] measures

to evaluate the cluster quality of our algorithms.

The Silhouette coefficient measures the compactness of the clusters. Letdk,i represent the

average dissimilarity between data pointxi and all the points assigned to the clusterCk, i.e.

dk,i =
1

nk

∑

xj∈Ck
xi 6=xj

d2(xi,xj),

wherenk is the number of points (except forxi) assigned to clusterCk. For each data pointxi,

define the coefficientsai andbi as follows:

ai = dk∗,i, andbi = min
k 6=k∗

dk,i,

39

wherek∗ is the index of the cluster to whichxi is assigned. The coefficientai represents the average

dissimilarity ofxi with all other points within the same cluster, and the coefficient bi represents

the average dissimilarity betweenxi and all the points in neighboring cluster. The Silhouette

coefficient is defined as

Silhouette=
1

n

n∑

i=1

bi − ai
max (ai, bi)

. (1.16)

The value of the Silhouette coefficient lies in the range[−1, 1]. A value close to1 is desired. When

the coefficient is close to1 it implies thatai ≪ bi for a large number of points, i.e. many of the

points are well-matched to the cluster to which they were assigned. On the other hand, when the

Silhouette coefficient value is close to−1, ai ≫ bi for a large number of data points, which implies

that many of the points are more similar to the neighboring clusters than the cluster to which they

have been assigned. A value close to0 denotes that many data points lie on the boundaries of their

natural clusters.

The Normalized Mutual Information with respect to the true class labels of the data points

is defined as follows: LetUa andU b be the cluster membership matrices corresponding to two

partitionsa andb of the same data set. Letna
i represent the number of data points that have been

assigned labeli in partitiona, andna,b
i,j represents the number of data points that have been assigned

labeli in partitiona and labelj in partitionb. We have

NMI(a, b) =

C∑
i=1

C∑
j=1

na,b
i,j log

(
n

na,b
i,j

na
i n

b
j

)

√√√√
(

C∑
i=1

na
i log

na
i

n

)(
C∑

j=1

nb
j log

nb
j

n

) , (1.17)

wherea represents the partition obtained from the clustering algorithm, andb represents the par-

tition based on the true classes. An NMI value of 1 indicates perfect matching with the true class

distribution whereas 0 indicates perfect mismatch. The true class labels are available for most of

the data sets (except the Tiny image and Youtube data sets). We used the CIFAR-10 data set, a

40

labeled subset of the Tiny image data set, to evaluate the performance on the Tiny data set.

1.7 Thesis Overview

Kernel-based clustering algorithms, which perform well onreal-world data sets, are not scalable

to big data sets, containing billions of high-dimensional points from thousands of clusters. We

propose scalable approximate kernel-based clustering algorithms, and demonstrate their efficiency

and effectiveness on several diverse large-scale data sets. The remainder of this thesis is organized

as follows: Chapters 2 and 3 describe the approximate batch clustering algorithms (approximate

kernelk-means, and kernel-based clustering using random Fourier features), based on work pub-

lished in [40] and [42], respectively. These algorithms cancluster up to10 million data points with

thousands of features, and achieve high cluster quality. Chapter 4, based on the publication [43],

describes the approximate stream kernelk-means algorithm, which can cluster streaming data of

arbitrary sizes in real-time. The sparse kernelk-means algorithm, discussed in Chapter 5, can clus-

ter arbitrarily-sized high-dimensional data sets, into thousands of clusters. It is applicable to large

document and image repositories. This work was published in[38]. We conclude our study and

present directions for future work in Chapter 6.

41

Chapter 2

Approximate Kernel-based Clustering

2.1 Introduction

As discussed in Chapter 1, kernelk-means achieves better clustering performance thank-means,

because it explores the non-linear structure in the data using complex non-linear similarity mea-

sures. However, it has running time and memory complexity quadratic in the number of data points

n, leading to its non-scalability to big data sets.

To address this issue, we propose an approximate kernel clustering algorithm calledApproxi-

mate Kernel k-means[40], based on random sampling. We samplem points from the data set of

n points, and express the cluster centers as linear combinations of vectors in the space spanned by

this subset. The weights of the sampled points in the clustercenters, and the cluster labels of the

points are obtained simultaneously using iterative optimization. Only a smalln×m portion of the

kernel matrix needs to be computed using the proposed algorithm, thereby reducing the running

time complexity of clustering toO(nm). Whenn is in the order of millions, the sample sizem

is much smaller thann. Hence the proposed algorithm is comparable tok-means in terms of ef-

ficiency. We show analytically and empirically that the cluster quality achieved by the proposed

approximate kernelk-means is comparable to that of kernelk-means.

42

This chapter is organized as follows: In Section 2.2, we briefly review some of the popular

approximate kernel-based clustering schemes developed inthe literature. We formally describe

the proposed approximate kernelk-means algorithm in Section 2.3. The key parameters which

determine the success of the proposed algorithm are the number of samplesm and the sampling

strategy. We discuss these issues in Section 2.3.1. In Section 2.3.2, we analyze the proposed

algorithm’s running time and memory complexity. We also show that the difference between the

performance of the approximate kernelk-means and the kernelk-means algorithms in terms of the

clustering error1 reduces as the number of samplesm increases, at the rate ofO(1/m). In 2.3.3, we

present the distributed approximate kernelk-means algorithm [41], which parallelizes the proposed

approximate kernelk-means algorithm, in order to scale up to data sets containing billions of

data points. Finally, in Section 2.4, we demonstrate empirically that the proposed approximate

clustering algorithm is an efficient and accurate variant ofthe kernelk-means algorithm, and can

be used to cluster large data sets, containing billions of points.

2.2 Related Work

Large matrices like the kernel matrices corresponding to large data sets have fast decaying eigen-

spectrums [187]. Therefore, the computational requirements of operations involving such matri-

ces can be reduced by replacing them with their low-rank approximations. Most of the scalable

kernel-based learning algorithms, including the proposedapproximate kernelk-means algorithm,

take advantage of this fact in their design.

Below, we first briefly review the low-rank matrix approximation literature, and then describe

some of the large-scale kernel-based clustering algorithms developed in the literature.

1Clustering error is defined as the sum of the squared distances between the data points and the center of the
cluster to which the data point is assigned. See Section 1.3.1 for the formal definition of clustering error.

43

2.2.1 Low-rank Matrix Approximation

Given ann × m matrixA, the objective of low-rank approximation is to find a rank-r matrixAr

that minimizes the error defined by

||A−Ar||p ,

where ||·||p represents either the spectral norm or the Frobenius norm. The optimal solution

to (2.2.1) is given by

A∗
r =

r∑

k=1

λkukv
⊤
k ,

where{λk}rk=1 represent the largestr singular values ofA, and{uk}rk=1 and {vk}rk=1 are the

corresponding left and right singular vectors [58]. The time required to estimate the singular

vectors isO(mnmin{m,n}), which can be prohibitive whenm andn are large.

Several efficient algorithms have been proposed in the literature to approximate the Singular

Value Decomposition [129]. One of the earliest algorithms by Friezeet al. involves independently

samplings rows and columns fromA, to form ans × s matrix S. A is then projected onto

the span of the dominant eigenvectors ofS. They showed that when the columns and rows are

sampled with probability proportional to the column and rownorms respectively, and the sample

sizes = O(max{r4ǫ−3, r2ǫ−4}), the approximation error can be bounded, with high probability,

as

||A− Ar||2F = ||A−A∗
r||2F + ǫ ||A||2F , (2.1)

whereǫ > 0 is an error parameter [70]. Achlioptaset al. obtained a similar result by designing a

random matrixR with entries dependent on the values in the matrixA, such that the matrixA+R

is sparse, and the expectationE[R] = 0. The topr singular vectors of the sparse matrixA+R are

used in place of the singular vectors ofA to find the low rank approximation ofA [5]. The singular

vectors of a sparse matrix can be computed efficiently using the Lanczos bidiagonalization method

and its variants [163].

44

Approximation schemes developed thereafter achieved tighter bounds on the error and the sam-

pling complexity, by using different sparsification, sampling and projection schemes [50, 54, 57,

103, 109, 137, 155, 187]. For instance, in [137], matrixA is sparsified by nullifying the entries

which have sufficiently low magnitudes. Elements are retained in proportion to their magnitude.

Sequential column and row sampling with probability proportional to the column’s (row’s) distance

from the span of the columns (rows) already selected is used in [50]. In [155],A is first projected

into a low-dimensional space using a uniform random matrixR ∈ {+1,−1}m×s asB = AR,

and then projected onto the span of the best rank-r approximation ofB. These works obtained

multiplicative error bounds of the form

||A− Ar||p = (1 + ǫ)
(
||A− A∗

r||p
)
. (2.2)

The most widely-studied sampling-based approximation techniques in the literature are the

CUR and the Nystrom approximations:

2.2.1.1 CUR matrix approximation

The CUR matrix decomposition method factorizesA asA ≃ CUR whereC containss columns

andR containst rows selected fromA, such thats ≪ m, t ≪ n. Thes × t matrix U is con-

structed to achieve minimal approximation error [22, 44, 55, 122, 184]. Berryet al. obtainedC

areR using Quasi-Gram-Schmidt orthogonalization ofA andA⊤, respectively [22]. Drineaset

al. proposed efficient linear-time algorithms which randomly sample the columns and rows, and

obtainU through the singular value decomposition of a smalls × s matrix [55]. In [122], they

improved the approximation by samplingC andR based on the importance of the columns and

rows, measured in terms of their statistical leverage scores2. Wanget al. augmented a sparsifica-

2The statistical leverage score of theith column of a rank-r n ×m matrixA with singular value decomposition

A = UΣV ⊤ is defined asπi =
1
r

∣∣∣∣V (i)
∣∣∣∣2
2
, whereV (i) represents theith row inV . It is a measure of the independence

of the column and its influence on the matrix.

45

tion procedure to the CUR decomposition algorithm to further improve its efficiency [184]. The

CUR decomposition is preferred over the SVD decomposition in many applications because it can

be interpreted more easily.

2.2.1.2 Nystrom matrix approximation

The Nystrom approximation can be viewed as a specializationof the CUR decomposition for sym-

metric positive semi-definite (SPSD) matrices3 like kernel similarity matrices [17,57,103,109,111,

170, 187, 195]. It was first used in [187] to perform classification and regression using Gaussian

processes. It was then adopted in many kernel-based learning tasks such as classification [187],

regression [46, 187], clustering [35, 67, 113], manifold learning [194] and dimensionality reduc-

tion [7].

Let K represent ann × n SPSD matrix andK∗
r represent its best rank-r approximation. The

Nystrom approximation studied by Williamset al. in [187] samplesm ≪ n columns uniformly

without replacement fromK, to form then × m matrix KB. Let K̂ be them × m intersection

between the sampled columns and the corresponding rows.K is approximated by

K̃ = KBK̂
−1K⊤

B . (2.3)

Drineaset al. developed a variant which useŝK∗
r , the best rank-r approximation ofK̂, in place

of K̂ in (2.3), and samples the columns uniformlywith replacement, to obtain approximation

error bounds of the form (2.1) [57]. Several non-uniform sampling techniques have been explored

in [17,74,103,170,195] to obtain improved error bounds.

3An n× n matrixK is positive semi-definite ifx⊤Kx ≥ 0, for all non-zerox ∈ ℜn.

46

2.2.2 Kernel-based Clustering for Large Data sets

Sampling and sparsification techniques have been employed to develop efficient kernel-based clus-

tering algorithms.

The spectral clustering algorithm is a graph-based clustering technique [118]. Then points

in the data set are represented as nodes of a graph. Each edge in the graph is weighted by the

similarity between the points connected by the edge. LetK denote then × n similarity matrix.

The spectral clustering algorithm uses the firstC eigenvectors of the Laplacian matrix defined by

L = I − diag(K⊤1)−1/2Kdiag(K⊤1)−1/2,

to find the clusters. The obvious computational bottlenecksin this algorithm are the calculation of

the Laplacian matrix and the computation of its eigenvectors, which requireO(n2) andO(n3) time

respectively.

The column sampling method by Friezeet al. and Nystrom approximation method have been

used in the literature to speed up spectral clustering [18, 67, 102]. The key idea is to approximate

the Laplacian matrix, and use the approximate eigenvectorsto find the clusters. The running time

complexity of these approximate spectral clustering algorithms isO(nm + m3), wherem is the

number of columns sampled from the kernel matrix. Asm is usually much lower thann, these

algorithms run much faster than spectral clustering. Random projection can be combined with

sampling to further improve the clustering efficiency [73, 153]. A low-dimensional projection

of the similarity matrix, obtained by multiplying it with a random Gaussian matrix, is used to

construct the graph Laplacian matrix. These approximate spectral clustering algorithms have been

applied successfully in image segmentation problems [113].

Nystrom approximation was also used to accelerate the kernel neural gas algorithm [145]. The

objective of kernel neural gas is to findC prototypes to represent the data. Each prototype is

associated with a randomly initialized weight, which is updated by a factor proportional to the

47

similarity between the prototype and the input data point. Similar to the kernelk-means, the

prototypes are expressed as linear combinations of the datapoints in the Hilbert space, so each

weight update involves then× n kernel matrix. The Nystrom approximation of the kernel matrix

was used in [156] to perform the weight updates, thereby reducing its running time complexity.

In addition to the above approximate methods, several heuristic and application-specific al-

gorithms have been proposed to perform efficient kernel-based clustering. Zhang and Rudnicky

reduced the memory requirements of the kernelk-means algorithm by changing the order in

which clustering is performed. The kernel matrix is computed blockwise, and the cluster labels

are obtained by examining only one block at a time [196]. The KASP algorithm first clusters

the input data set intom clusters usingk-means, and then executes spectral clustering on the

m (C ≪ m ≪ n) cluster centers to obtain theC clusters [191]. The RASP clustering method

first partitions the data space using Random Projection (RP)trees [191]. RP trees are data struc-

tures that partition the data space intom cells, by splitting recursively along one randomly chosen

coordinate at a time. Each cell in the partition is represented by its center, and spectral clustering

is executed on them representative centers. These methods reduce the running time complexity

of clustering toO(nm + m3). Chenet al. sparsified the similarity matrix by retaining only the

similarity values corresponding to the nearestp neighbors for each node, and proposed a simple

scheme to parallelize the similarity computation and clustering [35]. The nearest neighbors are

found usingkd-trees [131] and metric trees [176], thereby reducing the overall memory require-

ment toO(np), although the running time complexity is stillO(n2 log(p)). The GEM (Graph

Extraction + weighted kernelk-Means) algorithm proposed in [186] speeds up kernelk-means for

social network graphs by eliminating the nodes with low degree. It makes use of the power law

distribution of social networks, which indicates that a small set of high degree vertices cover a

large portion of the network.

48

2.3 Approximate Kernel k-means

Given a data setD = {x1, . . . ,xn}, and a kernel functionκ(·, ·), kernelk-means findsC clusters,

whose centersck(·) are represented as linear combinations of all the points in the data set, in

accordance with the representer theorem [158], i.e.

ck(·) =
n∑

i=1

Ûk,iκ(xi, ·), k ∈ [C], (2.4)

whereÛ is the cluster membership matrix normalized by the number ofpoints in each cluster, as

defined in (2.8). In other words, the cluster centers lie in the subspace spanned by all the data

points, i.e. ck(·) ∈ Hκ = span(κ(x1, ·), . . . , κ(xn, ·)), k ∈ [C]. As a consequence, the kernel

k-means algorithm requires the computation ofO(n2) kernel similarity values, leading to its non-

scalability.

We can avoid computing the full kernel matrix if we restrict the solution for the cluster centers

to a smaller subspaceHa ⊂ Hκ. Ha should be constructed such that

(i) Ha is small enough to allow efficient computation, and

(ii) Ha is rich enough to yield data partitions similar to those obtained usingHκ.

We employ a simple randomized approach for constructingHa: we randomly samplem data points

(m ≪ n), denoted byD̂ = {x̂1, . . . , x̂m}, and construct the subspaceHa = span(x̂1, . . . , x̂m).

Given the subspaceHa, we modify the kernelk-means optimization problem (1.7) as

min
U∈P

max
{ck(·)∈Ha}Ck=1

C∑

k=1

n∑

i=1

Uk,i ||ck(·)− κ(xi, ·)||2Hκ
, (2.5)

whereU = (u1, . . . ,uC)
⊤ is the cluster membership matrix,ck(·) ∈ Ha, k ∈ [C] are the cluster

centers, and domainP = {U ∈ {0, 1}C×n : U⊤1 = 1}, where1 is a vector of all ones. Let

KB ∈ ℜn×m represent the kernel similarity matrix between data pointsin D and the sampled data

49

pointsD̂, andK̂ ∈ ℜm×m represent the kernel similarity between the sampled data points. The

following lemma allows us to reduce (2.5) to an optimizationproblem involving only the cluster

membership matrixU .

Lemma 1. Given the cluster membership matrixU , the optimal cluster centers in(2.5)are given

by

ck(·) =
m∑

i=1

αk,iκ(x̂i, ·), (2.6)

whereα = ÛKBK̂
−1. The optimization problem forU is given by

min
U

tr(K)− tr(ŨKBK̂
−1K⊤

B Ũ
⊤), (2.7)

whereÛ andŨ are defined by

Û = (û1, . . . , ûC)
⊤ = [diag(n1, . . . , nC)]

−1U,

Ũ = (ũ1, . . . , ũC)
⊤ = [diag(

√
n1, . . . ,

√
nC)]

−1U, and

nk = u⊤
k 1, k ∈ [C]. (2.8)

Proof. Let ϕi = (κ(xi, x̂1), . . . , κ(xi, x̂m)) andαi = (αi,1, . . . , αi,m) be theith rows of matrices

KB andα respectively. Asck(·) ∈ Ha = span(x̂1, . . . , x̂m), we can expressck(·) as

ck(·) =
m∑

i=1

αk,iκ(x̂i, ·),

50

and write the objective function in (2.5) as

C∑

k=1

n∑

i=1

Uk,i ||ck(·)− κ(xi, ·)||2Hκ

C∑

k=1

n∑

i=1

Uk,i

∣∣∣∣∣

∣∣∣∣∣

m∑

j=1

αk,jκ(x̂j , ·)− κ(xi, ·)
∣∣∣∣∣

∣∣∣∣∣

2

Hκ

= tr(K) +

C∑

k=1

(
nkα

⊤
k K̂αk − 2u⊤

k KBαk

)
. (2.9)

By minimizing the above expression with respect toαk, we have

αk = K̂−1K⊤
B ûk, k ∈ [C] (2.10)

and therefore,α = ÛKBK̂
−1. We complete the proof by substituting the expression forα into

(2.9).

As indicated by Lemma 1, we need to compute onlyKB for finding the cluster memberships.

K̂ is part ofKB and therefore does not need to be computed separately. Whenm ≪ n, this

computational cost would be significantly smaller than thatof computing the full matrix.

We refer to the proposed algorithm asApproximate Kernel k-means, outlined in Algorithm 3.

Figure 2.1 illustrates the algorithm on a two-dimensional synthetic data set containing two semi-

circles. Except for a few points which are misclustered, theresult is similar to that of kernel

k-means. Table 2.1 compares the confusion matrices of the partitions obtained using the approxi-

mate kernelk-means algorithm, with those of the kernelk-means and thek-means algorithms. A

confusion matrix shows the mapping between the true class labels and the cluster labels. Each

cluster is assigned a class label, corresponding to the truelabel of the majority of the data points in

the cluster. Each entry(k, c) in the confusion matrix represent the number of data points from class

c assigned to clusterk. The diagonal entries represent the number of points that have been assigned

to the correct cluster. It is clear from Table 2.1 that the proposed algorithm achieves cluster quality

51

comparable to that of the kernelk-means algorithm, and is much more accurate than thek-means

algorithm.

Algorithm 3 Approximate Kernelk-means
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• κ(·, ·) : ℜd × ℜd 7→ ℜ: the kernel function
• C: the number of clusters
• m: the number of randomly sampled data points (C < m ≪ n)
• MAXITER: maximum number of iterations

2: Output : Cluster membership matrixU ∈ {0, 1}C×n

3: Samplem data points fromD, denoted bŷD = {x̂1, . . . , x̂m}.
4: Compute matricesKB = [κ(xi, x̂j)]n×m, K̂ = [κ(x̂i, x̂j)]m×m, andT = KBK̂

−1.
5: Randomly initialize the membership matrixU , ensuring thatU⊤1 = 1.
6: Sett = 0.
7: repeat
8: Sett = t+ 1.
9: Compute theℓ1 normalized membership matrix̂U by Û = [diag(U1)]−1U .

10: Calculateα = ÛT .
11: for i = 1, . . . , n do
12: Find the closest cluster centerk∗ for xi by

k∗ = argmin
k∈[C]

α⊤
k K̂αk − 2ϕ⊤

i αk,

whereαk andϕi are thekth andith rows of matricesα andKB, respectively.
13: Update theith column ofU byUk,i = 1 for k = k∗ and zero otherwise.
14: end for
15: until the membership matrixU does not change, ort > MAXITER

2.3.1 Parameters

In addition to the kernel function and the number of clusters, the approximate kernelk-means is

parameterized by the sample sizem and the random sampling technique employed to obtain the

subsetD̂. These parameters play a crucial role in determining the clustering performance of the

proposed algorithm.

52

(a)

(b) (c)

(d) (e)

Figure 2.1 Illustration of the approximate kernelk-means algorithm on the two-dimensional semi-
circles data set containing500 points (250 points in each of the two clusters). Figure (a) shows all
the data points (in red) and the uniformly sampled points (inblue). Figures (b)-(e) show the process
of discovery of the two clusters in the data set and their centers in the input space (represented by
x) by the approximate kernelk-means algorithm.

Table 2.1 Comparison of the confusion matrices of the approximate kernelk-means, kernelk-
means andk-means algorithms for the two-dimensional semi-circles data set, containing500 points
(250 points in each of the two clusters). The approximate kernelk-means algorithm achieves
cluster quality comparable to that of the kernelk-means algorithm.

Class 1 Class 2

Cluster 1 245 4
Cluster 2 5 246
(a) Approximate kernelk-means

Class 1 Class 2

Cluster 1 250 0
Cluster 2 0 250

(b) Kernelk-means

Class 1 Class 2

Cluster 1 132 129
Cluster 2 118 121

(c) k-means

53

2.3.1.1 Sample size

By comparing the optimization problem of approximate kernel k-means in (2.7) with the kernel

k-means problem in (1.10), we can observe that the approximate kernelk-means problem can be

viewed as the kernelk-means problem in which the kernel matrixK is replaced by its Nystrom

approximationKBK̂
−1K⊤

B . Therefore, the clustering performance of the approximatek-means

problem will be close to the clustering performance of kernel k-means if the approximation error
∣∣∣
∣∣∣K −KBK̂

−1K⊤
B

∣∣∣
∣∣∣ is small. The following lemma adapted from [74] characterizes the number

of samples required to obtain a good approximation.

Lemma 2. Let {λk,vk}nk=1 denote the eigenvalues and eigenvectors of the kernel matrix K. Let

VC = (v1, . . . ,vC) denote the eigenvectors corresponding to the dominantC eigenvalues ofK.

Define the “coherence” of the dominantC-dimensional invariant subspace ofK as

τ =
n

C
max
1≤i≤n

∣∣∣
∣∣∣V (i)

C

∣∣∣
∣∣∣
2

2
, (2.11)

whereV (i)
C is theith row in VC . Assume that the eigengapλC − λC+1 is sufficiently large. For any

δ ∈ (0, 1), we have
∣∣∣
∣∣∣K −KBK̂

−1K⊤
B

∣∣∣
∣∣∣
2
≤ λC+1

(
1 +

2n

m

)
,

with probability1− δ, providedm ≥ 8τC log(C/δ).

The coherence of a matrixτ is a measure of the number of informative columns in the ma-

trix. When the coherence is low, few columns are sufficient toobtain an accurate approximation.

Lemma 2 indicates that the approximation error reduces at a rate ofO(1/m), with increasingm.

In our experiments, we examined the performance of our algorithm for different sample sizes

m, ranging from0.001% to 15% of the data set sizen, and observed that settingm equal to0.01%

to 0.05% of n leads to a satisfactory performance.

54

2.3.1.2 Sampling strategies

Another important factor that influences the proposed approximate kernelk-means algorithm is

the sampling distribution employed to construct the kernelapproximation. The simplest sampling

technique is uniform random sampling, i.e. each point is selected with a probability1/n. Several

non-uniform sampling and greedy approaches to perform low-rank matrix approximation, have

been studied in the literature.

(i) Diagonal sampling involves choosing a data pointxi with a probability proportional to the

diagonal elementK(xi,xi) [17,57]. This distribution is the same as the uniform distribution

for exponential kernels of the form

κ(xa,xb) = exp
(
−λ ||xa − xb||qp

)
, p, q > 0,

such as the RBF kernel and the Laplacian kernel, because all the diagonal entries are equal

to one another.

(ii) Column-norm sampling involves choosingxi with a probability proportional to theℓ2 norm

of the column vectorK(·,xi) [69].

(iii) In [195], k-means is applied to the data set and the cluster centers obtained are used in place

of the sampled data set̂D.

(iv) Adaptive sampling techniques involve selecting data points sequentially, to ensure maximum

coverage of the data [50, 102, 114, 142]. For example, a greedy selection procedure which

selects a point which is farthest from the currently selected set of points is employed in [142].

Liu et al. propose selecting a data point which would form a subspace with the previously

chosen points, so that the total distance of unsampled data points to this subspace is mini-

mized [114].

55

(v) Sampling based on the importance of the data point in terms of the statistical leverage scores

and the coherence of the data is employed in [170].

The non-uniform sampling techniques like column-norm sampling, adaptive sampling and impor-

tance sampling haveO(n2) running time complexity. Hence, they are infeasible for large data sets.

Sampling usingk-means can be performed inO(nm) time. Uniform and diagonal sampling have

linear time complexity. Kumaret al. compared the diagonal and column sampling techniques with

uniform sampling and showed that uniform sampling without replacement is more effective than

the non-uniform sampling techniques [103]. We explore someof these techniques empirically in

Section 2.4.

2.3.2 Analysis

In this section, we first analyze the computational complexity of the proposed approximate kernel

k-means algorithm, and then examine the quality of the data partitions generated by the proposed

algorithm.

2.3.2.1 Computational complexity

Assuming uniform sampling strategy, sampling can be performed inO(n) time. The most ex-

pensive operations in the proposed algorithm are the matrixinversionK̂−1 and calculation of the

matrixT = KBK̂
−1, which have a total computational cost ofO(m3 + m2n). The cost of com-

putingα and updating the membership matrixU is O(mnCl), wherel is the number of iterations

needed for convergence. Hence, the overall running time complexity of the approximate kernel

k-means algorithm isO(m3+m2n+mnCl). We can further reduce the computational complexity

by avoiding the matrix inversion̂K−1 and formulating the calculation ofα = ÛT = ÛKBK̂
−1 as

56

the following optimization problem:

min
α∈ℜC×m

1

2
tr(αK̂α)− tr(ÛKBα

⊤) (2.12)

If K̂ is well conditioned (i.e. the minimum eigenvalue ofK̂ is significantly larger than zero),

we can solve the optimization problem in (2.12) by a simple gradient descent method with a

convergence rate ofO (log(1/ε)), whereε is the desired accuracy. As the computational cost

of each step in the gradient descent method isO(m2C), the overall computational cost is only

O(m2Cl log(1/ε)) ≪ O(m3) whenCl ≪ m. This reduces the overall computational cost to

O(m2Cl + mnCl + m2n). As the largest matrix that needs to be stored in memory isKB, the

memory requirement is onlyO(mn). This is a dramatic decrease in the running time and memory

requirements for large data sets when compared to theO(n2) complexity of kernelk-means. The

running time complexity of approximate kernelk-means is also lower than that of the Nystrom

approximation based spectral clustering algorithm, whichneeds to compute the eigenvectors of

them×m matrix K̂ in O(m3) time.

2.3.2.2 Approximation error

In this section, we compare the clustering error of approximate kernelk-means with that of kernel

k-means. The only difference between the two algorithms is the fact that approximate kernel

k-means restricts the cluster centers to a small subspaceHa, constructed using the sampled data

points. Our analysis will therefore be focused on bounding the expected error due to this constraint.

Let binary random variablesξ = (ξ1, ξ2, ..., ξn)
⊤ ∈ {0, 1}n represent the sampling vector, i.e.

ξi = 1 if xi ∈ D̂ and zero otherwise. The following proposition allows us to write the clustering

error in terms of random variableξ:

Proposition 1. Given the cluster membership matrixU = (u1, . . . ,uC)
⊤, the clustering error can

57

be expressed inξ as

L(U, ξ) = tr(K) +
C∑

k=1

Lk(U, ξ), (2.13)

whereLk(U, ξ) is

Lk(U, ξ) = min
αk∈ℜn

−2u⊤
k K(αk ◦ ξ) + nk(αk ◦ ξ)⊤K(αk ◦ ξ). (2.14)

Note that approximate kernelk-means becomes equivalent to kernelk-means whenξ = 1,

where1 is a vector of all ones, implying that all the data points are selected for constructing the

subspaceHa. As a result,L(U, 1) is the clustering error of the kernelk-means algorithm.

The following lemma relates the expected clustering error of approximate kernelk-means with

that of kernelk-means.

Lemma 3. Given the membership matrixU , we have the expectation ofL(U, ξ) bounded as follows

Eξ[L(U, ξ)] ≤ L(U, 1) + tr

(
Ũ
[
K−1 +

m

n
[diag(K)]−1

]−1

Ũ⊤
)
, (2.15)

whereL(U, 1) = tr(K)− tr(ŨKŨ⊤).

Proof. We first boundEξ[Lk(U, ξ)] as

1

nk

Eξ[Lk(U, ξ)]

= Eξ

[
min
α

−2û⊤
k K(α ◦ ξ) + (α ◦ ξ)⊤K(α ◦ ξ)

]

≤ min
α

Eξ

[
−2û⊤

k K(α ◦ ξ) + (α ◦ ξ)⊤K(α ◦ ξ)
]

= min
α

−2
m

n
û⊤
k Kα +

m2

n2
α⊤Kα +

m

n

(
1− m

n

)
α⊤diag(K)α

≤ min
α

−2
m

n
û⊤
k Kα +

m

n
α⊤
(m
n
K + diag(K)

)
α.

58

By minimizing the above expression with respect toα, we obtain

α∗ =
(m
n
K + diag(K)

)−1

Kûk.

Therefore,
1

nk
Eξ[Lk(U, ξ)] ≤ −m

n
ûkK

(m
n
K + diag(K)

)−1

Kûk.

Eξ[Lk(U, ξ)] can be bounded as

Eξ[Lk(U, ξ)] + nkû
⊤
k Kûk

≤ nkû
⊤
k

(
K −K

[
K +

n

m
diag(K)

]−1

K

)
ûk

= ũ⊤
k

(
K−1 +

m

n
[diag(K)]−1

)−1

ũk.

We complete the proof by adding upEξ[Lk(U, ξ)] and using the fact that

Lk(U, 1) = min
α

−2u⊤
k Kα + nkα

⊤Kα = −ũ⊤
k Kũk.

The above result can be interpreted in terms of the eigenvalues of the kernel matrix.

Corollary 1. Assumeκ(x,x) ≤ 1 for anyx. Letλ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of

matrixK. Given the membership matrixU , we have

Eξ[L(U, ξ)]
L(U, 1) ≤ 1 +

∑C
i=1 λi/[1 + λim/n]

tr(K)−∑C
i=1 λi

≤ 1 +
C/m∑n

i=C+1 λi/n
.

