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ABSTRACT
KERNEL-BASED CLUSTERING OF BIG DATA
By
Radha Chitta

There has been a rapid increase in the volume of digital degatbe recent years. A study by
IDC and EMC Corporation predicted the creation of 44 zettebyi 02 bytes) of digital data by
the year 2020. Analysis of this massive amounts of data, lndgiknown asbig data necessi-
tates highly scalable data analysis techniques. Clugtésian exploratory data analysis tool used
to discover the underlying groups in the data. The statidwfart algorithms for clustering big
data sets arbnear clustering algorithms, which assume that the data is lipessaparable in the
input space, and use measures such as the Euclidean disiatefae the inter-point similarities.
Though efficient, linear clustering algorithms do not aghikigh cluster quality on real-world data
sets, which are not linearly separable. Kernel-basedeariugf algorithms employ non-linear simi-
larity measures to define the inter-point similarities. Assult, they are able to identify clusters of
arbitrary shapes and densities. However, kernel-basstecing techniques suffer from two major

limitations:

(i) Their running time and memory complexity increase qaéidally with the increase in the

size of the data set. They cannot scale up to data sets cimgtaitiions of data points.

(i) The performance of the kernel-based clustering athars is highly sensitive to the choice
of the kernel similarity function. Ad hoc approaches, retyion prior domain knowledge,
are currently employed to choose the kernel function, and difficult to determine the

appropriate kernel similarity function for the given dagd. s

In this thesis, we develop scalable approximate kerneddbakistering algorithms using random

sampling and matrix approximation techniques. They castetbig data sets containing billions



of high-dimensional points not only as efficiently as linelstering algorithms but also as accu-
rately as classical kernel-based clustering algorithms.

Our first contribution is based on the premise that the sitylanatrices corresponding to big
data sets can usually be well-approximated by low-rankioegbuilt from a subset of the data.
We develop an approximate kernel-based clustering algoritvhich uses a low-rank approximate
kernel matrix, constructed from a uniformly sampled smaliset of the data, to perform cluster-
ing. We show that the proposed algorithm has linear runnimg tomplexity and low memory
requirements, and also achieves high cluster quality, yahevided with sufficient number of data
samples. We also demonstrate that the proposed algorithrbe@asily parallelized to handle
distributed data sets. We then employ non-linear randotuifeanaps to approximate the kernel
similarity function, and design clustering algorithms aenhance the efficiency of kernel-based
clustering, as well as label assignment for previously engata points.

Our next contribution is an online kernel-based clusteailggrithm that can cluster potentially
unbounded stream data in real-time. It intelligently saesghe data stream and finds the cluster
labels using these sampled points. The proposed schemeesafifiective than the current kernel-
based and linear stream clustering techniques, both irstefmfficiency and cluster quality.

We finally address the issues of high dimensionality andakdlitly to data sets containing a
large number of clusters. Under the assumption that theskeratrix is sparse when the number of
clusters is large, we modify the above online kernel-basestering scheme to perform clustering
in a low-dimensional space spanned by the top eigenvecfafseosparse kernel matrix. The
combination of sampling and sparsity further reduces theing time and memory complexity.

The proposed clustering algorithms can be applied in a nuoflveal-world applications. We
demonstrate the efficacy of our algorithms using severgélaenchmark text and image data sets.
For instance, the proposed batch kernel clustering algnsgtwere used to cluster large image
data sets (e.g. Tiny) containing up to 80 million images. Pphiposed stream kernel clustering

algorithm was used to cluster over a billion tweets from Tevjtfor hashtag recommendation.
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Chapter 1

Introduction

Over the past couple of decades, great advancements havebée in data generation, collection
and storage technologies. This has resulteddigaal data explosionData is uploaded everyday
by billions of users to the web in the form of text, image, auaind video, through various media
such as blogs, e-mails, social networks, photo and videtirfgoservices. It is estimated that
204 million e-mail messages are exchanged every minateer a billion users on Facebook share
4.75 billion pieces of content every half hour, includiago million photos andt million videos;
and300 hours of videos are uploaded to YouTube every mifiute addition, a large amount of
data about the web users and their web activity is collecyed bost of companies like Google,
Microsoft, Facebook and Twitter. This data is now populéelyned a8ig Data[105].

Big data is formally defined as “high volume, high velocitpdéor high variety information
assets that require new forms of processing to enable eetiaecision making, insight discovery
and process optimization”. It is characterized by3kés - Volume, Velocity, and Variety. Volume
indicates the scale of the data. A study by IDC and EMC Cotpmgredicted the creation
of 44 zettabytes1()?>' bytes) of digital data by the year 2020 (See Figure 1.1) [2hisDoils

http://mashable.com/2014/04/23/data-online-evenyuite

2http:/lwww.digitaltrends.com/social-media /accordingfacebook-there-are-350-million-photos-uploaded
-on-the-social- network-daily-and-thats-just-crazy

Shttps://www.youtube.com/yt/press/statistics.html
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Opportunity for Big Data
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Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

Figure 1.1 Emerging size of the digital world. Image from.[2]

down to about 2.3 zettabytes of data generated every dagcitetelates to real-time processing
of streaming data in applications like computer networkd stock exchanges. The New York
Stock Exchange captures abdutB of trade information during each trading session. Reaét
processing of this data can aid a trader in making importaatet decisions. Variety pertains
to the heterogeneity of the digital data. Both structureth daich as census records and legal
records, and unstructured data like text, images and vifteas the web form part of big data.
Specialized techniques may be needed to handle differemiats of the data. Other attributes
such as reliability, volatility and usefulness of the dasadrbeen added to the definition of big
data over the years. Virtually every large business is @stied in gathering large amounts of data
from its customers and mining it to extract useful inforraatin a timely manner. This information

helps the business provide better service to its customergarease its profitability.

About 23% of this humongous amount of digital data is believed to dontaeful information
that can be leveraged by companies, government agencidsdividlual useré. For instance, a
partial “blueprint” of every user on the web can be createcctmbining the information from
their Facebook/Google profiles, status updates, Twitteetsy metadata of their photo and video

uploads, webpage visits, and all sorts of other minute diig gives an insight into the interests

“http:/iwww.mckinsey.com/insights/business_technplbig_data_the next_frontier_for_innovation
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Figure 1.2 Growth of Targeted Display Advertising. Imagair[59].

and needs of the users, thereby allowing companies to taggdect group of users for their prod-
ucts. Users prefer online advertisements that match therasts over random advertisements.
Figure 1.2 shows the tremendous growth that has been adhietargeted advertising over the
years, as a consequence of using data anattbasnderstand the behavior of web users [59].

Big Data analytics has also lead to the development of nevicapipns and services like
Microsoft's HealthVauR, a platform that enables patients to compile personal éafibrmation
from multiple sources into a single online repository, andrdinate their health management
with other users. Applications such as Google Flu Tréradsl Dengue Tren@gpredicted the

disease outbreak well before the official CDC (US Centerdigease Control and Prevention)

SData analytics is the science of examining data with the gsepf inferring useful information, and making
decisions and predictions based on the inferences. It epassrs a myriad of methodologies and tools to perform
automated analysis of data [1].

Shttps://www.healthvault.com/us/en/overview

"http:/lwww.google.org/flutrends

8http://www.google.org/denguetrends
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and EISS (European Influenza Surveillance Scheme) rep@rsublished, based on aggregated

search activity, reducing the number of people affectechbydisease [71].

1.1 Data Analysis

Data analysis is generally divided into exploratory andficoratory data analysis [174]. The pur-
pose of exploratory analysis is to discover patterns andattbd data. Exploratory data analysis is
usually followed by a phase of confirmatory data analysistvlaims at model validation. Several
statistical methods have been proposed to perform datgsasiabtatistical pattern recognition and
machine learning is concerned with predictive analysisctwimvolves discovering relationships
between objects and predicting future events, based omibwl&dge obtained. Pattern recogni-

tion comprises of three phases: data representationjigeaind inference.

1.1.1 Data Representation

Data representation involves selecting a set of featureletmte the objects in the data set. A
d-dimensional vectox = (z1,...,z4) denotes each object, wherg, p € [d] represents a
feature. The features may be numerical, categorical omaftdiFor instance, a document may
be represented using the words in the document; in which easkez, denotes a word in the
document. An image may be represented using the pixel ityeveslues. In this caser, is

the numerical intensity value at thé" pixel. The representation employed dictates the kind of
analysis the can be performed on the data set, and the ietatipn of the results of analysis.
Therefore, it is important to select the correct repregemta In most applications, prior domain
knowledge is useful in selecting the object representai@tently, deep learning techniques have

been employed to automatically learn the representatiooldcts [20].
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1.1.2 Learning

After a suitable representation is chosen, the data is toputearning algorithm which fits a model
to the data.

The simplest learning task is that s@ipervised learning also termed as classification [97].
The goal of supervised learning is to derive a function thapsthe set of input objects to a set of
targets (classes), usihgpeledtraining data. For instance, given a set of tagged imagedeé#nner
analyzes the images and learns a function mapping the intadksir tags. Supervised learning
finds use in many applications such as object recognitiaamsgetection, intrusion detection, and
machine translation.

Unfortunately, only about% of the potentially useful data on the web is labeled (e.gs fag
objects in images), and it is extremely expensive to obtandbels for the massive amount of data,
making supervised learning difficult in most big data apdiens [2]. Of late, crowdsourcing tools
such as Amazon Mechanical Tdtkave been used to obtain labels for the data items, from pheilti
users over the web [29]. However, labels obtained through approaches can be unreliable and
ambiguous. For example, in the task of image tagging thraugWwdsourcing, one user may tag
the image of a poodle with the label “dog”, whereas another uzay label it as “animal” (i.e.
usage of hypernyms versus hyponyms). The same tag “jagaal @pply to both the car as well
as the animal (polysemy). Spammers can intentionally gé@evrong labels leading to noise in
the data. Additional efforts are needed to handle these$gd188, 185].

Semi-supervised learningechniques alleviate the need for labeling large data setgilz-
ing a large pool of unlabeled objects in conjunction withlatreely small set of labeled objects to
learn a classifier [189]. It has been found that the classifearnt through semi-supervised learn-
ing methods can be more accurate than those learnt usirigdiadieta alone, because the unlabeled
data allows the learner to explore the underlying structiirdie data. Though semi-supervised

learning methods mitigate the labeling problem associafti¢hl supervised learning methods to

https://www.mturk.com/mturk
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some extent, they are still susceptible to same issues asipeevised learning techniques. More-
over, itis expensive to obtain supervision in applicatismsh as stock market analysis, where high
level of expertise is required to identify the stock trenti3(].

Unsupervised learningtasks involve finding the hidden structure in data. Unlikpesuised
and semi-supervised learning, these tasks do not requarddta to be labeled, thereby avoiding
the cost of tagging the data and allowing one to leveragehbadant data corpus. Examples of
unsupervised learning tasks include density estimatiomesionality reduction, feature selection
and extraction, and clustering [83].

Clustering, also known as unsupervised classificationnis @f the primary approaches to
unsupervised learning. The purpose of clustering is toodiscthe natural grouping of the input
objects. One of the goals of clustering is to summarize anapbeess the data, leading to efficient
organization and convenient access of the data. It is oftggl@yed as a precursor to classification.
The data is first compressed using clustering, and a supedrigarning model is built using only
the compressed data. For instance, in the image tagginéepnobs the learner was only provided
with a large number of untagged images, the images can b@eggdato clusters based on a pre-
defined similarity. Each cluster can be represented by al s@abf prototype images, and the
labels for these representative images obtained throwgytdsourcing, which can then be used to
learn a tagging function in a supervised manner. This psiesheaper and more reliable than
obtaining the labels for all the images. Clustering finds insa multitude of applications such
as web search, social network analysis, image retrievak ggpression analysis, market analysis

and recommendation systems [90].

1.1.3 Inference

In this phase, the learnt model is used for decision makimgpaeadiction, as required by the ap-
plication. For example, in the image tagging problem, theleixcomprising the mapping function

can be used to predict the tags corresponding to an imagedhaer has not seen previously. In
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Table 1.1 Notation.

Symbol | Description
D={xq,...,X,} Input data set to be clustered
X; i'" data point
X Input space
H. Feature space/ Reproducing Kernel Hilbert Space (RKHS)
|- [ Functional norm in RKHS
d Dimensionality of the input space
n Number of points in the data set
C Number of clusters
U= (uy,...,uc)’ Cluster membership matri}C' x n)
P={U€{0,1}**":U"1 =1} | Setof valid cluster membership matrices
Cr k™ cluster
Ck k™" cluster center
g Number of points in thé&'" cluster
© Mapping function fromy to H,
K(-,+) Kernel function
K Kernel matrix(n x n)

social networks, clustering is employed to group users dasetheir gender, occupation, web
activity, and other attributes, to automatically find usemenunities [128]. Based on the commu-
nities identified, recommendations for new connectionscmdent can be made to the users.

In this thesis, we focus on the clustering problem. Notatiosed throughout this thesis are

summarized in Table 1.1.

1.2 Clustering

Clustering, one of the primary approaches to unsupervisaching, is the task of grouping a set
of objects into clusters based on some user-defined sityil&iven a set of, objects represented
by D = {xi,...,x,}, Wwhere each point; € y andy C R¢, the objective of clustering, in most
applications, is to group the points int® clusters, represented By, ...,Cc}, such that the

clusters reflect the natural grouping of the objects. Thendefh of natural grouping is subjective,
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Figure 1.3 A two-dimensional example to demonstrate hikiaal and partitional clustering tech-
niques. Figure (a) shows a set of points in two-dimensiogpats, containing three clusters. Hier-
archical clustering generates a dendrogram for the dagaré€{(b) shows a dendrogram generated
using the complete-link agglomerative hierarchical @usg algorithm. The horizontal axis rep-
resents the data points and the vertical axis representistaace between the clusters when they
first merge. By applying a threshold on the distancé ahits (shown by the black dotted line),
we can obtain the three clusters. Partitional clusteringatly finds theC' clusters in the data set.
Figure (c) shows the three clusters, represented by the gmaen and red points, obtained using
thek-means algorithm. The starred points in black representltister centers.

and dependent on a number of factors including the objediseirdata set, their representation,
and the goal of cluster analysis. The most common objedsite group the points such that the
similarity between the points within the same cluster isatge than the similarity between the
points in different clusters. The structure of the clustdtained is determined by the definition of

the similarity. It is usually defined in terms of a distancedtiond : x x x — R&.

1.2.1 Clustering Algorithms

Historically, two type of clustering algorithms have beeeveloped: hierarchical and parti-

tional [88].

e Hierarchical clustering algorithms, as the name suggbsik] a hierarchy of clusters; the
root of the tree contains all thepoints in the data set, and the leaves contain the individual

points. Agglomerative hierarchical clustering algorithstart withn clusters, each with one

8



point, and recursively merge the clusters which are mostiairto each other. Divisive
hierarchical clustering algorithms, on the other handi stéith the root containing all the
data points, and recursively split the data into clustera top-down manner. The most
well-known hierarchical clustering algorithms are theginlink, complete-link and Ward’s
algorithms [88]. The single-link algorithm defines the darity between two clusters as the
similarity between their most similar members, whereastmeplete-link algorithm defines
the similarity between two clusters as the similarity ofithneost dissimilar members. The
Ward's clustering algorithm recursively merges the clissthat leads to the least possible
increase in the intra-cluster variance after merging. fedu3(b) shows the complete-link

dendrogram corresponding to the clusters in the two-dimeasdata set in Figure 1.3(a).

Partitional clustering algorithms, directly partitioretdata inta”' clusters, as shown in Fig-
ure 1.3(c). Popular partitional clustering algorithmsluge centroid-baseck{means,k-
medoids) [87, 94], model-based (Mixture models, Latentdbiet Allocation) [24], graph-
theoretic (Minimum Spanning Trees, Normalized-cut, Sgéatlustering) [77, 161], and
density and grid-based (DBSCAN, OPTICS, CLIQUE) algorighi®i].

From a statistical viewpoint, clustering techniques cao dle categorized as parametric and

non-parametric [127]. Parametric approaches to clugieaassume that the data is drawn from

a densityp(x) which is a mixture of parametric densities, and the goal o$tering is to iden-

tify the component densities. The centroid-based and moastd clustering algorithms fall in

this category. Non-parametric approaches are based omeghege that the clusters represent the

modes of the density(x), and the aim of clustering is to detect the high-densityaesjiin the

data. The modal structure pfx) can be summarized in@uster tree Each level in the cluster

tree represents the feature spéace, p) = {x | p(x) > ~}. Cluster trees can be constructed using

the single-link clustering algorithm to build neighborldographs, and finding the connected com-

ponents in the neighborhood graphs. Density-based jpauitclustering algorithms such as DB-
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SCAN and OPTICS, are specialized non-parametric clugigaohniques, which find the modes
at a fixed user-defined density threshold. Mean-shift ctugjealgorithms estimate the density

locally at eachx, and find the modes using a gradient ascent procedure onddlediensity.

1.2.2 Challenges in Data Clustering

Data clustering is a difficult problem, as reflected by thedrads of clustering algorithms that
have been published, and the new ones that continue to afgpeato the inherent unsupervised

nature of clustering, there are several factors that affectlustering process.

e Data representation.The data can be input to clustering algorithms in two formjsthe
n X d pattern matrixcontaining thed feature values for each of the objects, and (ii)
then x n proximity matrix whose entries represent the similarity/dissimilaritiween the
corresponding objects. Given a suitable similarity measitris easy to convert a pattern
matrix to the proximity matrix. Similarly, methods like gjalar value decomposition and
multi-dimensional scaling can been used to approximateaittern matrix corresponding to
the given proximity matrix [47]. Conventionally, hieraichl clustering algorithms assume
input in the form of the proximity matrix, whereas partitarclustering algorithms accept

the pattern matrix as input.

The features used to represent the data in the pattern npédgixan important role in clus-
tering. If the representation is good, the clustering atgor will be able to find compact
clusters in the data. Dimensionality of the data set is alsoial to the quality of clusters ob-
tained. High-dimensional representations with redundadtnoisy features not only lead to
long clustering times, but may also deteriorate the clugtecture in the data. Feature selec-
tion and extraction techniques such as forward/backwdedtsen and principal component
analysis are used to determine the most discriminativerfestand reduce the dimensional-

ity of the data set [89]. Deep learning techniques [20] anddddearning techniques [112]
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can be employed to learn the data representation from tles giata set.

e Number of clustersMost clustering algorithms require the specification of tlenber of
clustersC'. While centroid-based, model-based and graph-theorigfizithms directly ac-
cept the number of clusters as input, density and grid-balggatithms accept other param-
eters such as the maximum inter-cluster distance, whichndnectly related to the number
of clusters. Automatically determining the number of atustis a difficult problem and,
in practice, domain knowledge is used to determine thisrpatar. Several heuristics have
been proposed to estimate the number of clusters. In [If@htimber of clusters is deter-
mined by minimizing the “gap” between the clustering el¥dor each value of”, and the
expected clustering error of a reference distribution.s€+ealidation techniques can be used
to find the value of” at which the error curve corresponding to the validatiomdathibits

a sharp change [68].

e Clustering Algorithm. The objective of clustering dictates the algorithm chosancfus-
tering, and in turn, the quality and the structure of the telissobtained. Centroid-based
clustering algorithms such &smeans aim at minimizing the sum of the distances between
the points and their representative centroids. This old suitable for applications where
the clusters are compact and hyper-spherical or hypgrseililal. Density based algorithms
aim at finding the dense regions in the data. The single-li@kahchical clustering algorithm
finds long elongated clusters called “chains”, as the g¢oitefor merging clusters is local,
whereas the complete-link hierarchical clustering akipomi finds large compact clusters.

Each clustering algorithm is associated with a differemiilsirity measure.

e Similarity measuresThe similarity measure employed by the clustering algarith crucial
to the structure of the clusters obtained. The choice ofithdagity function depends on the

data representation scheme, and the objective of clugteAirpopular distance function is

10Refer to Section 1.3.1 for the definition of clustering error
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the squared Euclidean distance defined by
d? (x4, %) = |[%0 — %3] [5, (1.1)

wherex,,x;, € D. However, the Euclidean distance is not suitable for allliappons.
Other distance measures such as Mahalanobis, Minkowski@mdinear distance measures
have been applied in the literature to improve the clusgep@rformance in many applica-

tions [171] (See Section 1.4).

Clustering Tendency, Quality and Stabilitylost clustering algorithms will find clusters in
the given data set, even if the data does not contain anyatafusters. The study of clus-
tering tendency deals with examining the data before exagtite clustering algorithm, to
determine if the data contains any clusters. Clusteringeeray is usually assessed through
visual assessment techniques which reorder the similauatyix to examine whether or not
the data contains clusters [85]. These techniques can alssdd to determine the number

of clusters in the data set.

After obtaining the clusters, we need to evaluate the uglidhd quality of the clusters.
Several measures have been identified to evaluate therslostined, and the choice of the
quality criterion depends on the application. Clusterdiffimeasures are broadly classified
as either internal or external measures [88]. Internal omeassuch as the value of the
clustering algorithm’s objective function and the intéuster distances assess the similarity
between the cluster structure and the data. As clusteriaig is\supervised task, it is logical
to employ internal measures to evaluate the partitions. é¥ew these measures are difficult
to interpret and often vary from one clustering algorithmatwther. On the other hand,
external measures such as prediction accuracy and clugigy pse prior information like
the true class labels to assess the cluster quality. Extexeesures are more popularly used

to evaluate and compare the clustering results of diffeckrstering algorithms, as they are

12



easier to interpret than internal validity measures.

Cluster stability measures the sensitivity of the clustersmall perturbations in the data
set [119]. Itis dependent on both the data set and the dhgorttsed to perform clustering.
Clustering algorithms which generate stable clusters sefeped as they will be robust to
noise and outliers in the data. Stability is typically measuusing data resampling tech-
niques such as bootstrapping. Multiple data sets of the saaeggenerated from the same
probability distribution, are clustered using the sameatgm and the similarity between

the partitions of these data sets is used as a measure ofjtirétai’s stability.

Scalability. In addition to the cluster quality, the choice of the clustgralgorithm is also
determined by the scalability of the algorithm. This fadi@comes all the more crucial
when designing systems for big data analysis. Two impoftanors that determine the scal-
ability of a clustering algorithm are its running time comgty and its memory footprint.
Clustering algorithms which have linear or sub-linear tingrtime complexity, and require

minimum amount of memory are desirable.

1.3 Clustering Big Data

When the size of the data setis in the order of billions and the dimensionality of the dditis

in the order of thousands, as is the case in many big datataisaproblems, the scalability of

the algorithm becomes an important factor while choosinduatering algorithm. Hierarchical

clustering algorithms are associated with at leagt?d + n*log(n)) running time andO(n?)

memory complexity, which renders them infeasible for ladgéa sets. The same holds for many

of the partitional clustering algorithms such as the modaeldal algorithms like Latent Dirichlet

Allocation, graph-based algorithms such as spectral elungf and density-based algorithms like

DBSCAN. They have running time complexities ranging fréfn log(n)) to O(n?) in terms of the

number of points in the data, and at least linear time coniyl@ith respect to the dimensionality
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Table 1.2 Clustering techniques for Big Data.

Clustering approaches \

Running time complexity

| Memory complexity |

Linear clustering| k-means | O(nCd) | O(nd) |
Sampling-based| CLARA [94] O(Cm?* + C(n—0C)) O(n?)
clustering with | CURE [80] O(m?1og(m)) O(md)
sample sizen < | Coreset [82] O(n + Cpolylog(n)) O(nd)
n
Compression BIRCH [197] O(nd) MT
CLARANS [136] O(n?) 0(n?)
Stream cluster; Stream [79], O(nCd) MT
ing ClusTree [98]
Scalable K- O(nd)
means [30],
Single-pass
k-means [62]
StreamKM++ [6] O(dns)* O(dslog(n/s))*
Distributed clus-| Parallel k- O(nCd) O(PC?n%), 6 >0
tering means [60, 199]
with P tasks MapReduce O(n*d/P + r* + nr + nC?)** O(n?/P)
based spectral
clustering [35]
Nearest- O(nlog(n)/P) O(n/P)
neighbor cluster-
ing [115]

*s = O(dC log(n)log??(C'log(n)))
** r represents the the rank of the affinity matrix
1M is a user-defined parameter representing the amount of nyeawaitable

d and the number of clusters. Several clustering algorithms have been modified and apeci
algorithms have been developed in the literature, to sgaleouarge data sets. Most of these
algorithms involve a preprocessing phase to compress tibdite the data, before clustering is
performed. Some of the popular methods to efficiently chisige data sets (listed in Table 1.2)

can be classified based on their preprocessing approaai|ags:

e Sampling-based methods reduce the computation time bygHiegtsing a subset of the given

data set and then using this subset to find the clusters. Thdéabehind all sampling-based
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clustering techniques is to obtain the cluster represeatatusing only the sampled subset,
and then assign the remaining data points to the closesisepative. The success of these
techniques depends on the premise that the selected salmetuinbiased sample and is
representative of the entire data set. This subset is cheiteer randomly (CLARA [94],
CURE [80]) or through an intelligent sampling scheme suchaeset sampling [82, 183].
Coreset-based clustering first finds a small set of weighstd doints called the coreset,
which approximates the given data set, within a user-defmem margin, and then obtains
the cluster centers using this coreset. In [63], it is prowed a coreset of siz@(C?/¢*) is

sufficient to obtain a® (1 + €) approximation, where s the error parameter.

Clustering algorithms such as BIRCH [197] and CLARANS [188@prove the clustering
efficiency by encapsulating the data set into special datatstes like trees and graphs for
efficient data access. For instance, BIRCH defines a datetwstey called the Clustering-
Feature Tree (CF-Tree). Each leaf node in this tree sumesaset of points whose inter-
point distances are less than a user-defined threshold elbgutin of the points, sum of the
squares of the data points, and the number of points. Eaclheabmode summarizes the
same statistics for all its child nodes. The points in thadat are added incrementally to the
CF-Tree. The leaf entries of the tree are then clusteredywsiragglomerative hierarchical
clustering algorithm to obtain the final data partition. &tapproaches summarize the data

into kd-trees and R-trees for falstnearest neighbor search [115].

Stream clustering [8] algorithms are designed to operatesimgle pass over an arbitrary-
sized data set. Only the sufficient statistics (such as trenmad variance of the clusters,
when the clusters are assumed to be drawn from a Gaussiame)igf the data seen so far
are retained, thereby reducing the memory requirements. dthe first stream clustering
algorithms was proposed by Guhaal. [79]. They first summarize the data stream into a

larger number of clusters than desired, and then clusteeigoids obtained in the first step.
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Stream clustering algorithms such as CluStream [8], ClesT98], scalabl&-means [30],

and single-pask-means [62] were built using a similar idea, containing atinenphase

to summarize the incoming data, and an offline phase to cltt#esummarized data. The
summarization is usually in the form of trees [8, 30], grid&,[36] and coresets [6,63]. For
instance, the CluStream algorithm summarizes the datantetiCF-Tree, in which each
node stores the linear sum and the squared sum of a set o§ pdiinth are within a user-
defined distance from each other. Each node represents a-ohister whose center and
radius can be found using the linear and squared sum valiek-means algorithm is the

algorithm of choice for the offline phase to obtain the finaktérs.

¢ With the evolution of cloud computing, parallel processteghniques for clustering have
gained popularity [48,60]. These techniques speed up tlsering process by first divid-
ing the task into a number of independent sub-tasks that egretformed simultaneously,
and then efficiently merging these solutions into the finditsan. For instance, in [60],
the MapReduce framework [148] is employed to speed ugkitnieans and thk-medians
clustering algorithms. The data set is split among manygssars and a small representa-
tive data sample is obtained from each of the processorsseTiepresentative data points
are then clustered to obtain the cluster centers or medianzarallel latent Dirichlet allo-
cation, each task finds the latent variables correspondiraydifferent component of the
mixture [133]. The Mahout platform [143] implements a numbé parallel clustering
algorithms, including paralldt-means, latent Dirichlet allocation, and mean-shift dust
ing [37,133, 135, 199]. Billions of images were clustereshgsn efficient parallel nearest-

neighbor clustering in [115].

Data sets of sizes close to a billion have been clustered)usanparallelized versions of the
means, nearest neighbor and spectral clustering algaithathe best of our knowledge, based on

the published articles, the largest data set that has basterdd consisted of1a5 billion images,

16



each represented byl&0-dimensional vector containing the Haar wavelet coeffisi¢hl5]. They
were clustered int60 million clusters using the distributed nearest neighbgoathm in10 hours
using 2,000 CPUs. Data sets that are big in both siz¢ &nd dimensionalityd), like social-
network graphs and web graphs, were clustered using subshestering algorithms and parallel

spectral clustering algorithms [35, 181].