Proof. As κ(x,x) ≤ 1 for anyx, we have diag(K) � I, whereI is an identity matrix. As̃U is an

59

ℓ2 normalized matrix, we have

tr

(
Ũ
[
K−1 +

m

n
[diag(K)]−1

]−1

Ũ⊤
)

≤ tr

(
Ũ
[
K−1 +

m

n
I
]−1

Ũ⊤
)

≤
C∑

i=1

λi

1 +mλi/n
≤ Cn

m

and

L(U, 1) = tr(K − UKU⊤) ≥ tr(K)−
C∑

i=1

λi.

We complete the proof by combining the above inequalities.

To illustrate the result of Corollary 1, consider a special kernel matrixK that has its firsta

eigenvalues equaln/a and the remaining eigenvalues equal zero; i.e.λ1 = . . . = λa = n/a and

λa+1 = . . . = λn = 0. We further assumea > 2C; i.e. the number of non-zero eigenvalues ofK

is larger than twice the number of clusters. Then, accordingto Corollary 1, we have

Eξ[L(U, ξ)]− L(U, 1)
L(U, 1) ≤ 1 +

Ca

m(a− C)
≤ 1 +

2C

m
,

indicating that when the number of non-zero eigenvalues ofK is significantly larger than the num-

ber of the clusters, the difference in the clustering errorsof kernelk-means and our approximation

scheme will decrease at the rate ofO(1/m). This result concurs with the result of Lemma 1.

2.3.3 Distributed Clustering

As the proposed approximate kernelk-means algorithm hasO(nm) running time complexity,

it is easier to parallelize than the kernelk-means algorithm. In Algorithm 4, we propose a scheme

to parallelize approximate kernelk-means. The key idea is to distribute the kernel computationand

perform approximate clustering using a relatively smallermatrix.

60

Algorithm 4 Distributed Approximate Kernelk-means
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• κ(·, ·) : χ× χ 7→ ℜ: the kernel function
• C: the number of clusters
• m: the number of randomly sampled data points (C < m ≪ n)
• P : the number of tasks
• MAXITER: maximum number of iterations

2: Output : Cluster membership matrixU ∈ {0, 1}C×n

// Master task
3: Randomly samplem data points fromD, denoted byD̂ = {x̂1, . . . , x̂m} and computêK =

[κ(x̂i, x̂j)]m×m .
4: Randomly split the unsampled data points intoP parts

{
D1, . . . ,DP

}
.

5: Execute in parallel:
// Taskl

6: ComputeK l
B = [κ(xi, x̂j)]s×m andT l = K l

BK̂
−1, wherexi ∈ Dl ands is the number of

points inDl.
7: Randomly initialize the membership matrixU l, ensuring thatU l⊤1 = 1.
8: Sett = 0.
9: repeat

10: Sett = t+ 1.
11: Calculateαl = [diag(U l1)]−1U lT l.
12: for i = 1, . . . , s do
13: Find the closest cluster centerk∗ for xi ∈ Dl by

k∗ = argmin
k∈[C]

(
αl
k

)⊤
K̂
(
αl
k

)
− 2

(
ϕl
i

)⊤ (
αl
k

)
,

whereαl
k andϕl

i are thekth andith rows of matricesαl andK l
B, respectively.

14: Update theith column ofU l byU l
k,i = 1 for k = k∗ and zero otherwise.

15: end for
16: until the membership matrixU does not change ort > MAXITER
17: for each pointxi /∈ Dl do
18: Find the closest cluster centerk∗

k∗ = argmin
k∈[C]

(
αl
k

)⊤
K̂
(
αl
k

)
− 2

(
ϕl
i

)⊤ (
αl
k

)
,

whereαl
k is thekth row inαl andϕl

i = (κ(xi, x̂1), . . . , κ(xi, x̂m)).
19: Update theith column ofU l by U l

k,i = 1 for k = k∗ and zero otherwise.
20: end for
21: end parallel execution

// Master task
22: Randomly select an indexl and setU = U l, or combine the matrices

{
U l
}P
l=1

using an ensem-
ble clustering algorithm (e.g. the Meta-clustering algorithm described in Algorithm 5).

61

Algorithm 5 Meta-Clustering Algorithm

1: Input : Cluster membership matrices
{
U l
}P
l=1

, U l ∈ {0, 1}C×n

2: Output : Consensus cluster membership matrixU
3: Concatenate the membership matrices{U l}Pl=1 to obtain an PC × n matrix U =

(u1,u2, . . . ,uPC)
⊤.

4: Compute the Jaccard similaritysi,j between the vectorsui anduj , i, j ∈ [PC] using

si,j =
u⊤
i uj

‖ui‖2 + ‖uj‖2 − u⊤
i uj

.

5: Construct a complete weighted meta-graphG = (V,E), where vertex setV =
{u1,u2, . . . ,uPC} and each edge(ui,uj) is weighted bysi,j.

6: PartitionG intoC meta-clusters{πk}Ck=1 whereπk =
{
u
(1)
k ,u

(2)
k , . . .u

(sk)
k

}
.

7: Compute the mean vectors for each meta-cluster:{µk}Ck=1 using

µk =
1

sk

sk∑

i=1

u
(i)
k .

8: for i = 1, . . . , n do
9: Update theith column ofU as

Uk∗,i =

{
1 if k∗ = argmax

k∈[C]

µk,i

0 otherwise

10: end for

We first samplem pointsD̂ = {x̂1, . . . , x̂m} from the data set and randomly split the remaining

n − m data points intoP parts
{
D1, . . . ,DP

}
. Let the matrixK̂ = κ(x̂i, x̂j) wherex̂i, x̂j ∈ D̂.

We then map each partition to a processing node. Each node computes the kernel matrixK l
B =

κ(xi, x̂j), wherexi ∈ Dl, the set of points assigned to the node, and finds the cluster labels for

the s points inDl and the corresponding cluster centers, using the matricesK l
B and K̂. Each

pointxi /∈ Dl is assigned to the cluster whose center is closest. This process generatesP cluster

membership matrices
{
U l
}P
l=1

, U l ∈ {0, 1}C×n. To obtain the final cluster membership matrixU ,

we can either randomly choose one indexl and setU = U l, or combine them using an ensemble

clustering algorithm.

62

The objective of ensemble clustering [180] is to combine multiple partitions of the given data

set. A popular ensemble clustering algorithm is the Meta-Clustering algorithm (MCLA) [168],

described in Algorithm 5. It maximizes the average normalized mutual information between the

partitions using hypergraph partitioning. GivenP cluster membership matrices,{U1, . . . , UP},

whereU l = (ul
1, . . . ,u

l
C)

⊤, the objective of this algorithm is to find a consensus membership

matrixU that maximizes the Average Normalized Mutual Information,defined as

ANMI =
1

P

P∑

k=1

NMI(U, U l), (2.16)

whereNMI(Ua, U b), the Normalized Mutual Information (NMI) [104] between twopartitionsa

andb, represented by the membership matricesUa andU b respectively, is defined by

NMI(Ua, U b) =

C∑
i=1

C∑
j=1

na,b
i,j log

(
n

na,b
i,j

na
i n

b
j

)

√√√√
(

C∑
i=1

na
i log

na
i

n

)(
C∑

j=1

nb
j log

nb
j

n

) . (2.17)

In equation (2.17),na
i represents the number of data points that have been assignedlabel i in par-

tition a, andna,b
i,j represents the number of data points that have been assignedlabeli in partitiona

and labelj in partitionb. NMI values lie in the range[0, 1]. An NMI value of 1 indicates perfect

matching between the two partitions whereas 0 indicates perfect mismatch. Maximizing (2.16)

is a combinatorial optimization problem and solving it exhaustively is computationally infeasible.

MCLA obtains an approximate consensus solution by representing the set of partitions as a hyper-

graph. Each vectorul
k, k ∈ [C], l ∈ [P] represents a vertex in a regular undirected graph, called

themeta-graph. Vertexui is connected to vertexuj by an edge whose weight is proportional to

the Jaccard similarity between the two vectorsui anduj :

si,j =
u⊤
i uj

‖ui‖2 + ‖uj‖2 − u⊤
i uj

. (2.18)

63

This meta-graph is partitioned using a graph partitioning algorithm such as METIS [93] to obtainC

balanced meta-clusters{π1, π2, . . . πC}. Each meta-clusterπk =
{
u
(1)
k ,u

(2)
k , . . .u

(sk)
k

}
, containing

sk vertices, is represented by the mean vector

µk =
1

sk

sk∑

i=1

u
(i)
k . (2.19)

The valueµk,i represents the association between data pointxi and thekth cluster. Each data point

xi is assigned to the meta-cluster with which it is associated the most, breaking ties randomly, i.e

Uk∗,i =





1 if k∗ = argmax
k∈[C]

µk,i

0 otherwise

(2.20)

By parallelizing the approximate kernelk-means algorithm, the running time complexity for

kernel calculation and clustering reduces toO(nm/P) andO(m2C+mnC/P +m2n/P), respec-

tively. If the ensemble clustering algorithm is employed tocombine the partitions in the last step,

an additional cost ofO(nC2P 2) is incurred. The communication overhead is minimal. Only the

m sampled data points need to be replicated, in contrast to then number of data points that need

to be replicated across all the nodes in parallel kernelk-means.

2.4 Experimental Results

In this section, we show that the approximate kernelk-means algorithm is an efficient and scalable

variant of the kernelk-means algorithm. It has lower running time and memory requirements but

is on par with kernelk-means in terms of the clustering quality.

64

2.4.1 Data sets

We use the medium-sized CIFAR-10 and MNIST data sets, for which it is feasible but expensive

to compute then × n kernel matrix, to demonstrate that the proposed algorithm’s clustering per-

formance is similar to that of the kernelk-means algorithm, in terms of the cluster quality. We then

demonstrate the efficiency of the proposed algorithm on large data sets, on a single processor, us-

ing the large Forest Cover Type, Imagenet-34, Poker and Network Intrusion data sets. We analyze

the scalability of our algorithm using the synthetic concentric circles data set. We finally execute

the distributed approximate kernelk-means on the Tiny data set and the concentric circles data set

containing a billion points.

2.4.2 Baselines

We first compared the proposed technique with the kernelk-means algorithm to show that similar

performance is achieved by our algorithm. We also gauged ouralgorithm’s performance against

that of the Nystrom spectral clustering algorithm [67], which clusters the topC eigenvectors of a

low rank approximate kernel matrix, obtained through the Nystrom approximation technique, and

thek-means algorithm to show that our algorithm achieves bettercluster quality.

2.4.3 Parameters

To define the inter-point similarity, we used the universal RBF kernel with the kernel width param-

eter set equal toρd, whered is the average pairwise Euclidean distance between the datapoints,

and parameterρ is a value in the range[0, 1]4. The value which achieved the best NMI was em-

ployed. We evaluated the efficiency of the proposed algorithm for different sample sizes ranging

from m = 100 to m = 2, 000. We selected these sample sizes to ensure that the true clusters in

each data set are sufficiently represented in the sample, with high probability. For the purpose of

4The average pairwise similarity was used only as a heuristicto set the RBF kernel width, and not required by the
proposed algorithm. Other techniques may be employed to choose the kernel and the kernel parameters.

65

evaluation, the number of clustersC was set equal to the number of true classes in the data set.

All algorithms were implemented in MATLAB5 and run on a 2.8 GHz processor. The memory

used was explicitly limited to40 GB. We executed each algorithm10 times and present the results

averaged over these runs. Different permutations of the data set were input to the algorithm in each

run.

2.4.4 Results

2.4.4.1 Running time

Table 2.2 Running time (in seconds) of the proposed approximate kernelk-means and the baseline
algorithms. The sample sizem is set to2, 000, for both the proposed algorithm and the Nystrom
approximation based spectral clustering algorithm. It is not feasible to execute kernelk-means on
the large Forest Cover Type, Imagenet-34, Poker, and Network Intrusion data sets due to their large
size. An approximate value of the running time of kernelk-means on these data sets is obtained
by first executing kernelk-means on a randomly chosen subset of50, 000 data points to find the
cluster centers, and then assigning the remaining points tothe closest cluster center.

Data set Approximate Nystrom Kernel k-means
kernel k-means approximation k-means

(proposed) based spectral
clustering

CIFAR-10 37.01 116.13 725.32 159.22
(±6.52) (±1.97) (±7.39) (±75.81)

MNIST 57.73 4,186.02 914.59 448.69
(±12.94) (±386.17) (±235.14) (±177.24)

Forest 157.48 573.55 4,721.03 40.88
Cover Type (±27.37) (±327.49) (±504.21) (±6.4)
Imagenet-34 1,261.02 1,841.47 154,416.48 31,076.41

(±37.39) (±123.82) (±32, 302.44) (±9, 355.41)
Poker 256.26 520.48 9,942.40 40.88

(±44.84) (±51.29) (±1, 476.00) (±6.40)
Network 891.08 1,682.46 34,784.56 953.41
Intrusion (±237.17) (±235.70) (±1, 493.59) (±169.38)

5We used thek-means implementation in the MATLAB Statistics Toolbox andthe Nystrom approximation based
spectral clustering implementation [35] available at http://alumni.cs.ucsb.edu/ wychen/sc.html. The remaining algo-
rithms were implemented in-house.

66

http://alumni.cs.ucsb.edu/~wychen/sc.html

Figure 2.2 Example images from three clusters in the Imagenet-34 data set. The clusters represent
(a) butterfly, (b) odometer, and (c) website images.

The running times of the proposed algorithm for sample sizem = 2, 000 and the baseline

algorithms are recorded in Table 2.2. We observed that a speedup of over90% was achieved by our

algorithm when compared to kernelk-means on the CIFAR-10 and MNIST data sets. It is infeasible

to calculate then × n kernel for the large Forest Cover Type, Imagenet-34, Poker and Network

Intrusion data sets. To gauge the efficiency of our algorithmagainst kernelk-means on these data

sets, we randomly selected a set of50, 000 points from these data sets, executed kernelk-means on

this subset, and assigned cluster labels to the remaining points by finding the cluster whose center

is closest. Our algorithm was faster than this version of thekernel k-means algorithm as well.

Even thek-means algorithm was slower than the proposed approximate kernelk-means algorithm

on most of the data sets, due to their high dimensionality. Our algorithm was also faster than

the spectral clustering algorithm based on the Nystrom approximation, because spectral clustering

requires the eigendecomposition of the similarity matrix.The most time-consuming operation in

our algorithm, computation of the inverse matrix̂K−1, heavily influenced the clustering time.

2.4.4.2 Cluster quality

Figures 2.2 and 2.5 show examples of clusters obtained, using the approximate kernelk-means

algorithm, from the Imagenet-34 and the CIFAR-10 data sets,respectively. We assigned a class

label to each cluster, based on the true class of majority of the objects in the cluster.

The silhouette coefficients of the proposed algorithm are compared with those of the baseline

67

algorithms, on the CIFAR-10 and MNIST data sets, in Figure 2.3. Computing the silhouette coef-

ficient values for the partitions of the remaining data sets is computationally prohibitive. On both

the CIFAR-10 and MNIST data sets, the silhouette coefficientvalues achieved by the proposed

algorithm are close to those of the kernelk-means algorithm, proving that the two algorithms yield

similar partitions. The Nystrom approximation based spectral clustering algorithm achieves lower

silhouette values, while thek-means algorithm achieves values close to0, showing that the clusters

obtained are not compact. The NMI values achieved by the proposed algorithm against the base-

0

0.01

0.02

0.03

S
ilh

ou
et

te

(a) CIFAR-10
0

0.1

0.2

0.3

0.4

0.5

S
ilh

ou
et

te

(b) MNIST

Figure 2.3 Silhouette coefficient values of the partitions obtained using approximate kernelk-
means, compared to those of the partitions obtained using the baseline algorithms. The sample
sizem is set to2, 000, for both the proposed algorithm and the Nystrom approximation based
spectral clustering algorithm.

line algorithms are shown in Figure 2.4. Due to the small sizeof the images in the CIFAR-10 data

set, it is difficult to obtain a high clustering accuracy on this data set. Despite this difficulty, our

algorithm partitioned the images into clusters similar to those obtained by using kernelk-means.

The MNIST data set was also clustered into partitions similar to the partitions obtained from kernel

k-means. Our algorithm’s prediction accuracy in terms of NMIwith respect to the true class labels

is comparable to that of kernelk-means. The proposed algorithm’s NMI values are marginally

better than those of the approximate spectral clustering algorithm, because the spectral clustering

algorithm uses only the topC eigenvectors of the kernel matrix to determine the clusters, which

68

0

5

10

15

N
M

I

(a) CIFAR-10
0

10

20

30

40

50

N
M

I

(b) MNIST

0

5

10

15

N
M

I

(c) Forest Cover Type
0

2

4

6

8

10

N
M

I

(d) Imagenet-34

0

10

20

30

N
M

I

(e) Poker
0

5

10

N
M

I

(f) Network Intrusion

Figure 2.4 NMI values (in %) of the partitions obtained usingapproximate kernelk-means, with
respect to the true class labels. The sample sizem is set to2, 000, for both the proposed algorithm
and the Nystrom approximation based spectral clustering algorithm. It is not feasible to execute
kernelk-means on the large Forest Cover Type, Imagenet-34, Poker, and Network Intrusion data
sets due to their large size. The approximate NMI values of kernel k-means on these data sets are
obtained by first executing kernelk-means on a randomly chosen subset of50, 000 data points to
find the cluster centers, and then assigning the remaining points to the closest cluster center.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 2.5 Example images from the clusters found in the CIFAR-10 data set using approximate
kernelk-means. The clusters represent the following objects: (a) airplane, (b) automobile, (c) bird,
(d) cat, (e) deer, (f) dog, (g) frog, (h) horse, (i) ship, and (j) truck.

may be too restrictive for these data sets. As expected, all the kernel-based algorithms performed

better thank-means.

2.4.4.3 Parameter sensitivity

The proposed approximate kernelk-means algorithm is dependent on one crucial parameter: the

sample sizem. We study the effect of varying this parameter on the runningtime of the algorithm

in Table 2.3, and the cluster quality in Figure 2.6 (NMI values) and Figure 2.7 (Silhouette coeffi-

cient values). We compare the performance of our algorithm against the Nystrom approximation

based spectral clustering algorithm, which also depends onthe same parameter. In Table 2.3, the

execution time is split into the time taken for computing thekernel matrix and clustering the data

points. The kernel computation time is common to the proposed algorithm and the Nystrom ap-

proximation based spectral clustering algorithm. More time was spent in clustering than in kernel

calculation, due to the simplicity of the RBF kernel. Thoughour algorithm took longer than the

approximate spectral clustering algorithm for small sample sizes (m ≤ 1, 000), the running time of

the spectral clustering algorithm increased cubically with the number of samples. Our algorithm

was faster for large sample sizes, when high cluster qualitywas achieved. The running time of

our algorithm also increased as the sample sizem increased, but at a lower rate. The silhouette

coefficient values of the proposed algorithm increased marginally as the sample size increased,

and were higher than those achieved by the Nystrom approximation based spectral clustering al-

gorithm. The NMI values achieved by our algorithm were also higher than those achieved by the

Nystrom approximation based spectral clustering algorithm, especially when the sample size is

large, and spectral clustering is computationally expensive. Only on the Imagenet-34 data set, our

algorithm performs marginally worse than the spectral clustering algorithm. There is a marginal

improvement in the NMI of our algorithm as the sample size increases.

71

100 200 500 1,000 2,000
0

5

10

15

m

N
M

I

(a) CIFAR-10
100 200 500 1,000 2,000

0

10

20

30

40

50

m

N
M

I

(b) MNIST

100 200 500 1,000 2,000
0

5

10

15

m

N
M

I

(c) Forest Cover Type
100 200 500 1,000 2,000

0

2

4

6

8

10

m

N
M

I

(d) Imagenet-34

100 200 500 1,000 2,000
0

10

20

30

m

N
M

I

(e) Poker
100 200 500 1,000 2,000

0

5

10

15

m

N
M

I

(f) Network Intrusion

Figure 2.6 Effect of the sample sizem on the NMI values (in %) of the partitions obtained using
approximate kernelk-means, with respect to the true class labels.

72

100 200 500 1,000 2,000
0

0.01

0.02

0.03

m

S
ilh

ou
et

te

(a) CIFAR-10
100 200 500 1,000 2,000

0

0.1

0.2

0.3

0.4

0.5

m

S
ilh

ou
et

te

(b) MNIST

Figure 2.7 Effect of the sample sizem on the Silhouette coefficient values of the partitions obtained
using approximate kernelk-means.

2.4.4.4 Sampling strategies

In our implementation of the proposed algorithm, we employed uniform random sampling to select

the subset of data using which the kernel matrix is constructed. Other sampling strategies such as

column-norm sampling, diagonal sampling andk-means based sampling may be used to select the

samples. Table 2.4, Figure 2.8, and Figure 2.9 compare the running time, silhouette coefficient

and NMI values, respectively, for the column norm sampling and thek-means sampling strategies

with uniform random sampling. For column norm-sampling, weassume that then × n kernel

matrix is pre-computed and only record the time taken for computing the column norms, and the

time taken for choosing the firstm indices, as the sampling time. Fork-means sampling, we

record the time taken to executek-means and find the representative samples. As expected, the

sampling time for both the non-uniform sampling techniqueswas greater than the time required

for uniform random sampling. Column norm sampling is more expensive thank-means sampling,

after the kernel computation time is taken into account. Both the non-uniform sampling techniques

are as accurate as uniform random sampling for substantially large sample sizes, both in terms of

silhouette coefficient values as well as the NMI values. Thisshows that the additional time spent

for non-uniform sampling does not lead to significant improvement in the performance, aligning

73

Table 2.3 Effect of the sample sizem on the running time (in seconds) of the proposed approximate
kernelk-means clustering algorithm.

m Approx. Approx. Nystrom
kernel kernel approx.

calculation k-means based
(proposed) spectral

clustering

100 0.34 11.95 0.57
(±0.04) (±4.62) (±0.12)

200 0.87 39.04 0.99
(±0.07) (±15.04) (±0.13)

500 1.36 11.84 4.25
(±0.03) (±2.11) (±1.86)

1,000 3.63 45.87 22.61
(±0.23) (±21.94) (±5.03)

2,000 4.60 32.41 111.53
(±0.20) (±6.32) (±1.77)

(a) CIFAR-10

m Approx. Approx. Nystrom
kernel kernel approx.

calculation k-means based
(proposed) spectral

clustering

100 0.65 25.91 7.20
(±0.06) (±3.05) (±1.00)

200 1.06 14.54 49.56
(±0.18) (±7.85) (±9.19)

500 1.99 21.36 348.86
(±0.34) (±8.35) (±107.43)

1,000 3.32 25.78 920.34
(±0.44) (±6.78) (±219.62)

2,000 5.81 51.92 4,180.21
(±0.35) (±12.59) (±385.82)

(b) MNIST

m Approx. Approx. Nystrom
kernel kernel approx.

calculation k-means based
(proposed) spectral

clustering

100 1.40 17.70 10.35
(±0.29) (±6.06) (±1.44)

200 1.64 22.57 16.83
(±0.09) (±12.39) (±2.38)

500 3.82 28.56 50.11
(±0.03) (±11.61) (±10.83)

1,000 11.14 55.01 137.26
(±0.68) (±18.57) (±40.88)

2,000 22.80 134.68 550.75
(±1.27) (±26.10) (±326.22)

(c) Forest Cover Type

m Approx. Approx. Nystrom
kernel kernel approx.

calculation k-means based
(proposed) spectral

clustering

100 47.29 504.41 78.53
(±1.12) (±119.41) (±7.14)

200 68.15 608.24 115.16
(±0.16) (±10.78) (±4.47)

500 168.83 737.24 292.69
(±0.27) (±209.26) (±7.21)

1,000 181.93 847.06 404.73
(±11.95) (±22.88) (±79.77)

2,000 344.39 916.63 1497.08
(±3.77) (±33.62) (±120.05)

(d) Imagenet-34

74

Table 2.3 (cont’d)
m Approx. Approx. Nystrom

kernel kernel approx.
calculation k-means based

(proposed) spectral
clustering

100 2.85 53.02 10.88
(±0.36) (±10.86) (±1.65)

200 7.31 81.83 46.78
(±1.40) (±30.72) (±4.21)

500 12.74 104.83 90.57
(±2.41) (±17.76) (±18.57)

1,000 31.29 171.55 261.14
(±2.64) (±41.61) (±20.51)

2,000 40.75 215.51 479.73
(±3.83) (±41.01) (±47.46)

(e) Poker

m Approx. Approx. Nystrom
kernel kernel approx.

calculation k-means based
(proposed) spectral

clustering

100 7.52 729.07 241.84
(±0.64) (±237.67) (±65.00)

200 13.82 683.22 200.48
(±4.15) (±438.10) (±45.24)

500 41.36 339.77 436.79
(±10.75) (±119.48) (±206.47)

1,000 87.24 551.39 668.91
(±10.54) (±78.01) (±49.37)

2,000 115.14 775.94 1567.32
(±7.06) (±230.11) (±228.64)

(f) Network Intrusion

with the results of earlier works such as [103].

2.4.4.5 Scalability analysis

We analyze the scalability of the proposed approximate kernel k-means for different values ofn, d,

C using the synthetic concentric circles data set. We employed the RBF kernel function to compute

the approximate kernel matrices, and set the number of sampled pointsm = 1, 000 whenC < 100

andm = 10C whenC ≥ 100. This was done in order to ensure that the condition imposed by

Lemma 2 is satisfied.

Figure 2.10(a) shows that the running time of the algorithm varies nearly linearly as the number

of points in the data setn varies from100 to 10 million, the dimensionalityd = 100, and the

number of clustersC = 10. This concurs with our complexity analysis in Section 2.3.2.

We set the number of data pointsn = 106 and the number of clustersC = 10, and studied the

effect of the data dimensionality on the performance of the proposed algorithm in Figure 2.10(b).

The dimensionality of the data set plays an important role only in the calculation of the kernel. The

RBF kernel is simple and takes only a few100 seconds to calculate, even forn = 106. The running

75

Table 2.4 Comparison of sampling times (in milliseconds) ofthe uniform, column-norm andk-
means sampling strategies on the CIFAR-10 and MNIST data sets. Parameterm represents the
sample size.

m CIFAR-10 MNIST
Uniform Column norm k-means Uniform Column norm k-means
Random (×e03) (×e06) Random (×e03) (×e06)

100 9.62 67.62 1.68 9.41 94.22 3.83
(±1.62) (±2.31) (±0.43) (±1.74) (±3.97) (±0.542)

200 4.24 68.21 1.90 9.34 88.92 2.62
(±1.12) (±3.49) (±0.20) (±1.16) (±4.44) (±0.254)

500 3.99 64.54 2.14 11.10 86.27 7.82
(±0.65) (±4.26) (±0.14) (±3.81) (±0.94) (±3.42)

1,000 5.43 67.42 2.44 8.41 86.15 5.88
(±0.87) (±5.59) (±0.16) (±1.38) (±0.70) (±1.78)

2,000 4.62 70.43 2.66 9.53 86.66 4.91
(±2.20) (±7.20) (±0.03) (±1.94) (±0.85) (±0.207)

100 200 500 1,000 2,000
0

0.01

0.02

0.03

0.04

m

S
ilh

ou
et

te

(a) CIFAR-10
100 200 500 1,000 2,000

0

0.2

0.4

0.6

m

S
ilh

ou
et

te

(b) MNIST

Figure 2.8 Comparison of Silhouette coefficient values of the partitions obtained from approximate
kernelk-means using the uniform, column-norm andk-means sampling strategies, on the CIFAR-
10 and MNIST data sets. Parameterm represents the sample size.

76

100 200 500 1,000 2,000
0

5

10

15

m

N
M

I

(a) CIFAR-10
100 200 500 1,000 2,000

0

10

20

30

40

50

m

N
M

I

(b) MNIST

Figure 2.9 Comparison of NMI values (in %) of the partitions obtained from approximate kernel
k-means using the uniform, column-norm andk-means sampling strategies, on the CIFAR-10 and
MNIST data sets. Parameterm represents the sample size.

10
5

5000

10000

15000

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Size of the data set n
(log scale)

(a)

10
1

10
2

10
31100

1200

1300

1400

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Dimensionality of the data set d
(log scale)
(b)

10
1

10
2

10
3

2

4

6

8

10
x 10

4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of clusters C
(log scale)
(c)

Figure 2.10 Running time of the approximate kernelk-means algorithm for different values of (a)
n, (b) d and (c)C.

time is dominated by the time taken for clustering. As a result, the running time varies minimally

when the dimensionality of the data set varies fromd = 10 to d = 1, 000.

We fixedn = 106 andd = 100, increased the number of clusters in the data set fromC = 10

to C = 1, 000, and recorded the running time of our algorithm in Figure 2.10(c). As expected, the

running time almost increases linearly withC. WhenC < 100, the number of samplesm is fixed

to 1, 000. Therefore, the number of clusters has a significant effect only on the clustering time.

WhenC ≥ 100, the number of samplesm also need to be increased, thereby affecting both the

kernel calculation time and the clustering time.

77

2.4.5 Distributed Approximate Kernel k-means

On data sets of sizes greater than10 million, execution of approximate kernelk-means on a single

processor is highly time-consuming. We employed the distributed approximate kernelk-means to

cluster the Tiny images data set and the synthetic concentric circles data set.

We set the sample sizem = 1, 000 and the number of tasksP = 1, 024. Each task was run on a

2.8 GHz processor, with a total of100 GB shared memory. The RBF kernel was used for both data

sets. The number of clusters was set toC = 100 andC = 10 for the Tiny images and concentric

circles data sets, respectively.

The clustering performance of the distributed algorithm onthe two data sets is presented in

Table 2.5. When approximate kernelk-means was executed on the Tiny images data set on a single

processor, it took about8.5 hours. The distributed algorithm is able to cluster this data set in under

2 minutes. The concentric circles data set containing1 billion points was also clustered in less

than15 minutes. The true class labels are not available for the Tinyimage data set, so it was not

possible to evaluate the cluster quality. On the concentriccircles data set, an NMI of about78%

was achieved.

Table 2.5 Performance of the distributed approximate kernel k-means algorithm on the Tiny image
data set and the concentric circles data set, with parametersm = 1, 000 andP = 1024.

Data set Tiny Concentric circles

n 79,302,017 1,000,000,000
d 384 10
C 100 10

Running Kernel calculation 0.21 1.17
(±0.07) (±0.09)

time Clustering 94.03 876.75
(±6.58) (±163.06)

NMI N/A 77.80
(±0.10)

78

2.5 Summary

In this chapter, we presented the approximate kernelk-means algorithm, an efficient approximation

for the kernelk-means clustering algorithm, suitable for big data sets. The key to the efficiency of

approximate kernelk-means is the fact that it does not require the calculation ofthe pairwise sim-

ilarities between all the data points. By restricting the cluster centers to lie in a subspace spanned

by a small set of randomly sampled data points, it is able to compute the clusters using only a small

portion of the kernel matrix. Consequently, it has lower running time and memory complexity than

kernelk-means and other kernel-based clustering algorithms. We have shown theoretically that,

the difference in the clustering error of the approximate kernel k-means and the kernelk-means

algorithms, reduces linearly as the number of sampled points increases. Experimental results also

show that the performance of approximate kernelk-means is comparable to that of kernelk-means

and other state-of-the-art approximate kernel clusteringalgorithms, in terms of the cluster quality,

while its running time is close to that of linear clustering algorithms such ask-means. Though not

as easily parallelizable ask-means, it requires lesser data replication and communication than ker-

nel k-means. Hence, it can handle distributed data sets more efficiently than kernelk-means. The

proposed approximate kernelk-means achieves our objective of clustering big data sets efficiently

and accurately.

79

Chapter 3

Kernel-based Clustering Using Random

Feature Maps

3.1 Introduction

Although the approximate kernelk-means algorithm is accurate and scalable, it has the following

limitations:

• The approximate kernelk-means algorithm samples a subset ofm points from the data set,

and constructs an×m kernel matrixKB, between then points in the data set and the sampled

points. Whenn is in the order of billions, and the number of clusters is alsocomparably

large, calculating theO(nm) matrix KB may be infeasible. For instance, if we were to

cluster the Tiny image data set containing80 million images into75, 062 clusters (the true

number of classes in the data set), approximate kernelk-means would require aboutm = 105

samples. This would boil down to calculating about8 trillion similarity values, which is

computationally expensive.

• Approximate kernelk-means cannot efficiently handle out-of-sample clustering, i.e. the

problem of assigning new data points to clusters after the clustering is complete. In order to

80

find the cluster label for a new pointx∗, we need to compute

||ck(·)− κ(x∗, ·)||2Hκ
= α⊤

k K̂αk − 2ϕ⊤αk, k ∈ [C],

whereϕ = [κ(x∗, x̂1), . . . , κ(x
∗, x̂m)] andαk is thekth row of theC × m matrix α, con-

taining the weights of the sampled points in each of theC clusters. This operation has

O(m2C +mC2 +md) running time complexity and can be inefficient for largem.

To address the above limitations, we propose two algorithmswhich use random feature maps to

obtain anO(m)-dimensional embedding of the Hilbert space associated with the kernelκ(·, ·),

wherem ≪ n [42]. Our first algorithm called theRFF clusteringalgorithm obtains vector repre-

sentations of the data points to form ann×m pattern matrix. This pattern matrix is clustered using

a linear clustering algorithm likek-means to obtain the data partitions. This algorithm, like the

approximate kernel k-means, hasO(nm) running time complexity and memory requirements. The

second algorithm, which we call theSV clusteringalgorithm, is designed along the lines of spectral

clustering. It approximates the eigenvectors of then×n kernel matrix by the dominantC singular

vectors of the pattern matrix, and obtains the data partition by clustering these singular vectors in

O(nC2) time. The SV clustering algorithm provides aC-dimensional representation of the cluster

centers, using which previously unseen data points can be assigned to clusters efficiently.

3.2 Background

The matrix approximation methods discussed in Section 2.2 essentially factorize the kernel matrix

to obtain a low-dimensional representation of the data. Another form of kernel approximation,

initially proposed for supervised kernel-based learning by Rahimi and Recht in [147], involves

factorizing the kernel function instead of the kernel matrix, by mapping the data explicitly into a

low-dimensional randomized feature space.

81

A kernel functionκ(·, ·) is shift-invariant if κ(x,y) = κ(x − y) for all x,y ∈ ℜd. Popular

examples of shift-invariant kernels are the RBF and Laplacian kernels. Letp(w) denote the Fourier

transform of such a kernel functionκ(x− y), i.e.

κ(x− y) =

∫

ℜd

p(w) exp(jw⊤(x− y))dw.

According to the following theorem from harmonic analysis,p(w) is a valid probability density

function, provided the kernel function is continuous, positive-definite and scaled appropriately.

Theorem 2. (Bochner’s theorem [152]) A continuous kernelκ(x,y) = κ(x−y) onℜd is positive

definite if and only ifκ(δ) is the Fourier transform of a non-negative measure.

For instance, the Fourier transform [26] of the RBF kernel function is the Gaussian probability

distribution function. Letw be ad-dimensional vector sampled fromp(w). The kernel function

can be approximated as

κ(x,y) = Ew

[
f(w,x)⊤f(w,y)

]
, (3.1)

where

f(w,x) = (cos(w⊤x), sin(w⊤x))⊤.

We can approximate the expectation in (3.1) with the empirical mean overm Fourier components

{w1, . . . ,wm}, sampled from the distributionp(w), and obtain the following representation for

the pointx:

z(x) =
1√
m
(cos(w⊤

1 x), . . . , cos(w
⊤
mx), sin(w

⊤
1 x), . . . , sin(w

⊤
mx)). (3.2)

The featuresz(x) are called theRandom Fourier Features. The kernel similarity between any two

pointsx andy can be approximated by the inner product between the random Fourier features

82

Algorithm 6 RFF Clustering
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
clustered

• λ: the RBF kernel width parameter
• C: the number of clusters
• m: the number of Fourier components (C < m ≪ n)

2: Output : Cluster membership matrixU ∈ {0, 1}C×n

3: Draw m independent samplesw1, . . . ,wm from the Gaussian distributionN
(
0, 1

λ
I
)
. Let

W = (w1, . . . ,wm).
4: Compute the matrixH = [cos (XW) sin (XW)], whereX = (x1, . . . ,xn)

⊤ is the input
pattern matrix.

5: Run thek-means algorithm (Algorithm 1) onH with the number of clusters set toC, and
obtain the membership matrixU .

corresponding to the data points, i.e.

κ(x,y) ≃ z(x)⊤z(y). (3.3)

Given a data setD = {x1, . . . ,xn}, we can obtain its low-dimensional representationD̂ =

{z(x1), . . . , z(xn)}, and apply a fast linear learning algorithm tôD, instead of executing a kernel-

based learning algorithm onD. This allows us to learn the non-linear relations in the dataefficiently

using linear machines.

This kernel approximation has been employed in several large-scale learning tasks such as

classification [25,147,182], regression [123], data compression [146] and novelty detection [164].

Random feature maps have been extended to shift-variant kernels such as intersection ker-

nels [110, 179] and other positive definite kernels using Maclaurin and Taylor expansions of the

kernel function [81,92].

3.3 Kernel Clustering using Random Fourier Features

Random feature maps can be used for clustering big data sets efficiently. We propose an algo-

83

(a) (b) (c)

Figure 3.1 A simple example to illustrate the RFF clusteringalgorithm. (a) Two-dimensional data
set with500 points from two clusters (250 points in each cluster), (b) Plot of the matrixH obtained
by samplingm = 1 Fourier component. (c) Clusters obtained by executingk-means onH.

Table 3.1 Comparison of the confusion matrices of the RFF, kernel k-means, andk-means algo-
rithms for the two-dimensional semi-circles data set, containing500 points (250 points in each of
the two clusters).

Class 1 Class 2

Cluster 1 220 41
Cluster 2 30 209

(a) RFF clustering

Class 1 Class 2

Cluster 1 250 0
Cluster 2 0 250

(b) Kernelk-means

Class 1 Class 2

Cluster 1 132 129
Cluster 2 118 121

(c) k-means

rithm called theRFF clusteringalgorithm, which first projects the data set into a low-dimensional

space using random Fourier feature maps, and then executesk-means on the transformed data.

Let D = {x1, . . . ,xn} represent the input data set, andκ(·, ·) be the kernel function. We

assume thatκ(·, ·) is shift-invariant1 and satisfies the conditionκ(x,x) = κ(0) = 1. Let K =

[κ(xi,xj)]n×n denote the kernel matrix. The matrix

H =
[
z(x1)

⊤, . . . , z(xn)
⊤] (3.4)

denotes the data matrix obtained by mapping each pointx ∈ D using the random feature mapz(·).

1The assumption of shift-invariance is made only for simplicity. Random feature maps can be used for other
positive semi-definite kernels as well, as demonstrated in [81,92].

84

Using (3.3), we can approximate the kernel matrixK by

K̂ = H⊤H. (3.5)

We can replace the kernel matrixK in the kernelk-means optimization problem (1.11) with

the approximate kernel matrix̂K in (3.5), leading to the following optimization problem:

max
U∈P

tr(ŨH⊤HŨ⊤), (3.6)

whereU = (u1, . . . ,uC)
⊤ is the cluster membership matrix,P = {U ∈ {0, 1}C×n : U⊤1 = 1},

Ũ = [diag(U1)]−1/2 U , and1 is a vector of all ones. By comparing the above problem to the

k-means optimization problem (1.12), it becomes evident that the problem in (3.6) can be solved

by executingk-means on the matrixH. Algorithm 6 describes the RFF clustering algorithm for

clustering using the random Fourier features obtained fromthe RBF kernel. We illustrate the

algorithm in Figure 3.1. Figure 3.1(a) shows a two-dimensional data set containing500 points

from two semi-circular clusters. The two clusters are identified perfectly when the kernelk-means

algorithm is executed on this data set. For the purpose of illustration, we sampled one Fourier

component (i.e.m = 1) and generated a two-dimensional matrixH to represent the data. A plot of

this representation is shown in Figure 3.1(b). Note that thetwo clusters are more separated in this

space than in the original feature space. Figure 3.1(c) shows the clusters obtained whenk-means is

executed onH. The error, in terms of the number of points that are grouped into the wrong cluster,

is about14%, as shown in the confusion matrices in Table 3.1. A confusionmatrix shows the

mapping between the true class labels and the cluster labels. Each cluster is assigned a class label,

corresponding to the true label of the majority of the data points in the cluster. Each entry(k, c) in

the confusion matrix represent the number of data points from classc assigned to clusterk. The

diagonal entries represent the number of points that have been assigned to the correct cluster. The

confusion matrices show that the accuracy of the RFF clustering algorithm is close to that of the

85

kernelk-means algorithm, and higher than that of thek-means algorithm.

3.3.1 Analysis

In this section, we first analyze the computational complexity of the RFF clustering algorithm, and

then examine the quality of the data partitions generated.

3.3.1.1 Computational complexity

Sampling from the Fourier transform of the kernel function is a relatively inexpensive operation

for most shift-invariant kernels. For instance, several efficient techniques have been proposed for

sampling from a Gaussian distribution in the literature [53]. The crux of the proposed RFF clus-

tering algorithm thus lies in computing the low-dimensional random Fourier featuresH. Given

m d-dimensional Fourier components, the mapping to the matrixH can be performed inO(ndm)

time. Leet al. proposed the Fastfood algorithm which reduces the running time complexity of

this operation toO(nm log(d)) [107]. Instead of directly multiplying the data matrixX with the

random Gaussian matrixW to obtain the matrixH, they combineW with a Walsh-Hadamard ma-

trix. Multiplication with Hadamard matrices can be performed in loglinear time, thereby reducing

the running time. As Gaussian matrices combined with Hadamard matrices behave like Gaussian

matrices, this does not affect the kernel matrix approximation significantly. Executingk-means on

H takesO(nmCl) time, wherel is the number of iterations required for convergence. Thus,the

overall running time complexity of the RFF clustering algorithm isO(nm log(d) + nmCl). Only

O(nm) memory is required to store the matrixH.

3.3.1.2 Approximate error

To examine the difference between the clustering solutionsof the kernelk-means algorithm and

the RFF clustering algorithm, we must first bound the kernel approximation error
∣∣∣
∣∣∣K − K̂

∣∣∣
∣∣∣
F

. In

the following theorem, we show that this error decreases at the rate ofO(1/
√
m):

86

Theorem 3. For anyδ ∈ (0, 1), with probability1− δ, we have

∣∣∣
∣∣∣K̂ −K

∣∣∣
∣∣∣
F
≤ 2 ln(2/δ)

m
+

√
2 ln(2/δ)

m
= O

(
1√
m

)
. (3.7)

Proof. We use the following result from [165] to prove this theorem:

Lemma 4. Let Hκ be a Hilbert space andξ be a random variable on(Z, ρ) with values inHκ.

Assume‖ξ‖ ≤ M < ∞ almost surely. Denoteσ2(ξ) = E(‖ξ‖2). Let {zi}mi=1 be independent

random drawers ofρ. For any0 < δ < 1, with confidence1− δ,

∥∥∥∥∥
1

m

m∑

i=1

(ξi − E[ξi])

∥∥∥∥∥ ≤ 2M ln(2/δ)

m
+

√
2σ2(ξ) ln(2/δ)

m
. (3.8)

Define

a(w) =
1√
n
(cos(w⊤x1), . . . , cos(w

⊤xn))
⊤ and

b(w) =
1√
n
(sin(w⊤x1), . . . , sin(w

⊤xn))
⊤.

Let ξi = a(wi)a(wi)
⊤ + b(wi)b(wi)

⊤. We haveE[ξi] = E[a(wi)a(wi)
⊤ + b(wi)b(wi)

⊤] = K

and||ξi||2F = ||a(wi)|2 + |b(wi)||2 = 1, which impliesM = σ2 = 1. We obtain the result (3.7)

by substituting these values in (3.8).

K̂ is a good approximation ofK provided that the number of Fourier componentsm is suffi-

ciently large. We can now obtain an upper bound on the difference between the solutions of the

kernelk-means optimization problem in (1.11) and the optimizationproblem in (3.6):

Theorem 4. LetU∗ andU∗
m be the optimal solutions of(1.11)and (3.6), respectively. Let̃U∗ =

U∗[D∗]−1/2 and Ũ∗
m = U∗

m[D
∗
m]

−1/2 denote the normalized versions ofU∗ andU∗
m, whereD∗ =

87

diag([U∗]⊤1) andD∗
m = diag([U∗

m]
⊤1). For anyδ ∈ (0, 1), with probability1− δ, we have

tr
(
[Ũ∗ − Ũ∗

m]
⊤K[Ũ∗ − Ũ∗

m]
)

≤ 4 ln(2/δ)

m
+

√
8 ln(2/δ)

m

= O

(
1√
m

)
.

Proof. We have

tr([Ũ∗]⊤KŨ∗) ≤ tr([Ũ∗]⊤K̂Ũ∗) +
∣∣∣
∣∣∣K − K̂

∣∣∣
∣∣∣
F

≤ tr([Ũ∗
m]

⊤K̂Ũ∗
m) +

∣∣∣
∣∣∣K − K̂

∣∣∣
∣∣∣
F

≤ tr([Ũ∗
m]

⊤KŨ∗
m) + 2

∣∣∣
∣∣∣K − K̂

∣∣∣
∣∣∣
F
.

Since tr([Ũ∗]⊤KŨ∗) ≥ tr([Ũ∗
m]

⊤KŨ∗
m), we have

|tr([Ũ∗]⊤KŨ∗)− tr([Ũ∗
m]

⊤KŨ∗
m)| ≤ 2

∣∣∣
∣∣∣K − K̂

∣∣∣
∣∣∣
F
.

We complete the proof by using the result from Theorem 3 and the strong convexity property of

tr(Ũ⊤KŨ).

3.4 Kernel Clustering using Random Fourier Features in Con-

strained Eigenspace

Despite its simplicity, RFF clustering may suffer from highcomputational cost. As seen in

Theorem 4, a large number of random Fourier components may berequired to achieve a low ap-

proximation error. As a consequence, we need to executek-means over a high-dimensional space,

leading to high runtime complexity. To address this problem, we propose using an idea similar

to that in the approximate kernelk-means algorithm, and constrain the cluster centers to lie in the

88

Algorithm 7 SV Clustering
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• λ: the RBF kernel width parameter
• C: the number of clusters
• m: the number of Fourier components (C < m ≪ n)

2: Output : Cluster membership matrixU ∈ {0, 1}C×n

3: Draw m independent samplesw1, . . . ,wm from the Gaussian distributionN
(
0, 1

λ
I
)
. Let

W = (w1, . . . ,wm).
4: Compute the matrixH = [cos (XW) sin (XW)], whereX = (x1, . . . ,xn)

⊤ is the input
pattern matrix.

5: Compute the left singular vectors ofH corresponding to its topC singular values to obtain the
matrix V̂C = (v̂1, . . . , v̂C).

6: Run thek-means algorithm (Algorithm 1) on̂VC with the number of clusters set toC and
obtain the membership matrixU .

subspace spanned by the top eigenvectors of the kernel matrix. Let {(λi,vi)}ni=1 denote the eigen-

values and eigenvectors of the kernel matrixK, ranked in the descending order of the eigenvalues.

Let Ha = span(v1, . . . ,vC) represent the space spanned by the dominantC eigenvectors. The

kernelk-means problem in (1.7) can be approximated as

min
U∈P

max
{ck(·)∈Ha}Ck=1

C∑

k=1

n∑

i=1

Uki

n
||ck(·)− κ(xi, ·)||2Hκ

, (3.9)

whereck(·) represent the cluster centers,U = (u1, . . . ,uC)
⊤ is the cluster membership matrix,

P = {U ∈ {0, 1}C×n : U⊤1 = 1}, and1 is a vector of all ones. The above problem (3.9)

can be solved by executingk-means on the top eigenvectors ofK, i.e. by solving the following

optimization problem:

max
U∈P

tr(Ũ [VCV
⊤
C]Ũ⊤), (3.10)

whereVC = (v1, . . . ,vC), andŨ = [diag(U1)]−1/2 U . This method leads to a significant reduc-

tion in computational cost when compared to the RFF clustering algorithm, as each data point is

represented by aC-dimensional vector andk-means needs to be executed over a lower dimensional

space.

89

However, computing the eigenvectors ofK requires the computation of then×n kernel matrix,

which is infeasible whenn is large. We circumvent this issue by approximating the eigenvectors of

K using the singular vectors of the random Fourier features, and thereby avoid computing the full

kernel matrix. More specifically, we compute the topC singular values and the corresponding left

singular vectors ofH, denoted by{(λ̂i, v̂i)}Ci=1, and represent the data points inD by the matrix

V̂C = (v̂1, . . . , v̂C). We then solve the approximate optimization problem

max
U∈P

tr(Ũ [V̂C V̂
⊤
C]Ũ⊤), (3.11)

by executingk-means on the matrix̂VC to obtain theC clusters. This procedure, named as the

SV clustering algorithm, is outlined in Algorithm 7. It has the same input and output as the RFF

clustering algorithm, but differs in the final two steps. As the dimensionality of the input to the

k-means clustering step in the SV clustering algorithm is significantly smaller than that in the RFF

clustering algorithm, SV clustering is more efficient than RFF clustering, despite the overhead of

computing the singular vectors.

3.4.1 Analysis

In this section, we discuss the computational complexity ofthe SV clustering algorithm and bound

its approximation error.

3.4.1.1 Computational complexity

As the initial steps in the SV clustering algorithm are the same as the RFF clustering algorithm,

these steps have the same running time complexity. In addition, the algorithm involves performing

the singular value decomposition ofH. If the top singular vectors ofH are found using con-

ventional methods, the runtime complexity of the SVD step would beO(nm2). We reduce this

complexity in our implementation by using the approximate SVD technique proposed in [70]. We

90

samples rows fromH to form ans × 2m matrix S. The top eigenvectors ofS⊤S, denoted by

Ṽ = (ṽ1, . . . , ṽC), are close to the top eigenvectors ofH⊤H and the singular vectors ofH can be

recovered from the eigenvectors ofS⊤S asHṼ . Using this approximation, the runtime complex-

ity of SVD is reduced toO (smmin {s,m}). The time taken to executek-means on the singular

vectors isO(nC2l).

Whenmax(m, s, l, C) ≪ n, both the RFF and SV clustering algorithms have linear time com-

plexity. However, the time taken by thek-means step in the SV clustering algorithm isO(nC2l),

as opposed toO(nmCl), the time taken by thek-means step in the RFF clustering algorithm. As

C is usually much lesser thanm, the SV algorithm is much more efficient than the RFF clustering

algorithm.

The values chosen form ands introduce a trade-off between the clustering quality and effi-

ciency. Higher values result in better clustering quality but lesser speedup. In our implementation,

we found that a reasonably good accuracy can be achieved by setting the value ofm to range be-

tween1% and2% of n, and settings to around2% of n. Lowerm/n ratio values work well asn

increases.

3.4.1.2 Approximation error

The SV clustering algorithm relies on the assumption of the existence of a large eigengap. This

theory that has been adopted by many earlier kernel-based algorithms which rely on the spec-

tral embedding of the data [118], essentially implies that most attributes of the data can be well

approximated by vectors in the low-dimensional space spanned by the top eigenvectors.

The following theorem proves that when the lastn− C eigenvalues{λi}ni=C+1 of K are suffi-

ciently small, the subspaceH can be well approximated by the subspaceHa spanned by the topC

eigenvectors ofK.

Theorem 5. LetE andEa represent the optimal clustering errors in the kernel k-means problem

91

(1.7)and the optimization problem(3.9), respectively. We have

|E −Ea| ≤
n∑

i=C+1

λi.

Proof. Let {c∗k(·)}Ck=1 andU∗ be the optimal solutions to (1.7). Letcak(·) represent the projection

of c∗k into the subspaceHa. For anyκ(xi, ·), let gi(·) andhi(·) be the projections ofκ(xi, ·) into

the subspaceHa and span(vC+1, . . . ,vn), respectively. We have

Ea = min
U

max
ck(·)∈Ha

C∑

k=1

n∑

i=1

Uki

n
||ck(·)− κ(xi, ·)||2Hκ

≤
C∑

k=1

n∑

i=1

U∗
ki

n
||cak(·)− κ(xi, ·)||2Hκ

=
C∑

k=1

n∑

i=1

U∗
ki

n

(
||cak(·)− gi(·)||2Hκ

+ ||hi(·)||2Hκ

)

≤ E +
1

n

C∑

k=1

n∑

i=1

||hi(·)||2Hκ

≤ E +

n∑

i=C+1

λi.

We prove a set of preliminary lemmas before presenting our main result in Theorem 6 which

bounds the clustering error of the SV clustering algorithm.

Lemma 5. (Result from matrix perturbation theory [166]) Let(λi,vi), i ∈ [n] be the eigenvalues

and eigenvectors of a symmetric matrixA ∈ ℜn×n ranked in the descending order of eigenvalues.

SetX = (v1, . . . ,vC) andY = (vC+1, . . . ,vn). Given a symmetric perturbation matrixE, let

(X, Y)⊤E(X, Y) =




E11 E12

E21 E22


 .

92

Let ||·|| represent a consistent family of norms and let

γ = ||E21|| , δ = λC − λC+1 − ||E11|| − ||E22|| .

If δ > 0 and γ
δ
< 1

2
, then there exists a unique matrixP ∈ ℜ(n−C)×C satisfying

||P || < 2γ

δ
,

such that

X ′ = (X + Y P)(I + P⊤P)−1/2, and

Y ′ = (Y −XP⊤)(I + PP⊤)−1/2

are the eigenvectors ofA+ E.

Lemma 6. Givenδ ∈ (0, 1), we assume(λC − λC+1) ≥ 3∆, where

∆ =
2 ln(2/δ)

m
+

√
2 ln(2/δ)

m
, (3.12)

there exists, with probability1− δ, a matrixP ∈ ℜ(n−C)×C satisfying

||P ||F ≤ 2∆

λC − λC+1 −∆
,

such that

V̂C = (VC + V̄CP)(I + P⊤P)−1/2,

whereV̂C = (v̂1, . . . , v̂C), VC = (v1, . . . ,vC), andV̄C = (vC+1, . . . ,vn).

93

Proof. Let E = K̂ −K. Using Theorem 3 and Lemma 5, we have

γ =
∣∣∣∣V ⊤

C EV̄C

∣∣∣∣ ≤ ||E|| ≤ ∆,

and

δ = λC − λC+1 −
∣∣∣∣V ⊤

C EVC

∣∣∣∣ −
∣∣∣∣V̄ ⊤

C EV̄C

∣∣∣∣

≥ λC − λC+1 −∆ > 0.

As λC − λC+1 ≥ 3∆, we also haveγ
δ
< 1

2
, allowing us to apply Lemma 5 and obtain the required

result.

Lemma 7. Under the assumptions of Lemma 6, with a probability1− δ, we have

C∑

i=1

||v̂i − vi||2 ≤ 2 ||P ||2F ≤ 18∆2

(λC − λC+1)2
,

where∆ is defined in(3.12).

Proof. DefineA = P (I+P⊤P)−1/2 andB = I− (I +P⊤P)−1/2. Let{γi}Ci=1 be the eigenvalues

of P⊤P . Using the result from Lemma 6, we have

C∑

i=1

||v̂i − vi||2 =
∣∣∣∣V̄CA

∣∣∣∣2
F
+ ||VCB||2F

≤ ||A||2F + ||B||2F

≤ ||P ||2F +
C∑

i=1

γi
(1 +

√
γi)2

≤ 2 ||P ||2F .

94

We complete the proof by using the fact that

||P ||F ≤ 2∆

λC − λC+1 −∆
≤ 3∆

λC − λC+1
.

In the following theorem, we bound the approximation error of the SV clustering algorithm and

show that it yields a better approximation of kernel clustering than the RFF clustering algorithm,

provided there is a sufficiently large gap in the eigenspectrum.

Theorem 6. Let U∗ andU∗
m be the optimal solutions of(3.10) and (3.11), and let Ũ∗ and Ũ∗

m

represent their normalized versions (as defined in Theorem 4), respectively. Givenδ ∈ (0, 1),

assume(λC − λC+1) ≥ 3∆, where∆ is defined in(3.12). With probability1− δ, we have

tr
(
[Ũ∗ − Ũ∗

m]
⊤[Ũ∗ − Ũ∗

m]
)
≤ 18∆2

(λC − λC+1)2
= O

(
1

m

)
.

Proof. This theorem is a direct result of Lemmas 6 and 7.

Theorem 6 shows that, like the RFF clustering algorithm, theSV clustering algorithm’s ap-

proximation error reduces as the number of Fourier components increases, albeit at a higher rate

of O(1/m).

3.4.2 Out-of-sample Clustering

The SV clustering algorithm can be used to efficiently assigncluster labels to data points that

were not seen previously. The cluster centers in the SV clustering algorithm lie in the subspace

Ha = span(v̂1, . . . , v̂C), and can be expressed as linear combinations of these vectors:

c̃k =
1

nk

n∑

i=1

Ukiv̂i,

95

wherenk is the number of data points in thekth cluster. Given a data pointx∗ ∈ ℜd, we can obtain

its cluster label using the following double projection scheme:

(i) Compute the random Fourier features

z(x∗) =
1√
m
(cos(w⊤

1 x
∗), . . . , cos(w⊤

mx
∗), sin(w⊤

1 x
∗), . . . , sin(w⊤

mx
∗)).

(ii) Projectz(x∗) into the subspaceHa to obtainv̂∗.

(iii) Assign x∗ to the clusterk which minimizes||c̃k − v̂∗||22.

Using this process, cluster labels can be assigned inO(md) time.

3.5 Experimental Results

3.5.1 Data sets

We evaluated the performance of the RFF and SV clustering algorithms on the CIFAR-10, MNIST,

Forest Cover Type, Imagenet-34, Poker, and Network Intrusion data sets. The medium-sized

CIFAR-10 and MNIST data sets are used to compare the performance of the proposed algorithms

with the kernelk-means algorithm. The remaining data sets are used to demonstrate the scalability

of the algorithms to large data sets.

3.5.2 Baselines

Using the medium-sized CIFAR-10 and MNIST data sets, we compared the proposed algorithms

with the kernelk-means algorithm, to demonstrate that their clustering performance is close to that

of the kernelk-means in terms of cluster quality. We also compared their performance with the

approximate kernelk-means algorithm and the Nystrom approximation based spectral clustering

96

algorithm. We also gauged the performance of our algorithmsagainst that of thek-means algorithm

to show that they achieve better cluster quality.

3.5.3 Parameters

We used the RBF kernel for all the kernel-based algorithms onall the data sets. We set the kernel

width equal toρd, whered is the average pairwise Euclidean distance between the datapoints and

parameterρ is tuned in the range[0, 1] to obtain optimal performance2. We varied the number

of Fourier componentsm from 100 to 2, 000. For the approximate kernelk-means and spectral

clustering algorithms,m represents the size of the sample drawn from the data set. Thevalue ofs,

the number of rows sampled fromH to compute the approximate singular vectors, was set to2%

of the total number of data pointsn. The number of clustersC was set equal to the true number of

classes in the data set.

All algorithms were implemented in MATLAB3 and run on a2.8 GHz processor using40

GB RAM. All results are averaged over10 runs of the algorithms. In each run of the proposed

algorithms, we used a different set of randomly sampled Fourier components. For the baseline

algorithms which use a subset of the data, we used different randomly sampled subsets in each

run.

3.5.4 Results

3.5.4.1 Running time

The running time of the baseline algorithms and the proposedRFF and SV algorithms are recorded

in Table 3.2. The number of Fourier componentsm for the RFF and SV clustering algorithms

2The average pairwise similarity was used only as a heuristicto set the RBF kernel width, and not required by the
proposed algorithms. Other techniques may be employed to choose the kernel and the kernel parameters.

3We used thek-means implementation in the MATLAB Statistics Toolbox andthe Nystrom approximation based
spectral clustering implementation [35] available at http://alumni.cs.ucsb.edu/ wychen/sc.html. The remaining algo-
rithms were implemented in-house.

97

http://alumni.cs.ucsb.edu/~wychen/sc.html

Table 3.2 Running time (in seconds) of the RFF and SV clustering algorithms on the six benchmark
data sets. The parameterm, which represents the number of Fourier components for the RFF and
SV clustering algorithms, and the sample size for the approximate kernelk-means and Nystrom
approximation based spectral clustering algorithms, is set to m = 2, 000. It is not feasible to
execute kernelk-means on the large Forest Cover Type, Imagenet-34, Poker, and Network Intrusion
data sets due to their large size. An approximate of the running time of kernelk-means on these
data sets is obtained by first executing kernelk-means on a randomly chosen subset of50, 000 data
points to find the cluster centers, and then assigning the remaining points to the closest cluster
center.

Data set RFF SV Approx. Nystrom Kernel k-means
clustering clustering kernel approx. k-means
(proposed) (proposed) k-means based

spectral
clustering

CIFAR-10 3,418.21 58.32 37.01 116.13 725.32 159.22
(±907.14) (±38.68) (±6.52) (±1.97) (±7.39) (±75.81)

MNIST 1,089.26 39.94 57.73 4,186.02 914.59 448.69
(±483.63) (±5.64) (±12.94) (±386.17) (±235.14) (±177.24)

Forest 2,078.63 76.99 157.48 573.55 4,721.03 40.88
Cover Type (±617.22) (±17.04) (±27.37) (±327.49) (±504.21) (±6.4)
Imagenet-34 1,333.85 212.32 1,261.02 1,841.47 154,416 31,076

(±6.53) (±4.75) (±37.39) (±123.82) (±32, 302) (±9, 355)
Poker 4,530.44 41.08 256.26 520.48 9,942 40.88

(±276.37) (±2.57) (±44.84) (±51.29) (±1, 476) (±6.40)
Network 24,151 435.53 891.08 1,682.46 34,784 953.41
Intrusion (±6, 351.34) (±189.07) (±237.17) (±235.70) (±1, 493) (±169.38)

was set to2, 000 and the sample set size for the approximate kernelk-means and the Nystrom

approximation based spectral clustering algorithm was also set to2, 000. We first observe that

the RFF clustering algorithm took longer than the SV clustering algorithm on all the data sets.

Though both algorithms require the computation of the data matrix H, the time taken to perform

this computation was insignificant when compared to thek-means clustering time. RFF clustering

involves runningk-means on a2m-dimensional matrix, which takes longer than runningk-means

on aC-dimensional matrix. Although the SV clustering algorithmincludes computing the singular

vectors ofH, the overhead of performing SVD is small, rendering it more efficient than the RFF

clustering algorithm. On the CIFAR-10 data set, the SV clustering algorithm was at least15 times

98

faster than the RFF clustering algorithm. On the MNIST data set, the SV clustering algorithm was

about20 times faster than the RFF clustering algorithm. Similar speedups were obtained for the

other data sets as well. We will see later that the SV clustering algorithm achieves similar clustering

accuracy as the RFF clustering algorithm. So we conclude that the SV clustering algorithm is more

suitable for large scale kernel clustering than the RFF clustering algorithm.