1.3.1 Clustering withk-means

Among the variou$)(n) running time clustering algorithms in Table 1.2, the mogtydar algo-
rithm for clustering large scale data sets is kameansalgorithm [87]. It is easy to implement,
simple and efficient. It is easy to parallelize, has reldyifew parameters when compared to the
other algorithms, and yields clustering results similamtany other clustering algorithms [192].
Millions of points can be clustered usikgmeans within minutes. Extensive research has been
performed to solve thke-means problem and obtain strong theoretical guarantabs@spect to
its convergence and accuracy. For these reasons, we fodhslemeans algorithm in this thesis.
The key idea behin#-means is to minimize thelustering error defined as the sum of the
squared distances between the data points and the centee ofuister to which each point is

assigned. This can be posed as the following min-max opditioiz problem:

i Ukid” (cr, %) , 1.2
%%i%%i(;; kid” (cr, X;) (1.2)
whereU = (uy,...,uc)" is the cluster membership matriz, € x,k € [C] are the cluster

centers, and domaiR = {U € {0,1}“*" : UT1 = 1}, wherel is a vector of all ones. The
most commonly used distance measdife, -) is the squared Euclidean distance measure, defined

in (1.1). Thek-means problem with the squared Euclidean distance measteéined as

minmaxZZUkl lck — X2H2. (1.3)
UeP crex 1 i1
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Algorithm 1 k-means
1. Input:
e D={xy,...,%,},% € R% the set ofn d-dimensional data points to be clustered
e (' the number of clusters
: Output: Cluster membership matrix € {0, 1}“*"
: Randomly initialize the membership matiikwith zeros and ones, ensuring that1 = 1.
repeat

Compute the cluster centets = ﬁ Y Urixi, k € [C].
k™ i=1

fori=1,...,ndo
Find the closest cluster center for x;, by solving

N a kowbd

: 2
k. = argmin ||c, — x5 -
ke[C]

©

Update the' column ofU by Uy ; = 1 for k = k, and zero, otherwise.
end for
10: until convergence is reached

©

The above problem (1.3) is an NP-complete integer programmmioblem, due to which it is
difficult to solve [121]. A greedy approximate algorithmpoposed by Lloyd solves (1.3) itera-
tively [116]. The centers are initialized randomly. In edtelnation, every data point is assigned to
the cluster whose center is closest to it, and then the clostegers are recalculated as the means

of the points assigned to the cluster, i.e. tecenterc,, is obtained as
1 n
cr=— > Upixik € [C], (1.4)
izt

wheren;, = u/ 1 is the number of points assigned to t& cluster. These two steps are repeated
until the cluster labels of the data points do not change imseoutive iterations. This proce-
dure is described in Algorithm 1. It ha3(ndC1) running time complexity and(nd) memory
complexity, wherd is the number of iterations required for convergence. S#weethods have
been developed in the literature to initialize the algontintelligently and ensure that the solution

obtained is 41 + ¢)-approximation of the optimal solution of (1.3) [12,101].
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1.4 Kernel Based Clustering

The issue of scalability can be addressed by using the laale slustering algorithms described
in Section 1.3. However, most of these algorithms, inclgdiimeans, are linear clustering algo-
rithms, i.e. they assume that the clusters are linearlyrabpain the input space (e.g. the data set
shown in Figure 1.3(a)) and define the inter-point simil@sising measures such as the Euclidean

distance. They suffer from the following two main drawbacks

() Data sets that contain clusters that cannot be sepabgtedhyperplane in the input space
cannot be clustered by linear clustering algorithms. Fmrdason, all the clustering algo-
rithms in Table 1.2, with the exception of spectral clustgriare only able to find compact
well-separated clusters in the data. They are also not tobu®ise and outliers in the data.
Consider the example shown in Figure 1.4. The data set in€&i4(a) contain500 points
in the form of two semi-circles. We expect a clustering ailipon to group the points in each
semi-circle, and detect the two semi-circular clusterse Tlusters resulting frork-means
with Euclidean distance are shown in Figure 1.4(b). Due éoube of Euclidean distance,
the two-dimensional space is divided into two half-spacekthe resulting clusters are sep-
arated by the black dotted line. Other Euclidean-distarased partitional algorithms also

find similar incorrect partitions.

(i) Non-linear similarity measures can be used to find aabity shaped clusters, and are more
suitable for real-world applications. For example, sugptvgo images are represented by
their pixel intensity values. The images may be consideredersimilar to each other if
they comprise of similar pixel values, as shown in Figure TBus the difference between
the images is reflected better by the dissimilarity of imaigéograms than by the Euclidean

distance between the pixel values [14, 106].
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Figure 1.4 A two-dimensional example that demonstratedithi¢gations of k-means clustering.
500 two-dimensional points containing two semi-circular ¢dus are shown in Figure (a). Points
numbered — 250 belong to the first cluster and points numbe2&dl — 500 belong to the second
cluster. The clusters obtained usikgneans (using Euclidean distance measure) do not reflect the
true underlying clusters (shown in Figure (b)), becausecthsters are not linearly separable as
expected by thk-means algorithm. On the other hand, the kekagleans algorithm using the RBF
kernel (with kernel widthr? = 0.4) reveals the true clusters (shown in Figure (c)). Figurg¢sudi
(e) show the500 x 500 similarity matrices corresponding to the Euclidean distaand the RBF
kernel similarity, respectively. The RBF kernel similgrinatrix contains distinct blocks which
distinguish between the points from different clusters.e Bimilarity between the points in the
same true cluster is higher than the similarity betweentgomdifferent clusters. The Euclidean
distance matrix, on the other hand, does not contain suthcatiblocks, which explains the failure
of thek-means algorithm on this data.
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Figure 1.5 Similarity of images expressed through graylleisograms. The histogram of the
intensity values of the image of a website (Figure (b)) i/\different from the histograms of the
images of butterflies (Figures (d) and (f)). The histogramthe two butterfly images are similar
to each other.
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The issue of non-linear separability is tackled uskegnel functions. The key behind the
success of kernel-based learning algorithms is the fatathadata set becomes linearly separable
when projected to an appropriate high dimensional spacesi@er a non-linear functiop : y —

‘H.., which maps the points in thieput spacey to a high dimensionaleature spaceH,.. The
distance between the data points in this feature space cdefined in terms of the dot products
of the projected points. For instance, the Euclidean digtdretween two points, andx; in H,.

is defined as

llo(xa) = 0(x3)| I3 = (2(Xa), P(Xa)) + (2(x5), 0(x3)) — 2(p(%a), p(x3)).

In practical applications, the dimensionality #f, is extremely high, possibly infinite. Hence,
the explicit computation of the mappingis highly computationally intensive and, in most cases,
infeasible. This computation is avoided by replacing thé mloduct with a non-linear kernel
distance functiork(-,-) : x x x — R. The distance between any two points is now defined in

terms of the kernel function as
di(xa, Xp) = K(Xqa, Xa) + K(Xp, Xp) — 26(Xq, Xp). (1.5)

A kernel functionx is admissible if and only if it satisfies the Mercer's conalitii159, Theorem
2.10]. Informally stated, Mercer’s theorem asserts thatdtexists a mapping and an expansion
K (Xa, Xp) = ©(x4) " (xp) if and only if, for any functiong(x) such that[ g(x)?dx is finite, we
have

/m(xa,xb)g(xa)g(xb)dxadxb > 0.

Such a kernel is known as the Mercer kernel or Reproducingd{eand the feature spagg, is

called theReproducing Kernel Hilbert Space (RKHShe matrix K’ = [k(x;,%;)],x;,x; € D is

Uhttp://crsouza. blogspot.com/2010/03/kernel-funcifor-machine-learning. html
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Table 1.3 Popular kernel functions.

Linear (X4, Xp) = X, X3, + c for constant
Polynomial K (Xq, Xp) = (X4 %y + c)d, d is the degree of the polynomial kernel
2
RBF K(Xq, Xp) = €Xp (—%) o > 0 is the kernel width parameter
Laplacian K(Xq, Xp) = €Xp (—M)
. 4 (xi—x})’
ChI-Square K(Xa, Xb) =1- 7; m
Histogram Intersectior K(Xq,Xp) = Y min (hist(x,) , hist(xy))
String kernel Number of common subsequences between string sequeneesix,

known as the kernel matrix or Gram matrix. The simplest Kefunections are positive definite
kernels whose corresponding kernel matrix is Hermitian positive-definite. The Radial Basis

Function (RBF) kernel defined by

202

2
K(Xq,Xp) = €Xp (—M> ,o>0 (1.6)

is a popular positive-definite kernel function. It performsll on a large number of benchmark
data sets. The parametet, known as the kernel width, scales the distance betweeroihtsp Ta-

ble 1.3 lists some of the popular kernel functions. Chi-sgkarnel, histogram intersection kernel
and their variants are commonly used in image and videadectlapplications. String kernels are
popular in text-mining applications. The remaining kesrialTable 1.3 are generic kernels. Using

the linear kernel is the same as using the Euclidean distapesure.

Kernel based clustering techniques use (1.5) to define thiéasity between objects. Conse-
guently, when provided with the appropriate kernel funttithey have the ability to capture the
non-linear structure in real world data sets and, thus,llysp@rform better than the linear cluster-
ing algorithms, in terms of cluster quality [95]. Variousrkel-based clustering algorithms have
been developed, including kerreimeans, spectral clustering, support vector clusteriraximum

margin clustering, kernel self-organizing maps and keneeiral gas [65].
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Spectral clustering [118] is based on the idea of spectaglgpartitioning. The data points
are represented as nodes in a graph and the affinity betweeamttes is defined by the kernel
similarity between the points. The graph is partitionea i6t components by first computing
the graph Laplacian matrix and the eigenvectors correspgnd its smallest” eigenvalues, and
then clustering the eigenvectors intoclusters using-means. The data partition is obtained via
the graph partition. Spectral clustering is widely empbbyer image segmentation and graph

partitioning problems.

Support vector clustering [19] involves projecting theadiat a high dimensional feature space
and searching for a minimum enclosing sphere in this spabés énclosing sphere is projected
back into the input space and the support vectors are useeffittedhe cluster boundaries. All
points that lie within a cluster boundary are assigned tcstrae cluster. The maximum margin
clustering technique [190] finds the cluster labeling whidien used to find a maximum margin
classifier (e.g. Support Vector Machines) for the given degaults in a margin that is maximal
over all possible cluster labelings. A convex optimizatpwoblem with the cluster labels and the
margin of the Support Vector Machine as variables, and caimé$ on the number of points per
cluster and the difference in the cluster sizes, is fornedaflhe labels and the classifier margin

are optimized simultaneously to find the optimal clusteelab

The kernel self-organizing map [120] algorithm extends sk#-organizing map [96] algo-
rithm to use kernel distance measures. The key idea behimaltforithm is to construct a low-
dimensional (typically two-dimensional) topology-preseg map of the input data set through
competitive learning. A self-organizing map, also knowrntesKohenen map, consists of a two-
layer network, the input layer containimighodes and an output layer containing at le€gstodes.
Each output node is randomly initialized with a weight. Wlenew data point is input to the
network, the node whose weight is closest to the input data poterms of the kernel distance is
determined. This node is called the Best Matching Unit. Th&ts of the best matching unit and

its neighboring nodes are updated, based on a pre-defingldboehood function. After a number
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of passes over the data set, the weights of the nodes conwefgen distinctive regions in the
output layer from which the clusters in the data can be refad of

The kernel neural gas algorithm [145], inspired by the selfanizing map algorithm, also
creates a map of the input data. The difference between thenwthods is that while, only the
weights of a few neighboring nodes of the best matching waitipdated in a self-organizing map,
the weights of all the nodes are updated in the neural gastilgo The nodes are ranked based on
their proximity to the best matching unit, and their weighpslated on the basis of their rank. The
nearest node is updated by a higher factor than the fartbest mhis update mechanism leads to
neural gas converging faster than self-organizing maps.

Similar to thek-means algorithm, the kern&tmeans algorithm [160] is the most popular
kernel-based clustering algorithm due to it simplicity.v&=l studies have also established the
theoretical equivalence of kernlkeilmeans and other kernel-based clustering methods, suggest

that they yield similar results [51, 52].

1.4.1 Kernelk-means

The kernelk-means algorithm can be viewed as a non-linear extensioned-means algo-
rithm. It replaces the Euclidean distance function (1.1pkayed in thek-means algorithm with a
non-linear kernel distance function defined in (1.5).

Let K € R™*" be the kernel matrix with(; ; = x(x;, x,), wherex(-, -) is the kernel function.
Let #,. be the Reproducing Kernel Hilbert Space (RKHS) endowed byké#rnel functions(-, -),
and||-||,, be the functional norm foH,.. Similar to thek-means problem, the objective of kernel
k-means is to minimize the clustering error. Hence, the Kdeameeans problem can be cast as the

following optimization problem:

min = max Z ZUszCk — K(xi, )5 (1.7)

R e s
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Algorithm 2 Kernelk-means
1. Input:
o D={xy,...,%X,},%; €R% the set ofr d-dimensional data points to be clustered
o x(+,+): x x x — R: the kernel function
e (' the number of clusters

2: Output: Cluster membership matrix € {0,1}¢*"
3: Compute the kernel matrik’ = [k(x;, X;)|nxn-
4: Randomly initialize the membership matfiXxwith zeros and ones, ensuring that1 = 1.
5. repeat
6: fori=1,...,ndo
7 Find the closest cluster center for x;, by solving
k. = argmin||c(:) — Kk(x;, )H;N
ke[C]
T T
_ argmin u,, Ku;; B U-kTKiv
kele] (u]1) u, 1
whereu,, is thek column ofU ", and K; is the:*” column of K.
8: Update the® column ofU by Uy ; = 1 for k = k, and zero otherwise.
9: end for

10: until convergence is reached

whereU = (uy,...,uc)" is the cluster membership matrix,(-) € H.,k € [C] are the cluster

centers, and domaiR = {U € {0,1}°*": UT1 = 1}, wherel is a vector of all ones. The above
problem is also NP-complete. A simplified version of the peofy, which relaxes the constraints
on U, is solved to obtain the solution [72,192]. Let = u, 1 be the number of data points

assigned to thé” cluster, and

0 = (G,....00)" = [diagn,,...,nc) "'V,

U = (,...,u9¢) = [diagy/ny, ..., vno)] U, (1.8)
denote the; and/, normalized membership matrices, respectively.

It is easy to verify that, given th€ x n cluster membership matrix, the optimal solution for
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the cluster centers is

() = Unitilxi, ), k € [C]. (1.9)
=1
As a result, we can formulate (1.7) as the following optirtimaproblem ovel:
: . 87454l
rUnelgtr(K) tr(UKU "), (1.10)
which can be further reformulated as the following trace imézation problem:

2374 548
maxtr(UKU"). (1.11)

Note that thek-means optimization problem in (1.3) can also be writtenh&sfollowing trace

maximization problem:

maxtr(UXX'U"), (1.12)
UeP
whereX = (xy, ... ,xn)T is then x d pattern matrix corresponding to the data®efTherefore, a

greedy iterative algorithm similar to themeans algorithm can be employed to solve (1.11), with

the Euclidean distance function replaced by the kernellaiity function.

The kernelk-means algorithm is described in Algorithm 2. Figure 1.4{odws the result of
applying the kernek-means algorithm to the synthetic semi-circles data seigarg 1.4(a) using
the RBF kernel function in (1.6), with the kernel widtf set to0.4. It can be observed that kernel

k-means is able to detect the two semi-circles correctlykathek-means algorithm.

1.4.2 Challenges

Though kernel based clustering algorithms achieve beltester quality, they suffer from two

major limitations.
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Table 1.4 Comparison of the running timeskefneans and kernédtmeans on d400-dimensional
synthetic data set containiri@ clusters and exponentially increasing number of data ppont a
2.8 GHz processor with 40 GB memory.

Data set size 104 10° 108 | 107 108
Running time k-means 0.03| 0.17 | 2.30| 34.90| 5508.50
in seconds Kernel k-means|| 3.09| 320.10 > 48 hours

1.4.2.1 Scalability

A naive implementation of kernéddmeans requires the computation of thex n kernel matrix
K (Step 3 in Algorithm 2) which take®(n?) time and memory. Clustering millions of objects
using kernek-means requires more th&n000 GB of memory and large amount of computing
resources. Table 1.4 compares the running times dé-theans and the kernklmeans algorithms
on al00-dimensional synthetic data set containifigclusters and exponentially increasing number
of points. The algorithms were executed oR.& GHz processor witd0 GB memory. It can be
seen that running kernktmeans is far more expensive than runnkagneans, especially on large
data sets.

It is also expensive to assign previously unseen data ptorthisters using kernédmeans,
often termed as theut-of-sample-problemTo find the cluster label for a new data poitwe

need to compute the distance betweaeand all the cluster centers as follows:

di(x.cr) = ler(-) = r(x)If3,
'K e
= L2 o tx ke o, (1.13)
where K, = (k(x,%1),...,k(x,x%,))". It requires the computation of th@(n)-sized vectork,

in addition to the kernel matriX_. This is due to the fact that there is no explicit represémebr
the cluster centers. If there waglalimensional representation for the cluster centgr@s in the
case ok-means), the distane® (x, c;) can be computed i®(d) time.

Clearly, scalability is a major challenge faced by kerkeheans. Other kernel-based algo-
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rithms also have high running time complexity. For instarspectral clustering involves the com-
putation of the to” eigenvectors of the kernel matrix, which is@frn?) complexity.

In the literature, the issue of scalability has largely baddressed through the use of cloud
computing and parallel algorithms. The Mahout platform3JLénplements the parallel spectral
clustering algorithm which uses the distributed Lanczge®esolver to obtain the eigenvectors of
the Laplacian matrix [35]. Distributed implementationsSfpport Vector Machines have been
developed to perform clustering [78,169]. However, patiaation of kernel based algorithms is
not simple due to their non-linear nature [15]. For instamterder to parallelize kerné&tmeans,
one must replicate the data to all the tasks, leading to l&gmurce and communication overheads.

Approximate clustering techniques are useful in allemthis issue. Sampling methods, such
as the Nystrom method [187], have been employed to obtaimdaw approximation of the kernel
matrix to address this challenge [67,113]. Low-dimensi@najection combined with sampling
have been used to further improve the clustering efficiemy tackle the out-of-sample prob-

lem [11,153].

1.4.2.2 Choice of kernel

The role of the kernel function is to reflect the true struetof the data set. However, if the kernel
function is chosen wrongly, the performance of the clustgalgorithm degrades. The RBF kernel
defined in (1.6) performs well on most benchmark data setsveier, even for the RBF kernel,
the kernel width parameter has to be chosen carefully. EBigus demonstrates the sensitivity of
kernelk-means to the kernel width parameter. Kerkeheans is executed on the semi-circles data
set shown in Figure 1.4(a), using the RBF kernel with kerndthwalues:0.4 and0.1. The clusters
obtained are shown in Figures 1.6(b) and 1.6(c) respegtiVéheno? = 0.4, the true clusters are
revealed. On the other hand, wheh = 0.1, the clusters are distorted. Figure 1.6(d) plots the
clustering error of kerndt-means, defined in (1.10), against the RBF kernel width. dtaar that

the performance depends on the choice of the kernel widthcéjeanother challenge associated

29



(@)

()

Figure 1.6 Sensitivity of the kern&tmeans algorithm to the choice of kernel function. The semi-
circles data set (shown in Figure (a)) is clustered usingédérmeans with the RBF kernel. When
the kernel width is set t0.4, the two clusters are correctly detected (shown in Figuye Whereas
when the kernel width is set tbl, the points are clustered incorrectly (shown in Figure (€iyure

(d) shows the variation in the clustering error of kerk@heans, defined in (1.10), with respect to

the kernel width.
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with kernel based algorithms is the choice of the kernel fioncand the kernel parameters.

Kernel learning techniques aim at learning a positive seefiinite kernel matrix that reflects
the true similarity between the points in the data set [4]thie supervised learning setting, the
kernel is optimized to align with the true class structurdghaf data. This is achieved by either
minimizing the error of the classifier for the chosen kerpelmaximizing the similarity between
the kernel and the class matrix. As the class labels are adgthle in the setting of unsupervised
learning, other criterion such as compactness of the chuigtethe feature space, and degree of

alignment with the structure of the data are utilized [17Z,200].

1.5 Thesis Contributions

The objective of this thesis is to design clustering aldponi$ that can accurately identify the clus-
ters in data sets containing billions of points, thousarfdsatures and thousands of clusters. As
kernel-based clustering algorithms generally achievi bigster quality, provided the correct ker-
nel function is chosen, we address the scalability chalexsgociated with kernel based clustering
algorithms. Our main contribution is the development ofcédfit approximations of the kernkel
means algorithm to enable kernel based clustering of laagge sbts. We demonstrate analytically
and empirically that the proposed approximate algorithmescamparable to kerndédmeans in
terms of accuracy and, at the same time, comparalteneans in terms of efficiency, achieving
the desired trade-off between scalability and accuracythake extend the proposed approximate
algorithms to handle distributed and streaming data, jmgsthie limits on the number of objects
that can be clustered accurately with limited computing exednory resources. Figure 1.7 shows
the scalability of some of the popular linear and kernelebadustering algorithms in terms of

d andC, and the contribution of the proposed clustering algorghmimproving the scalability of
kernel-based clustering.

In the following, we describe the specific contributions atle chapter:
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O Kernel k-means
Spectral clustering
104 -0 Maximum margin clustering
Support vector clustering

O Kernel SOM
O Kernel neural gas

102 - —&—k-means

—+— Hierarchical clustering
—=— DBSCAN
—+— Parallel spectral clustering (256 nodes)
10° —o&— Parallel nearest neighbor (2000 nodes)
104 —+— Parallel subspace clustering (3200 nodes)
X 20 —#— Approximate kernel k—-means
10 —+— Distributed approximate kernel k-means
10 —— RFF clustering
—<— SV clustering
0 0 —B— Approximate stream kernel k-means

d 100 10 n —&— Sparse kernel k—-means

Figure 1.7 Scalability of clustering algorithms in termsmgfd and C, and the contribution of
the proposed algorithms in improving the scalability ofrledrbased clustering. The plot shows
the maximum size of the data set that can be clustered wishthes1100 GB memory on &.8
GHz processor with a reasonable amount of clustering tigss (harl0 hours). The linear clus-
tering algorithms are represented in blue, current keoaskd clustering algorithms are shown
in green, parallel clustering algorithms are shown in méaesind the proposed clustering algo-
rithms are represented in red. Existing kernel-basedeaingt algorithms can cluster only up to
the order of10, 000 points with100 features intal00 clusters. The proposed batch clustering al-
gorithms (approximate kernkimeans, RFF clustering, and SV clustering algorithms) apable

of performing kernel-based clustering on data sets as Esge million, with the same resource
constraints. The proposed online clustering algorithrppr@ximate stream kern&means and
sparse kernédt-means algorithms) can cluster arbitrarily-sized data w#h dimensionality in the
order of1, 000 and the number of clusters in the orderl6f 000.
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e Chapters 2 and 3 address the scalability of kekamleans using kernel approximation tech-
niques. The computational demand of kerkeheans stems from the fact that it computes
ann x n kernel matrixK, leading toO(n?) running time and memory complexity. This
can be alleviated by replacing the kernel matkixwith an approximate matrix which can
be computed more efficiently. In Chapter 2, we first preseandomized algorithm, called
approximate kernel k-meamghich replacedy, with a low rank approximate kernel matrix.
Its complexity is linear in terms af, while its clustering performance is equivalent to that
of kernelk-means. We then extend the proposed approximate algoritivartdle large data
sets in a distributed environment. In Chapter 3, we propesectustering algorithmsRFF
clusteringand SV clusteringwhich employrandom feature mapg®2, 147] to obtain low-
dimensional representations for the data points, suclthieadot product of any two points
in the low-dimensional space approximates the kernel antylbetween them. This allows
us to execute a linear clustering algorithm on the transéordata points. The SV clustering
algorithm has a lower running time than the approximate é&ddsmeans algorithm. It also
allows the explicit computation of the cluster centersdieg to an efficient solution to the
out-of-sample clustering problem. We demonstrate that gassible to cluster billions of
data points efficiently and accurately using the algoritipmegosed in these two chapters.
For instance, we were able to cluster a synthetic data séioamg 1 billion 10-dimensional
points using the distributed approximate kerk@heans algorithm in5 minutes (on a com-
puting cluster withl, 024, 2.8 GHz processors and sharg@iGB memory ), with high cluster
quality 80% accuracy in terms of NM#). It would take many days to cluster this data set
using kernek-means and other kernel-based clustering algorithms ewiniéar clustering

algorithms likek-means cannot achieve comparable accuracy.

e Batch clustering algorithms such ksneans and kerné&tmeans are iterative in nature and

need to access the input data points multiple times. Howevany data sets are too large

12Refer to Section 1.6.2 for the definition of NMI.
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to load into the memory, so it would not only be prohibitivelypensive to perform multiple
passes over the data, but also infeasible to compute thelkeatrix. Some applications
such as social network analysis and intrusion detectioreiwarks, involve potentially un-
bounded sequences of data points called data streams. @miglbsubset of the data can be
stored, depending on the size of the data buffer. Due toghis) data point can be accessed
at most once. This data also evolves over time, so the datdspbiat arrived recently have
higher relevance than the older data. There have beervedlatew efforts to apply kernel
based clustering to data streams, due to the cost of congpiinkernel. In Chapter 4, we
present an efficient algorithm calleghproximate stream kernel k-means perform kernel
clustering on stream data. The key idea is to construct theekenatrix dynamically using
importance sampling, and assign labels to the incomingmtatds in real-time. We use sev-
eral benchmark data sets to simulate stream data sets, aldtevthe performance of the
proposed algorithm on these data sets. We demonstrateuthalgorithm is able to cluster

stream data sets in real-time with speeds up MBps.

Document and image data sets, contain millions of high-dsimal points and usually be-
long to a large number of categories. Finding clusters imglata sets is computationally
expensive using kernel-based clustering techniques bethay have quadratic running time
complexity in terms of the number of data points, and lineaetcomplexity in terms of the
number of dimensions and the number of clusters. Althoughaffproximate kernel clus-
tering algorithms discussed in Chapters 2-4 reduce themgrirme complexity in terms of
the number of data points, their clustering time grows lityeaith the number of clusters.
In Chapter 5, we present tlsparse kernel k-means algorithwhich can efficiently cluster
large data sets into thousands of clusters with signifigdover processing and memory re-
guirements, with high clustering accuracy. It assumesttieakernel matrix is sparse when
the number of clusters is large, and constructs a sparselkeatrix for a subset of the data

set, sampled incrementally using importance samplingst€tlabels are obtained by clus-
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Table 1.5 Description of data sets used for evaluation optbposed algorithms.

| Data set | Number of data pointsn | Dimensionality d | Number of clustersC |
CIFAR-10 [99] 60,000 384 10
CIFAR-100 [99] 60,000 384 100
MNIST [108] 70,000 784 10
Forest Cover Type [23] 581,012 54 7

Imagenet-34 [49] 949,401 900 34
Imagenet-164 [49] 1,262,102 900 164
Poker [33] 1,025,010 30 10
Network Intrusion [167] 4,897,988 50 10
Youtube 10,143,254 6,647 N/A
Tiny [173] 79,302,017 384 N/A
Twitter 1,000,000,000 8,042 N/A

Concentric circles 100 to 1,000,000,000 10 to 1,000 10 to 1,000

tering this sparse kernel matrix in a low dimensional spgeased by its top eigenvectors.
This algorithm has running time complexity linear in theesand the dimensionality of the

data set, and logarithmic in the number of clusters.

1.6 Data sets and Evaluation Metrics

1.6.1 Data sets

To demonstrate the effectiveness of the proposed algasitina use several benchmark data sets
of different sizes and dimensionalities, from several dosaThe description of the data sets is
summarized in Table 1.5.

e MNIST [108]: The MNIST data set is a subset of the database of handwritiés dvailable
from NIST. It contains70, 000 images froml10 classes, each class representing one of the
digits,0 — 9. Each image is represented agd-dimensional feature vector containing the
pixel intensity values.

e Forest Cover Type [23]: This data set is composed of cartographic variables olutdioen
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the US Geological Survey (USGS) and the US Forest Servicé&8)8ata. Each of the
581,012 data points represents the attributes df0ax 30 square meter cell of the forest
floor. There are a total of2 attributes, including qualitative measures like soil tygrel
wilderness area, and quantitative measures like slopeateda, and distance to hydrology.
Thesel?2 attributes are represented usimygfeatures. The data are grouped ifitolasses,
each representing a different forest cover type. The truerdype was determined from the
USFS Region 2 Resource Information System (RIS) data.

e Imagenet [49]: The Imagenet data set contains abbumillion images organized accord-
ing to the Wordnet hierarchy [64]. Each node in this hiergn@presents a concept known
as a “synset”. We downloaddd262, 102 images froml, 000 synsets, merged the leaf nodes
in the synset tree based on their similarity to form a 164<ldata set. We call this data
set Imagenet-164 and use it to demonstrate the effectisesfebe sparse kern&means
algorithm in Chapter 5. By filtering out the classes with fetv&an500 images, we formed
a balanced data set containiowf), 401 images fronB4 classes, which we call Imagenet-34
data set. This data set is used to evaluate the remainintgihg algorithms. We com-
puted the Scale Invariant Feature Transform (SIFT) desesd117] of the images using
the VLFeat library [178], and clustered a randomly chosdrsstiof 10 million SIFT fea-
tures to form a visual vocabulary. Each SIFT descriptor v tquantized into a visual
word using the nearest cluster center. We obtained a 906rdiional vector representation
for each image, which was then normalized to lie in the rgfigg.

e Poker [33]: This data set, available in the UCI repository [13], corgaini25,010 data
points. Each data point is an example of a “hand” consistinfive playing cards drawn
from a standard deck 62. Each card is described using two attributes: suit and rah&se
attributes are represented using(adimensional categorical feature vector. There Hre
classes in the data set, each depicting a type of poker hand.

e Network Intrusion [167]: The Network Intrusion data set contaids898,431 50-
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dimensional data points representing the TCP dump data $ewean weeks of a local-area
network traffic. The data is classified into 23 classes, oagsalepresenting legitimate traffic
and the remaining 22 classes representing different typdlegitimate traffic. We filtered
out the data from classes which contain fewer thdih data points, to form a data set with
4,897,988 data points from 10 classes.