The Nystrom approximation based spectral clustering algorithm finds the clusters by executing

k-means on the top eigenvectors of a low rank approximate kernel matrix derived from a randomly

sampled data subset of sizem. It first obtains the eigenvectors of anm × m matrix and then ex-

trapolates them to the top eigenvectors of then× n kernel matrix. As the SV clustering algorithm

only finds the top singular vectors of ans × m matrix, it is more efficient than the Nystrom ap-

proximation based spectral clustering algorithm. The SV clustering algorithm was also faster than

approximate kernelk-means on all the data sets.

As expected, the SV algorithm was faster than the kernelk-means algorithm on the CIFAR-10

and MNIST data sets. As it is prohibitive to execute kernelk-means on the large Forest Cover Type,

Imagenet-34, Poker and Network Intrusion data sets, we randomly selected a subset of50, 000

points from these data sets, executed kernelk-means on this subset to obtain the cluster centers, and

assigned the remaining points to the closest center. We recorded the time taken for this procedure

as the time taken by kernelk-means on these large data sets. The SV algorithm was faster than this

approximate version of kernelk-means as well on all the data sets. When the dimensionality of the

data set was greater than the number of clusters in it, the SV clustering algorithm ran faster than

thek-means algorithm.

3.5.4.2 Cluster quality

Figure 3.2 records the silhouette coefficient values of the proposed and baseline algorithms on

the CIFAR-10 and MNIST data sets. The proposed algorithms achieved values comparable to the

kernelk-means algorithm and the approximate kernelk-means algorithm, showing that they yield

99

0

0.01

0.02

0.03
S

ilh
ou

et
te

(a) CIFAR-10
0

0.1

0.2

0.3

0.4

0.5

S
ilh

ou
et

te

(b) MNIST

Figure 3.2 Silhouette coefficient values of the partitions obtained using the RFF and SV clustering
algorithms. The parameterm, which represents the number of Fourier components for the RFF and
SV clustering algorithms, and the sample size for the approximate kernelk-means and Nystrom
approximation based spectral clustering algorithms, is set to m = 2, 000.

similar partitions. The silhouette coefficient values of the Nystrom approximation based spectral

clustering algorithm were marginally lower than those of the remaining kernel-based clustering

algorithms. Thek-means algorithm yielded non-compact partitions with silhouette values closer

to 0.

Figure 3.3 shows the NMI values achieved by the proposed algorithms and the baseline algo-

rithms. We first observe that the accuracy of all the kernel-based algorithms, including the proposed

algorithms, was better than that of thek-means algorithm, demonstrating the fact that incorporat-

ing a non-linear similarity function improves the clustering performance. On the CIFAR-10 and

MNIST data set, we observed that the performance of both our algorithms was similar to that of

kernelk-means. Comparison with kernelk-means is not feasible on the remaining data sets due to

their large size. The proposed algorithms outperformed theapproximate version of kernelk-means

in which a subset of the data was clustered and the remaining points were assigned to the closest

center. The proposed algorithms’ performance was significantly better than that of the Nystrom ap-

proximation based spectral clustering algorithm on all data sets. They performed only marginally

100

worse than the approximate kernelk-means algorithm. The difference in the NMI values of the

RFF clustering algorithm and the SV clustering is minimal for most data sets.

3.5.4.3 Parameter sensitivity

The number of Fourier componentsm plays a crucial role in the performance of the RFF and SV

clustering algorithms. The running time of the algorithms is compared with the approximate kernel

k-means and the Nystrom spectral clustering algorithms for different values ofm in Table 3.3.

In the table,m represents the number of Fourier components in the context of the RFF and SV

clustering methods, and it represents the size of the sampledrawn from the data set in the context

of approximate kernelk-means and Nystrom approximation based spectral clustering. As observed

earlier, the SV algorithm is faster than the RFF clustering algorithm. For instance, the SV algorithm

is about15 times faster than the RFF algorithm on the CIFAR-10 data set whenm = 100. The

speedup factor increased as the number of Fourier components m increases. We note that the

speedup on the Network Intrusion data set became significantonly whenm ≥ 500. The SV

clustering algorithm was also faster than approximate kernel k-means for all values ofm, due

to the fact that unlike the approximate kernelk-means algorithm, the dimensionality of the input

to thek-means step (which dominates the running time) remains constant despite the increase in

m. The dimensionality of the input kernel in the approximate kernelk-means algorithm increases

linearly withm.

The silhouette coefficient values achieved by the algorithms on the CIFAR-10 and MNIST

data sets, for different values ofm are shown in Figure 3.4. We first observe that the silhouette

values achieved by the proposed RFF and SV clustering algorithms increased significantly asm

increased. The values were initially much lower than those achieved by the approximate kernelk-

means and Nystrom approximation based spectral clusteringalgorithms, but became comparable

whenm ≥ 1, 000.

The NMI values achieved by the algorithms for different values ofm are shown in Figure 3.5.

101

0

5

10

15

N
M

I

(a) CIFAR-10
0

10

20

30

40

50

N
M

I

(b) MNIST

0

5

10

15

N
M

I

(c) Forest Cover Type
0

2

4

6

8

10

N
M

I

(d) Imagenet-34

0

10

20

30

N
M

I

(e) Poker
0

5

10

N
M

I

(f) Network Intrusion

Figure 3.3 NMI values (in %) of the partitions obtained usingthe RFF and SV clustering algo-
rithms, with respect to the true class labels. The parameterm, which represents the number of
Fourier components for the RFF and SV clustering algorithms, and the sample size for the approx-
imate kernelk-means and Nystrom approximation based spectral clustering algorithms, is set to
m = 2, 000. It is not feasible to execute kernelk-means on the large Forest Cover Type, Imagenet-
34, Poker, and Network Intrusion data sets due to their largesize. The approximate NMI values
of kernelk-means on these data sets are obtained by first executing kernel k-means on a randomly
chosen subset of50, 000 data points to find the cluster centers, and then assigning the remaining
points to the closest cluster center.

102

We note that, although the SV clustering algorithm performed worse than the RFF clustering al-

gorithm in terms of NMI whenm is small, it yielded similar performance as the RFF clustering

algorithm whenm was substantially large. On the MNIST data set, as the value of m increased

from 100 to 2, 000, the average NMI achieved by the RFF clustering algorithm increased by about

15% whereas the SV clustering algorithm achieved an increase of20%. Similar rates of increase

were observed on other data sets also. This verifies our claimthat the approximation error of the

SV clustering algorithm decreases at a higher rate with respect to the parameterm, than that of

the RFF clustering algorithm. While the NMI values of the SV clustering method are higher than

those of the Nystrom spectral clustering method for allm values on most data sets, they are only

marginally lower than those of the approximate kernelk-means algorithm for smallm, and become

close to the approximate kernelk-means values asm increases.

100 200 500 1,000 2,000
0

0.01

0.02

0.03

m

S
ilh

ou
et

te

(a) CIFAR-10
100 200 500 1,000 2,000

0

0.1

0.2

0.3

0.4

0.5

m

S
ilh

ou
et

te

(b) MNIST

Figure 3.4 Effect of the number of Fourier componentsm on the silhouette coefficient values of
the partitions obtained using the RFF and SV clustering algorithms. Parameterm represents the
number of Fourier components for the RFF and SV clustering algorithms, and the sample size for
the approximate kernelk-means and Nystrom approximation based spectral clustering algorithms.

3.5.4.4 Scalability

We analyze the scalability of the proposed RFF and SV clustering algorithms for different values

of n, d, C using the synthetic concentric circles data set. We set the number of Fourier features

103

Table 3.3 Effect of the number of Fourier componentsm on the running time (in seconds) of the
RFF and SV clustering algorithms on the six benchmark data sets. Parameterm represents the
number of Fourier components for the RFF and SV clustering algorithms, and the sample size for
the approximate kernelk-means and Nystrom approximation based spectral clustering algorithms.

m RFF clustering SV clustering Approx. kernel Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering

100 89.94 5.39 12.29 0.91
(±18.96) (±1.63) (±4.66) (±0.16)

200 176.47 6.09 39.91 1.86
(±47.59) (±1.76) (±15.11) (±0.20)

500 449.23 10.71 13.20 5.61
(±103.61) (±3.32) (±2.14) (±1.89)

1,000 1,176.74 16.46 49.50 26.24
(±276.07) (±6.54) (±22.17) (±5.26)

2,000 3,418.21 58.32 37.01 116.13
(±907.14) (±38.68) (±6.52) (±1.97)

(a) CIFAR-10

m RFF clustering SV clustering Approx. kernel Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering

100 85.36 3.85 26.57 6.00
(±25.64) (±2.37) (±3.12) (±0.89)

200 122.31 4.66 17.98 46.70
(±48.31) (±1.78) (±7.99) (±8.51)

500 272.57 9.22 24.72 342.38
(±111.25) (±1.22) (±8.46) (±105.80)

1,000 517.48 17.46 36.34 914.18
(±44.6) (±1.43) (±6.92) (±215.77)

2,000 1,089.26 39.94 86.43 4163.76
(±483.63) (±5.64) (±12.71) (±383.37)

(b) MNIST

104

Table 3.3 (cont’d)
m RFF clustering SV clustering Approx. kernel Nystrom approx. based

(proposed) (proposed) k-means based spectral clustering
100 154.97 9.62 19.10 11.75

(±65.72) (±2.57) (±6.35) (±1.73)
200 174.88 10.77 24.21 13.65

(±65.36) (±1.67) (±12.48) (±1.59)
500 534.01 22.15 32.48 41.92

(±216.18) (±6.08) (±11.64) (±7.89)
1,000 1,032.58 35.46 66.15 124.83

(±221.56) (±5.20) (±19.25) (±38.32)
2,000 2,078.63 76.99 157.48 534.77

(±617.22) (±17.04) (±27.37) (±323.76)
(c) Forest Cover Type

m RFF clustering SV clustering Approx. kernel Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering

100 24.43 17.72 551.70 125.82
(±0.92) (±1.09) (±120.53) (±8.26)

200 57.66 33.82 676.39 183.31
(±2.15) (±0.96) (±10.94) (±4.63)

500 163.74 84.34 906.07 461.52
(±5.54) (±4.62) (±209.53) (±7.48)

1,000 340.23 160.89 1028.99 586.66
(±11.30) (±5.65) (±34.83) (±91.72)

2,000 1,333.85 212.32 1261.02 1841.47
(±6.53) (±4.75) (±37.39) (±123.82)

(d) Imagenet-34

105

Table 3.3 (cont’d)
m RFF clustering SV clustering Approx. kernel Nystrom approx. based

(proposed) (proposed) k-means based spectral clustering
100 144.22 12.32 55.57 10.88

(±11.88) (±1.70) (±11.22) (±1.65)
200 411.32 17.35 89.14 46.78

(±34.34) (±2.07) (±32.12) (±4.21)
500 654.98 22.82 117.57 90.57

(±132.70) (±2.48) (±20.17) (±18.57)
1,000 2,287.53 27.37 202.84 261.14

(±159.06) (±2.09) (±44.25) (±20.51)
2,000 4,530.44 41.08 256.26 479.73

(±276.37) (±2.57) (±44.84) (±47.46)
(e) Poker

m RFF clustering SV clustering Approx. kernel Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering

100 2,252.44 147.93 736.59 145.21
(±465.94) (±62.03) (±238.31) (±22.76)

200 5,371.85 258.86 697.04 169.27
(±1, 765.02) (±41.32) (±442.25) (±38.15)

500 5,296.87 245.37 586.14 366.42
(±3, 321.66) (±158.57) (±130.23) (±175.57)

1,000 24,151.47 435.53 763.75 589.57
(±6, 351.34) (±189.07) (±88.55) (±54.14)

(f) Network Intrusion

106

100 200 500 1,000 2,000
0

5

10

15

m

N
M

I

(a) CIFAR-10
100 200 500 1,000 2,000

0

10

20

30

40

50

m

N
M

I

(b) MNIST

100 200 500 1,000 2,000
0

5

10

15

m

N
M

I

(c) Forest Cover Type
100 200 500 1,000 2,000

0

2

4

6

8

10

m

N
M

I

(d) Imagenet-34

100 200 500 1,000 2,000
0

10

20

30

m

N
M

I

(e) Poker
100 200 500 1,000 2,000

0

5

10

15

m

N
M

I

(f) Network Intrusion

Figure 3.5 Effect of the number of Fourier componentsm on the NMI values (in %) of the partitions
obtained using the RFF and SV clustering algorithms, on the six benchmark data sets. Parameter
m represents the number of Fourier components for the RFF and SV clustering algorithms, and
the sample size for the approximate kernelk-means and Nystrom approximation based spectral
clustering algorithms.

107

m to 1, 000. Figures 3.6(a) and 3.7(a) show that the running time of the RFF and SV clustering

algorithms vary nearly linearly as the number of points in the data set varies fromn = 100 to

n = 107, with dimensionalityd = 100 and number of clustersC = 10. The scalability plots of

the RFF and SV clustering algorithms are similar to the scalability plots of the approximate kernel

k-means algorithm, because all three algorithms have lineartime complexity with respect ton.

The dimensionality of the data set affects the time taken forcalculation of the Fourier features.

The order of increase in the running time of the two algorithms asd varies fromd = 10 to d =

1, 000, with n = 106 andC = 10, are shown in Figures 3.6(b) and 3.7(b).

As the number of clusters was increased fromC = 10 to C = 1, 000, with n = 105 and

d = 100, the running time of the RFF and SV algorithms increases almost linearly withC, as

shown in Figures 3.6(c) and 3.7(c). We note that the number ofclusters affects the running time

of the SV clustering algorithm more than that of the RFF clustering algorithm, because the SV

clustering algorithm projects the data into aC-dimensional space before clustering.

10
2

10
4

10
6

0.5

1

1.5

2

x 10
4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Size of the data set n
 (log scale)
(a)

10
1

10
2

10
3

1

1.5

2

2.5

x 10
4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Dimensionality of the data set d
(log scale)
(b)

10
1

10
2

5

10

15

x 10
4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of clusters C
 (log scale)
(c)

Figure 3.6 Running time of the RFF clustering algorithm for different values of (a)n, (b) d and (c)
C.

3.5.4.5 Out-of-sample clustering

To evaluate the performance of our algorithm on out-of-sample data points, we divided each data

set into two parts, one containing80% of the data, and the other containing the remaining20%.

We call the first part as thetraining setand the second part as thetest set, in accordance with

108

10
2

10
4

10
6

200

400

600
R

un
ni

ng
 ti

m
e

in
 s

ec
on

ds

Size of the data set n
 (log scale)
(a)

10
1

10
2

10
3

400

600

800

1000

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Dimensionality of the data set d
 (log scale)
(b)

10
1

10
2

1

2

3

4

5

x 10
4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of clusters C
 (log scale)
(c)

Figure 3.7 Running time of the SV clustering algorithm for different values of (a)n, (b) d and (c)
C.

the convention followed in supervised learning problems. We computed the cluster centers using

the training set, and assigned each test point to the closestcluster center, using the SV clustering

algorithm. The class assignment of a test point was determined by the majority class in the cluster

to which it was assigned.

We compared the performance of our algorithm with the weighted kernel principal component

analysis (WKPCA) extension for out-of-sample data points,proposed in [11]. This method first

finds the eigenvectorsZ = (z1, . . . , zC) of the matrixD−1MK corresponding to its smallest

C eigenvalues, whereD = diag
(
K⊤1

)
is the degree matrix andM = I − 1

1⊤D−11
11⊤D−1

is a centering matrix, and then encodes the eigenvectors into binary codewords based on their

sign. These codewords are clustered to obtainC binary codewords{c1, . . . , cC}. The following

procedure is employed to obtain the cluster label for a new point x∗:

(i) Projectx∗ on to the space spanned by the eigenvectors of the training set asϕ∗Z, where

ϕ∗ = (κ (x∗,x1) , . . . , κ (x
∗,xn)).

(ii) Compute the codewordc∗ = sign(ϕ∗).

(iii) Assign x∗ to the clusterk which minimizesdHM (c∗, ck), wheredHM represents the Ham-

ming distance [66] between the vectorsc∗ andck, defined as

dHM(xa,xb) = |xa − xb|

109

The WKPCA extension requires the eigendecomposition of ann × n matrix, which takesO(n3)

time. In addition, anO(n) vector needs to be computed to perform label assignment.

We also compare the performance of the proposed algorithm with the approximate kernelk-

means algorithm. The test pointx∗ is added to the cluster whose center, given by

ck(·) = α⊤
k K̂αk − 2ϕ⊤αk,

is closest. In the above expression,ϕ = [κ(x∗, x̂1), . . . , κ(x
∗, x̂m)], {x̂1, . . . , x̂m} are the set of

sampled data points,̂K is the kernel similarity between the sampled points, andαk is thekth row

of cluster center coefficient matrixα, given by (2.10).

We report the running time and accuracy on the six data sets inTable 3.4. The running time is

divided into training time and testing time. The training time for WKPCA includes the time taken

to compute the kernel matrix for the training data and its eigenvectors, and the time taken to convert

the eigenvectors to the cluster codewords. The testing timeis the time taken for data projection and

Hamming distance computation for all the test data points. For the approximate kernelk-means

algorithm, the training time includes the time to cluster the training data and obtain the cluster

center coefficient matrixα. The testing time includes the time taken to compute the similarity

between the test data points and the sampled data points, andthe time to assign the cluster labels

to the test data points. For SV clustering, the training timeis defined as the time taken to compute

the random fourier features and the singular vectors for thetraining data, and the testing time is

defined as the time taken to assign labels to test data.

The WKPCA method took about40 seconds, on an average, to assign labels to the12, 000

test images in the CIFAR-10 data set, whereas our method tookless than5 seconds, form =

1, 000. On the MNIST data set, the WKPCA method took about940 seconds to cluster the test

set containing14, 000 data points, significantly longer than the proposed algorithm, which took

around60 seconds, form = 1, 000. It is infeasible to evaluate the performance of WKPCA on the

110

large data sets. We observed that both the proposed algorithm and the WKPCA method achieved

similar classification performance on the CIFAR-10 and MNIST data sets. A reasonably good

accuracy was achieved on the remaining large data sets also.The proposed algorithm also runs

faster than the approximate kernelk-means algorithm, and achieves comparable test accuracy.

Table 3.4 Running time (in seconds) and prediction accuracy(in %) for out-of-sample data points.
Parameterm represents the sample size for the approximate kernelk-means algorithm and the
number of Fourier components for the SV clustering algorithm. The value ofm is set to1, 000 for
both the algorithms. It is not feasible to execute the WKPCA algorithm on the large Forest Cover
Type, Imagenet-34, Poker, and Network Intrusion data sets due to their large size.

Data set CIFAR MNIST Forest Imagenet Poker Network
-10 Cover -34 Intrusion

Type

Training WKPCA 755.02 910.90 - - - -
time (±91.35) (±84.37)

Approx. 26.24 62.11 39.38 1913 391.04 998.36
kernel (±2.36) (±3.58) (±3.93) (±414) (±120.1) (±812.73)

k-means
SV 5.96 10.48 25.28 155.89 49.75 115.73

clustering (±0.83) (±0.51) (±1.61) (±4.77) (±6.09) (±3.50)

Testing WKPCA 39.68 29.50 - - - -
time (±2.77) (±4.69)

Approx. 22.47 55.38 26.76 1543 373.45 213.68
kernel (±2.05) (±1.75) (±0.97) (±412) (±119.5) (±29.28)

k-means
SV 5.33 2.12 5.97 80.24 14.24 121.35

clustering (±2.25) (±0.57) (±2.33) (±0.02) (±0.51) (±32.50)

Accuracy WKPCA 80.70 84.84 - - - -
Approx. 83.08 88.76 59.39 88.50 55.40 57.30
kernel (±0.01) (±0.001) (±0.10) (±0.002) (±0.001) (±0.03)

k-means
SV 83.13 88.33 58.42 80.56 55.41 59.03

clustering (±0.04) (±0.52) (±0.64) (±0.01) (±0.04) (±0.03)

111

3.6 Summary

The RFF clustering and the SV clustering algorithms, proposed in this chapter, use random Fourier

features to obtain a good approximation of kernel clustering using an efficient linear clustering

algorithm. We have analytically bound the approximation error of both these methods. We have

shown that, when there is a large gap in the eigenspectrum of the kernel matrix, as is the case in

most big data sets, the SV clustering algorithm which clusters the singular vectors of the random

Fourier features is a more effective and scalable approximation of kernel clustering, allowing large

data sets with millions of data points to be clustered using kernel-based clustering. It also solves

the out-of-sample clustering problem efficiently. The RFF clustering algorithm can be trivially

parallelized by replicating the random Gaussian matrix across the computing nodes, calculating

the random Fourier features for a subset of the data in each node, and employing the parallelk-

means algorithm to cluster the random Fourier feature matrix, to obtain the cluster labels. The SV

clustering algorithm can be similarly parallelized, by using the distributed Lanczos eigensolver to

obtain the eigenvectors of the random Fourier feature matrix.

The approximate kernelk-means algorithm in Chapter 2 and the random Fourier features-based

algorithms in this chapter are all based on sampling the dataset and using the samples as basis

functions for the cluster centers. While approximate kernel k-means employs the data-dependent

Nystrom kernel approximation, and obtains the basis functions by factorizing the kernel matrix,

the basis functions in RFF and SV clustering algorithms are dependent on the kernel function.

Therefore, these algorithms require a large number of Fourier components to achieve cluster qual-

ity equivalent to that of the approximate kernelk-means algorithm. Kernel selection is also very

crucial in the RFF and SV clustering algorithms. We have focused on using scale-invariant kernel

functions in our work, but these algorithms can be extended to polynomial and intersection kernels

using the schemes prescribed in [92] and references therein, to obtain the basis functions.

112

Chapter 4

Stream Clustering

4.1 Introduction

In addition to the large volume, big data is also characterized by “velocity” - the continuous pace

at which data flows in from sources such as sensors, machines,networks, and user interaction with

websites. Analysis of this real-time data can help in makingvaluable decisions. For instance,

intrusions can be detected in IP networks by analyzing the network traffic.

Clustering streaming data is challenging due to the following two reasons:

(i) Streaming data sets are often too large to load in memory;they could potentially be un-

bounded. Only a small subset of the data may be stored, depending on the amount of memory

available. So the data can be accessed at most once, and

(ii) the data is non-stationary, i.e. the distribution of the data changes over time. The data that

arrived more recently has higher relevance than the older data.

Batch clustering algorithms such ask-means and kernelk-means, assume that the data is com-

pletely available in memory at the time of clustering. They also assume that the input data is

drawn from the mixture of a fixed set of distributions, and theaim of clustering is to identify these

113

component distributions. Therefore, batch clustering algorithms cannot be directly used to cluster

streaming data. Stream clustering algorithms model the data dynamically. Cluster labels are as-

signed to data points as they arrive, in an online manner. Stream clustering algorithms generally

consist of two stages: (i) an online phase, where the stream data is summarized into “prototypes”

as it arrives, and (ii) an offline phase where these prototypes are used to obtain the clusters. The set

of prototypes are dynamically updated to account for the evolution of the clusters in the streaming

data.

Many stream clustering algorithms use measures such as the Euclidean distance to define the

pairwise similarity. As demonstrated in the earlier chapters, kernel-based algorithms achieve better

clustering quality than linear clustering algorithms. However, kernel-based clustering algorithms

are ill-suited to streams because of their high computational complexity. In this chapter, we adapt

the kernelk-means algorithm to efficiently handle streaming data. The proposed algorithm samples

the data points as they arrive and constructs an approximatekernel matrix using the sampled points.

The sampling is performed with probability proportional tothe statistical leverage scores [34] of

this matrix, a measure of the importance of the data points. The sampled data points are stored in

memory and used to determine the cluster labels of the incoming data points. We show that only a

small subset of the data needs to be stored in memory, therebyenhancing the efficiency of kernel

clustering for data streams.

4.2 Background

Data stream clustering has been studied extensively in the pattern recognition and data mining

literature. Most stream clustering algorithms summarize the data stream using special data struc-

tures, and obtain the cluster representatives using this summary. They differ by the data structures

used to summarize the data; common data structures are trees, coresets, and grids (See Table 4.1).

Stream and LSearch algorithms split the incoming data into chunks, cluster the chunks indi-

114

Table 4.1 Major published approaches to stream clustering.

Approaches for stream clustering Examples

CF-Trees Stream [79], Stream LSearch [140], Scalable
k-means [30], Single-passk-means [62]

Microcluster trees CluStream [8], ClusTree [98], ClusTrel [124],
DenStream [32], HPStream [9]

Coresets StreamKM++ [6]
Grids D-Stream [36], ODAC [149]
Approximate clustering Streamingk-means approximation [10], Fast

streamingk-means [162]
Kernel-based Incremental spectral clustering [139], Adap-

tive non-linear clustering [86], sKKM [84],
TechnoStream [134]

vidually to find the cluster prototypes, and then cluster these prototypes to obtain the final clus-

ters [79, 140]. These algorithms cannot be used to perform real-time clustering. The Cluster-

ing Feature (CF) Tree was introduced by Zhanget al. as a part of the BIRCH clustering algo-

rithm [197]. A CF-Tree summarizes the data stream into a hierarchy of nodes. Each node contains

a set of CF-vectors comprising the linear sum and the squaredsum of a set of points, which are

close to each other. The CF-Tree has been used in several stream clustering algorithms such as

scalablek-means, and single-passk-means algorithms [30, 62]. The idea of CF-vectors was then

extended to “micro-clusters” which include the temporal information about the data [32,98,124].

This information is used to detect evolutionary changes in the data stream. For instance, the CluS-

tream algorithm stores the linear and squared sums of the timestamps of the data points in the

microcluster, in addition to the linear sum and the squared sum of the data points. These times-

tamp values are used to assign weights to the data points, thereby giving more importance to the

new data than older data while clustering. Similarly, the HPStream algorithm weights the clusters

using the temporal information and assigns data to more recent clusters [9].

A coreset is a weighted subset of points that approximate theinput data set up to a pre-defined

error margin. The StreamKM++ algorithm summarizes the datastream into a set of coresets or-

115

ganized into a hierarchy known as the coreset tree [6]. Each node in the tree contains a subset of

points represented by a set of prototypes. The final clustersare obtained by grouping the coreset

representatives in the root node of the coreset tree. Grid-based algorithms such as DStream and

DGClust partition thed-dimensional feature space into grid cells [36,149]. Each cell is represented

by a tuple containing the timestamps, a cluster label and thedensity of the grid. Data points are

added to the grids and the grid summaries are updated incrementally, as the data points arrive. Ap-

proximate clustering algorithms such as streamingk-means [10,162] choose a subset of the points

from the stream, ensuring that the selected points are as distant from each other as possible, and

executek-means on the data subset.

To the best of our knowledge, based on published literature,very few attempts have been made

to use non-linear similarity measures for clustering data streams. The agglomerative hierarchical

clustering algorithm is adapted to use kernel distance measures in [193]. The incremental spectral

clustering algorithm [139] extends spectral clustering tostream data by treating each new edge in

the graph as a vector appended to the similarity matrix. The graph Laplacian, its eigenvalues and

eigenvectors are updated incrementally with the new edges.

The stream kernelk-means algorithm [84] divides the data set into windows of fixed time-steps,

and performs clustering using the data points in every two consecutive windows. Information from

the current time-step is passed on to the to the next time-step in the form of meta-vectors containing

weights for each of theC clusters. Jainet al. proposed a two-tier system called the adaptive non-

linear clustering algorithm to perform stream clustering using non-linear similarity [86]. In the first

tier, the incoming data points are partitioned into segments, separated from each other by novel data

points. A data pointx is considered novel if the kernel-based distance fromx to the mean of the

data points in the current segment is greater than the user-defined threshold. In the second tier,

the representative segments are identified and projected into a low-dimensional space spanned by

the dominant principal coordinates of the data in kernel space [76]. The cluster labels for the data

points are obtained by clustering the low-dimensional representations of the data. This technique

116

requires the eigendecomposition of a large number of pointsin the second tier. The proposed

method uses the complete history of data, and does not require complex operations, unlike the

existing methods.

4.3 Approximate Kernel k-means for Streams

Figure 4.1 Schema of the proposed approximate stream kernelk-means algorithm.

In Chapter 2, we presented the approximate kernelk-means algorithm which constrained the

cluster centers to the span of a subset of the data points. We employ a similar strategy to cluster

streaming data. The key idea is to sample the data points as they arrive and construct the kernel

matrix incrementally using the sampled points. This approximate kernel matrix is used to cluster

the sampled points. The cluster labels are assigned to the unsampled data points using their kernel

similarity with the sampled points. A high level overview ofthe proposed clustering framework

is presented in Figure 4.1. Our framework consists of three primary components, working in

tandem: (i) importance sampling, (ii) clustering, and (iii) cluster label assignment. The sampling

component samples the points from the stream, and constructs the approximate kernel matrix.

The clustering and label assignment components update the clusters and the number of clusters

dynamically, and assign cluster labels to all the data points in the stream.

117

We describe each of these components in the following sections:

4.3.1 Sampling

One of the obstacles to using kernelk-means for clustering stream data is that it requires the

computation of then × n kernel matrix, wheren is the number of points in the data set. It is

infeasible to compute the full kernel matrix for stream databecausen is potentially unbounded.

The approximate kernel-based clustering algorithms proposed in Chapters 2 and 3 also need to

store the entire data in memory, before constructing the approximate kernel matrices. The stream

clustering algorithm proposed in this chapter alleviates this issue by incrementally sampling a

subset of the points from the stream, and using only this subset to construct the kernel matrix.

We maintain a bufferS in memory to store the sampled points; the number of pointss in S is

constrained by the user-defined parametersm andM (m ≤ s ≤ M). LetKt−1 represent the kernel

matrix at time(t− 1) with K1 = κ(x1,x1). When a data pointxt arrives at timet, we update the

kernel matrix as

Kt =








Kt−1 ϕ⊤

ϕ κ(xt,xt)


 with probabilitypt,

Kt−1 with probability1− pt,

(4.1)

whereKt−1 = [κ(xi,xj)],xi,xj ∈ S, andϕ = (κ(xt,x1), . . . , κ(xt,xs))
⊤.

The simplest method of determining whether or not to add a data pointxt to S, is to per-

form independent Bernoulli trials, i.e.xt is stored inS with probability pt = 1
2
. However,

Bernoulli sampling results in a large kernel approximationerror, and requires a large number of

points to be stored in memory1. To alleviate this issue, we perform importance sampling instead

of Bernoulli sampling. The sampling probabilitypt for each pointxt is based on its “impor-

1We demonstrate this using a synthetic data set in Figure 4.2,and using four large benchmark data sets in Sec-
tion 4.5.

118

(a) (b)

(c) (d)

Figure 4.2 Illustration of importance sampling on a two-dimensional synthetic data set containing
1, 000 points along10 concentric circles (100 points in each cluster), represented by “o” in Fig-
ure (a). Figure (b) shows50 points sampled using importance sampling, and Figures (c) and (d)
show50 and100 points selected using Bernoulli sampling, respectively. The sampled points are
represented using “*”. All the10 clusters are well-represented by just50 points sampled using
importance sampling. On the other hand,50 points sampled using Bernoulli sampling are not ad-
equate to represent these10 clusters (Cluster4 in red has no representatives). At least100 points
are needed to represent all the clusters.

tance”, defined in terms of the statistical leverage scores [56]. Let the kernel matrixKt at timet

be decomposed asKt ≃ VCΣCV
⊤
C , whereC represents the number of active clusters2 at timet,

ΣC = diag(λ1, . . . , λC) contains the highestC eigenvalues ofKt, andVC = (v1, . . . ,vC) contains

the corresponding eigenvectors. The probability of addingpointxt to S is defined by

pt =
1

C

∣∣∣
∣∣∣V (t)

C

∣∣∣
∣∣∣
2

2
, (4.2)

whereV (j)
C is thejth row of VC . Statistical leverage scores measure the correlation between the

eigenvectors of the matrixKt and the standard basis. A high score indicates that the corresponding

2We refer to the set of clusters that the data points in the bufferS belong to at timet as the set of active clusters.

119

data point has a large influence in the approximation of the kernel matrix. The subset of data

corresponding to the largest statistical leverage values are the most informative, and can represent

the distribution of the entire data. By performing importance sampling on the data stream, the

samples that have not been adequately represented by the existing samples are added to the buffer.

Statistical leverage scores have been used successfully toobtain low rank matrix approxima-

tions of large matrices, perform large scale regression andother large scale data analysis opera-

tions [28, 34]. The following lemma adapted from [74] shows that, at timet, the approximation

error between the true kernel matrix for thet points{x1,x2, . . . ,xt} and the low-rank kernel ma-

trix constructed using this sampling scheme is minimized, when the number of samples inS at

time t is s = Ω(C lnC):

Lemma 8. Let K be a t × t SPSD matrix, andVC = (v1, . . . ,vC) represent the eigenvectors

corresponding to the topC-dimensional eigenspace ofK. Let KB represent thet × s matrix

obtained by sampling the columns ofK with probability defined in(4.2) and K̂ be thes × s

submatrix ofKB corresponding to the sampled columns. For a given failure probabilityδ ∈ (0, 1],

and approximation factorǫ ∈ (0, 1], if s ≥ 3200ǫ−2C ln (4C/δ), we have

∥∥∥K −KBK̂
−1K⊤

B

∥∥∥
2
≤ ‖K −K∗‖2 + ǫ2 ‖K −K∗‖∗ ,

whereK∗ is the bestC-rank approximation ofK, and‖ · ‖2 and‖ · ‖∗ represent the spectral norm

and trace norm respectively3.

By using importance sampling, we obtain a good approximation of the true kernel by sampling

just a fraction of the data set. Figures 4.2(a)-(d) illustrate the advantage of importance sampling

over Bernoulli sampling on a two-dimensional data set containing 1, 000 points from10 clusters.

Each true cluster is a concentric circle of varying radius, with 100 points, as shown in Figure 4.2(a).

3Lemma 8 bounds the error between the approximate kernel and the true kernel for a set oft data points. We
demonstrate empirically in Section 4.5 that the accumulated error as timet increases is well-bounded.

120

Figure 4.2(b) also shows50 points sampled using importance sampling. We observe that all the 10

clusters are adequately represented by the50 sampled points. Figure 4.2(c) shows that50 points

sampled from the data using Bernoulli sampling do not represent all the clusters, as the probability

of sampling data points from all the clusters is low. All the clusters are represented only when100

points are sampled, as shown in Figure 4.2(d).

4.3.2 Clustering

Let s be the number of points in the bufferS andC be the number of active clusters2 at timet.

After the kernel matrixKt is constructed in accordance with (4.1), the data points inS can be

partitioned intoC clusters by solving the kernelk-means problem

max
U∈P

tr(ŨKtŨ
⊤), (4.3)

whereU = (u1, . . . ,uC)
⊤ is the cluster membership matrix,̃U = [diag(U1)]−1/2 U , domain

P = {U ∈ {0, 1}C×s : U⊤1 = 1}, and1 is a vector of all ones. The running time complexity

of this step would beO(s2). We further reduce this complexity by constraining the cluster centers

to a smaller subspace, spanning the topC eigenvectors of the kernel matrixKt, along the lines of

the spectral clustering algorithm. We pose the clustering problem as the following optimization

problem:

min
U∈P

max
{ck(·)∈Ha}Ck=1

C∑

k=1

s∑

i=1

Uk,i

s
||ck(·)− κ(xi, ·)||2Hκ

, (4.4)

whereHa = span(v1, . . . ,vC). The cluster centers can be expressed as linear combinations of the

eigenvectors of the kernel matrix:

ck(·) =
s∑

i=1

C∑

j=1

Uk,i

nk

√
λjvij =

uk

nk
VCΣ

1/2
C , k ∈ [C], (4.5)

121

wherenk is the number of points in thekth cluster, anduk = (Uk,1, Uk,2, . . . , Uk,s)
⊤. By substitut-

ing (4.5) in (4.4), we obtain the following trace maximization problem:

max
U∈P

tr(ŨVCΣCV
⊤
C Ũ⊤). (4.6)

The above problem can be solved efficiently by executingk-means on the matrixVCΣ
1/2
C . In the

following lemma, we show that the error incurred due to the approximation (4.4) is bounded, when

the lowest eigenvalues of the kernel matrix have small magnitudes, which is true for most real data

sets [45]:

Lemma 9. Let E andEa represent the optimal clustering errors in(4.3) and (4.6), respectively.

We have

|E −Ea| ≤
s∑

i=C+1

λi.

Proof. Let {c∗k(·)}Ck=1 andU∗ be the optimal solution to (4.3). Letcak(·) represent the projection of

c∗k into the subspaceHa. For anyκ(xi, ·), let gi(·) andhi(·) be the projections ofκ(xi, ·) into the

subspaceHa and span(vC+1, . . . ,vs), respectively. We have

Ea = min
U∈P

max
ck(·)∈Ha

C∑

k=1

s∑

i=1

Uk,i

s
||ck(·)− κ(xi, ·)||2Hκ

≤
C∑

k=1

s∑

i=1

U∗
k,i

s
||cak(·)− κ(xi, ·)||2Hκ

≤
C∑

k=1

s∑

i=1

U∗
k,i

s

(
||cak(·)− gi(·)||2Hκ

+ ||hi(·)||2Hκ

)

≤ E +
1

s

C∑

k=1

s∑

i=1

||hi(·)||2Hκ
≤ E +

s∑

i=C+1

λi.

We note that the eigenvalues and eigenvectors do not need to be re-computed for clustering,

122

as they were already computed while calculating the leverage scores. This eliminates the need

for computing and storing the kernel matrixKt, as only its top eigenvalues and the corresponding

eigenvectors are required for both sampling and clustering. Starting withVC = 1 andΣC =

κ(x1,x1), we can update the eigensystem incrementally as the data points arrive. Efficient methods

to update the eigenvectors and eigenvalues incrementally are discussed in Section 4.4.

4.3.3 Label Assignment

Data points are assigned cluster labels using the cluster centers obtained from the sampled data

points in a manner similar to the SV clustering algorithm in Chapter 3, and the active clusters are

updated using a fading cluster mechanism, similar to that used by the adaptive non-linear clustering

algorithm [86]. Each clusterk is associated with a timestamptk representing the last time a data

point was assigned thekth cluster label, and a recency value defined by a monotonic function

fk(t) = exp (−γ (t− tk)) , (4.7)

whereγ is a user-defined parameter, representing the decay rate of acluster [9]. A data pointxt is

added to clusterk∗ if

k∗ = arg min
k∈[C]

||ck(·)− gt(·)||2Hκ
, andfk∗(t) > η, (4.8)

whereck(·) is the cluster center given by (4.5),gt(·) is the projection ofκ(xt, ·) into the subspace

spanned by the eigenvectorsVC , andη is a user-defined lifetime threshold which determines how

long a cluster remains active. If the recencyfk∗(t) of the closest clusterk∗ is less thanη, then a

new cluster is created with the data pointxt. After the cluster assignment is made, the timestamp

and the recency value of the assigned cluster are updated. Clusters whose recency is less thanη

(called stale clusters) are deleted, and the data points in the buffer that belong to these stale clusters

123

are removed from the buffer.

Algorithm 8 describes the proposed stream clustering method. The input to the algorithm is

the data streamD, kernel functionκ(·, ·), initial number of clustersC, buffer size parameters (m

andM), and clustering fading mechanism parameters (γ and η). Selection of kernel function

and initial number of clustersC is based on domain knowledge. Several articles in the literature

describe techniques to learn the kernel function from the data [112, 177, 200]. The parametersm

andM should be set such that the initial and final sample sets contain sufficient representatives

from all the clusters. The parametersγ andη should be selected based on how fast the categories

are expected to change in the stream. Heuristics to set theseparameters are discussed further in

Section 4.5.

4.4 Implementation and Complexity

The two major operations in the proposed algorithm are: computation of leverage scores, and

clustering of the topC eigenvectors of the approximate kernel matrix usingk-means. Both the

operations require the eigenvalues and eigenvectors of thekernel matrix. Lets be the number of

points in the sample setS at timet. Eigendecomposition of ans× s kernel matrixKt takesO(s3)

time, if performed naively. However, we can update the eigensystem incrementally using the fast

rank-one update mechanism proposed in [31]. Given the eigendecomposition,Kt = V ΣV ⊤, and

vectorϕ ∈ ℜs, this method finds the eigendecomposition of
(
Kt + ϕϕ⊤) as

Kt + ϕϕ⊤ =

[
V

w

||w||

]
Σ′
[
V

w

||w||

]⊤
(4.9)

124

Algorithm 8 Approximate Stream Kernelk-means

1: Input :
• D = {x1,x2, . . .} ,xi ∈ ℜd: the data stream to be clustered
• κ(·, ·) : ℜd × ℜd 7→ ℜ: the kernel function
• C: the initial number of clusters
• m: the initial number of points to be sampled (m > C)
• M : maximum number of points allowed in the sample set (m < M)
• γ: cluster decay rate
• η: cluster lifetime threshold

2: Output : Cluster labels for the data points in the stream
3: Initialize S = {x1}, VC = 1 andΣC = κ(x1,x1).
4: for t = 1, 2, . . . , m do
5: SetS = S ∪ {xt}.
6: Update the eigenvaluesΣC and eigenvectorsVC using (4.9).
7: end for
8: Cluster the data points inS intoC clusters by executingk-means onVCΣC

1/2.
9: Set the last update timetk = t, k ∈ [C].

10: Evaluate the recency functionfk(t), k ∈ [C] according to (4.7).
11: for t = m+ 1, m+ 2, . . . do
12: Calculate the probabilitypt using (4.2) and setS = S ∪ {xt} with probabilitypt.
13: If xt was added toS in Step 12, update the eigenvaluesΣC and eigenvectorsVC using (4.9),

and recluster the points inS by executingk-means onVCΣC
1/2, otherwise find the cluster

k∗ whose center is closest toxt.
14: If fk∗(t) > η, assignxt to k∗, otherwise create a new cluster withxt and setC = C + 1.
15: Find the clusters whose recencyfk(t) ≤ η, k ∈ [C], and remove these stale clusters. Set

C = C − c, wherec is the number of stale clusters.

16: If card(S) >= M , find indexq = argmin
l

∣∣∣
∣∣∣V (l)

C

∣∣∣
∣∣∣
2

2
and remove data pointxq from S.

17: end for

wherew =
(
I − V V ⊤)ϕ is the component ofKt that is orthogonal toV , andΣ′ contains the

dominant eigenvalues of the sparse matrix




Σ V ⊤ϕ

ϕ⊤V ||w||


 .

This operation, repeated every time a new data point is inputto the system, can be performed in

O(sC + C3) time.

125

Clustering is performed every time a point is added to the sample setS, which takesO(sC2l)

time, wherel is the number of iterations required to reach convergence. In order to reduce the

running time, we can employ alazy reclusteringapproach, by which we perform the clustering

after everyT data point additions. To further enhance the efficiency of the algorithm, the data

points can also be processed in batches of sizeB.

In summary, the time taken by the proposed approximate stream kernelk-means algorithm

to cluster a data set of sizen is O (ndM + nCM + nC3 +M2C2l) ∼ O (nd+ nC), when

max(C, d,M, l) ≪ n. This contrasts with theO(n2) running time complexity of typical kernel-

based clustering.

4.5 Experimental Results

4.5.1 Data sets

The proposed stream clustering algorithm inputs the data set in batches, and can handle potentially

unbounded data sets, hence the size of the data set is not significant. The dimensionality of the data

set plays an important role in the kernel similarity computation and the eigensystem update. We

demonstrate the effectiveness of the proposed algorithm onthe CIFAR-10, MNIST, Forest Cover

Type, Imagenet-34, Poker, and Network Intrusion data sets.

4.5.2 Baselines

We compared the performance of the proposed algorithm with two recent stream clustering al-

gorithms (StreamKM++ and sKKM), which have been shown to perform better than the other

stream clustering algorithms. The StreamKM++ algorithm [6] is a linear stream clustering algo-

rithm, which in the same spirit as the proposed algorithm, extracts the core points in the streaming

data, and uses these core points to determine the cluster centers. The algorithm maintains a set

126

of buckets, each of sizem. Data points are added to the first bucket untilm points are received.

They are then recursively merged with the points in the subsequent buckets to form a coreset ofm

points, using a coreset tree. The coresets are finally clustered using thek-means++ algorithm [12]

to obtain the cluster centers. The performance of this algorithm depends on the coreset sizem.

The streaming kernelk-means (sKKM) algorithm proposed in [84] processes the datain chunks

of sizem. The initial data chunk is clustered using kernelk-means. Weighted kernelk-means is

used to cluster the subsequent data chunks. The cluster centers from the preceding data chunk

are used to obtain the weights. We show that the proposed approximate stream kernelk-means is

more effective than these algorithms. We also compare the performance of the proposed algorithm

with (i) the batchk-means algorithm to show that our algorithm achieves higheraccuracy, and (ii)

the batch kernelk-means algorithm to evaluate the loss in the cluster quality. We could execute

the kernelk-means algorithm only on the medium-sized CIFAR-10 and MNIST data sets due

to its quadratic time complexity. For the remaining data sets, we executed kernelk-means on

a 50, 000-sized randomly selected subset of the data, and assigned the remaining points to the

closest cluster centers. This gives us an approximation of the time taken to execute kernelk-means

on the full data set. We finally evaluate the performance of the proposed approximate stream

kernelk-means algorithm when each data point is sampled with probability 1/2, and show that

importance sampling plays a significant role in reducing thememory requirements and enhancing

the clustering accuracy.

4.5.3 Parameters

We used the universal RBF kernel for the proposed algorithm and the kernel-based baseline algo-

rithms on all the data sets. We tuned the kernel width using grid search in the range[0, 1] to obtain

best performance. For the proposed approximate stream kernel k-means algorithm, we varied the

initial sample size fromm = 1, 000 tom = 5, 000 in multiples of1, 000, and the maximum buffer

size fromM = 5, 000 to M = 20, 000 in multiples of5, 000, to constrain the memory used to

127

4 GB. We employed the lazy reclustering approach withT set to50, and processed the data in

batches of sizeB = 10, 000. We set the cluster decay factorγ = 0.5 as suggested in [86], and

varied the lifetime thresholdη asη = exp(−γτ), whereτ = {1, 2, . . . , 5}. The coreset size and

chunk size parameters for the StreamKM++ and sKKM algorithms were varied from1, 000 to

5, 000. The initial number of clustersC was set equal to the true number of classes in the data set,

for all the algorithms.

We obtained the code for the StreamKM++ algorithm from the authors4, and implemented

the other algorithms in MATLAB. We executed each algorithm10 times on a2.8 GHz processor

with the memory constrained to4 GB for the stream clustering algorithms, and to40 GB for the

batch clustering algorithms. We present the mean and variance of the time taken for clustering

(in milliseconds) and the clustering quality, measured in terms of the Silhouette coefficient and

NMI [104], over these10 runs. Different permutations of the data set were input to the clustering

algorithms in each run.

4.5.4 Results

4.5.4.1 Clustering efficiency and quality

Clustering time for our algorithm is computed as the averagetime taken to assign a label to each

data point. For the baseline algorithms, we computed this time by dividing the total time taken to

cluster the data set by the number of points in the data set. Figures 4.3, 4.4 and 4.5 compare the

running time, silhouette coefficient and NMI values, respectively, of the proposed algorithm with

the baseline algorithms, when the parametersm = 5, 000, M = 20, 000 andτ = 1. As expected,

the proposed algorithm was faster than the batch kernelk-means algorithms and its approximation

(described in Section 4.5.2) on most of the data sets, but took longer than thek-means algorithm,

because our algorithm has to compute the kernel similarity and its top eigenvectors unlike thek-

4The code for StreamKM++ is available at http://www.algorithm-engineering.de/software-projects?
view=project&task=show&id=17

128

http://www.algorithm-engineering.de/software-projects?view=project&task=show&id=17
http://www.algorithm-engineering.de/software-projects?view=project&task=show&id=17

0

5

10

15

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(a) CIFAR-10
0

50

100

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(b) MNIST

0

10

20

30

40

50

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(c) Forest Cover Type
0

50

100

150

200

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(d) Imagenet-34

0

20

40

60

80

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(e) Poker
0

200

400

600

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(f) Network Intrusion

Figure 4.3 Running time (in milliseconds) of the stream clustering algorithms. The parameters for
the proposed approximate stream kernelk-means algorithm are set tom = 5, 000, M = 20, 000,
andτ = 1. The coreset size for the StreamKM++ algorithm, and the chunk size of the sKKM
algorithm are set to5, 000. It is not feasible to execute kernelk-means on the Forest Cover Type,
Imagenet-34, Poker, and Network Intrusion data sets due to their large size. The approximate
running time of kernelk-means on these data sets is obtained by first executing kernel k-means on
a randomly chosen subset of50, 000 data points to find the cluster centers, and then assigning the
remaining points to the closest cluster center.

129

0

0.02

0.04

0.06

0.08
S

ilh
ou

et
te

(a) CIFAR-10
0

0.2

0.4

0.6

0.8

S
ilh

ou
et

te

(b) MNIST

Figure 4.4 Silhouette coefficient values of the partitions obtained using the proposed approximate
stream kernelk-means algorithm. The parameters for the proposed algorithm were set tom =
5, 000, M = 20, 000, andτ = 1. The coreset size for the StreamKM++ algorithm, and the chunk
size of the sKKM algorithm were set to5, 000.

means algorithm. The silhouette coefficient values of the proposed algorithm are comparable to

those of the kernelk-means, showing that they yielded similar partitions. The NMI achieved by

our algorithm is higher than that ofk-means because of the use of non-linear similarity measures.

The proposed algorithm also outperforms the approximate variant of the kernelk-means algorithm,

described in Section 4.5.2. On the CIFAR-10 data set, the batch kernelk-means achieved an NMI

value of16.9%. The proposed algorithm achieves comparable NMI values (15.5%).

Compared to the StreamKM++ algorithm, the proposed algorithm achieves higher clustering

quality, both in terms of silhouette coefficient and NMI, although it takes slightly longer to as-

sign cluster labels to the points. This is due to the fact thatour algorithm needs to update and

cluster the eigenvectors of the approximate kernel matrix for each batch of data points. The pro-

posed algorithm offers the advantage that the cluster labels can be obtained in real-time, unlike

the StreamKM++ algorithm which needs to process all the datapoints before assigning the clus-

ter labels. For instance, the proposed algorithm was able tocluster about2, 700 images from the

CIFAR-10 data set per second, which is equivalent to a speed of about8 MBps. On the remaining

130

0

5

10

15

N
M

I

(a) CIFAR-10
0

10

20

30

40

50

N
M

I

(b) MNIST

0

5

10

15

N
M

I

(c) Forest Cover Type
0

2

4

6

8

10

N
M

I

(d) Imagenet-34

0

10

20

30

40

N
M

I

(e) Poker
0

5

10

N
M

I

(f) Network Intrusion

Figure 4.5 NMI (in %) of the clustering algorithms with respect to the true class labels. The
parameters for the proposed approximate stream kernelk-means algorithm are set tom = 5, 000,
M = 20, 000, andτ = 1. The coreset size for the StreamKM++ algorithm, and the chunk size of
the sKKM algorithm are set to5, 000. It is not feasible to execute kernelk-means on the Forest
Cover Type, Imagenet-34, Poker, and Network Intrusion datasets due to their large size. The
approximate NMI values of kernelk-means on these data sets is obtained by first executing kernel
k-means on a randomly chosen subset of50, 000 data points to find the cluster centers, and then
assigning the remaining points to the closest cluster center.

131

0

10

20

30

40

50

N
M

I

Data stream

Figure 4.6 Change in the NMI (in %) of the proposed approximate stream kernelk-means algorithm
over time. The parametersm, M and τ were set tom = 5, 000, M = 20, 000 and τ = 1,
respectively.

three data sets, the clustering speed ranges from30 KBps to700 KBps. Our algorithm also outper-

forms the sKKM clustering algorithm in terms of clustering quality. While the sKKM algorithm is

slower than the proposed algorithm on the CIFAR-10 data set,it’s speed is at par with the proposed

algorithm on the remaining data sets. The StreamKM++ algorithm obtains clusters from coresets

which summarizeall the points in the data set. The sKKM algorithm relies on the information

from only two time steps and discards most of the historical information. The proposed approxi-

mate stream kernelk-means algorithm finds the middle ground by retaining potentially useful data

points using importance sampling, and discarding the rest of the data points. This is reflected in

the silhouette and NMI values achieved by the algorithms.

Figure 4.6 shows how the NMI values of the proposed algorithmfall due to the accumulation

of the kernel approximation error over time. We observe thatthe reduction in NMI is slow and

stabilizes over time for most of the data sets, showing that the approximation error reduces over

time. The error accumulation can be further minimized by clustering the points in the buffer more

frequently (as discussed in Section 4.4), although this would increase the running time. The user

can trade-off between the efficiency and accuracy by tuning the parameters of the algorithm.

132

4.5.4.2 Parameter sensitivity:

The proposed approximate stream kernelk-means algorithm relies on five parameters: initial sam-

ple sizem, maximum buffer sizeM , initial number of clustersC, cluster decay rateγ and cluster

lifetime thresholdη. We study the influence of these parameters on the algorithm’s performance

and present heuristics to set the parameter values:

• Initial sample sizem: The time taken by the proposed algorithm to cluster each datapoint

xt is influenced by the number of points in the bufferS at timet, because the size of the

eigenvector matrixVC increases proportionally. The buffer size at timet, in turn, depends

on the firstm data points{x1, . . . ,xm} input to the system. More data points are sampled

from the stream and added toS, if the initial sample does not contain a sufficient number of

representative points. On the CIFAR-10 data set, the numberof additional points sampled

reduced from6, 087 to4, 434 as the initial sample sizem was increased from1, 000 to5, 000.

Similar trends were observed for the remaining data sets as well. Figure 4.7 compares the

running time of the proposed algorithm with the StreamKM++ and sKKM algorithms as the

parameterm is varied. Recall thatm represents the coreset size and the chunk size for the

StreamKM++ and sKKM algorithms, respectively. Asm was increased, the time taken for

clustering by the baseline algorithms also increased. As expected, the proposed algorithm

took slightly longer than the StreamKM++ and sKKM algorithms for most data sets, espe-

cially whenm was large. However, the NMI values achieved by the proposed algorithm are

much higher than those achieved by the baseline algorithms,as shown in Figure 4.9. Our

algorithm’s accuracy improves significantly asm increases, while there is minimal improve-

ment in the cluster quality of the StreamKM++ algorithm. This improvement in accuracy

compensates for the higher running time of the proposed algorithm. These results indicate

that the initial sample, determined by the order of the data,plays a crucial role in the perfor-

mance of the proposed algorithm. The variance in the NMI tends to reduce asm increases,

again indicating that the order of the data is important. Thesilhouette coefficient values

133

1000 2000 3000 4000 5000
0

5

10

15

m

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(a) CIFAR-10
1000 2000 3000 4000 5000

0

20

40

60

80

100

m

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(b) MNIST

1000 2000 3000 4000 5000
0

10

20

30

40

50

m

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(c) Forest Cover Type
1000 2000 3000 4000 5000

0

20

40

60

80

m

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(d) Imagenet-34

1000 2000 3000 4000 5000
0

50

100

m

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(e) Poker
1000 2000 3000 4000 5000

0

50

100

150

200

m

R
un

ni
ng

 ti
m

e
in

 m
ill

is
ec

on
ds

(f) Network Intrusion

Figure 4.7 Effect of the initial sample sizem on the running time (in milliseconds) of the proposed
approximate stream kernelk-means algorithm. Parameterm represents the initial sample set size,
the coreset size and the chunk size for the approximate stream kernelk-means, StreamKM++ and
sKKM algorithms, respectively. The parametersM and τ are set toM = 20, 000 andτ = 1,
respectively.

134

1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

m

S
ilh

ou
et

te

(a) CIFAR-10
1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

m

S
ilh

ou
et

te

(b) MNIST

Figure 4.8 Effect of the initial sample sizem on the silhouette coefficient values of the proposed
approximate stream kernelk-means algorithm. Parameterm represents the initial sample set size,
the coreset size and the chunk size for the approximate stream kernelk-means, StreamKM++ and
sKKM algorithms, respectively. The parametersM and τ are set toM = 20, 000 andτ = 1,
respectively.

achieved by the proposed algorithm vary minimally with increase in the initial sample size,

as shown in Figure 4.8.

• Maximum buffer size M: The maximum buffer sizeM does not affect the algorithmic

efficiency of the proposed algorithm, provided thatM ∼ 2m, and the initial sample is

representative of the stream. IfM is small, data points need to be removed more often

from the buffer to accommodate for the newly sampled data points, which results in an

increased running time as shown in Table 4.2. For instance, whenM was set to5, 000, about

2, 500 points were removed from the buffer, whereas no points needed to be removed when

M = 20, 000, resulting in a2 millisecond reduction of the clustering time per data point.

The silhouette coefficient values vary minimally withM , as recorded in Table 4.3. The NMI

value increases asM increases because a larger number of representative data points can be

stored in the buffer, as shown in Table 4.4.

• Cluster decay rateγ, lifetime threshold η and number of clustersC: The final number

of clusters at the end of clustering depends on the ordering of the data set, and the cluster

135

1000 2000 3000 4000 5000
0

5

10

15

m

N
M

I

(a) CIFAR-10
1000 2000 3000 4000 5000

0

10

20

30

40

50

m

N
M

I

(b) MNIST

1000 2000 3000 4000 5000
0

5

10

15

m

N
M

I

(c) Forest Cover Type
1000 2000 3000 4000 5000

0

2

4

6

8

m

N
M

I

(d) Imagenet-34

1000 2000 3000 4000 5000
0

10

20

30

40

m

N
M

I

(e) Poker
1000 2000 3000 4000 5000

0

5

10

m

N
M

I

(f) Network Intrusion

Figure 4.9 Effect of the initial sample sizem on the NMI (in %) of the proposed approximate
stream kernelk-means algorithm. Parameterm represents the initial sample set size, the coreset
size and the chunk size for the approximate stream kernelk-means, StreamKM++ and sKKM
algorithms, respectively. The parametersM andτ are set toM = 20, 000 andτ = 1, respectively.

136

Table 4.2 Effect of the maximum buffer sizeM on the running time (in milliseconds) of the pro-
posed approximate stream kernelk-means algorithm. Parameter settings:m = 5, 000, τ = 1.

M 5,000 10,000 15,000 20,000

CIFAR-10 9.34 8.50 9.57 7.48
(±0.76) (±3.33) (±2.79) (±1.24)

MNIST 11.05 10.35 8.99 9.94
(±2.22) (±4.04) (±0.41) (±1.75)

Forest 7.07 24.17 40.65 58.55
Cover Type (±0.27) (±6.69) (±12.81) (±21.57)
Imagenet-34 10.57 18.77 48.15 57.91

(±2.62) (±4.85) (±18.18) (±22.20)
Poker 7.38 21.06 44.04 62.38

(±3.56) (±9.57) (±17.76) (±32.31)
Network 12.09 27.15 43.05 161.89
Intrusion (±2.57) (±7.07) (±15.31) (±69.43)

Table 4.3 Effect of the maximum buffer sizeM on the Silhouette coefficient of the proposed
approximate stream kernelk-means algorithm. Parameter settings:m = 5, 000, τ = 1.

M 5,000 10,000 15,000 20,000

CIFAR-10 5.53 5.63 6.92 7.75
(×e− 02) (±0.12) (±0.04) (±0.29) (±0.26)

MNIST 80.50 77.72 82.19 82.51
(×e− 02) (±0.84) (±0.66) (±1.29) (±1.75)

Table 4.4 Effect of the maximum buffer sizeM on the NMI (in %) of the proposed approximate
stream kernelk-means algorithm. Parameter settings:m = 5, 000, τ = 1.

M 5,000 10,000 15,000 20,000

CIFAR-10 6.22 8.07 15.49 15.40
(±0.27) (±2.73) (±0.18) (±0.39)

MNIST 20.15 29.97 48.31 48.31
(±0.26) (±0.87) (±1.50) (±1.50)

Forest 0.56 0.72 12.19 14.27
Cover Type (±0.07) (±0.05) (±0.02) (±2.13)
Imagenet-34 1.58 1.73 6.55 7.04

(±1.27) (±1.62) (±1.19) (±1.24)
Poker 0.64 22.54 39.11 36.09

(±3.45) (±2.92) (±4.19) (±4.94)
Network 13.71 13.86 13.75 14.32
Intrusion (±0.01) (±0.40) (±0.30) (±0.10)

137

Table 4.5 Effect of the cluster lifetime thresholdη = exp(−γτ) on the running time (in mil-
liseconds) of the proposed approximate stream kernelk-means algorithm. Parameter settings:
m = 5, 000, M = 20, 000.

τ 1 2 3 4 5
CIFAR-10 7.48 9.28 8.33 8.54 9.08

(±1.24) (±1.03) (±1.53) (±1.66) (±1.12)
MNIST 9.94 9.25 9.31 9.42 10.31

(±1.75) (±0.46) (±0.59) (±0.61) (±1.25)
Forest 58.55 42.80 48.78 40.09 41.88

Cover Type (±21.57) (±17.26) (±20.72) (±13.81) (±15.90)
Imagenet-34 57.91 60.25 55.77 57.24 54.98

(±22.20) (±24.43) (±26.20) (±24.57) (±31.10)
Poker 62.38 44.39 44.11 42.65 43.66

(±32.31) (±16.04) (±15.62) (±17.48) (±16.27)
Network 161.89 164.61 165.18 162.36 163.05
Intrusion (±0.69) (±0.70) (±0.71) (±0.68) (±0.64)

Table 4.6 Effect of the cluster lifetime thresholdη = exp(−γτ) on the Silhouette coefficient of the
proposed approximate stream kernelk-means algorithm. Parameters:m = 5, 000, M = 20, 000.

τ 1 2 3 4 5
CIFAR-10 7.75 7.66 6.40 6.35 6.07
(×e− 02) (±0.26) (±0.24) (±0.19) (±0.20) (±0.22)

MNIST 82.51 82.51 82.51 82.51 82.51
(×e− 02) (±1.75) (±0.01.75) (±1.75) (±1.75) (±1.75)

Table 4.7 Effect of the cluster lifetime thresholdη = exp(−γτ) on the NMI (in %) of the proposed
approximate stream kernelk-means algorithm. Parameters:m = 5, 000, M = 20, 000.