¢ Youtube®®: Youtube is a video hosting website which allows users toaghloiew and share
videos over the web. It has over one billion users uploadirey 800 hours of videos ev-
ery minute, on a wide range of topics. We used the YoutubecBeaPl* to download
the meta-data corresponding 10, 143, 254 videos using26, 000 non-abstract nouns from
Wordnet [64] as search queries. We used the video titlerigti®n and the video thumbnail
(which usually contains the key frame in the video) to extfaatures for each record. For
each video, we eliminated stop words from the title and deton to obtain a vocabulary
containing6, 135 terms, and extracted the corresponding tf-idf (term fregyenverse doc-
ument frequency) features [125]. Feature vatyug representing the weight assigned to the
termt in recordr, measures how important the term is to the record in the dstalsis

defined as

x,¢ = tf(r,t)xidf(t, D) (1.14)

1+log f(r,t) :
logn—glogf(t) if f(’f’, t) >0

= , (1.15)
0 otherwise

where f(r,t) represents the number of times the tefrraccurs in the record and f(¢)
represents the number of records containing the teive then downloaded the thumbnail
of the video and extracted the global GIST features [141hefitnage. The finab, 647-

dimensional feature vector was obtained by concatenatiad¢ftidf and GIST features. We

Bwww.youtube.com
nttps://developers.google.com/youtube/v3

37


www.youtube.com
https://developers.google.com/youtube/v3

use this data set to evaluate the performance of the sparss keneans algorithm proposed
in Chapter 5 on large high dimensional data sets.

e Tiny, CIFAR-10 and CIFAR-100 [99, 173]: The Tiny Image data set contaifi$, 302,017
unigue32 x 32 color images, downloaded from the Internet. They were abtaby extract-
ing 75,062 non-abstract English nouns from the Wordnet database [&duaing them to
search for images ifi independent image search engines. These images were @a&dlo
and down-sampled t82 x 32. We represented each image usingfa-dimensional GIST
descriptor [141]. Though the search queries can be usedsellplabel the images, these
labels are unreliable. To evaluate the accuracy of the megbalgorithms, we used the
CIFAR-10 and CIFAR-100 data sets, manually labeled subsfetise Tiny data set. The
CIFAR-10 data set contairti), 000 images froml0 classes (bird, truck, deer, dog, cat, frog,
car, plane, horse and ship). The CIFAR-100 also cont#ing00 images fromlL00 classes.

e Twitter 1> Twitter is a social network with over 100 million active usgposting over
100, 000 short messages (callédeet$ per minute. The tweets contain personal updates,
real-time information about events, news etc. Each tweetaios a text message limited
to 140 characters and can include user-mentions, links, ematjcamd hashtags in addi-
tion to plain text. We downloaded over a billion tweets using Twitter streaming search
API using20 programming languages (Python, Perl, C#, Java, Ruby, GwaSkript, VB-
Script, Scala, Objective C, PHP, SQL, Postgresql, GO, Jhalikang, HTML, XML, Swift,
and ASP.NET) as search terms. We filtered out the non-Engliskts, removed the hash-
tags, eliminated the stop words and represented each tvithethe tf-idf features, defined
in (1.15), corresponding & 042 terms. We use this data set to demonstrate the efficiency of

the approximate stream kerriemeans algorithm in Chapter 4 on fast streaming data sets.

In addition to the above real-world data sets, we use a siiattiata set, which we call theon-

centric circles data set, to demonstrate the scalability of the proposeutittighs. The data set

Sww. twitter.com
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containing circular clusters of varying radii, was genedatvith different number of points, rang-
ing from 100 to 1 billion. The data dimensionality ranges from to 1,000 and the number of
clusters ranges from0 to 1,000. Each cluster contains the same number of points. An example
data set containing, 000 two-dimensional points alongy) concentric circles100 points in each

cluster) is shown in Figure 4.2(a).

1.6.2 Evaluation Metrics

The goal of our research is to reduce the resources needé@roel clustering, with minimal
reduction in the cluster quality. In order to evaluate thduction in running time and memory
complexity, we measured the time taken for clustering tha paints, and the amount of memory

used.

The cluster quality of the proposed algorithms were evalliaising two types of measures:
(a) internal measures evaluate the structure and compsactidahe clusters, while (b) external
measures evaluate how well the cluster labels match wittrtleeclass labels. We used the internal
Silhouette coefficieit51] and the extern@lormalized Mutual Information (NMIL04] measures

to evaluate the cluster quality of our algorithms.

The Silhouette coefficient measures the compactness ofltseers. Letd,; represent the

average dissimilarity between data patptand all the points assigned to the clustgri.e.

1
d i = d2 7949 )
k, - E , (xi,%;)

XjECk
XX

wheren,, is the number of points (except fa;) assigned to cluste?,. For each data point;,
define the coefficients; andb; as follows:
a; = dk*,i, andbi = min dkﬂ',
k#k*
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wherek* is the index of the cluster to which is assigned. The coefficieatrepresents the average
dissimilarity of x; with all other points within the same cluster, and the coieffith; represents
the average dissimilarity betweeqy and all the points in neighboring cluster. The Silhouette
coefficient is defined as

bi—ai

1 n
Silh tte= — 1.16
ilhouette= Z (1.16)

“~ max (a;, b;)
The value of the Silhouette coefficient lies in the rangeé, 1]. A value close td is desired. When

the coefficient is close td it implies thata; < b; for a large number of points, i.e. many of the
points are well-matched to the cluster to which they werégassl. On the other hand, when the
Silhouette coefficient value is closetd, a; > b; for a large number of data points, which implies
that many of the points are more similar to the neighboringtelrs than the cluster to which they
have been assigned. A value clos® tdenotes that many data points lie on the boundaries of their

natural clusters.

The Normalized Mutual Information with respect to the trdase labels of the data points
is defined as follows: Let/* andU® be the cluster membership matrices corresponding to two
partitionsa andb of the same data set. Lef represent the number of data points that have been
assigned labelin partitiona, andn?j’ represents the number of data points that have been assigned

labeli in partitiona and labelj in partitionb. We have

, (1.17)

wherea represents the partition obtained from the clusteringrétlym, andb represents the par-
tition based on the true classes. An NMI value of 1 indicata$gat matching with the true class
distribution whereas 0 indicates perfect mismatch. The tlass labels are available for most of

the data sets (except the Tiny image and Youtube data sesus@d the CIFAR-10 data set, a
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labeled subset of the Tiny image data set, to evaluate ttierpeance on the Tiny data set.

1.7 Thesis Overview

Kernel-based clustering algorithms, which perform wellreal-world data sets, are not scalable
to big data sets, containing billions of high-dimensionaings from thousands of clusters. We
propose scalable approximate kernel-based clusterimgitdms, and demonstrate their efficiency
and effectiveness on several diverse large-scale datal$etsemainder of this thesis is organized
as follows: Chapters 2 and 3 describe the approximate batskedng algorithms (approximate
kernelk-means, and kernel-based clustering using random Foeaturies), based on work pub-
lished in [40] and [42], respectively. These algorithms cluster up tol0 million data points with
thousands of features, and achieve high cluster qualitapten 4, based on the publication [43],
describes the approximate stream kekeleans algorithm, which can cluster streaming data of
arbitrary sizes in real-time. The sparse ketateans algorithm, discussed in Chapter 5, can clus-
ter arbitrarily-sized high-dimensional data sets, intaugands of clusters. It is applicable to large
document and image repositories. This work was publishgd8h We conclude our study and

present directions for future work in Chapter 6.

41



Chapter 2

Approximate Kernel-based Clustering

2.1 Introduction

As discussed in Chapter 1, kerdeimeans achieves better clustering performance khaeans,
because it explores the non-linear structure in the dataguimplex non-linear similarity mea-
sures. However, it has running time and memory complexigdgatic in the number of data points

n, leading to its non-scalability to big data sets.

To address this issue, we propose an approximate kerneééchgsalgorithm calledApproxi-
mate Kernel k-mean#0], based on random sampling. We samplgoints from the data set of
n points, and express the cluster centers as linear comtiirsatif vectors in the space spanned by
this subset. The weights of the sampled points in the clusteters, and the cluster labels of the
points are obtained simultaneously using iterative o#ation. Only a smalh x m portion of the
kernel matrix needs to be computed using the proposed #igaorithereby reducing the running
time complexity of clustering t@)(nm). Whenn is in the order of millions, the sample size
is much smaller than. Hence the proposed algorithm is comparabl&-toeans in terms of ef-
ficiency. We show analytically and empirically that the ¢&rsgquality achieved by the proposed

approximate kernét-means is comparable to that of kerkeheans.
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This chapter is organized as follows: In Section 2.2, weflyrieeview some of the popular
approximate kernel-based clustering schemes developttititerature. We formally describe
the proposed approximate kerrdemeans algorithm in Section 2.3. The key parameters which
determine the success of the proposed algorithm are theerumhisamplesn and the sampling
strategy. We discuss these issues in Section 2.3.1. InoBe2iB.2, we analyze the proposed
algorithm’s running time and memory complexity. We alsowlibat the difference between the
performance of the approximate kerkeaineans and the kernkimeans algorithms in terms of the
clustering errorreduces as the number of sampleicreases, at the rate 6f1/m). In 2.3.3, we
present the distributed approximate kerkeheans algorithm [41], which parallelizes the proposed
approximate kernek-means algorithm, in order to scale up to data sets contpiniiions of
data points. Finally, in Section 2.4, we demonstrate emgilyi that the proposed approximate
clustering algorithm is an efficient and accurate variarthefkernelkk-means algorithm, and can

be used to cluster large data sets, containing billions oftpo

2.2 Related Work

Large matrices like the kernel matrices correspondingrigel@ata sets have fast decaying eigen-
spectrums [187]. Therefore, the computational requirdmehoperations involving such matri-
ces can be reduced by replacing them with their low-rank@pprations. Most of the scalable
kernel-based learning algorithms, including the propaggaroximate kernét-means algorithm,

take advantage of this fact in their design.

Below, we first briefly review the low-rank matrix approxirat literature, and then describe

some of the large-scale kernel-based clustering algosittheneloped in the literature.

IClustering error is defined as the sum of the squared dissamesveen the data points and the center of the
cluster to which the data point is assigned. See Sectiofh ioBthe formal definition of clustering error.
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2.2.1 Low-rank Matrix Approximation

Given ann x m matrix A, the objective of low-rank approximation is to find a rankaatrix A,
that minimizes the error defined by

1A= Al

where||-||, represents either the spectral norm or the Frobenius nortre optimal solution
to (2.2.1) is given by

r

* T

Ar: E )\kukvk,,
k=1

where{\;},._, represent the largestsingular values ofd, and{u};_, and {v;},_, are the
corresponding left and right singular vectors [58]. Thedinequired to estimate the singular

vectors isO(mn min{m, n}), which can be prohibitive whem andn are large.

Several efficient algorithms have been proposed in theatiiee to approximate the Singular
Value Decomposition [129]. One of the earliest algorithm$-bezeet al. involves independently
samplings rows and columns fromd, to form ans x s matrix S. A is then projected onto
the span of the dominant eigenvectorsSf They showed that when the columns and rows are
sampled with probability proportional to the column and nogrms respectively, and the sample
sizes = O(max{rie=3,7%¢71}), the approximation error can be bounded, with high proktgpil
as

1A = Al = 1A = Al[7 + el Al (2.1)

wheree > 0 is an error parameter [70]. Achlioptasal. obtained a similar result by designing a
random matrixRk with entries dependent on the values in the mafrisuch that the matrid + R

is sparse, and the expectatiB?] = 0. The topr singular vectors of the sparse matrx+ R are
used in place of the singular vectorsAfo find the low rank approximation of [5]. The singular
vectors of a sparse matrix can be computed efficiently usiad.&anczos bidiagonalization method

and its variants [163].
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Approximation schemes developed thereafter achievetetiglounds on the error and the sam-
pling complexity, by using different sparsification, samgland projection schemes [50, 54, 57,
103,109, 137, 155, 187]. For instance, in [137], matfixs sparsified by nullifying the entries
which have sufficiently low magnitudes. Elements are retgim proportion to their magnitude.
Sequential column and row sampling with probability pramoral to the column’s (row’s) distance
from the span of the columns (rows) already selected is usfD]. In [155], A is first projected
into a low-dimensional space using a uniform random maltix {+1,-1}"** asB = AR,
and then projected onto the span of the best raakproximation ofB. These works obtained

multiplicative error bounds of the form
14— All,=(1+e) (14— 411}, (2.2)

The most widely-studied sampling-based approximatiohrtegies in the literature are the

CUR and the Nystrom approximations:

2.2.1.1 CUR matrix approximation

The CUR matrix decomposition method factorizéss A ~ C'UR whereC' containss columns
and R containst rows selected fromd, such thats < m,t < n. Thes x t matrix U is con-
structed to achieve minimal approximation error [22, 44152, 184]. Berryet al. obtainedC'
are R using Quasi-Gram-Schmidt orthogonalizationbfind A", respectively [22]. Drineast

al. proposed efficient linear-time algorithms which randondyngle the columns and rows, and
obtainU through the singular value decomposition of a smal s matrix [55]. In [122], they
improved the approximation by sampliigand R based on the importance of the columns and

rows, measured in terms of their statistical leverage stoWanget al. augmented a sparsifica-

2The statistical leverage score of tH& column of a rank= n x m matrix A with singular value decomposition

A=UxVTisdefinedas; = 2||[V(®| \; whereV (V) represents th&” row in V. Itis a measure of the independence
of the column and its influence on the matrix.
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tion procedure to the CUR decomposition algorithm to furtihgprove its efficiency [184]. The
CUR decomposition is preferred over the SVD decompositianany applications because it can

be interpreted more easily.

2.2.1.2 Nystrom matrix approximation

The Nystrom approximation can be viewed as a specializafitine CUR decomposition for sym-
metric positive semi-definite (SPSD) matrigéke kernel similarity matrices [17,57,103,109,111,
170,187,195]. It was first used in [187] to perform classti@aand regression using Gaussian
processes. It was then adopted in many kernel-based lgaiasiks such as classification [187],
regression [46, 187], clustering [35, 67, 113], manifoldrfeng [194] and dimensionality reduc-

tion [7].

Let K represent am x n SPSD matrix and< represent its best rankapproximation. The
Nystrom approximation studied by Williangt al. in [187] samplesn < n columns uniformly
without replacement froniC, to form then x m matrix Kg. Let K be them x m intersection

between the sampled columns and the corresponding levis approximated by
K = KgK 'K} (2.3)

Drineaset al. developed a variant which uséA@, the best rank- approximation ofK, in place
of K in (2.3), and samples the columns unifornviyth replacement, to obtain approximation
error bounds of the form (2.1) [57]. Several non-uniform pang techniques have been explored

in[17,74,103,170,195] to obtain improved error bounds.

3An n x n matrix K is positive semi-definite ik " Kx > 0, for all non-zerax € R”.
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2.2.2 Kernel-based Clustering for Large Data sets

Sampling and sparsification techniques have been employdlelop efficient kernel-based clus-
tering algorithms.

The spectral clustering algorithm is a graph-based clugteechnique [118]. The: points
in the data set are represented as nodes of a graph. Eachnetigegraph is weighted by the
similarity between the points connected by the edge. A atenote the: x n similarity matrix.

The spectral clustering algorithm uses the firstigenvectors of the Laplacian matrix defined by

L=1—diag K 1)""?Kdiag K "1)"'/2,

to find the clusters. The obvious computational bottlenatkisis algorithm are the calculation of
the Laplacian matrix and the computation of its eigenvestohich require)(n?) andO(n?) time
respectively.