τ 1 2 3 4 5

CIFAR-10 15.49 15.55 15.41 15.45 15.50
(±0.39) (±0.23) (±0.33) (±0.23) (±0.25)

MNIST 48.31 47.77 49.45 45.98 47.74
(±1.40) (±1.49) (±1.48) (±1.40) (±1.49)

Forest 14.27 12.10 12.11 12.10 12.10
Cover Type (±2.13) (±0.03) (±0.03) (±0.03) (±0.03)
Imagenet-34 7.04 7.04 6.95 6.95 7.76

(±1.24) (±1.24) (±1.14) (±1.14) (±1.54)
Poker 36.09 32.07 32.07 36.09 32.07

(±4.94) (±4.41) (±4.41) (±4.94) (±4.41)
Network 14.32 13.65 13.65 13.65 13.66
Intrusion (±0.10) (±0.06) (±0.06) (±0.06) (±0.06)

138

Table 4.8 Comparison of the performance of the approximate stream kernelk-means algorithm
with importance sampling and Bernoulli sampling.

Data set CIFAR MNIST Forest Imagenet Poker Network
-10 Cover -34 Intrusion

Type
Importance Running 7.48 9.94 58.55 57.91 62.38 161.89

sampling time (ms) (±1.24) (±1.75) (±21.57) (±22.20) (±32.31) (±0.69)
Silhouette 7.75 82.51 - - - -
coefficient (±0.26) (±1.75)
(×e− 02)

NMI 15.49 48.31 14.27 7.04 36.09 14.32
(%) (±0.39) (±1.40) (±2.13) (±1.24) (±4.94) (±0.10)

Number 5,434 6,136 16,561 14,735 6,265 14,886
of points (±2, 093) (±34) (±3, 710) (±1, 790) (±132) (±2, 627)
sampled

Bernoulli Running 2091.50 2210.77 1257.03 3002.45 86.43 923.16
sampling time (ms) (±47.34) (±58.05) (±39.33) (±77.97) (±1.86) (±40.41)

Silhouette 0.72 8.11 - - - -
coefficient (±0.01) (±0.13)
(×e− 02)

NMI 11.33 14.35 3.93 4.97 2.90 6.50
(%) (±4.9) (±0.05) (±0.7) (±0.19) (±0.02) (±0.15)

Number 31,483 23,000 407,220 389,177 50,000 1,711,101
of points (±717) (±203) (±5, 807) (±11, 325) (±100) (±44, 866)
sampled

decay and lifetime parametersγ andη. For instance, when the points in the CIFAR-10 data

set were input in their true order (i.e. all images from classi are input before all images from

classj (i < j)) for C = 5, γ = 0.5 andη = exp(−γ) = 0.61, 10 clusters were found. On

the other hand, when the data was permuted randomly and clustered, there was no increase

in the number of clusters because no clusters became stale. The number of clusters increased

more rapidly whenγ andη were set to lower values because the clusters became stale faster.

This also influences the clustering time minimally. The effect of the parameterη on the

running time is recorded in Table 4.5. While the silhouette coefficient values remain almost

constant whenη changes, the NMI values are better for lower values ofγ andη as shown in

Tables 4.6 and 4.7.

139

Sampling techniques: Table 4.8 shows how the performance of the proposed algorithm on the

six data sets changes, when importance sampling is replacedby a sampling procedure where each

data point is sampled with probability1/2, and no limit is placed on the size of the sample set.

We record, for each sampling procedure, the running time in milliseconds, the NMI values and the

average number of points stored in memory after all the data points have been clustered. We also

record the silhouette coefficient values for the CIFAR-10 and MNIST data sets. For importance

sampling, we set the initial sample set sizem = 5, 000 and the recency threshold parameterτ

=1. We observe that the number of points sampled with Bernoulli sampling is much higher than

that with importance sampling. For instance, about31, 483 points are sampled from the CIFAR-

10 data set when Bernoulli sampling is employed, whereas only about5, 434 points are sampled

using importance sampling. In addition, the cluster quality of Bernoulli sampling is much lower

than that of importance sampling. This is because the kernelapproximation error is much higher

when the data is sampled with equal probability. The runningtime is also higher when compared

to the proposed algorithm with importance sampling due to the large number of sampled points.

4.6 Applications: Twitter Stream Clustering

Twitter5 is a popular microblogging social network for sharing information over the web. It has

over 100 million active users posting over100, 000 short messages (calledtweets) per minute,

which include personal updates, real-time information about events, news etc. Each tweet contains

a text message limited to140 characters, and can include user-mentions, links, and emoticons in

addition to plain text. Tweets are also often annotated withhashtagsthat denote keywords related

to the tweets. A large body of work on topic detection, event detection, hashtag recommendation,

and sentiment analysis has been performed on the Twitter data [16,144]. Clustering has been used

to find trending topics in Twitter posts, find user communities based on the similarity of their posts,

5www.twitter.com

140

www.twitter.com

and automatically annotate tweets with hashtags [16, 144].In order to demonstrate the practical

Figure 4.10 Sample tweets from theASP.NETcluster.

applicability of the proposed approximate stream kernelk-means algorithm, we used it to cluster

the Twitter data, and find the most-tweeted-about technologies over a period of time. We used the

Twitter streaming search API to obtain over a billion tweetsgenerated during the month of January

2015, using the following20 popular keywords as hashtag search queries: Python, Perl, C#, Java,

Ruby, C++, JavaScript, VBScript, Scala, Objective C, PHP, SQL, Postgresql, GO, Julia, Erlang,

HTML, XML, Swift, and ASP.NET. We filtered out the non-English tweets, removed the hashtags

and eliminated stop words to obtain a vocabulary containing8, 042 terms. We used the correspond-

ing tf-idf (term frequency-inverse document frequency) features [125], and the timestamp of the

tweets as features for calculating the kernel, defined by

κ(xa,xb) = λ exp
(
−‖tsa − tsb‖2

)
+ (1− λ)

f⊤
a fb

‖fa‖‖fb‖
,

wheretsa andfa denote the timestamp and the tf-idf features of a tweet, represented by data point

xa, respectively. The first term in the kernel function ensuresthat two tweets which were generated

in the same time period are likely to be assigned to the same cluster, and the second term ensures

that two tweets with similar vocabulary are grouped together. We gave equal importance to both

141

Figure 4.11 Sample tweets from theHTML cluster.

the timestamp and the tf-idf features by settingλ = 0.5. We set the parametersm = 5, 000,

M = 10, 000, C = 20, γ = 0.5, η = exp(−γ) = 0.6 andB = 10, 000. Our algorithm assigned

a cluster label to each tweet in about200 milliseconds. Treating the hashtags as the ground truth

labels6, we obtained an average clustering accuracy of61% in terms of NMI. On the other hand,

the StreamKM++ algorithm took about83 milliseconds per tweet, and achieved an NMI value of

40%, and the sKKM algorithm took about2 seconds per tweet, and achieved an NMI value of

53%. Figures 4.10 and 4.11 show some sample tweets from the ASP.NET and HTML clusters,

respectively. We observed that, by giving equal importanceto the timestamp of the tweet, and the

words in the tweet, we obtain clusters containing tweets that have both temporal proximity and

vocabulary similarity. Retweets are always assigned to thesame cluster as the original tweet. For

example, the tweets aboutsticky headersare assigned to the HTML cluster, as seen in Figure 4.11.

6Although hashtags are prone to error, they are the best indicators of the topic of a tweet. They have been used as
topic labels in many other studies including [75,150].

142

More recent tweets rather than old tweets are stored in the memory. Figure 4.12(a) shows the

trends of the top-five clusters over the month. This coincides well with the true trend of the top

topics shown in Figure 4.12(b). We found that the order of popularity of the topic clusters is

ASP.NET, HTML, SQL, JavaScript, Perl, C++, Postgresql, Python, GO, PHP, Swift, Scala, Java,

Ruby, C#, XML, Erlang, Julia, Objective C and VBScript; while the true order of topic popularity

is ASP.NET, HTML, Python, JavaScript, Perl, Java, PHP, Ruby, SQL, C++, Swift, C#, Scala,

Postgresql, XML, Erlang, Julia, GO, Objective C, and VBScript.

5 10 15 20 25 30
0

0.2

0.4

0.6

P
er

ce
nt

ag
e

of
 tw

ee
ts

fr
om

 e
ac

h
cl

us
te

r

Timeline

ASP.NET
HTML
SQL
JavaScript
Perl

(a) Cluster trends

5 10 15 20 25 30
0

0.2

0.4

0.6

Timeline

P
re

ce
nt

ag
e

of
 tw

ee
ts

fr
om

 e
ac

h
to

pi
c

ASP.NET
HTML
Python
Javascript
Perl

(b) True trends of the topics

Figure 4.12 Trending clusters in Twitter. The horizontal axis represents the timeline in days and
the vertical axis represents the percentage ratio of the number of tweets in the cluster to the total
number of tweets obtained on the day. Figure (a) shows the trends obtained by the proposed
approximate stream kernelk-means algorithm, and Figure (b) shows the true trends.

143

4.7 Summary

In this chapter, we have proposed an efficient and effective real-time kernel-based stream clustering

algorithm, called approximate stream kernelk-means. Experimental results show that the proposed

algorithm offers a good trade-off between clustering efficiency and clustering quality. Further,

unlike some state-of-the-art kernel-based stream clustering algorithms, the proposed algorithm

can control the decay and birth of clusters, thereby dynamically controlling the final number of

clusters. The key to the efficiency of the proposed algorithmis the sampling of the streaming

data based on their importance, defined in terms of the statistical leverage scores. This allows

us to maintain the long-term history of the streaming data and also limit the memory required to

store the data. We cater to the drift in the data distributionby placing thresholds on the life of a

cluster. We demonstrated empirically that the proposed algorithm can cluster fast streams such as

the Twitter stream with limited memory, and achieve higher clustering accuracy than the current

stream clustering algorithms.

144

Chapter 5

Kernel-Based Clustering for Large Number

of Clusters

5.1 Introduction

Document and image data sets, containing millions of high-dimensional points, usually belong to

a large number of clusters. Finding clusters in such data sets is computationally expensive using

kernel-based clustering techniques. Our aim is to speed up kernel-based clustering for data sets

with large number of clusters. In this chapter, we present a variant of the online kernel clustering

algorithm discussed in Chapter 4, called thesparse kernel k-means algorithmwhich can efficiently

cluster large data sets into thousands of clusters, with significantly lower processing and memory

requirements, and high clustering accuracy [38,39].

Approximate kernel clustering algorithms such as approximate spectral clustering [67, 157]

and approximate kernelk-means (from Chapter 2) reduce the running time of kernel clustering

by uniformly sampling anm-sized subset of the data, and constructing a low-rank approximate

kernel matrix using the sampled data. These approaches reduce the running time complexity of

kernel clustering toO(nmd + nmC). Note that the running time increases proportionately with

145

Table 5.1 Complexity of popular partitional clustering algorithms:n andd represent the size and
dimensionality of the data respectively, andC represents the number of clusters. Parameterm > C
represents the size of the sampled subset for the sampling-based approximate clustering algorithms.
nsv ≥ C represents the number of support vectors. DBSCAN and Canopyalgorithms are depen-
dent on user-defined intra-cluster and inter-cluster distance thresholds, so their complexity is not
directly dependent onC.

Clustering algorithms Complexity

k-means [87] O(nCd)
DBSCAN [61] O(n log (n) d)
Canopy [126] O(nCd)
Kernelk-means [72] O(n2d+ n2C)
Spectral clustering [118] O(n2d+ n3 + nC2)
Support vector clustering [19] O(n2dnsv)
Approximate spectral clustering [67] O(nmd+ nmC)
Approximate kernelk-means [40] O(nmd+ nmC)

the number of clusters (See Table 5.1). As demonstrated in Chapters 2 and 3, these algorithms

take very long to cluster the data set when the number of clusters is in the order of thousands. In

addition, the number of samplesm required to obtain a good approximation is dependent on the

rank of the kernel matrix, which is in turn dependent on the number of clusters in the data [74].

Clustering data sets with large number of clusters using these algorithms requires samplingO(n)

number of data points, to sufficiently represent all the clusters. This renders the approximate kernel

clustering algorithms also non-scalable.

The proposed sparse kernelk-means algorithm reduces the running time and memory com-

plexity of kernel clustering using two key ideas: (i) kernelapproximation using incremental im-

portance sampling, and (ii) kernel sparsity. Importance sampling involves selecting data points

based on their novelty, measured in terms of statistical leverage scores [34]. Fewer samples

(m = Ω(C logC)) are required to construct a good kernel approximation using importance sam-

pling than uniform sampling. However, finding the statistical leverage scores for the entire data

involves computing the eigenvectors of the fulln× n kernel matrix, which is computationally ex-

pensive [56]. We design an efficient online method to sample the data based on their importance,

146

thereby reducing the time required for sampling.

We also reduce the complexity of kernel computation and clustering by using sparsification.

We compute thep-nearest neighbor graph (wherep is a user-defined parameter) for the sampled

points and use this sparse kernel matrix to obtain the cluster centers. Clustering is performed

efficiently by first projecting the data into a subspace spanned by the top eigenvectors of the sparse

kernel matrix, and then clustering the projected points using a modifiedk-means algorithm, which

uses randomizedkd-trees [132] to find the nearest cluster center for each data point.

The runtime complexity of the proposed algorithm is linear in n andd, and logarithmic inC.

We show that only a small subset of the data needs to be sampled, thereby reducing the memory

requirements. We demonstrate empirically using several benchmark data sets that the proposed

clustering algorithm is scalable to data sets containing millions of high-dimensional data points,

and thousands of clusters.

5.2 Background

Importance sampling As discussed in Chapter 4, the principle behind importance sampling is

to select a subset of the data that is most informative. Let the kernel matrixK be decomposed

asK ≃ VCΣCV
⊤
C , whereΣC = diag(λ1, . . . , λC) contains the highestC eigenvalues ofK and

VC = (v1, . . . ,vC) contains the corresponding eigenvectors. A data pointxi is sampled with

probabilitypi, defined as

pi =
1

C

∣∣∣
∣∣∣V (i)

C

∣∣∣
∣∣∣
2

2
, (5.1)

whereV (i)
C is theith row ofVC . The term

∣∣∣
∣∣∣V (i)

C

∣∣∣
∣∣∣
2

2
, called the statistical leverage score for data point

xi, is an indicator of the importance of the point. A high score indicates that the corresponding

data point has a high influence in the approximation of the kernel matrix.

We showed in Lemma 8 that importance sampling reduces the dependency of the number of

samples required on the number of clusters significantly, when compared to uniform sampling.

147

(a) (b)

Figure 5.1 Illustration of kernel sparsity on a two-dimensional synthetic data set containing1, 000
points along10 concentric circles. Figure (a) shows all the data points (represented by “o”) and
Figure (b) shows the RBF kernel matrix corresponding to thisdata. Neighboring points have the
same cluster label when the kernel is defined correctly for the data set.

Kernel sparsity Another key component of the proposed algorithm is kernel sparsity. The pro-

posed algorithm uses thep-nearest neighbors (p > C) of each point to construct a sparse kernel

matrix. The intuition behind this is the fact that, each datapoint is surrounded by points belonging

to the same cluster in the high dimensional feature space, provided the kernel function is appropri-

ately selected. Figure 5.1 illustrates this concept on the two-dimensional concentric circles data set.

The RBF kernel matrix corresponding to this data is shown in Figure 5.1(b). Nearby data points

in terms of the kernel similarity tend to have the same cluster label. This idea has been previously

applied in several supervised local learning approaches [27]. The local learning-based clustering

algorithm [188] and the local spectral clustering algorithm [118] also use the nearest neighbor

graphs to obtain the cluster labels for the data. However, these methods require the computation of

the full n× n similarity matrices, rendering them non-scalable.

Finding the nearest neighbors of a data point from amongsts points would require the com-

putation ofO (s) similarities. Popular approximate nearest neighbor algorithms adopt one of the

following two approaches to find the nearest neighbors efficiently [3]:

• Use hashing techniques such as locality sensitive hashing,which use hash functions to place

similar objects in the same bin [100,198].

148

• Use data structures likekd-trees (also denoted ask-d trees) [131] and its variants like R-trees,

R* -trees and metric trees [154] to organize the data accordingto their similarity and enable

efficient querying.

The randomizedkd-trees [132] technique for approximate nearest neighbor computation in-

volves constructing multiplekd-trees and searching them in parallel. While a classicalkd-tree is

built by splitting the data along the dimensions with the highest variance [131], each randomized

kd-tree splits the data along a dimension chosen randomly fromthe topnd dimensions with the

highest variance. A priority queue with information about the distance of each branch to the deci-

sion boundary is used to index into the multiple trees. It takesO(s log s) time to build the trees,

andO(log s) time for each query. Therefore, the time taken for nearest neighbor computation

is significantly reduced, when a large number of queries needto be performed on the same data

set. We employ randomizedkd-trees in the proposed algorithm to first find the nearest neighbors

and build the sparse kernel matrix, and then to find the closest center for each data point during

clustering.

The proposed algorithm offers the following advantages over the existing techniques to reduce

the running time of kernel-based clustering [40,42,67,157,188]:

(i) It employs importance sampling, so fewer number of samples are required to approximate the

kernel matrix, when compared to the approximation methods in [40, 67, 157], which employ

uniform random sampling.

(ii) Existing approximate kernel clustering algorithms [40,67,157] need to performO(nm) ker-

nel similarity computations, wherem is the number of samples. The number of kernel sim-

ilarity computations performed by the proposed algorithm is O(np), where the number of

neighborsp ≪ m. This also reduces the time and memory required for clustering, compared

to the other approximate clustering algorithms.

149

(iii) The clustering quality is better when compared to the existing approximate kernel cluster-

ing methods, even with a relatively small number of samples,because the most informative

samples are used to perform clustering.

(iv) It does not require the computation of the full kernel matrix, unlike the local clustering meth-

ods in [118] and [188].

(v) It is online in nature, i.e. the data is clustered in batches of a user-defined sizeB, so it can

cluster very large data sets (including data streams).

5.3 Sparse Kernel k-means

The proposed sparse kernelk-means clustering algorithm is described in Algorithm 9. The

algorithm starts with the firstm data points stored in a bufferS of a fixed maximum sizeM

(C < m < M). Let N (xi) represent thep-nearest neighbors of data pointxi in the RKHS1. We

construct thep-neighbor graphK0 for them data points inS, defined by

K0 = [Kij]m×m , where (5.2)

Ki,j =





κ(xi,xj) if xi ∈ N (xj) andxj ∈ N (xi),

0 otherwise.

We assume that nearby points in the Hilbert space belong to the same cluster. The kernel function

should be appropriately defined for this assumption to be valid. Several articles in the literature

describe techniques to learn the kernel function from the data [112,177,200].

The remaining data is clustered in batches{D1,D2, . . .} of sizeB, whereDt = {xt
1, . . . ,x

t
B}.

Let K0 = VCΣCVC
⊤, whereΣC = diag(λ1, . . . , λC) contains the topC eigenvalues ofK0 and

1The nearest neighbors are found efficiently using randomizedkd-trees. We use the kernel functionκ(·, ·) to define
the inter-point distance function.

150

Algorithm 9 Sparse Kernelk-means
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• κ(·, ·) : ℜd × ℜd 7→ ℜ: the kernel function
• C: the number of clusters
• m: minimum number of points to be sampled (m > C)
• p: number of neighbors for calculating the sparse kernel matrix (p < m)
• M : maximum number of points allowed in the sample set (m < M)
• B: size of each input data batch

2: Output : Cluster labels for the data points
3: Initialize S = {x1 . . .xm}.
4: Set the number of batchesnB = (n−m) /B and divide the remaining points in the data set

(D − S) into batches{D1, . . . ,DnB}, whereDt = {xt
1, . . . ,x

t
B}.

5: Compute the sparse kernel matrixK0 according to (5.2).
6: DecomposeK0 asK0 = VCΣCV

⊤
C .

7: Cluster the data points inS by executing approximatek-means (Algorithm 10) onVCΣC
1/2 to

obtain their cluster labels.
8: for t = 1, 2, . . . , nB do
9: for i = 1, 2, . . . , B do

10: Calculate the probabilitypti using (5.1).
11: SetS = S ∪ {xt

i} with probabilitypti.
12: If xt

i was added toS in Step 11, update the eigenvaluesΣC and eigenvectorsVC us-
ing (5.8), and recluster the points inS by executing the approximatek-means algo-
rithm (Algorithm 10) onVCΣC

1/2, otherwise assignxt
i to clusterk∗, where k∗ =

arg min
k∈[C]

||ck(·)− gt(·)||2Hκ
, ck(·) is given by (5.6), andgt(·) is the projection ofκ(xi

t, ·)
into the subspace spanned by the eigenvectorsVC .

13: If card(S) > M , find indexq = argmin
l

∣∣∣
∣∣∣V (l)

C

∣∣∣
∣∣∣
2

2
and remove data pointxq from S.

14: end for
15: end for

151

VC = (v1, . . . ,vC) contains the corresponding eigenvectors. The matricesVC andΣC are updated

using each pointxt
i fromDt, and the kernel matrix is updated as

Kt =








Kt−1 ϕ⊤

ϕ κ(xt
i,x

t
i)


 with probabilitypti,

Kt−1 with probability1− pti,

(5.3)

whereϕ is a sparse vector defined byϕ = [κ (xt
i,xs)]

⊤, xs ∈ N (xt
i)∩ S, andpti is the importance

sampling probability defined in (5.1). Data pointxt
i is added toS with probabilitypti. The cluster

labels for the points inS can be obtained by solving the kernelk-means problem

max
U∈P

tr(ŨKtŨ⊤), (5.4)

whereU = (u1, . . . ,uC)
⊤ is the cluster membership matrix,̃U = [diag(U1)]−1/2 U , domain

P = {U ∈ {0, 1}C×s : U⊤1 = 1}, s = card(S), and1 is a vector of all ones. The cluster labels

for the unsampled points can be obtained by assigning them tothe closest center. The running

time complexity of this step isO(s2). We further reduce this complexity by constraining the

cluster centers to a smaller subspace, spanning the top eigenvectors of the kernel matrixKt, along

the lines of spectral clustering2. We pose the clustering problem as the following optimization

problem:

min
U∈P

max
{ck(·)∈Ha}Ck=1

C∑

k=1

s∑

i=1

Uk,i

s
||ck(·)− κ(xi, ·)||2Hκ

, (5.5)

whereHa = span(v1, . . . ,vC). The cluster centers can be expressed as linear combinations of the

2Note that the eigenvalues and eigenvectors were computed while finding the sampling probabilities (5.1), hence
the eigenvectors do not need to be re-computed for clustering.

152

eigenvectors of the kernel matrix:

ck(·) =
s∑

i=1

C∑

j=1

Uk,i

nk

√
λjvi,j

=
uk

nk

VCΣ
1/2
C , k ∈ [C], (5.6)

wherenk is the number of points in thekth cluster, anduk = (Uk,1, Uk,2, . . . , Uk,s)
⊤. By substitut-

ing (5.6) in (5.5), we obtain the following trace maximization problem:

max
U∈P

tr(ŨVCΣCV
⊤
C Ũ⊤). (5.7)

The above problem can be solved by executingk-means on the matrixVCΣ
1/2
C . The complexity of

runningk-means onVCΣ
1/2
C would beO(sC2), which can again be computationally expensive for

largeC.

We alleviate this issue by employing an approximate variantof thek-means algorithm (Algo-

rithm 10), similar to the filtering algorithm in [91]. The most computationally expensive step in the

k-means algorithm is computing the closest center for each data point, which requiresO(sC) dis-

tance computations. We reduce the number of distance computations by using randomizedkd-trees

to find the closest cluster centers.

The proposed sparse kernelk-means algorithm is dependent on three parameters: initialsample

sizem, maximum buffer sizeM , and the number of neighborsp used to build the sparse kernel

matrix. The parametersm andM should be set such that the initial and final sample sets contain

representatives from all the clusters. The parameterp should be set large enough to ensure that the

kernel matrix remains positive semi-definite and its rank isgreater than the number of clustersC.

Heuristics to set these parameters are discussed further inSection 5.5.

153

Algorithm 10 Approximatek-means
1: Input :

• D = {x1, . . . ,xn} ,xi ∈ ℜd: the set ofn d-dimensional data points to be clustered
• C: the number of clusters
• MAXITER: Maximum number of iterations

2: Output : Cluster labels for the data points
3: Randomly initialize the cluster labels{l1, l2, . . . ln}, li ∈ [C].
4: Compute the cluster centersck =

∑
li=k

xi, k ∈ [C].

5: Sett = 0;
6: repeat
7: Sett = t+ 1.
8: Build randomizedkd-tree indexI for theC centers [132].
9: for i = 1, 2, . . . , n do

10: Find the approximate nearest centerck∗ of data pointxi using the indexI.
11: Setli = k∗.
12: end for
13: Recompute the centers{c1, c2, . . . , cC}.
14: until the labels do not change ort > MAXITER

5.4 Analysis

5.4.1 Computational Complexity

The most computationally intensive operations in the proposed algorithm are: (i) computing the

m×m kernel matrixK0 (Step 5), and finding its eigenvectors to obtain the leveragescores (Step

6), and (ii) updating the eigenvectors in each iteration, and clustering them using the approximate

k-means algorithm (Step 12). In order to obtain the eigenvalues and eigenvectors of ans × s

kernel matrixKt (wheres is the number of data points in the bufferS), we need to perform

eigendecomposition ofKt. Naive implementations of eigendecomposition takeO(s3) time. We

can reduce the time for computing the eigenvectors by makingtwo modifications to the algorithm:

(i) Use efficient algorithms such as Lanczos, subspace iteration, and trace minimization methods

to decompose them×m kernel matrixK0 obtained from the firstm points [21]. This reduces

the running time complexity of this step toO(mp+m). In our implementation, we used the

154

svds function in MATLAB to obtain the topC eigenvalues and eigenvectors for the kernel

matrix corresponding to the firstm data points.

(ii) Update the eigenvectorsVC incrementally in each iteration of the algorithm using fastupdate

mechanisms [31, 175], to reduce the time taken to process thepoints in each batch. Using

the rank-1 update mechanism proposed in [31], we update the eigenvectors inO(sp + p3)

time, wheres is the number of points in the bufferS. Given the eigendecomposition,Kt =

VCΣCV
⊤
C , and vectorϕ ∈ ℜm, this method finds the eigendecomposition of

(
Kt + ϕϕ⊤) as

Kt + ϕϕ⊤ =

[
V

w

||w||

]
Σ′
[
V

w

||w||

]⊤
(5.8)

wherew =
(
I − V V ⊤)ϕ is the component ofKt that is orthogonal toV , andΣ′ contains

the dominant eigenvalues of the sparse matrix




Σ V ⊤ϕ

ϕ⊤V ||w||


 .

This method also eliminates the need to store the kernel matrix Kt in memory. After the matrix

K0 and its eigenvectors are obtained, only the vectorϕ in (5.3) is required to updateVC andΣC .

The approximatek-means algorithm first builds multiple randomizedkd-trees containing the

C cluster centers, and an index into these trees, which takesO(C logC) time. It then finds the

approximate nearest neighbors for each data point inS in O(s logC) time, with anǫ approximation

error. Therefore, the total time for clusterings points using the approximatek-means algorithm is

O(C logCl + s logCl), wherel is the number of iterations required for convergence. Clustering

is performed every time a point is added to the sample setS from the input batch of data points.

In order to further reduce the running time, we can employ alazy reclusteringapproach, by which

we perform the clustering after everyT data point additions. Each unsampled data point can be

155

assigned a cluster label by finding the closest center inO(logC) time.

In summary, the overall running time complexity of the proposed sparse kernelk-means algo-

rithm is O(npd + mp + m + QC logCl + QM logCl + n logC), whereQ is the total number

of points sampled from the stream. We demonstrate in Section5.5 that the number of pointsQ

is close to the initial sample sizem. Therefore, the running time complexity can be simplified

asO(npd + mp + m + mC logCl + mM logCl + n logC) ∼ O(npd + n logC), assuming

max(mp,mCl,mMl) ≪ n. Therefore, the proposed algorithm has running time complexity lin-

ear inn, linear ind, and logarithmic inC. It is significantly faster than the kernelk-means algorithm

and the approximate kernel clustering algorithms, which haveO(n2d+n2C) andO(nmd+nmC)

running time complexities, respectively. The amount of memory required isO(mp+Md+MC),

for storing the initial kernel matrixK0, the data points in the buffer and the eigenvectors of the

kernel matrix.

5.4.2 Approximation Error

The proposed sparse kernelk-means algorithm essentially approximates the eigenvectors of the

truen × n kernel matrix with the singular vectors of a sparsen × Q matrix, whereQ is the total

number of points sampled from the data set using importance sampling. In this section, we first

bound this approximation error (due to importance samplingand sparsification), and then bound

the error incurred due to the approximation (5.5) for clustering.

Theorem 7. Let K be then × n kernel matrix and letK̄ be then × Q kernel matrix between

then points in the data set and theQ sampled points. LetZC = (z1, . . . , zC) represent the topC

eigenvectors ofK, andδ ∈ (0, 1) be the smallest probability such that(λC − λC+1) > 3∆, where

∆ <
2λ1

Q
ln

2

δ
+ γ|K|F

√
2 ln(2/δ)

Qn
andγ2 = max

1≤i≤Q

n∑

j=1

κ2(xi,xj).

156

Assumingγ = O(
√
Q) andκ(·, ·) ≤ 1,

max
1≤i≤C

|vi − zi|2 ≤
9∆

2(λC − λC+1)
, (5.9)

with probability1− δ.

Proof. We will first establish a relationship between the singular vectors of the sparse kernel matrix

that is constructed by the proposed algorithm and then×n kernel matrixKsp =
[
Ksp

i,j

]
n×n

defined

as follows:

Ksp
i,j =





κ(xi,xj) if xi ∈ N (xj) andxj ∈ N (xi),

0 otherwise,

and then use the fact that|Ksp|F ≤ |K|F to obtain the required result. Let̂Z = (ẑ1, . . . , ẑn)

represent the eigenvectors ofKsp, X = (ẑ1, . . . , ẑC), andY = (ẑC+1, . . . , ẑn). LetLn be a linear

operator that maps any functionf(·) to a functionLn[f](·) ∈ Hκ defined by

Ln[f](·) =
1

n

n∑

i=1

κ(xi, ·)f(xi). (5.10)

The eigenfunctions [187] ofLn, which form the basis of the spaceHκ are given by

ϕ̂i(·) =
1√
λin

n∑

j=1

ẑi,jκ(xj , ·). (5.11)

Similar toLn, letLQ represent the linear operator based on the sampled examples, defined by

LQ[f](·) =
1

Q

Q∑

i=1

κ(xi, ·)f(xi). (5.12)

We first prove a simpler result that establishes a relationship between the subspacesX andVC ,

in the following lemma:

157

Lemma 10. Let δ ∈ (0, 1) be the smallest probability such that(λC − λC+1) > 3∆, where∆ is

defined as

∆ =
2λ1

Q
ln

2

δ
+ γ|Ksp|F

√
2 ln(2/δ)

Qn

≤ 2λ1

Q
ln

2

δ
+ γ|K|F

√
2 ln(2/δ)

Qn

There exists a matrixP ∈ R
(n−C)×C satisfying

‖P‖F ≤ 2∆

λC − λC+1 −∆
,

such thatVC = (X + Y P)(I + P⊤P)−1/2.

Proof. The proof is based on the following results (Lemmas 11 and 12)from [166] and [165],

respectively:

Lemma 11. Let (λi,vi), i ∈ [n] be the eigenvalues and eigenvectors of a symmetric ma-

trix A ∈ R
n×n ranked in the descending order of eigenvalues. SetX = (v1, . . . ,vC) and

Y = (vC+1, . . . ,vn). Given a symmetric perturbation matrixE, let

(X, Y)⊤E(X, Y) =




E11 E12

E21 E22


 .