The column sampling method by Friegeal. and Nystrom approximation method have been
used in the literature to speed up spectral clustering [,8,&2]. The key idea is to approximate
the Laplacian matrix, and use the approximate eigenvetidisd the clusters. The running time
complexity of these approximate spectral clustering aflgors isO(nm + m?3), wherem is the
number of columns sampled from the kernel matrix. /Ass usually much lower than, these
algorithms run much faster than spectral clustering. Ran@oojection can be combined with
sampling to further improve the clustering efficiency [783L. A low-dimensional projection
of the similarity matrix, obtained by multiplying it with e&andom Gaussian matrix, is used to
construct the graph Laplacian matrix. These approximagetsq clustering algorithms have been
applied successfully in image segmentation problems [113]

Nystrom approximation was also used to accelerate the keeneal gas algorithm [145]. The
objective of kernel neural gas is to find prototypes to represent the data. Each prototype is

associated with a randomly initialized weight, which is afedl by a factor proportional to the

a7



similarity between the prototype and the input data poinimil@r to the kernelk-means, the
prototypes are expressed as linear combinations of thepdétés in the Hilbert space, so each
weight update involves the x n kernel matrix. The Nystrom approximation of the kernel nxatr

was used in [156] to perform the weight updates, therebyadieduts running time complexity.

In addition to the above approximate methods, several striand application-specific al-
gorithms have been proposed to perform efficient kerneddbatustering. Zhang and Rudnicky
reduced the memory requirements of the kerkeheans algorithm by changing the order in
which clustering is performed. The kernel matrix is compubéockwise, and the cluster labels
are obtained by examining only one block at a time [196]. THESR algorithm first clusters
the input data set inten clusters usingk-means, and then executes spectral clustering on the
m (C < m < n) cluster centers to obtain th& clusters [191]. The RASP clustering method
first partitions the data space using Random Projection {fRR¥ [191]. RP trees are data struc-
tures that partition the data space intccells, by splitting recursively along one randomly chosen
coordinate at a time. Each cell in the partition is represetibly its center, and spectral clustering
is executed on the: representative centers. These methods reduce the rummeagomplexity
of clustering toO(nm + m3). Chenet al. sparsified the similarity matrix by retaining only the
similarity values corresponding to the neargsteighbors for each node, and proposed a simple
scheme to parallelize the similarity computation and ersg [35]. The nearest neighbors are
found usingkd-trees [131] and metric trees [176], thereby reducing theral memory require-
ment toO(np), although the running time complexity is still(n?log(p)). The GEM (Graph
Extraction + weighted kerndét-Means) algorithm proposed in [186] speeds up kekamleans for
social network graphs by eliminating the nodes with low éegrit makes use of the power law
distribution of social networks, which indicates that a 8mat of high degree vertices cover a

large portion of the network.
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2.3 Approximate Kernel k-means

Given a data seb = {xy,...,x,}, and a kernel function(-, -), kernelk-means find€”' clusters,
whose centersg,(-) are represented as linear combinations of all the pointbendata set, in

accordance with the representer theorem [158], i.e.
)= Urin(xi,) k € [C], (2.4)

whereU is the cluster membership matrix normalized by the numbgoaits in each cluster, as
defined in (2.8). In other words, the cluster centers lie i shbspace spanned by all the data
points, i.e. cx(-) € H, = sparx(xy,-),...,k(x,,)),k € [C]. As a consequence, the kernel
k-means algorithm requires the computatiorOgf,?) kernel similarity values, leading to its non-
scalability.

We can avoid computing the full kernel matrix if we restriogtsolution for the cluster centers

to a smaller subspadé, C H... H, should be constructed such that
(i) H. is small enough to allow efficient computation, and
(i) H, isrich enough to yield data partitions similar to those ot#d using#,.

We employ a simple randomized approach for construdidpgwe randomly sample: data points
(m < n), denoted byﬁ = {X1,...,Xn}, and construct the subspatg = spanxy,...,X,).

Given the subspack,, we modify the kernek-means optimization problem (1.7) as

min max ZZU’“H% —/-z(xl,-)||H , (2.5)

VEP ler (el iz T i

whereU = (uy,...,uc)" is the cluster membership matri,(-) € H,, k € [C] are the cluster
centers, and domai® = {U € {0,1}¢*" : UT1 = 1}, wherel is a vector of all ones. Let

Kp € ®"*™ represent the kernel similarity matrix between data pomf3 and the sampled data
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pointsﬁ, andK € jmxm represent the kernel similarity between the sampled datagoThe
following lemma allows us to reduce (2.5) to an optimizatoblem involving only the cluster

membership matrix/.

Lemma 1. Given the cluster membership mattix the optimal cluster centers ¥2.5) are given
by
cu(r) = Zak,zﬁ(ﬁz’, )5 (2.6)
=1

wherea = UK5K~'. The optimization problem fdr is given by
mintr(K) — tr(UKpK'KLUT), (2.7)

whereU andU are defined by

(/j = (ﬁlu"'7ﬁC)T = [diag<n17"'7n0>]_1Ua

U = (,...,u¢)" =[diag(y/n1,...,v/nc)]"'U, and

ne = u,1,ke[C]. (2.8)
Proof. Let p; = (k(x;,X1), - .-, k(X;,Xm)) @nda; = (i1, - . ., a;,m) be thei rows of matrices
K anda respectively. A, () € H, = spantXy, ..., X,,), We can express;(-) as

m
cp() = Z@k,m(ﬁz’, s
i=1
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and write the objective function in (2.5) as

C n
SO Uniller() = slxi, I3,

k=1 i=1

C n
ZZ Uk

k=1 i=1

2

m
> sy, ) = E(xi,)
j=1

Hl{
C
= trn(K)+ Z (nkagf(ozk - 2u;KBak> . (2.9)
k=1
By minimizing the above expression with respectio we have
oy = KT\ KL, k € [C] (2.10)

and thereforep = UKpK L. We complete the proof by substituting the expressiomfanto

(2.9). 0

As indicated by Lemma 1, we need to compute ofly for finding the cluster memberships.
K is part of Kz and therefore does not need to be computed separately. When n, this
computational cost would be significantly smaller than tifatomputing the full matrix.

We refer to the proposed algorithmAgproximate Kernel k-means outlined in Algorithm 3.
Figure 2.1 illustrates the algorithm on a two-dimensiomyaltsetic data set containing two semi-
circles. Except for a few points which are misclustered, rdgult is similar to that of kernel
k-means. Table 2.1 compares the confusion matrices of thitiquas obtained using the approxi-
mate kernek-means algorithm, with those of the kerkeineans and thk-means algorithms. A
confusion matrix shows the mapping between the true cldsddand the cluster labels. Each
cluster is assigned a class label, corresponding to thédiet¢of the majority of the data points in
the cluster. Each entry, c) in the confusion matrix represent the number of data pointa tlass
c assigned to clustdr. The diagonal entries represent the number of points that een assigned

to the correct cluster. Itis clear from Table 2.1 that theppsed algorithm achieves cluster quality
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comparable to that of the kernlelmeans algorithm, and is much more accurate thak-ttmeans

algorithm.

Algorithm 3 Approximate Kernek-means
1. Input:
e D={xi,...,%,},% € R% the set ofn d-dimensional data points to be clustered
e x(-,+): R4 x R — R: the kernel function
e (' the number of clusters
e m: the number of randomly sampled data poiriis{ m < n)
e MAXITER: maximum number of iterations

2: Output: Cluster membership matrix € {0, 1}¢*"

3: Samplem data points fronD, denoted byD = {1, ..., % }.

4: Compute matrice&’s = [k(X;, X;)|nxm, K= [K(Xi,X;)]mxm, andT = KpK-'.
5: Randomly initialize the membership matiix ensuring that/ "1 = 1.

6: Sett = 0.

7: repeat

8: Sett=1t+1.

9:

Compute the/; normalized membership matrix by U = [diag{U'1)]"'U.
10. Calculaten = UT.

11: fori=1,...,ndo

12: Find the closest cluster center for x; by

k. = argmin oz,jl?ozk — 20, o,
ke[C]

whereqy, andy; are thek™ andi** rows of matricesy and K z, respectively.
13: Update the® column ofU by Uy ; = 1 for k = k, and zero otherwise.
14:  end for
15: until the membership matrik does not change, or> MAXITER

2.3.1 Parameters

In addition to the kernel function and the number of clustére approximate kern&means is
parameterized by the sample sizeand the random sampling technique employed to obtain the
subsetD. These parameters play a crucial role in determining thstefing performance of the

proposed algorithm.
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Figure 2.1 lllustration of the approximate kermkeineans algorithm on the two-dimensional semi-
circles data set containirig0 points €50 points in each of the two clusters). Figure (a) shows all
the data points (in red) and the uniformly sampled pointblie). Figures (b)-(e) show the process
of discovery of the two clusters in the data set and theirazsnh the input space (represented by

X) by the approximate kern&means algorithm.

Table 2.1 Comparison of the confusion matrices of the apprate kernelk-means, kernek-
means an&t-means algorithms for the two-dimensional semi-circléa dat, containing00 points
(250 points in each of the two clusters). The approximate kekamleans algorithm achieves

cluster quality comparable to that of the kerkeheans algorithm.

| Class 1| Class 2| |

| Class 1| Class 2]

| Class 1| Class 2| |
Cluster 1 245 4 Cluster 1 250 0 Cluster 1 132 129
Cluster 2 5 246 Cluster 2 0 250 Cluster 2 118 121
(b) Kernelk-means (c) k-means

(a) Approximate kernéd-means
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2.3.1.1 Sample size

By comparing the optimization problem of approximate kéteneans in (2.7) with the kernel
k-means problem in (1.10), we can observe that the approgikenhelk-means problem can be
viewed as the kerndd-means problem in which the kernel matdx is replaced by its Nystrom
approximationKBf{—lK;. Therefore, the clustering performance of the approxirkateans

problem will be close to the clustering performance of kekameans if the approximation error
HK — KB[A(—lKgH is small. The following lemma adapted from [74] charactesithe humber

of samples required to obtain a good approximation.

Lemma 2. Let { \, vk}Zzl denote the eigenvalues and eigenvectors of the kernebmtriLet
Ve = (vi1,...,ve) denote the eigenvectors corresponding to the domifasigenvalues ofs.

Define the “coherence” of the dominaatdimensional invariant subspace &f as

© (2.11)

WhereVéf) is the:™” row in V.. Assume that the eigengap — ¢, is sufficiently large. For any
5 € (0,1), we have
~ 2
|5 = KR KL <ocn <1 + —n> ,
2 m

with probabilityl — §, providedm > 87C'log(C/9).

The coherence of a matrix is a measure of the number of informative columns in the ma-
trix. When the coherence is low, few columns are sufficierdlitain an accurate approximation.
Lemma 2 indicates that the approximation error reducesatesofO(1/m), with increasingn.

In our experiments, we examined the performance of our ghgorfor different sample sizes
m, ranging from0.001% to 15% of the data set size, and observed that settimg equal t00.01%

t0 0.05% of n leads to a satisfactory performance.
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2.3.1.2 Sampling strategies

Another important factor that influences the proposed apprate kernek-means algorithm is
the sampling distribution employed to construct the keapgroximation. The simplest sampling
technique is uniform random sampling, i.e. each point istet with a probability /n. Several
non-uniform sampling and greedy approaches to performréwk- matrix approximation, have

been studied in the literature.

(i) Diagonal sampling involves choosing a data pointvith a probability proportional to the
diagonal elemenk (x;, x;) [17,57]. This distribution is the same as the uniform dimttion

for exponential kernels of the form

K(Xavxb) = €Xp <_)\ ||Xa - Xb||;17> D, q > 07

such as the RBF kernel and the Laplacian kernel, becaudeeatliagonal entries are equal

to one another.

(i) Column-norm sampling involves choosing with a probability proportional to thé, norm

of the column vecto¥( (-, x;) [69].

(ii) In[195], k-means is applied to the data set and the cluster centeligetht@e used in place

of the sampled data sét

(iv) Adaptive sampling techniques involve selecting daimfs sequentially, to ensure maximum
coverage of the data [50, 102, 114, 142]. For example, a grsel@ction procedure which
selects a point which is farthest from the currently selbst of points is employed in [142].
Liu et al. propose selecting a data point which would form a subspattethe previously
chosen points, so that the total distance of unsampled aatésgo this subspace is mini-

mized [114].
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(v) Sampling based on the importance of the data point ingerithe statistical leverage scores

and the coherence of the data is employed in [170].

The non-uniform sampling techniques like column-norm siamgpadaptive sampling and impor-
tance sampling haw@ (n?) running time complexity. Hence, they are infeasible fogéadata sets.
Sampling usink-means can be performed @n(nm) time. Uniform and diagonal sampling have
linear time complexity. Kumaet al. compared the diagonal and column sampling techniques with
uniform sampling and showed that uniform sampling with@glacement is more effective than
the non-uniform sampling techniques [103]. We explore sofrteese techniques empirically in

Section 2.4.

2.3.2 Analysis

In this section, we first analyze the computational compyexi the proposed approximate kernel
k-means algorithm, and then examine the quality of the dati#tipas generated by the proposed

algorithm.

2.3.2.1 Computational complexity

Assuming uniform sampling strategy, sampling can be peréal in O(n) time. The most ex-
pensive operations in the proposed algorithm are the miatrersion K —* and calculation of the
matrix T = Kz K ', which have a total computational cost@fm? + m?n). The cost of com-
puting« and updating the membership mattixis O(mnC1), wherel is the number of iterations
needed for convergence. Hence, the overall running timeptoaty of the approximate kernel
k-means algorithm i® (m? + m?n +mnC1). We can further reduce the computational complexity

by avoiding the matrix inversiok —! and formulating the calculation of = UT = UKgK~' as
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the following optimization problem:

1 - N
min —~tr(aKa) —tr(UKga") (2.12)

aeRCxm

If K is well conditioned (i.,e. the minimum eigenvalueﬁ’f is significantly larger than zero),
we can solve the optimization problem in (2.12) by a simpladgnt descent method with a
convergence rate ab (log(1/¢)), wheree is the desired accuracy. As the computational cost
of each step in the gradient descent metho@{s:2C), the overall computational cost is only
O(m?Cllog(1/e)) < O(m?®) whenCl < m. This reduces the overall computational cost to
O(m*Cl + mnCl + m?n). As the largest matrix that needs to be stored in memo#y s the
memory requirement is onk (mn). This is a dramatic decrease in the running time and memory
requirements for large data sets when compared t&thé) complexity of kernek-means. The
running time complexity of approximate kernelmeans is also lower than that of the Nystrom
approximation based spectral clustering algorithm, whiekds to compute the eigenvectors of

them x m matrix K in O(m?) time.

2.3.2.2 Approximation error

In this section, we compare the clustering error of appraté@kernek-means with that of kernel
k-means. The only difference between the two algorithms esféltt that approximate kernel
k-means restricts the cluster centers to a small subsfaceonstructed using the sampled data
points. Our analysis will therefore be focused on boundnegeixpected error due to this constraint.

Let binary random variables = (&1, &, ...,&,) " € {0,1}" represent the sampling vector, i.e.
&L =1ifx; € D and zero otherwise. The following proposition allows us titevthe clustering

error in terms of random variable

Proposition 1. Given the cluster membership matfix= (u;,...,uc) ", the clustering error can
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be expressed ifias

C
LWUE) =tr(K)+ Y Li(U,¢), (2.13)
k=1
whereL, (U, ¢) is
Ly(U,€) = min —2ul K (a0 €) + ni(on 0 &) K (e 0 §). (2.14)

Note that approximate kern&tmeans becomes equivalent to kerkegheans wherg = 1,
wherel is a vector of all ones, implying that all the data points alected for constructing the

subspacé{,. As aresultL(U, 1) is the clustering error of the kernlelmeans algorithm.

The following lemma relates the expected clustering erfapproximate kerneéf-means with

that of kernek-means.

Lemma 3. Given the membership matrix we have the expectation 6tU, ¢) bounded as follows

Ec[L(U,€)] < L(U, 1) +tr ((7 [K‘l + %[diag(K)]‘l] ﬁT) , (2.15)

where£(U,1) = tr(K) —tr(UKU ).

Proof. We first boundE, L (U, €)] as

BLUU )
= E; |:H}X1H —Qﬁ;K(a o)+ (ao §)TK(OK o 5)]

< minEe [-28] K(a 0 &) + (@0 &) K(aog)]
2

= min —QTﬁ,IKoz + m—zozTKoz + = <1 — T) o' diag K)o
n n n n

a

07

< min —Q@ﬁ,IKoz +ZaT (TK + diag(K)) a.
n n n
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By minimizing the above expression with respectitave obtain
m . -
o = (—K + dlag(K)> K.
n

Therefore,
m

1 - m . -1
TELu(U,6)] < — K <gK + dlag(K)> K.

E¢[Li (U, €)] can be bounded as

IN

—1
Aty (K K [K + %diag(K)} K) i,

— (K—l + %[diag(f()]—l) Uy
We complete the proof by adding @ L (U, £)] and using the fact that

Ly(U,1) = min —2u} Ko + npa' Ka = —1, K.

The above result can be interpreted in terms of the eigeesaltithe kernel matrix.

Corollary 1. Assume:(x,x) < 1 foranyx. Let\; > X\, > ... > ), > 0 be the eigenvalues of

matrix /. Given the membership matrix, we have

Ec[L(U,¢€)] SN/ + Aim/n]

vy S e m) s,
C/m

D e wr

IA

Proof. As x(x, x) < 1 for anyx, we have diag’) < I, wherel is an identity matrix. AdJ is an
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/5 normalized matrix, we have

~ -1 -
< tr (U [K—l + T[} UT)
n
C
< - <
- ; L+mA/n =~ m
and
C
L) =tr(K -UKU") > tr(K) - Y\
=1
We complete the proof by combining the above inequalities. O

To illustrate the result of Corollary 1, consider a speciainiel matrix K" that has its first
eigenvalues equal/a and the remaining eigenvalues equal zero; A\e= ... = A\, = n/a and
Aat1 = ... = A\, = 0. We further assume > 2C’; i.e. the number of non-zero eigenvaluegof

is larger than twice the number of clusters. Then, accorttirgorollary 1, we have

<14 ——e <14 —,

E[L(U, &) — L(U,1) Ca 2C
(U, 1) - m(a — C) m

indicating that when the number of non-zero eigenvaluds &f significantly larger than the num-
ber of the clusters, the difference in the clustering erobigernelk-means and our approximation

scheme will decrease at the rate(®fl /m). This result concurs with the result of Lemma 1.

2.3.3 Distributed Clustering

As the proposed approximate kerteteans algorithm ha@(nm) running time complexity,
it is easier to parallelize than the kerkkeeans algorithm. In Algorithm 4, we propose a scheme
to parallelize approximate kernieilmeans. The key idea is to distribute the kernel computaiiah

perform approximate clustering using a relatively smatbaitrix.
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Algorithm 4 Distributed Approximate Kernéd-means

1:

©

10:
11:
12:
13:

14:
15:
16:
17:
18:

19:
20:
21:

22:

Input:
e D={xy,...,%,},% € R% the set ofn d-dimensional data points to be clustered

K(+, ) @ x X x — R the kernel function
C'": the number of clusters
m: the number of randomly sampled data poirdts< m < n)
P: the number of tasks
MAXITFER: maximum number of iterations
Output: Cluster membership matrix € {0, 1}¢*"
I/l Master task R R
Randomly samplen data points fromD, denoted byD = {x,...,X,,} and computey =
[5(%1, %) -
Randomly split the unsampled data points iftparts{ D", ..., D"}.
Execute in parallel:
/] Taskl R
ComputeKh = [k(x;,X;)]sxm andT! = KLK™!, wherex; € D' ands is the number of
points inD'.
Randomly initialize the membership matii¥, ensuring that/!' 1 = 1.
Sett = 0.
repeat

Sett =t + 1.

Calculaten! = [diag(U'1)]~tU'T".

fori=1,...,sdo

Find the closest cluster center for x; € D! by

k. = argmin (ab) ' K (ah) =2 (¢}) " (a}),
ke[C]

wherea! andy! are thek™ andi™" rows of matrices\' and K, respectively.
Update the' column ofU" by U} ; = 1 for k = k, and zero otherwise.
end for
until the membership matri& does not change or> MAXITER
for each point; ¢ D' do
Find the closest cluster centler

k. = argmin (aﬁg)T K (aé) -2 (gpﬁ)T (aé) ,
ke[C]

whereal is thek™ row in o andy! = (k(x;,X1), . . ., k(Xi, X))
Update the"" column ofU' by Uy, ; = 1 for k = k. and zero otherwise.
end for
end parallel execution
/Il Master task
Randomly select an indéband set/ = U', or combine the matrice{sUl}lP:1 using an ensem-
ble clustering algorithm (e.g. the Meta-clustering altori described in Algorithm 5).
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Algorithm 5 Meta-Clustering Algorithm
1: Input: Cluster membership matrice{é/l};i1 ,Ub e {0,110
2: Output: Consensus cluster membership matfix
3: Concatenate the membership matricgs'}”, to obtain an PC x n matrix U =

(ug,uy,...,upc)’.
4: Compute the Jaccard similarity; between the vectons; andu;, i, j € [PC] using

T

Sij = .
Tl A+ - uf

5. Construct a complete weighted meta-graph = (V,E), where vertex setl’ =
{uy,u,,...,upc} and each edg@u;, u;) is weighted bys; ;.

6: PartitionG into C' meta-cluster§m, }$_ | wherer, = {u,(j), u® u,(j’v)}.

7: Compute the mean vectors for each meta-clugter}$_, using
Sk

1 (i)

g:fori=1,...,ndo
9:  Update the'® column ofU as

1 if k. = arg max juy;
Uk*,i = kE[C}
0 otherwise
10: end for
We first samplen pointsD = {X1,...,X,} fromthe data set and randomly split the remaining

n — m data points intaP parts{D',..., D"}. Let the matrixk = x(X;,X,) wherex,, %, € D.
We then map each partition to a processing node. Each nodputesithe kernel matrix’, =
r(x:,X;), wherex; € D', the set of points assigned to the node, and finds the clwtetsl for
the s points in D' and the corresponding cluster centers, using the matficesnd K. Each
pointx; ¢ D' is assigned to the cluster whose center is closest. ThigpsagenerateB cluster
membership matrice@Ul}lP:1 ,U' € {0,1}9*", To obtain the final cluster membership matfix
we can either randomly choose one indend set/ = U!, or combine them using an ensemble

clustering algorithm.
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The objective of ensemble clustering [180] is to combinetipld partitions of the given data
set. A popular ensemble clustering algorithm is the Metast@ring algorithm (MCLA) [168],
described in Algorithm 5. It maximizes the average norneglimutual information between the
partitions using hypergraph partitioning. Givéhcluster membership matrice§/*, ... U”},
whereU! = (u},...,ul)", the objective of this algorithm is to find a consensus mestbpr

matrix U that maximizes the Average Normalized Mutual Informatidefined as
1 P
ANMI ==Y NMI(U,U 2.16
p 2 NMIU.U), (2.16)

whereNMI(U¢, U"), the Normalized Mutual Information (NMI) [104] between tyartitionsa

andb, represented by the membership matricésandU® respectively, is defined by

NMI(U®,U") = s . (2.17)
C a C nb
(E né log %) > nhlog -2
i=1 j=1

In equation (2.17)n¢ represents the number of data points that have been assapetdin par-

c.c ., e
> > ng;log (nna%)

tition a, andn;f’;’ represents the number of data points that have been assajpsdin partitiona

and labelj in partitionb. NMI values lie in the rang@, 1]. An NMI value of 1 indicates perfect
matching between the two partitions whereas 0 indicatefegtemismatch. Maximizing (2.16)

is a combinatorial optimization problem and solving it exst@vely is computationally infeasible.
MCLA obtains an approximate consensus solution by reptaggtihe set of partitions as a hyper-
graph. Each vecton!, k € [C],! € [P] represents a vertex in a regular undirected graph, called
the meta-graph Vertexu; is connected to verten; by an edge whose weight is proportional to

the Jaccard similarity between the two vectaygindu;:

T

(2.18)

S8ij = .
Yl [l uf

)
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This meta-graph is partitioned using a graph partitionigg@thm such as METIS [93] to obtaii
balanced meta-clustefs;, 7, . .. m¢ }. Each meta-cluster, = {u,(j), u,(f), . u,(:k)}, containing

sy vertices, is represented by the mean vector

Sk

1 i

s
L

The valuey, ; represents the association between data pgiabd thek!™ cluster. Each data point

x; Is assigned to the meta-cluster with which it is associdtednost, breaking ties randomly, i.e

1 if k., = argmax puy,;
Uk,i = kelC) (2.20)

0 otherwise

By parallelizing the approximate kernklmeans algorithm, the running time complexity for
kernel calculation and clustering reducesxgm /P) andO(m?*C +mnC'/ P+ m?n/P), respec-
tively. If the ensemble clustering algorithm is employeatmnbine the partitions in the last step,
an additional cost o®(nC?P?) is incurred. The communication overhead is minimal. Only th
m sampled data points need to be replicated, in contrast to thenber of data points that need

to be replicated across all the nodes in parallel kekrrakans.

2.4 Experimental Results

In this section, we show that the approximate kekagleans algorithm is an efficient and scalable
variant of the kernek-means algorithm. It has lower running time and memory nesuoents but

is on par with kernek-means in terms of the clustering quality.
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2.4.1 Data sets

We use the medium-sized CIFAR-10 and MNIST data sets, fochvhiis feasible but expensive

to compute ther x n kernel matrix, to demonstrate that the proposed algorgtohistering per-
formance is similar to that of the kernelmeans algorithm, in terms of the cluster quality. We then
demonstrate the efficiency of the proposed algorithm oreldaga sets, on a single processor, us-
ing the large Forest Cover Type, Imagenet-34, Poker and diktimtrusion data sets. We analyze
the scalability of our algorithm using the synthetic cortdercircles data set. We finally execute
the distributed approximate kernemeans on the Tiny data set and the concentric circles data se

containing a billion points.

2.4.2 Baselines

We first compared the proposed technique with the kdameéans algorithm to show that similar
performance is achieved by our algorithm. We also gaugealgarithm’s performance against
that of the Nystrom spectral clustering algorithm [67], eihtlusters the top’ eigenvectors of a

low rank approximate kernel matrix, obtained through thetiym approximation technique, and

thek-means algorithm to show that our algorithm achieves beltester quality.

2.4.3 Parameters

To define the inter-point similarity, we used the univers@Hkernel with the kernel width param-
eter set equal tpd, whered is the average pairwise Euclidean distance between thepdaits,
and parametep is a value in the rang®, 1]*. The value which achieved the best NMI was em-
ployed. We evaluated the efficiency of the proposed algoriibr different sample sizes ranging
fromm = 100 to m = 2,000. We selected these sample sizes to ensure that the truerslust

each data set are sufficiently represented in the sample high probability. For the purpose of

4The average pairwise similarity was used only as a heutisget the RBF kernel width, and not required by the
proposed algorithm. Other techniques may be employed tosghtiie kernel and the kernel parameters.
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evaluation, the number of clustefswas set equal to the number of true classes in the data set.
All algorithms were implemented in MATLABand run on a 2.8 GHz processor. The memory
used was explicitly limited td0 GB. We executed each algorithifi times and present the results
averaged over these runs. Different permutations of theesidtwere input to the algorithm in each

run.

2.4.4 Results

2.4.4.1 Running time

Table 2.2 Running time (in seconds) of the proposed appratarkernek-means and the baseline
algorithms. The sample size is set to2, 000, for both the proposed algorithm and the Nystrom
approximation based spectral clustering algorithm. ltasfaasible to execute kernkelmeans on
the large Forest Cover Type, Imagenet-34, Poker, and Nktmbusion data sets due to their large
size. An approximate value of the running time of kerk@heans on these data sets is obtained
by first executing kernét-means on a randomly chosen subseb@®@000 data points to find the
cluster centers, and then assigning the remaining poirketolosest cluster center.

Data set Approximate Nystrom Kernel k-means
kernel k-means| approximation k-means
(proposed) based spectral
clustering
CIFAR-10 37.01 116.13 725.32 159.22
(4+6.52) (41.97) (+7.39) (+75.81)
MNIST 57.73 4,186.02 914.59 448.69
(+12.94) (+386.17) (+235.14) (+£177.24)
Forest 157.48 573.55 4,721.03 40.88
Cover Type (427.37) (+327.49) (+504.21) (46.4)
Imagenet-34 1,261.02 1,841.47 154,416.48 31,076.41
(+37.39) (+£123.82) (32, 302.44) | (£9, 355.41)
Poker 256.26 520.48 9,942.40 40.88
(+44.84) (+51.29) (41, 476.00) (46.40)
Network 891.08 1,682.46 34,784.56 953.41
Intrusion (+£237.17) (235.70) (+1,493.59) | (£169.38)

SWe used thé-means implementation in the MATLAB Statistics Toolbox ahd Nystrom approximation based
spectral clustering implementation [35] available at ittumni.cs.ucsb.edu/ wychen/sc.html. The remainigg-al
rithms were implemented in-house.
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Figure 2.2 Example images from three clusters in the Imag@heata set. The clusters represent
(a) butterfly, (b) odometer, and (c) website images.

The running times of the proposed algorithm for sample size= 2,000 and the baseline
algorithms are recorded in Table 2.2. We observed that alspes overd0% was achieved by our
algorithm when compared to kerremeans on the CIFAR-10 and MNIST data sets. Itis infeasible
to calculate thex x n kernel for the large Forest Cover Type, Imagenet-34, PokdrNetwork
Intrusion data sets. To gauge the efficiency of our algoritigminst kernek-means on these data
sets, we randomly selected a seb0f000 points from these data sets, executed kekrrakeans on
this subset, and assigned cluster labels to the remainingsgay finding the cluster whose center
is closest. Our algorithm was faster than this version ofkiimel k-means algorithm as well.
Even thek-means algorithm was slower than the proposed approxineaitek-means algorithm
on most of the data sets, due to their high dimensionalityr &gorithm was also faster than
the spectral clustering algorithm based on the Nystromamation, because spectral clustering
requires the eigendecomposition of the similarity matilike most time-consuming operation in

our algorithm, computation of the inverse matfix !, heavily influenced the clustering time.