Let‖ · ‖ represent a consistent family of norms and set

γ = ‖E21‖, δ = λC − λC+1 − ‖E11‖ − ‖E22‖.

If δ > 0 and γ
δ
< 1

2
, then there exists a unique matrixP ∈ R

(n−C)×C satisfying‖P‖ < 2γ
δ
, such

158

that

X ′ = (X + Y P)(I + P⊤P)−1/2, Y ′ = (Y −XP⊤)(I + PP⊤)−1/2

are the eigenvectors ofA+ E.

Lemma 12. LetHκ be a Hilbert space andξ be a random variable on(Z, ρ) with values inHκ.

Assume‖ξ‖ ≤ M < ∞ almost surely. Denoteσ2(ξ) = E(‖ξ‖2). Let {zi}Qi=1 be independent

random drawers ofρ. For any0 < δ < 1, with confidence1− δ,

∥∥∥∥∥
1

Q

Q∑

i=1

(ξi − E[ξi])

∥∥∥∥∥ ≤ 2M ln(2/δ)

Q
+

√
2σ2(ξ) ln(2/δ)

Q
. (5.13)

Let ∆C = λC − λC+1. Define

A = [〈κ(xi, ·), Lnκ(xj , ·)〉Hκ
]n×n,

B = [〈κ(xi, ·), LQκ(xj , ·)〉Hκ
]n×n,

andE = B − A. We have

γ = ‖X⊤EY ‖F , δ = ∆C − ‖X⊤EX‖F − ‖Y EY ‖F .

Using the relationship̂ϕi =
√

1
λin

∑n
k=1 ẑi,kκ(xk, ·), i = 1, . . . , n, we have

[X⊤EY]i,j = ẑ⊤i Eẑj

=
n∑

a,b=1

ẑa,iẑb,j〈κ(xi, ·), (Ln − LQ)κ(xj , ·)〉Hκ

=
√
λiλj〈ϕ̂i, (Ln − LQ)ϕ̂j〉Hκ

= 〈ϕ̂i, L
1/2
n (Ln − LQ)L

1/2
n ϕ̂j〉Hκ

.

159

We have similar results forX⊤EX andY ⊤EY . Thus, we obtainγ andδ as

γ =

√√√√
C∑

i=1

n∑

j=C+1

〈ϕ̂i, (L2
n − L

1/2
n LQL

1/2
n)ϕ̂j〉2Hκ

≤ ‖L1/2
n (Ln − LQ)L

1/2
N ‖F

δ = ∆C −

√√√√
C∑

i,j=1

〈ϕ̂i, (L2
n − L

1/2
n LQL

1/2
n)ϕ̂i〉2Hκ

−

√√√√
n∑

i,j=C+1

〈ϕ̂i, (L2
n − L

1/2
n LQL

1/2
n)ϕ̂i〉2Hκ

≥ ∆C − ‖L1/2
n (Ln − LQ)L

1/2
n ‖F .

We substitute these bounds forγ andδ into Lemma 11 to obtain

‖P‖F ≤ 2‖L2
n − L

1/2
n LQL

1/2
n ‖F

λC − λC+1 − ‖L2
n − L

1/2
n LQL

1/2
n ‖F

.

We now bound‖L2
n − L

1/2
n LQL

1/2
n ‖F using Lemma 12. Letηi[f](·) = κ(xi, ·)f(xi) and ξi =

L
1/2
N ηiL

1/2
N . We defineM andσ2 asM = max

1≤i≤n
‖ξi‖F , andσ2 = Ei [‖ξi‖2F].

We haveM ≤ ‖Ln‖2‖ηi‖F = λ1 and

σ2 = E

[
n∑

k=1

〈ϕ̂k, ξ
2
i ϕ̂k〉Hκ

]

= E

[
n∑

k=1

〈ϕ̂k, L
1/2
n ηiLnηiL

1/2
n ϕ̂k〉Hκ

]

− E

[
〈κ(xi, ·), Lnκ(xi, ·)〉Hκ

n∑

k=1

〈ϕ̂k, L
1/2
n ηiL

1/2
n ϕ̂k〉Hκ

]

≤ γ2

n
E

[
n∑

k=1

〈ϕ̂k, L
1/2
n ηiL

1/2
n ϕ̂k〉Hκ

]

≤ γ2

n
‖Ln‖2F ≤ γ2|Ksp|2F

n
≤ γ2|K|2F

n
.

160

We complete the proof by substituting the bounds forM andσ2 into Lemma 12.

Now we prove Theorem 7 using the result of Lemma 10. We have

max
1≤i≤C

|vi − zi|2 = ‖VC −X‖2

≤ ‖Y P (I + P⊤P)−1/2‖2 + ‖(I − (I + P⊤P)−1/2)X‖2

≤ ‖Y ‖2‖P‖2 + ‖I − (I + P⊤P)−1/2‖2|X|2

≤ ‖P‖F + 1− 1√
1 + ‖P‖2F

≤ ‖P‖F + 1−
√

1− ‖P‖2F ≤ ‖P‖F +
‖P‖2F
2

≤ 3

2
‖P‖F .

We obtain the required result using the fact that

‖P‖F ≤ 2∆

λC − λC+1 −∆
≤ 3∆

λC − λC+1
.

We complete the proof by using the fact|K|F ≤ 1 to obtain the relation∆ = O
(

1
Q
+ 1√

n

)
, when

γ = O(
√
Q).

In the following lemma, we show that the error incurred due tothe approximation (5.5) is well-

bounded, provided that the tail of the eigenspectrum is fastdecaying, which is true for most real

data sets [45]:

Lemma 13. LetE andEa represent the optimal clustering errors in(5.4)and (5.7), respectively.

We have

|E −Ea| ≤
s∑

i=C+1

λi.

Proof. Let {c∗k(·)}Ck=1 andU∗ be the optimal solution to (5.4). Letcak(·) represent the projection of

c∗k into the subspaceHa. For anyκ(xi, ·), let gi(·) andhi(·) be the projections ofκ(xi, ·) into the

161

subspaceHa and span(vC+1, . . . ,vs), respectively. We have

Ea = min
U∈P

max
ck(·)∈Ha

C∑

k=1

s∑

i=1

Uk,i

s
||ck(·)− κ(xi, ·)||2Hκ

≤
C∑

k=1

s∑

i=1

U∗
k,i

s
||cak(·)− κ(xi, ·)||2Hκ

≤
C∑

k=1

s∑

i=1

U∗
k,i

s

(
||cak(·)− gi(·)||2Hκ

+ ||hi(·)||2Hκ

)

≤ E +
1

s

C∑

k=1

s∑

i=1

||hi(·)||2Hκ
≤ E +

s∑

i=C+1

λi.

5.5 Experimental Results

5.5.1 Data sets

We demonstrate the effectiveness of the proposed sparse kernel k-means algorithm using the

CIFAR-100, Imagenet-164, Youtube and Tiny data sets.

5.5.2 Baselines and Parameters

We compared the performance of the proposed algorithm with the kernelk-means [72] algorithm

on the CIFAR-100 data set. It is infeasible to execute the kernel k-means algorithm on the other

three data sets. We also evaluated its performance against thek-means algorithm. We show that

although the proposed algorithm has a higher running time thank-means, it yields better clustering

accuracy. Finally, we compared our algorithm with the approximate kernelk-means algorithm from

Chapter 2, where the data is sampled with uniform probability, and a low rank approximate kernel

162

is constructed using the sampled data. We show that importance sampling and kernel sparsity play

a significant role in reducing the time and memory requirements.

We used the universal RBF kernel for the proposed algorithm and the kernel-based baseline al-

gorithms (kernelk-means and approximate kernelk-means) on the CIFAR-100, Tiny and Imagenet-

164 data sets. For the Youtube data set, which contains both text and image features, we used a

combination of the cosine similarity and the RBF kernel, defined as

κ(xa,xb) =
1

2

[
exp

(
−λ‖ga − gb‖2

)
+

f⊤
a fb

‖fa‖‖fb‖

]
,

wherefa andga denote the tf-idf and GIST features for data pointxa, respectively. We tuned the

kernel width for the RBF kernel using grid search in the range[0, 1] to obtain best performance.

We varied the initial sample set size fromm = 5, 000 to m = 20, 000, and the number of

neighbors fromp = 1, 000 to m in multiples of5, 000. The maximum sample set size was set to

M = 50, 000. The number of clustersC was set equal to the true number of classes in the data

set for the CIFAR-100 and Imagenet-164 data sets. The true number of classes is unknown for the

Youtube and Tiny data sets, so we set the number of clusters equal to10, 000. The batch sizeB

was set equal to the initial sample sizem.

We implemented all the algorithms in MATLAB, and executed them 10 times each on a2.8

GHz processor. The memory used was constrained to60 GB. We present the results (mean and

variance) over the10 runs. Different permutations of the data set were input to the clustering algo-

rithms in each run. We used the randomizedkd-trees implementation in the FLANN library [132]

to find the approximate nearest neighbors in the proposed algorithm. The distance function used

by the library was defined as the inverse of the kernel similarity function. The randomizedkd-tree

parameters were set as follows: the number of dimensionsnd to 5, the number of trees to8, and

the approximation error toǫ = 1e−16.

163

Table 5.2 Running time (in seconds) of the proposed sparse kernel k-means and the three baseline
algorithms on the four data sets. The parameters of the proposed algorithm were set tom =
20, 000, M = 50, 000, andp = 1, 000. The sample sizem for the approximate kernelk-means
algorithm was set equal to20, 000 for the CIFAR-100 data set and10, 000 for the remaining data
sets. It is not feasible to execute kernelk-means on the Imagenet-164, Youtube and Tiny data
sets due to their large size. The approximate running time ofkernelk-means on these data sets
is obtained by first executing the algorithm on a randomly chosen subset of50, 000 data points to
find the cluster centers, and then assigning the remaining points to the closest cluster center.

Dataset Sparse Kernel Approx. k-means Kernel
k-means kernel k-means

(proposed) k-means

CIFAR-100 49,887 11,394 1,507 117,513
(±93) (±600) (±332) (±211)

Imagenet-164 74,794 16,023 240,722 182,311
(±870) (±3, 577) (±5, 351) (±14, 916)

Youtube 217,533 57,096 145,039 679,061
(±1, 264) (±2, 196) (±1, 436) (±2, 284)

Tiny 343,560 371,004 359,291 704,656
(±2, 528) (±1, 588) (±7, 045) (±8, 482)

5.5.3 Results

5.5.3.1 Running time

Table 5.2 compares the running time of our algorithm with theapproximate kernelk-means, kernel

k-means andk-means algorithms, when the parametersm andp are equal to20, 000 and1, 000, re-

spectively. On the CIFAR-100 data set, the proposed algorithm takes longer than thek-means algo-

rithm, as expected, because of the additional time requiredfor kernel computation and eigensystem

calculation. It also takes longer than the approximate kernel k-means algorithm, as it performs im-

portance sampling by calculating and updating the eigenvectors of the sparse kernel matrix. On the

other hand, the approximate kernelk-means algorithm selects the subset of the data using uniform

random sampling, and computes the cluster centers using thelow-rank matrix constructed from

this subset. The proposed algorithm, the approximate kernel k-means, and thek-means algorithms

are significantly faster than the kernelk-means algorithm. The proposed algorithm spends more

164

Figure 5.2 Sample images from three of the100 clusters in the CIFAR-100 data set obtained using
the proposed algorithm.

time in updating the eigenvectors and finding the leverage scores than clustering the eigenvectors

to obtain the cluster labels. Similar performance is observed on the Imagenet-164, Youtube and

Tiny data sets. The proposed algorithm is also faster thank-means on the Imagenet-164 data set,

becausek-means takes longer to converge. It is infeasible to computethe full kernel matrix for the

Imagenet-164, Youtube and Tiny data sets, so we were unable to execute kernelk-means on them.

For these data sets, we executed kernelk-means on a50, 000-sized randomly selected subset of

the data, and assigned the remaining points to the closest cluster centers. The proposed algorithm

is also faster than this implementation of kernelk-means, because it takes a long time to find the

distance between the data points and the cluster centers, and assign labels. The proposed algorithm

is also more accurate than this kernelk-means implementation on the Imagenet-164 data set.

5.5.3.2 Cluster quality

Figure 5.2 show examples of clusters obtained, using the sparse kernelk-means algorithm, from the

CIFAR-100 data set. We assigned a class label to each cluster, based on the true class of majority

of the objects in the cluster. Table 5.3 records the silhouette coefficient values of the partitions of

the CIFAR-100 data set. The sparse kernelk-means algorithm achieves values closer to that of the

kernelk-means algorithm. The approximate kernelk-means andk-means algorithms are unable to

165

Table 5.3 Silhouette coefficient (×e − 02) of the proposed sparse kernelk-means and the three
baseline algorithms on the CIFAR-100 data set. The parameters of the proposed algorithm were
set tom = 20, 000, M = 50, 000, andp = 1, 000. The sample sizem for the approximate kernel
k-means algorithm was set equal tom = 20, 000.

Sparse kernel Approx. kernel k-means Kernel
k-means (proposed) k-means k-means

11.36 2.33 3.02 30.18
(±0.07) (±0.02) (±0.01) (±0.13)

0

5

10

15

N
M

I

(a) CIFAR-100

0

5

10

15

N
M

I

(b) Imagenet-164

Figure 5.3 NMI (in %) of the proposed sparse kernelk-means and the three baseline algorithms
on the CIFAR-100 and Imagenet-164 data sets. The parametersof the proposed algorithm were
set tom = 20, 000, M = 50, 000, andp = 1, 000. The sample sizem for the approximate
kernelk-means algorithm was set equal to20, 000 for the CIFAR-100 data set and10, 000 for the
Imagenet-164 data set. It is not feasible to execute kernelk-means on the Imagenet-164 data set,
due to its large size. The approximate NMI value achieved by kernelk-means on the Imagenet-164
data set is obtained by first executing the algorithm on a randomly chosen subset of50, 000 data
points to find the cluster centers, and then assigning the remaining points to the closest cluster
center.

166

achieve similar silhouette values.

We analyze the prediction accuracy, in terms of NMI, of the proposed sparse kernelk-means

using the CIFAR-100 and Imagenet-164 data sets. As the true class labels for the Youtube and Tiny

data sets are not available, we were unable to find the NMI for these data sets. Figure 5.3 shows the

NMI values with respect to the true class labels, for each of the algorithms on the CIFAR-100 and

Imagenet-164 data sets. In Figure 5.3(a), it is observed that the NMI achieved by our algorithm is

close to that of the kernelk-means algorithm. The proposed algorithm outperforms bothk-means

and approximate kernelk-means on both the CIFAR-100 and Imagenet-164 data sets, dueto the

fact that it samples the most informative points from the data set.

5.5.3.3 Parameter sensitivity

Our sparse kernelk-means algorithm relies on three parameters: the initial sample setm, the

maximum size of the sample setM , and the size of the neighborhoodp. We evaluated the effect of

each of these parameters on the performance of the proposed algorithm, using the CIFAR-100 and

Imagenet-164 data sets.

• Initial sample: The initial sample used to construct the kernelK0, and obtain the initial

cluster labels plays a crucial role in the performance of ouralgorithm as shown in Table 5.4,

Table 5.5 and Figure 5.4. They compare the performance of theproposed algorithm and the

approximate kernelk-means algorithm with increasingm value. As expected, the running

time of both the algorithms increases as the initial sample size increases fromm = 5, 000

to m = 20, 000. As m increases, the size of the initial kernelK0, and the time to compute

and decompose it into its eigenvalues and eigenvectors increase proportionately. The initial

sample also determines the number of points sampled from thedata set, as each input batch

is processed. More data points were sampled and added to the buffer S, if the initial sample

did not contain sufficient number of representative points.The time to cluster increases as

more points are added to the buffer. The silhouette coefficient values on the CIFAR-100

167

Table 5.4 Comparison of the running time (in seconds) of the proposed sparse kernelk-means
algorithm and the approximate kernelk-means algorithm on the CIFAR-100 and the Imagenet-164
data sets. Parameterm represents the initial sample set size for the proposed algorithm, and the size
of the sampled subset for the approximate kernelk-means algorithm. The remaining parameters
of the proposed algorithm are set toM = 50, 000, andp = 1, 000. Approximate kernelk-means is
infeasible for the Imagenet-164 data set whenm > 10, 000 due to its large size.

m CIFAR-100 Imagenet-164
Sparse kernel Approx. kernel Sparse kernel Approx. kernel

k-means k-means k-means k-means

5,000 6,192 1,693 24,029 15,691
(±424) (±339) (±4, 469) (±3, 786)

10,000 18,256 4,134 36,669 16,023
(±21) (±549) (±603) (±3, 577)

15,000 34,192 7,856 53,142 -
(±2, 652) (±929) (±3, 058)

20,000 49,887 11,394 74,794 -
(±93) (±600) (±870)

Table 5.5 Comparison of the silhouette coefficient (×e−02) of the proposed sparse kernelk-means
algorithm and the approximate kernelk-means algorithm on the CIFAR-100 data set. Parameter
m represents the initial sample set size for the proposed algorithm, and the size of the sampled
subset for the approximate kernelk-means algorithm. The remaining parameters of the proposed
algorithm were set toM = 50, 000, andp = 1, 000.

m 5,000 10,000 15,000 20,000

Sparse kernel 19.42 11.77 11.67 11.36
k-means (proposed) (±0.12) (±0.04) (±0.06) (±0.07)

Approx. kernel 2.45 2.37 2.45 2.33
k-means (±0.03) (±0.02) (±0.02) (±0.02)

168

5000 10000 15000 20000
0

5

10

m

N
M

I

(a) CIFAR-100

5000 10000 15000 20000
0

5

10

15

m

N
M

I

(b) Imagenet-164

Figure 5.4 Comparison of the NMI (in %) of the proposed sparsekernelk-means algorithm and
the approximate kernelk-means algorithm on the CIFAR-100 and the Imagenet-164 datasets.
Parameterm represents the initial sample set size for the proposed algorithm, and the size of the
sampled subset for the approximate kernelk-means algorithm. The remaining parameters of the
proposed algorithm were set toM = 50, 000, andp = 1, 000. Approximate kernelk-means is
infeasible for the Imagenet-164 data set whenm > 10, 000 due to its large size.

data set decrease minimally whenm increases from5, 000 to 10, 000, but remain constant

for m ≥ 10, 000. On the other hand, there is minimal change in the silhouettevalues of the

approximate kernelk-means algorithm for increasingm. The NMI values achieved by our

algorithm increase considerably as the sample sizem increases, indicating that the initial

sample is important to the clustering accuracy of the proposed algorithm. Even with just

5, 000 data points in the initial sample, our algorithm is able to achieve13% NMI. On the

other hand, the approximate kernelk-means algorithm is unable to achieve the same with

even20, 000 samples. The performance of the sparse kernelk-means algorithm is best when

the sample size is set greater thanC logC, in accordance with Lemma 8.

• Maximum sample size: In our experiments, we set the maximum sample size to50, 000.

We found that this parameter is not as critical as the initialsample, provided that it is set large

enough to accommodate for a sufficiently representative sample. On both the CIFAR-100

and Imagenet-164 data sets, the number of points added to thebuffer range from100 to 500,

on an average. The number of points added decreases as the initial sample sizem increases

169

Table 5.6 Effect of the size of the neighborhoodp on the running time (in seconds), the silhouette
coefficient and NMI (in %) of the proposed sparse kernelk-means algorithm on the CIFAR-100
and Imagenet-164 data sets. The remaining parameters of theproposed algorithm were set to
m = 20, 000, andM = 50, 000.

p CIFAR-100 Imagenet-164
Running time Silhouette coefficient NMI Running time NMI

(×e− 02)

1,000 49,887 11.36 12.23 74,794 16.15
(±93) (±0.07) (±2.3) (±870) (±0.004)

5,000 52,073 11.25 12.09 82,880 17.58
(±483) (±0.06) (±0.02) (±21, 360) (±0.10)

10,000 54,205 12.27 13.86 192,725 18.01
(±874) (±0.12) (±0.07) (±3, 874) (±0.07)

15,000 55,062 11.32 14.00 247,911 18.23
(±837) (±0.09) (±0.01) (±7, 789) (±0.004)

from 5, 000 to 20, 000. For instance, on the CIFAR-100 data set, whenm = 5, 000, 453

additional points were added to the buffer. Whenm = 20, 000, only 69 points were added.

• Size of the neighborhood:The number of neighborsp used to construct the sparse kernel

similarity is also important to the performance of the proposed sparse kernelk-means algo-

rithm. Table 5.6 shows how the running time, the silhouette coefficient values, and the NMI

values on the CIFAR-100 and Imagenet-164 data sets are affected as the value ofp increased

from 1, 000 to 15, 000, and the initial sample sizem was fixed at20, 000. The running time

doubles whenp increased fromp = 1, 000 to p = 15, 000, on both the data sets. This is

due to the fact that a larger number of similarity computations need to be performed as the

value ofp increases. However, although there is a small increase in the silhouette coefficient

and NMI values, the increase is not significant enough to justify the increase in the running

time. We conclude that the neighborhood size is an importantparameter in determining the

efficiency of the algorithm.

• Number of clusters: We show the effect of varying the number of clustersC on the perfor-

mance of the proposed algorithm, in Figures 5.5 and 5.6. The running time of the algorithm

170

20 40 60 80 100
2000

2200

2400

2600

2800

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of clusters (C)
(a) CIFAR-100

50 100 150

1

1.2

1.4

x 10
5

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of clusters (C)
(b) Imagenet-164

0.5 1 1.5 2
x 10

4

2

4

6

8

10
x 10

5

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of
clusters (C)

(c) Youtube

0.5 1 1.5
x 10

4

2

4

6

8

10
x 10

5

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of
clusters (C)

(d) Tiny

Figure 5.5 Effect of the number of clustersC on the running time (in seconds) of the proposed
sparse kernelk-means algorithm.

20 40 60 80 100

7

8

9

10

11

12

N
M

I

Number of clusters (C)
(a) CIFAR-100

50 100 150
12

13

14

15

16

N
M

I

Number of clusters (C)
(b) Imagenet-164

Figure 5.6 Effect of the number of clustersC on the NMI (in %) of the proposed sparse kernel
k-means algorithm.

171

10
5

0.5

1

1.5

2

x 10
4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Size of the data set n
(log scale)

(a)

10
1

10
2

10
3

1000

2000

3000

4000

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Dimensionality of the data set d
(log scale)
(b)

10
1

10
2

10
3

1

2

3

4
x 10

4

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of clusters C
(log scale)
(c)

Figure 5.7 Running time of the sparse kernelk-means clustering algorithm for different values of
(a)n, (b) d and (c)C.

increases with the number of clusters. However, unlike manyother clustering algorithms

including the approximate kernelk-means, RFF, SV and approximate stream kernelk-means

clustering algorithms presented in the earlier chapters, the running time of the sparse kernel

k-means algorithm increases almost logarithmically with the number of clusters, on most

data sets. The NMI values achieved by our algorithm also increase as the number of clus-

ters increase. We note that the NMI values of the proposed algorithm are better than those

achieved by the baseline algorithms, on both the CIFAR-100 and Imagenet-164 data sets, for

all values ofC.

5.5.3.4 Scalability

We varied the number of points, the dimensionality and the number of clusters in the concentric

circles data set, and executed our algorithm on these data sets to examine its scalability. We used

the RBF kernel to compute the inter-point similarity. The algorithm parametersm, p andM were

set tom = 1, 000, p = 100 andM = 20, 000 respectively, and the data was input in batches of10.

Figures 5.7(a), 5.7(b) and 5.7(c) show that the proposed algorithm is linearly scalable with respect

to the size and dimensionality of the data set, and almost logarithmically scalable with respect to the

number of clusters, in accordance with the complexity analysis in Section 5.4.1. In Figure 5.7(a),

the size of the data set is varied fromn = 100 to n = 107, while the dimensionality and the

172

number of clusters are fixed atd = 100 andC = 10. The running time of the proposed algorithm

increases linearly withn. Figure 5.7(b) shows the running time of the proposed algorithm as the

dimensionality of the data varies betweend = 10 andd = 1, 000, while n = 106 andC = 10.

Finally, the running time of our algorithm increases logarithmically as the number of clusters

increases fromC = 10 to C = 1, 000, with n = 106 andd = 100, as shown in Figure 5.7(c).

5.6 Summary

In this chapter, we have proposed the sparse kernelk-means clustering algorithm, which can effi-

ciently cluster large high-dimensional data sets into a large number of clusters. By sampling the

data points based on their novelty, defined in terms of the statistical leverage scores, we only store

the most informative points in the data, thereby limiting the memory requirements. We need to

compute the kernel similarity of the data points only with respect to these sampled points, thus re-

ducing the running time complexity. We further reduce the running time complexity by introducing

sparsity into the kernel, based on the assumption that the kernel function is appropriately defined,

and nearby points in the kernel space have similar labels. Wedemonstrated that the proposed

algorithm is scalable and accurate using several large benchmark data sets.

173

Chapter 6

Summary and Future Work

As the amount of digital data continues to grow at a rapid rate, continued efforts to design and

develop scalable and efficient algorithms to organize this data and extract useful information from

it are essential. We have focused on the unsupervised learning task of clustering in this thesis.

While linear clustering algorithms (e.g.k-means) are fast and scalable, they are incapable of

finding the underlying clusters in real-world data sets withhigh accuracy. On the other hand,

kernel-based clustering algorithms are accurate, but are not scalable to big data sets. We have

proposed a number of kernel-based clustering algorithms which are not only scalable to data sets

containing billions of data points, but also achieve cluster quality comparable to that of the existing

kernel-based clustering algorithms. The proposed algorithms are primarily based onrandomly

sampling the data sets and finding the clusters using fastiterative optimization techniques. The

main contribution of this thesis is the design of approximate algorithms for the advancement of the

scalability of kernel-based clustering, while maintaining the cluster quality, and demonstrating the

performance of the proposed algorithms on diverse data sets.

174

6.1 Contributions

The approximate batch kernel clustering algorithms proposed in Chapters 2 and 3 make the fol-

lowing contributions:

• The approximate kernelk-means algorithm in Chapter 2 demonstrates that, by using uniform

random sampling, kernel-based clustering can be performedin O(nmC+nmd) time, where

n is the size of the given data set,d is its dimensionality,C is the number of clusters, and

m is the number of samples from the data set (m ≪ n). This running time complexity is

significantly smaller than theO(n2C + n2d) complexity of classical kernel-based clustering

algorithms, given thatm ≪ n.

• In contrast to the approximate kernelk-means algorithm, which decomposes the kernel ma-

trix into its low-rank components, the RFF and SV kernel clustering algorithms, introduced

in Chapter 3, factor the kernel function using the Fourier transform, and project the data into

a low-dimensional space spanned by the Fourier components.The RFF and SV clustering

algorithms haveO(nm log(d)+nmC) andO(nm log(d)+nC2) running time complexities,

respectively, wherem ≪ n is the number of Fourier components. Both algorithms perform

well on large high-dimensional data sets. The SV clusteringalgorithm is faster than the RFF

and approximate kernelk-means algorithms, when the number of clustersC is small (less

than100), with a minimal loss in cluster quality.

• The error incurred by the approximate kernelk-means algorithm due to sampling isO(1/m),

which implies that the error reduces linearly, as the numberof data points sampled from the

data set increases. Similarly, the error incurred by the RFFand SV clustering algorithms

reduces at the rate ofO(1/
√
m) andO(1/m), respectively, wherem represents the number

of Fourier components used for projection.

• The best clustering quality is achieved by these approximate algorithms, when the number

175

of samples (or the number of Fourier components)m is significantly greater thanC, and the

eigenvalues of the kernel matrix have a long-tailed distribution.

• The proposed algorithms achieve clustering quality similar to the kernelk-means and spec-

tral clustering algorithms on large benchmark text and image data sets, containing up to10

million data points, with significantly lower running time.

The online kernel clustering algorithms proposed in Chapters 4 and 5 make the following contri-

butions:

• Data streams often contain unbounded number of data points,so it is impossible to store the

entire data set in memory. It is also difficult to uniformly sample streaming data sets because

of their arbitrary size. The approximate stream kernelk-means algorithm, introduced in

Chapter 4, relies onimportancesampling, and thereby uses only the most informative data

points in the stream to perform clustering. Importance sampling is inherently a complex

procedure because it requires the eigendecomposition of the kernel matrix. By devising an

efficient online method to perform importance sampling, we have reduced its running time

complexity. The approximate stream kernelk-means algorithm can cluster large stream data

sets inO(nd+ nC) time.

• We have demonstrated the performance of the approximate stream kernelk-means on the

Twitter stream. It can also be applied to find clusters in financial data, climate data, click-

streams etc.

• When the number of clustersC in the data set is large (in the order of tens of thousands),

the existing kernel clustering algorithms have long running times as a result of their linear

running time complexity with respect toC. By using importance sampling to sample the data

set, and inducing sparsity into the kernel matrix constructed from the sampled data points,

the sparse kernelk-means algorithm, introduced in Chapter 5, reduces this time complexity

176

to O(nd + n logC), with O(1/
√
m) approximation error, wherem is the number of points

sampled from the data set.

• We have demonstrated the scalability of the sparse kernelk-means algorithm on large hetero-

geneous data sets such as the Tiny image data set and the Youtube data set (text and image),

containing millions of data points with upto10, 000 clusters.

• The loss in the clustering quality by the approximate streamkernelk-means and the sparse

kernelk-means algorithms is minimal when compared to the batch kernel k-means clustering

algorithm.

The crux of the proposed algorithms is to randomly sample thelarge data sets and thereby, reduce

the number of similarity computations required to construct the kernel matrix and cluster the data.

The sample size and the sampling strategy play a crucial rolein the performance of the algorithms.

While the proposed batch clustering algorithms select the samples uniformly from the given data

set, the online algorithms employ the more sophisticated importance sampling strategy. The im-

portance sampling technique reduces the total number of samples required because it chooses the

data points intelligently, based on the data distribution.

6.2 Future Work

Kernel-based clustering research presented in this dissertation can be further advanced as follows:

• Parallelization. In contrast to linear clustering algorithms, kernel-basedclustering algo-

rithms need the computation of the kernel matrix, due to which they are more difficult to

parallelize than linear clustering algorithms. The approximate kernel-based clustering algo-

rithms presented in this thesis are easier to parallelize than classical kernel-based cluster-

ing algorithms. Unlike parallel versions of the classical kernel-based clustering algorithms,

which require all the data to be replicated in all the nodes, the approximate kernel-based

177

clustering algorithms require only the sampled data pointsto be replicated. This reduces

the amount of memory required and the communication cost. Wehave demonstrated how

the approximate kernelk-means algorithm can be executed on a distributed frameworkin

Chapter 2. The RFF and SV clustering algorithms can be similarly parallelized. However,

the remaining approximate kernel-based clustering algorithms proposed in this thesis rely

on the eigenvectors of the approximate kernel matrices, andneed effective online parallel

techniques for eigenvector updates. Parallelization of these algorithms can aid in their de-

ployment to large scale computing frameworks.

• Kernel selection.As demonstrated in Chapter 1, the kernel function used to define the inter-

point similarity plays a crucial role in the efficiency and accuracy of kernel clustering. Em-

ploying the wrong kernel for clustering can adversely affect the cluster quality, and can result

in clustering quality worse than that of linear clustering algorithms. However, choosing the

correct kernel, and selecting the kernel parameters is a challenging task. Although a few

algorithms have been proposed to learn the kernel from the data in an unsupervised man-

ner, these algorithms have high running time complexity, resulting in their non-scalability.

More scalable techniques have been developed to learn the kernel in the supervised and

semi-supervised settings, but obtaining the labels for large data sets is expensive and often

impossible. Development of scalable unsupervised kernel learning algorithms is a potential

direction for future work.

• Overlapping clusters.In applications such as user community detection in social networks,

users often belong to more than one community, causing the clusters to overlap with each

other. Very few efforts have been made to find such overlapping clusters using kernel-based

clustering techniques. Fuzzy kernel clustering techniques only compute the probability that

a data point belongs to a cluster, and do not deterministically find the cluster memberships.

More concrete scalable techniques need to be developed to find overlapping clusters in data.

178

BIBLIOGRAPHY

179

BIBLIOGRAPHY

[1] Data Analytics. http://searchdatamanagement.techtarget.com/
definition/data-analytics, Jan 2008.

[2] Big Data in 2020. http://www.emc.com/collateral/analyst-reports/
idc-digital-universe-2014.pdf, Dec 2012. IDC and EMC Corp Report.

[3] M. R. Abbasifard, B. Ghahremani, and H. Naderi. A survey on nearest neighbor search
methods.International Journal of Computer Applications, 95(25):39–52, 2014.

[4] M. E. Abbasnejad, D. Ramachandram, and R. Mandava. A survey of the state of the art in
learning the kernels.Knowledge and Information Systems, 31(2):193–221, 2012.

[5] D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approximations.Jour-
nal of the ACM, 54(2), 2007.

[6] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and C. Sohler.
StreamKM++: A clustering algorithm for data streams.Journal of Experimental Algorith-
mics, 17:1–30, 2012.

[7] R. H. Affandi, A. Kulesza, E. Fox, and B. Taskar. Nystrom approximation for large-scale
determinantal processes. InProceedings of the International Conference on Artificial Intel-
ligence and Statistics, pages 85–98, 2013.

[8] C. C. Aggarwal. A survey of stream clustering algorithms. In Data Clustering: Algorithms
and Applications, pages 231–258. 2013.

[9] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high
dimensional data streams. InProceedings of the International Conference on Very Large
Data Bases, pages 852–863, 2004.

[10] N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. InProceedings
of the Conference on Neural Information Processing Systems, pages 10–18, 2009.

[11] C. Alzate and J. A. K. Suykens. Multiway spectral clustering with out-of-sample exten-
sions through weighted kernel PCA.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(2):335–347, 2010.

[12] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. InProceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035, 2007.

[13] K. Bache and M. Lichman. UCI machine learning repository. http://archive.ics.
uci.edu/ml, 2013.

180

http://searchdatamanagement.techtarget.com/definition/data-analytics
http://searchdatamanagement.techtarget.com/definition/data-analytics
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[14] A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for image classification. In
Proceedings of the International Conference on Image Processing, volume 3, pages 513–
516, 2003.

[15] O. Beaumont, H. Larchevêque, and L. Marchal. Non-linear divisible loads: There is no free
lunch. InProceedings of the International Parallel and DistributedProcessing Symposium,
pages 1–10, 2012.

[16] H. Becker, M. Naaman, and L. Gravano. Beyond trending topics: Real-world event iden-
tification on twitter. InProceedings of the International AAAI Conference on Weblogs and
Social Media, pages 438–441, 2011.

[17] M. A. Belabbas and P. J. Wolfe. Spectral methods in machine learning and new strategies
for very large datasets.Proceedings of the National Academy of Sciences, 106(2):369–374,
2009.

[18] S. Belongie, C. Fowlkes, F. Chung, and J. Malik. Spectral partitioning with indefinite kernels
using the Nystrom extension. InProceedings of the European Conference on Computer
Vision, pages 531–542. 2002.

[19] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clustering.The
Journal of Machine Learning Research, 2:125–137, 2002.

[20] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new per-
spectives.IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–
1828, 2013.

[21] M. W. Berry. Large-scale sparse singular value computations. International Journal of
Supercomputer Applications, 6(1):13–49, 1992.

[22] M. W. Berry, S. A. Pulatova, and G. W. Stewart. Computingsparse reduced-rank approxi-
mations to sparse matrices.ACM Transactions on Mathematical Software, 31(2):252–269,
2005.

[23] J. A. Blackard and D. J. Dean. Comparative accuracies ofartificial neural networks and dis-
criminant analysis in predicting forest cover types from cartographic variables.Computers
and Electronics in Agriculture, 24(3):131–152, 1999.

[24] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

[25] L. Bo and C. Sminchisescu. Efficient match kernel between sets of features for visual
recognition. InProceedings of the Conference on Neural Information Processing Systems,
pages 135–143, 2009.

[26] S. Bochner and K. Chandrasekharan.Fourier Transforms. Princeton University Press, 1949.

181

[27] L. Bottou and V. Vapnik. Local learning algorithms.Neural Computation, 4(6):888–900,
1992.

[28] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improvedapproximation algorithm for the
column subset selection problem. InProceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pages 968–977, 2009.

[29] D. C. Brabham.Crowdsourcing. MIT Press, 2013.

[30] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algorithms to large databases.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pages 9–15, 1998.

[31] M. Brand. Fast low-rank modifications of the thin singular value decomposition.Linear
Algebra and its Applications, 415(1):20–30, 2006.

[32] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data
stream with noise. InProceedings of the SIAM International Conference on Data Mining,
pages 328–339, 2006.

[33] R. Cattral, F. Oppacher, and D. Deugo. Evolutionary data mining with automatic rule gener-
alization.Recent Advances in Computers, Computing and Communications, pages 296–300,
2002.

[34] S. Chatterjee and A. S. Hadi. Influential observations,high leverage points, and outliers in
linear regression.Statistical Science, 1(3):379–393, 1986.

[35] W. Chen, Y. Song, H. Bai, C. Lin, and E. Y. Chang. Parallelspectral clustering in distributed
systems.IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3):568–586,
2011.

[36] Y. Chen and L. Tu. Density-based clustering for real-time stream data. InProceedings of
the International Conference on Knowledge Discovery and Data Mining, pages 133–142,
2007.

[37] Y. Cheng. Mean shift, mode seeking, and clustering.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17(8):790–799, 1995.

[38] R. Chitta, A. K. Jain, and R. Jin. Sparse kernel clustering of massive high-dimensional data
sets with large number of clusters. InProceedings of the PhD Workshop at the International
Conference on Information and Knowledge Management, 2015.

[39] R. Chitta, A. K. Jain, and R. Jin. Sparse kernel clustering of massive high-dimensional
data sets with large number of clusters. Technical Report MSU-CSE-15-10, Department of
Computer Science, Michigan State University, 2015.

182

[40] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel k-means: Solution to
large scale kernel clustering. InProceedings of the International Conference on Knowledge
Discovery and Data mining, pages 895–903, 2011.

[41] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Scalable kernel clustering: Approximate
kernel k-means.arxiv preprint arXiv:1402.3849, 2014.

[42] R. Chitta, R. Jin, and A. K. Jain. Efficient kernel clustering using random fourier features.
In Proceedings of the International Conference on Data Mining, pages 161–170, 2012.

[43] R. Chitta, R. Jin, and A. K. Jain. Stream clustering: Efficient kernel-based approximation
using importance sampling. InProceedings of the ICDM Workshop on Data Science and
Big Data Analytics, 2015.

[44] J. Chiu and L. Demanet. Sublinear randomized algorithms for skeleton decompositions.
SIAM Journal on Matrix Analysis and Applications, 34(3):1361–1383, 2013.

[45] A. Clauset, C. R. Shalizi, and Mark E.J. Newman. Power-law distributions in empirical
data.SIAM Review, 51(4):661–703, 2009.

[46] C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on learning
accuracy.Journal of Machine Learning Research, 9:113–120, 2010.

[47] T. F. Cox and M. A. A. Cox.Multidimensional Scaling. CRC Press, 2000.

[48] A.S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online
collaborative filtering. InProceedings of the International Conference on World Wide Web,
pages 271–280, 2007.

[49] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. InProceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

[50] A. Deshpande and S. Vempala. Adaptive sampling and fastlow-rank matrix approxima-
tion. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and
Techniques, pages 292–303. 2006.

[51] I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering
and graph cuts. Technical Report TR-04-25, Department of Computer Science, University
of Texas at Austin, 2004.

[52] C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. InProceedings of the SIAM Data Mining Conference, pages 606–
610, 2005.

[53] J. A. Doornik. An improved Ziggurat method to generate normal random samples.Univer-
sity of Oxford, 2005.

183

[54] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte-Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix.SIAM Journal on Computing, 36(1):158–
183, 2006.

[55] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte-Carlo algorithms for matrices III:
Computing a compressed approximate matrix decomposition.SIAM Journal on Computing,
36(1):184–206, 2006.

[56] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast approximation
of matrix coherence and statistical leverage.The Journal of Machine Learning Research,
13(1):3475–3506, 2012.

[57] P. Drineas and M. W. Mahoney. On the Nystrom method for approximating a Gram matrix
for improved kernel-based learning.The Journal of Machine Learning Research, 6:2153–
2175, 2005.

[58] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.Psy-
chometrika, 1(3):211–218, 1936.

[59] R. Edmonds, E. Guskin, A. Mitchell, and M. Jurkowitz. The State
of the News Media 2013. http://stateofthemedia.org/
2013/newspapers-stabilizing-but-still-threatened/
newspapers-by-the-numbers, May 2013. Poynter Institute and Pew Research
Center Report.

[60] A. Ene, S. Im, and B. Moseley. Fast clustering using MapReduce. InProceedings of the
International Conference on Knowledge Discovery and Data mining, pages 681–689, 2011.

[61] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. InProceedings of the International Conference
on Knowledge Discovery and Data mining, pages 226–231, 1996.

[62] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revisited.ACM
SIGKDD Explorations Newsletter, 2(1):51–57, 2000.

[63] D. Feldman, M. Schmidt, and C. Sohler. Turning Big data into tiny data: Constant-size
coresets for k-means, PCA and projective clustering. InProceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 1434–1453, 2013.

[64] C. Fellbaum.WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[65] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. Asurvey of kernel and spectral
methods for clustering.Pattern Recognition, 41(1):176–190, 2008.

[66] G. D. Forney. Generalized minimum distance decoding.IEEE Transactions on Information
Theory, 12(2):125–131, 1966.

184

http://stateofthemedia.org/2013/newspapers-stabilizing-but-still-threatened/newspapers-by-the-numbers
http://stateofthemedia.org/2013/newspapers-stabilizing-but-still-threatened/newspapers-by-the-numbers
http://stateofthemedia.org/2013/newspapers-stabilizing-but-still-threatened/newspapers-by-the-numbers

[67] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nystrom
method.IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 214–225,
2004.

[68] C. Fraley and A. E. Raftery. How many clusters? Which clustering method? Answers via
model-based cluster analysis.The Computer Journal, 41(8):578–588, 1998.

[69] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank
approximations. InProceedings of the Foundations of Computer Science, pages 370–378,
1998.

[70] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank
approximations.Journal of the ACM, 51(6):1025–1041, 2004.

[71] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S.Smolinski, and L. Brilliant.
Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012–
1014, 2008.

[72] M. Girolami. Mercer kernel-based clustering in feature space.IEEE Transactions on Neural
Networks, 13(3):780–784, 2002.

[73] A. Gittens, P. Kambadur, and C. Boutsidis. Approximatespectral clustering via randomized
sketching.arXiv preprint arXiv:1311.2854, 2013.

[74] A. Gittens and M. W. Mahoney. Revisiting the Nystrom method for improved large-scale
machine learning.arXiv preprint arXiv:1303.1849, 2013.

[75] F. Godin, V. Slavkovikj, W. De Neve, B. Schrauwen, and R.Van de Walle. Using topic
models for twitter hashtag recommendation. InProceedings of the International Conference
on World Wide Web Companion, pages 593–596, 2013.

[76] J. C. Gower. Adding a point to vector diagrams in multivariate analysis. Biometrika,
55(3):582–585, 1968.

[77] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis.
Applied Statistics, pages 54–64, 1969.

[78] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V.Vapnik. Parallel support vector
machines: The cascade SVM. InProceedings of the Conference on Neural Information
Processing Systems, pages 521–528, 2004.

[79] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data
streams: Theory and practice.IEEE Transactions on Knowledge and Data Engineering,
pages 515–528, 2003.

[80] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large
databases.Information Systems, 26(1):35–58, 2001.

185

[81] R. Hamid, Y. Xiao, A. Gittens, and D. DeCoste. Compact random feature maps.arXiv
preprint arXiv:1312.4626, 2013.

[82] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the ACM Symposium on Theory of Computing, pages 291–300, 2004.

[83] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning, volume 2.
Springer, 2009.

[84] T. C. Havens. Approximation of kernel k-means for streaming data. InProceedings of the
International Conference on Pattern Recognition, pages 509–512, 2012.

[85] T. C. Havens and J. C. Bezdek. An efficient formulation ofthe improved visual assess-
ment of cluster tendency (iVAT) algorithm.IEEE Transactions on Knowledge and Data
Engineering, 24(5):813–822, 2012.

[86] A. Jain, Z. Zhang, and E. Y. Chang. Adaptive non-linear clustering in data streams. In
Proceedings of the International Conference on Information and Knowledge Management,
pages 122–131, 2006.

[87] A. K. Jain. Data clustering: 50 years beyond k-means.Pattern Recognition Letters,
31(8):651–666, 2010.

[88] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data. Prentice-Hall, Inc., 1988.

[89] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical patternrecognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

[90] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:A review. ACM Computing
Surveys, 31(3):264–323, 1999.

[91] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R.Silverman, and A. Y. Wu. An
efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

[92] P. Kar and H. Karnick. Random feature maps for dot product kernels. InProceedings of the
International Conference on Artificial Intelligence and Statistics, pages 583–591, 2012.

[93] G. Karypis and V. Kumar. A software package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report,
Department of Computer Science, University of Minnesota, 1998.

[94] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Blackwell, 2005.

[95] D. W. Kim, K. Y. Lee, D. Lee, and K. H. Lee. Evaluation of the performance of clustering
algorithms in kernel-induced feature space.Pattern Recognition, 38(4):607–611, 2005.

186

[96] T. Kohonen.Self-organizing Maps. Springer, 2001.

[97] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques.Infor-
matica, 31(3), 2007.

[98] P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The ClusTree: Indexing micro-clusters for
anytime stream mining.Knowledge and Information Systems, 29(2):249–272, 2011.

[99] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Department of Computer Science, University of Toronto, 2009.

[100] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search.
In Proceedings of the International Conference on Computer Vision, pages 2130–2137,
2009.

[101] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time(1+ ǫ)-approximation algorithm
for k-means clustering in any dimensions. InProceedings of the IEEE Symposium on Foun-
dations of Computer Science, pages 454–462, 2004.

[102] S. Kumar, M. Mohri, and A. Talwalkar. On sampling-based approximate spectral decom-
position. InProceedings of the International Conference on Machine Learning, pages 553–
560, 2009.

[103] S. Kumar, M. Mohri, and A. Talwalkar. Sampling techniques for the Nystrom method. In
Proceedings of Conference on Artificial Intelligence and Statistics, pages 304 – 311, 2009.

[104] T. O. Kvalseth. Entropy and correlation: Some comments. IEEE Transactions on Systems,
Man and Cybernetics, 17(3):517–519, 1987.

[105] D. Laney. 3D data management: Controlling data volume, velocity, and variety. Technical
report, META Group, 2001.

[106] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories. InProceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, volume 2, pages 2169–2178, 2006.

[107] Q. Le, T. Sarlos, and A. Smola. Fastfood - Approximating kernel expansions in loglinear
time. In Proceedings of the International Conference on Machine Learning, pages 16–21,
2013.

[108] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

[109] J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix approximation. In
Proceedings of International Conference on Machine Learning, pages 82–90, 2013.

[110] F. Li, C. Ionescu, and C. Sminchisescu. Random Fourierapproximations for skewed multi-
plicative histogram kernels.Pattern Recognition, pages 262–271, 2010.

187

[111] M. Li, J. T. Kwok, and B. Lu. Making large-scale Nystromapproximation possible. In
Proceedings of the International Conference on Machine Learning, pages 631–638, 2010.

[112] B. Liu, S. X. Xia, and Y. Zhou. Unsupervised non-parametric kernel learning algorithm.
Knowledge-Based Systems, 44:1–9, 2013.

[113] L. L. Liu, X. B. Wen, and X. X. Gao. Segmentation for SAR image based on a new spectral
clustering algorithm. Life System Modeling and Intelligent Computing, pages 635–643,
2010.

[114] R. Liu and H. Zhang. Sampling criteria for the Nystrom method.http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6368.

[115] T. Liu, C. Rosenberg, and H.A. Rowley. Clustering billions of images with large scale
nearest neighbor search. InProceedings of the IEEE Workshop on Applications of Computer
Vision, pages 28–33, 2007.

[116] S. Lloyd. Least squares quantization in PCM.IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[117] D. G. Lowe. Distinctive image features from scale-invariant keypoints.International Jour-
nal of Computer Vision, 60(2):91–110, 2004.

[118] U. Luxburg. A tutorial on spectral clustering.Statistics and Computing, 17(4):395–416,
2007.

[119] U. Luxburg.Clustering Stability. Now Publishers Inc., 2010.

[120] D. MacDonald and C. Fyfe. The kernel self-organising map. In Proceedings of the In-
ternational Conference on Knowledge-Based Intelligent Engineering Systems and Allied
Technologies, volume 1, pages 317–320, 2002.

[121] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-Hard.
In Proceedings of the International Workshop on Algorithms and Computation, pages 274–
285, 2009.

[122] M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

[123] O. A. Maillard and R. Munos. Compressed least-squaresregression. InProceedings of the
Conference on Neural Information Processing Systems, pages 1213–1221, 2009.

[124] S. Malinowski and R. Morla. A single pass Trellis-based algorithm for clustering evolving
data streams.Data Warehousing and Knowledge Discovery, pages 315–326, 2012.

[125] C. D. Manning, P. Raghavan, and H. Schütze.Introduction to Information Retrieval. Cam-
bridge University Press, 2008.

188

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6368
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6368

[126] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. InProceedings of the International Conference
on Knowledge Discovery and Data Mining, pages 169–178, 2000.

[127] G. McLachlan and D. Peel.Finite Mixture Models. John Wiley & Sons, 2004.

[128] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of afeather: Homophily in social
networks.Annual Review of Sociology, pages 415–444, 2001.

[129] A. K. Menon and C. Elkan. Fast algorithms for approximating the singular value decompo-
sition. ACM Transactions on Knowledge Discovery from Data, 5(2):1–36, 2011.

[130] K. Mizumoto, H. Yanagimoto, and M. Yoshioka. Sentiment analysis of stock market news
with semi-supervised learning. InProceedings of the IEEE/ACIS International Conference
on Computer and Information Science, pages 325–328, 2012.

[131] A. W. Moore. An introductory tutorial on kd-trees. Technical report, Department of Com-
puter Science, Carnegie Mellon University, 1991.

[132] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240, 2014.

[133] R. Nallapati, W. Cohen, and J. Lafferty. Parallelizedvariational EM for Latent Dirichlet
Allocation: An experimental evaluation of speed and scalability. ICDM Workshop on High
Performance Data Mining, pages 349–354, 2007.

[134] O. Nasraoui, C. Cardona, and C. Rojas. Using retrievalmeasures to assess similarity in min-
ing dynamic web clickstreams. InProceedings of the International Conference on Knowl-
edge Discovery in Data Mining, pages 439–448, 2005.

[135] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed inference for Latent
Dirichlet Allocation. InProceedings of the Conference on Neural Information Processing
Systems, pages 17–24, 2007.

[136] R. T. Ng and J. Han. CLARANS: A method for clustering objects for spatial data mining.
IEEE Transactions on Knowledge and Data Engineering, pages 1003–1016, 2002.

[137] N. H. Nguyen, P. Drineas, and T. D. Tran. Matrix sparsification via the Khintchine inequal-
ity. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
164.4755&rep=rep1&type=pdf, 2009.

[138] L. Nguyen-Dinh, C. Waldburger, D. Roggen, and G. Tröster. Tagging human activities in
video by crowdsourcing. InProceedings of the Conference on International Conferenceon
Multimedia Retrieval, pages 263–270, 2013.

[139] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang. Incremental spectral clustering by
efficiently updating the eigen-system.Pattern Recognition, 43(1):113–127, 2010.

189

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.4755&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.4755&rep=rep1&type=pdf

[140] L. O’Callaghan, N. Mishra, S. Guha, A. M. Meyerson, andR. Motwani. Streaming-data
algorithms for high-quality clustering. InProceedings of the International Conference on
Data Engineering, pages 685–695, 2002.

[141] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope.International Journal of Computer Vision, 42(3):145–175, 2001.

[142] M. Ouimet and Y. Bengio. Greedy spectral embedding. InProceedings of the International
Workshop on Artificial Intelligence and Statistics, pages 253–260, 2005.

[143] S. Owen, R. Anil, T. Dunning, and E. Friedman.Mahout in Action. Manning Publications
Co., 2011.

[144] G. Petkos, S. Papadopoulos, and Y. Kompatsiaris. Two-level message clustering for topic
detection in Twitter. InProceedings of the SNOW Data Challenge, pages 49–56, 2014.

[145] A. K. Qinand and P. N. Suganthan. Kernel neural gas algorithms with application to cluster
analysis.Pattern Recognition, 4:617–620, 2004.

[146] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant kernels.
In Proceedings of the Conference on Neural Information Processing Systems, pages 1509–
1517, 2009.

[147] A. Rahimi and B. Recht. Random features for large-scale kernel machines. InProceedings
of the Conference on Neural Information Processing Systems, pages 1177–1184, 2007.

[148] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, andC. Kozyrakis. Evaluating mapre-
duce for multi-core and multiprocessor systems. InProceedings of the IEEE Symposium on
High Performance Computer Architecture, pages 13–24, 2007.

[149] P. P. Rodrigues. Learning from ubiquitous data streams: Clustering data and data sources.
AI Communications, 25(1):69–71, 2012.

[150] K. D. Rosa, R. Shah, B. Lin, A. Gershman, and R. Frederking. Topical clustering of tweets.
In Proceedings of the ACM SIGIR Workshop on Social Web Search and Mining, 2011.

[151] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis.Journal of Computational and Applied Mathematics, 20:53–65, 1987.

[152] W. Rudin.Fourier Analysis on Groups. Wiley-Interscience, 1990.

[153] T. Sakai and A. Imiya. Fast spectral clustering with random projection and sampling.Ma-
chine Learning and Data Mining in Pattern Recognition, pages 372–384, 2009.

[154] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kauf-
mann, 2006.

190

[155] T. Sarlos. Improved approximation algorithms for large matrices via random projections. In
Proceedings of the IEEE Symposium on Foundations of Computer Science, pages 143–152,
2006.

[156] F. Schleif, A. Gisbrecht, and B. Hammer. Acceleratingkernel neural gas. InProceedings of
the International Conference on Artificial Neural Networksand Machine Learning, pages
150–158. 2011.

[157] F. Schleif, X. Zhu, A. Gisbrecht, and B. Hammer. Fast approximated relational and kernel
clustering. InProceedings of the International Conference on Pattern Recognition, pages
1229–1232, 2012.

[158] B. Schölkopf, R. Herbrich, and A. Smola. A generalizedrepresenter theorem. InProceed-
ings of Computational Learning Theory, pages 416–426, 2001.

[159] B. Schölkopf and A. Smola.Learning with kernels: Support vector machines, regulariza-
tion, optimization, and beyond (Adaptive computation and machine learning). The MIT
Press, 2001.

[160] B. Schölkopf, A. Smola, and K. R. Muller. Nonlinear component analysis as a kernel eigen-
value problem.Neural Computation, 10(5):1299–1314, 1996.

[161] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2002.

[162] M. Shindler, A. Wong, and A. W. Meyerson. Fast and accurate k-means for large datasets.
In Proceedings of the Conference on Neural Information Processing Systems, pages 2375–
2383, 2011.

[163] H. D. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidiagonaliza-
tion process with applications.SIAM Journal on Scientific Computing, 21(6):2257–2274,
2000.

[164] A. Smola, L. Song, and C. H. Teo. Relative novelty detection. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, volume 5, pages 536–543,
2009.

[165] S. Steve and D. X. Zhou. Geometry on probability spaces. Constructive Approximation,
30:311–323, 2009.

[166] G. W. Stewart.Matrix Perturbation Theory. Academic Press, 1990.

[167] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan. Cost-based modeling for
fraud and intrusion detection: Results from the JAM project. In Proceedings of the DARPA
Information Survivability Conference and Exposition, volume 2, pages 130–144, 2000.

191

[168] A. Strehl and J. Ghosh. Cluster ensembles - A knowledgereuse framework for combining
multiple partitions.Journal of Machine Learning Research, 3:583–617, 2003.

[169] Z. Sun and G. Fox. Study on parallel SVM based on MapReduce. InProceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applica-
tions, pages 495–561, 2012.

[170] A. Talwalkar and A. Rostamizadeh. Matrix coherence and the Nystrom method. InPro-
ceedings of Conference on Uncertainty in Artificial Intelligence, 2010.

[171] P. Tan, M. Steinbach, and V. Kumar.Introduction to Data Mining. Pearson Education, 2007.

[172] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via
the gap statistic.Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2):411–423, 2001.

[173] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(11):1958 –1970, 2008.

[174] J. W. Tukey.Exploratory Data Analysis. Reading, MA, 1977.

[175] J. Tzeng. Split-and-combine singular value decomposition for large-scale matrix.Journal
of Applied Mathematics, 2013.

[176] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.Informa-
tion Processing Letters, 40(4):175–179, 1991.

[177] H. Valizadegan and R. Jin. Generalized maximum marginclustering and unsupervised ker-
nel learning. InProceedings of the Conference on Neural Information Processing Systems,
pages 1417–1424, 2006.

[178] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision
algorithms.http://www.vlfeat.org, 2008.

[179] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(3):480–492, 2012.

[180] S. Vega-Pons and J. Ruiz-Schulcloper. A survey of clustering ensemble algorithms.Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 25(3):337–372, 2011.

[181] R. Vidal. Subspace clustering.IEEE Signal Processing Magazine, 28(2):52–68, 2011.

[182] J. Wang, S. C. H. Hoi, P. Zhao, J. Zhuang, and Z. Liu. Large scale online kernel classifica-
tion. In Proceedings of the International Joint Conference on Artificial Intelligence, pages
1750–1756, 2013.

192

http://www.vlfeat.org

[183] L. Wang, C. Leckie, R. Kotagiri, and J. Bezdek. Approximate pairwise clustering for large
data sets via sampling plus extension.Pattern Recognition, 44(2):222–235, 2011.

[184] S. Wang and Z. Zhang. A scalable CUR matrix decomposition algorithm: Lower time
complexity and tighter bound. InProceedings of the Conference on Neural Information
Processing Systems, pages 656–664, 2012.

[185] K. Q. Weinberger, M. Slaney, and R. Zwol. Resolving tagambiguity. InProceedings of
Conference on Multimedia, pages 111–120, 2008.

[186] J. J. Whang, X. Sui, and I. S. Dhillon. Scalable and memory-efficient clustering of large-
scale social networks. InProceedings of the International Conference on Data Mining,
pages 705–714, 2012.

[187] C. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines. In
Proceedings of the Conference on Neural Information Processing Systems, pages 682–688,
2001.

[188] M. Wu and B. Schölkopf. A local learning approach for clustering. InProceedings of the
Conference on Neural Information Processing Systems, pages 1529–1536, 2006.

[189] Z. Xiaojin. Semi-supervised learning literature survey. Technical Report 1530, Department
of Computer Science, University of Wisconsin-Madison, 2005.

[190] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. InAdvances
in Neural Information Processing systems, pages 1537–1544, 2004.

[191] D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering. InProceedings
of the International Conference on Knowledge Discovery andData mining, pages 907–916,
2009.

[192] H. Zha, X. He, C. Ding, M. Gu, and H. D. Simon. Spectral relaxation for k-means clustering.
In Proceedings of the Conference on Neural Information Processing Systems, pages 1057–
1064, 2001.

[193] D. Zhang, S. Chen, and K. Tan. Improving the robustnessof online agglomerative clustering
method based on kernel-induce distance measures.Neural Processing Letters, 21(1):45–51,
2005.

[194] K. Zhang and J. T. Kwok. Clustered Nystrom method for large scale manifold learning and
dimension reduction.IEEE Transactions on Neural Networks, 21(10):1576–1587, 2010.

[195] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nystrom low-rank approximation and
error analysis. InProceedings of the International Conference on Machine Learning, pages
1232–1239, 2008.

193

[196] R. Zhang and A. I. Rudnicky. A large scale clustering scheme for kernel k-means.Pattern
Recognition, 4:289–292, 2002.

[197] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for
very large databases.ACM SIGMOD Record, 25(2):103–114, 1996.

[198] Y. M. Zhang, K. Huang, G. Geng, and C. Liu. Fastk-nn graph construction with locality
sensitive hashing.Machine Learning and Knowledge Discovery in Databases, pages 660–
674, 2013.

[199] W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on MapReduce.Cloud
Computing, pages 674–679, 2009.

[200] J. Zhuang, J. Wang, S. C. H. Hoi, and X. Lan. Unsupervised multiple kernel learning.
Journal of Machine Learning Research, 20:129–144, 2011.

194

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	Introduction
	Data Analysis
	Data Representation
	Learning
	Inference

	Clustering
	Clustering Algorithms
	Challenges in Data Clustering

	Clustering Big Data
	Clustering with k-means

	Kernel Based Clustering
	Kernel k-means
	Challenges
	Scalability
	Choice of kernel

	Thesis Contributions
	Data sets and Evaluation Metrics
	Data sets
	Evaluation Metrics

	Thesis Overview

	Approximate Kernel-based Clustering
	Introduction
	Related Work
	Low-rank Matrix Approximation
	CUR matrix approximation
	Nystrom matrix approximation

	Kernel-based Clustering for Large Data sets

	Approximate Kernel k-means
	Parameters
	Sample size
	Sampling strategies

	Analysis
	Computational complexity
	Approximation error

	Distributed Clustering

	Experimental Results
	Data sets
	Baselines
	Parameters
	Results
	Running time
	Cluster quality
	Parameter sensitivity
	Sampling strategies
	Scalability analysis

	Distributed Approximate Kernel k-means

	Summary

	Kernel-based Clustering Using Random Feature Maps
	Introduction
	Background
	Kernel Clustering using Random Fourier Features
	Analysis
	Computational complexity
	Approximate error

	Kernel Clustering using Random Fourier Features in Constrained Eigenspace
	Analysis
	Computational complexity
	Approximation error

	Out-of-sample Clustering

	Experimental Results
	Data sets
	Baselines
	Parameters
	Results
	Running time
	Cluster quality
	Parameter sensitivity
	Scalability
	Out-of-sample clustering

	Summary

	Stream Clustering
	Introduction
	Background
	Approximate Kernel k-means for Streams
	Sampling
	Clustering
	Label Assignment

	Implementation and Complexity
	Experimental Results
	Data sets
	Baselines
	Parameters
	Results
	Clustering efficiency and quality
	Parameter sensitivity:

	Applications: Twitter Stream Clustering
	Summary

	Kernel-Based Clustering for Large Number of Clusters
	Introduction
	Background
	Sparse Kernel k-means
	Analysis
	Computational Complexity
	Approximation Error

	Experimental Results
	Data sets
	Baselines and Parameters
	Results
	Running time
	Cluster quality
	Parameter sensitivity
	Scalability

	Summary

	Summary and Future Work
	Contributions
	Future Work

	BIBLIOGRAPHY