2.4.4.2 Cluster quality

Figures 2.2 and 2.5 show examples of clusters obtainedg i@ approximate kernétmeans
algorithm, from the Imagenet-34 and the CIFAR-10 data setgpectively. We assigned a class
label to each cluster, based on the true class of majoritiyeobbjects in the cluster.

The silhouette coefficients of the proposed algorithm amepared with those of the baseline
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algorithms, on the CIFAR-10 and MNIST data sets, in FiguBe £omputing the silhouette coef-
ficient values for the partitions of the remaining data setmputationally prohibitive. On both
the CIFAR-10 and MNIST data sets, the silhouette coefficiahies achieved by the proposed
algorithm are close to those of the kerkeheans algorithm, proving that the two algorithms yield
similar partitions. The Nystrom approximation based s@clustering algorithm achieves lower
silhouette values, while tHemeans algorithm achieves values close,tshowing that the clusters

obtained are not compact. The NMI values achieved by thegsegbalgorithm against the base-

I Approx. kemel k-means (proposed)
[ Nystrom approx. based spectral clustering
I Kemel k-means

[lk-means
0.5
0.03 + 0
4
2 2 +
© 0.02 © 0.3
=} =}
o o
= =0.2
9 0.01 n
0.1 V
i,
(a) CIFAR-10 (b) MNIST

Figure 2.3 Silhouette coefficient values of the partitiolsaced using approximate kernlel
means, compared to those of the partitions obtained usmddkeline algorithms. The sample
sizem is set to2, 000, for both the proposed algorithm and the Nystrom approxonabased
spectral clustering algorithm.

line algorithms are shown in Figure 2.4. Due to the small efzbe images in the CIFAR-10 data
set, it is difficult to obtain a high clustering accuracy orsttlata set. Despite this difficulty, our
algorithm partitioned the images into clusters similaritode obtained by using kerrleimeans.
The MNIST data set was also clustered into partitions sirtdl#he partitions obtained from kernel
k-means. Our algorithm’s prediction accuracy in terms of Nlith respect to the true class labels
is comparable to that of kerngtmeans. The proposed algorithm’s NMI values are marginally
better than those of the approximate spectral clusterigorighm, because the spectral clustering

algorithm uses only the tof' eigenvectors of the kernel matrix to determine the clustetsch
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I Approx. kernel k-means (proposed)
[ Nystrom approx. based spectral clustering
I Kemel k-means
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Figure 2.4 NMI values (in %) of the partitions obtained usapproximate kerndt-means, with
respect to the true class labels. The samplersizeset to2, 000, for both the proposed algorithm
and the Nystrom approximation based spectral clusteriggrithm. It is not feasible to execute
kernelk-means on the large Forest Cover Type, Imagenet-34, PakéiNatwork Intrusion data
sets due to their large size. The approximate NMI values oféié&-means on these data sets are
obtained by first executing kernkelmeans on a randomly chosen subsei®i00 data points to
find the cluster centers, and then assigning the remainiimggo the closest cluster center.
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Figure 2.5 Example images from the clusters found in the ®HA data set using approximate

kernelk-means. The clusters represent the following objects:ifpleae, (b) automobile, (c) bird,
(d) cat, (e) deer, (f) dog, (g) frog, (h) horse, (i) ship, apdr(ick.




may be too restrictive for these data sets. As expectedyekéernel-based algorithms performed

better thark-means.

2.4.4.3 Parameter sensitivity

The proposed approximate kerrieineans algorithm is dependent on one crucial parameter: the
sample sizen. We study the effect of varying this parameter on the runtimeg of the algorithm

in Table 2.3, and the cluster quality in Figure 2.6 (NMI vayand Figure 2.7 (Silhouette coeffi-
cient values). We compare the performance of our algorithainst the Nystrom approximation
based spectral clustering algorithm, which also dependbe®same parameter. In Table 2.3, the
execution time is split into the time taken for computing kieenel matrix and clustering the data
points. The kernel computation time is common to the prop@dgorithm and the Nystrom ap-
proximation based spectral clustering algorithm. Moreetias spent in clustering than in kernel
calculation, due to the simplicity of the RBF kernel. Thouglr algorithm took longer than the
approximate spectral clustering algorithm for small sanges . < 1, 000), the running time of
the spectral clustering algorithm increased cubicallyhwiite number of samples. Our algorithm
was faster for large sample sizes, when high cluster quatity achieved. The running time of
our algorithm also increased as the sample sizecreased, but at a lower rate. The silhouette
coefficient values of the proposed algorithm increased mally as the sample size increased,
and were higher than those achieved by the Nystrom approximbased spectral clustering al-
gorithm. The NMI values achieved by our algorithm were algghér than those achieved by the
Nystrom approximation based spectral clustering algorjtespecially when the sample size is
large, and spectral clustering is computationally expensdnly on the Imagenet-34 data set, our
algorithm performs marginally worse than the spectralteliisg algorithm. There is a marginal

improvement in the NMI of our algorithm as the sample sizeanses.

71



I Approx. kernel k-means (proposed)
[ Nystrom approx. based spectral clustering
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Figure 2.6 Effect of the sample size on the NMI values (in %) of the partitions obtained using
approximate kernét-means, with respect to the true class labels.
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I Approx. kernel k-means (proposed)
[ Nystrom approx. based spectral clustering
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Figure 2.7 Effect of the sample sizeon the Silhouette coefficient values of the partitions otséli
using approximate kern&means.

2.4.4.4 Sampling strategies

In our implementation of the proposed algorithm, we empdlayeiform random sampling to select
the subset of data using which the kernel matrix is constdidDther sampling strategies such as
column-norm sampling, diagonal sampling d&acheans based sampling may be used to select the
samples. Table 2.4, Figure 2.8, and Figure 2.9 compare tiv@éng time, silhouette coefficient
and NMI values, respectively, for the column norm sampling thek-means sampling strategies
with uniform random sampling. For column norm-sampling, agsume that the x n kernel
matrix is pre-computed and only record the time taken formetimg the column norms, and the
time taken for choosing the first indices, as the sampling time. Fkymeans sampling, we
record the time taken to executaneans and find the representative samples. As expected, the
sampling time for both the non-uniform sampling technigues greater than the time required
for uniform random sampling. Column norm sampling is morngemsive thark-means sampling,
after the kernel computation time is taken into accounthBloé non-uniform sampling techniques
are as accurate as uniform random sampling for substanaatje sample sizes, both in terms of
silhouette coefficient values as well as the NMI values. Bhisws that the additional time spent

for non-uniform sampling does not lead to significant imgnoent in the performance, aligning

73



Table 2.3 Effect of the sample sizeon the running time (in seconds) of the proposed approximate

kernelk-means clustering algorithm.

m Approx. Approx. Nystrom m Approx. Approx. Nystrom
kernel kernel approx. kernel kernel approx.
calculation | k-means based calculation | k-means based
(proposed) | spectral (proposed) | spectral
clustering clustering
100 0.34 11.95 0.57 100 0.65 25.91 7.20
(£0.04) (£4.62) (0.12) (20.06) (£3.05) (£1.00)
200 0.87 39.04 0.99 200 1.06 14.54 49.56
(£0.07) (£15.04) (£0.13) (£0.18) (£7.85) (£9.19)
500 1.36 11.84 4.25 500 1.99 21.36 348.86
(£0.03) (£2.11) (1.86) (£0.34) (£8.35) | (£107.43)
1,000 3.63 45.87 22.61 1,000 3.32 25.78 920.34
(£0.23) (£21.94) (£5.03) (£0.44) (£6.78) (£219.62)
2,000 4.60 32.41 111.53 2,000 5.81 51.92 4,180.21
(£0.20) (£6.32) (£1.77) (£0.35) (£12.59) | (+385.82)
(@) CIFAR-10 (b) MNIST
m Approx. Approx. Nystrom m Approx. Approx. Nystrom
kernel kernel approx. kernel kernel approx.
calculation | k-means based calculation | k-means based
(proposed) | spectral (proposed) | spectral
clustering clustering
100 1.40 17.70 10.35 100 47.29 504.41 78.53
(£0.29) (£6.06) (£1.44) (£1.12) (£119.41) (£7.14)
200 1.64 22.57 16.83 200 68.15 608.24 115.16
(£0.09) (£12.39) (£2.38) (£0.16) (£10.78) (+4.47)
500 3.82 28.56 50.11 500 168.83 737.24 292.69
(£0.03) (£11.61) | (£10.83) (£0.27) (£209.26) | (£7.21)
1,000 11.14 55.01 137.26 1,000 181.93 847.06 404.73
(£0.68) (£18.57) (£40.88) (£11.95) (£22.88) (£79.77)
2,000 22.80 134.68 550.75 2,000 344.39 916.63 1497.08
(£1.27) (£26.10) | (£326.22) (£3.77) (£33.62) | (£120.05)

(c) Forest Cover Type
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Table 2.3 (cont'd)

m Approx. Approx. Nystrom m Approx. Approx. Nystrom
kernel kernel approx. kernel kernel approx.
calculation | k-means based calculation | k-means based
(proposed) | spectral (proposed) | spectral
clustering clustering
100 2.85 53.02 10.88 100 7.52 729.07 241.84
(£0.36) (£10.86) (+1.65) (£0.64) (£237.67) | (£65.00)
200 7.31 81.83 46.78 200 13.82 683.22 200.48
(£1.40) (£30.72) (+4.21) (+4.15) (£438.10) | (£45.24)
500 12.74 104.83 90.57 500 41.36 339.77 436.79
(£2.41) (£17.76) (£18.57) (£10.75) (£119.48) | (£206.47)
1,000 31.29 171.55 261.14 1,000 87.24 551.39 668.91
(£2.64) (£41.61) | (£20.51) (£10.54) (£78.01) | (£49.37)
2,000 40.75 215.51 479.73 2,000 115.14 775.94 1567.32
(£3.83) (+41.01) (+47.46) (£7.06) (£230.11) | (£228.64)
(e) Poker (f) Network Intrusion

with the results of earlier works such as [103].

2.4.4.5 Scalability analysis

We analyze the scalability of the proposed approximatedtérmeans for different values af, d,
C'using the synthetic concentric circles data set. We empldye RBF kernel function to compute
the approximate kernel matrices, and set the number of sghpplintsn = 1, 000 whenC' < 100
andm = 10C whenC' > 100. This was done in order to ensure that the condition imposed b
Lemma 2 is satisfied.

Figure 2.10(a) shows that the running time of the algoritlames nearly linearly as the number
of points in the data set varies from100 to 10 million, the dimensionalityl = 100, and the
number of clusters’ = 10. This concurs with our complexity analysis in Section 2.3.2

We set the number of data points= 10° and the number of clustes = 10, and studied the
effect of the data dimensionality on the performance of ttoppsed algorithm in Figure 2.10(b).
The dimensionality of the data set plays an important rolg imrthe calculation of the kernel. The

RBF kernel is simple and takes only a fé@d0 seconds to calculate, even for= 10°. The running
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Table 2.4 Comparison of sampling times (in millisecondsjh& uniform, column-norm ank-
means sampling strategies on the CIFAR-10 and MNIST data $&rametem represents the
sample size.

m CIFAR-10 MNIST
Uniform | Column norm | k-means|| Uniform | Column norm | k-means
Random (xe03) (xe06) || Random (xe03) (xe06)
100 9.62 67.62 1.68 9.41 94.22 3.83
(+1.62) (+2.31) (£0.43) || (£1.74) (+3.97) (0.542)
200 4.24 68.21 1.90 9.34 88.92 2.62
(+£1.12) (+3.49) (£0.20) || (%£1.16) (+4.44) (0.254)
500 3.99 64.54 2.14 11.10 86.27 7.82
(£0.65) (+4.26) (£0.14) || (£3.81) (0.94) (4+3.42)
1,000 5.43 67.42 2.44 8.41 86.15 5.88
(£0.87) (£5.59) (£0.16) || (£1.38) (£0.70) (£1.78)
2,000 4.62 70.43 2.66 9.53 86.66 4.91
(+2.20) (£7.20) (£0.03) || (£1.94) (40.85) (£0.207)

I Uniform random
I Column norm
k- means
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Figure 2.8 Comparison of Silhouette coefficient values efdartitions obtained from approximate
kernelk-means using the uniform, column-norm datheans sampling strategies, on the CIFAR-
10 and MNIST data sets. Parameterepresents the sample size.
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Figure 2.9 Comparison of NMI values (in %) of the partitiorigained from approximate kernel
k-means using the uniform, column-norm dadheans sampling strategies, on the CIFAR-10 and
MNIST data sets. Parameterrepresents the sample size.
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Figure 2.10 Running time of the approximate kerk@heans algorithm for different values of (a)
n, (b)d and (c)C.

time is dominated by the time taken for clustering. As a fte$lié running time varies minimally

when the dimensionality of the data set varies from 10 tod = 1, 000.

We fixedn = 10° andd = 100, increased the number of clusters in the data set ffbm 10
to C' = 1,000, and recorded the running time of our algorithm in FigurédZ)l. As expected, the
running time almost increases linearly with WhenC' < 100, the number of samples is fixed
to 1,000. Therefore, the number of clusters has a significant effalyt on the clustering time.
WhenC' > 100, the number of samples also need to be increased, thereby affecting both the

kernel calculation time and the clustering time.
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2.4.5 Distributed Approximate Kernel k-means

On data sets of sizes greater tHammillion, execution of approximate kernkimeans on a single
processor is highly time-consuming. We employed the dhigted approximate kernkimeans to

cluster the Tiny images data set and the synthetic concenitdles data set.

We set the sample size = 1,000 and the number of taskd = 1, 024. Each task was run on a
2.8 GHz processor, with a total 890 GB shared memory. The RBF kernel was used for both data
sets. The number of clusters was sefte= 100 andC' = 10 for the Tiny images and concentric

circles data sets, respectively.

The clustering performance of the distributed algorithmtlos two data sets is presented in
Table 2.5. When approximate kerkeineans was executed on the Tiny images data set on a single
processor, it took abo@t5 hours. The distributed algorithm is able to cluster thisdszst in under
2 minutes. The concentric circles data set contairiirgllion points was also clustered in less
than15 minutes. The true class labels are not available for the ifirage data set, so it was not
possible to evaluate the cluster quality. On the concenirates data set, an NMI of abo@g8%

was achieved.

Table 2.5 Performance of the distributed approximate Kkéemeeans algorithm on the Tiny image
data set and the concentric circles data set, with paraseter 1,000 and P = 1024.

| Data set | Tiny | Concentric circles |
n 79,302,017, 1,000,000,000
d 384 10
C 100 10
Running | Kernel calculation 0.21 1.17
(£0.07) (£0.09)
time Clustering 94.03 876.75
(46.58) (+163.06)
NMI N/A 77.80
(£0.10)
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2.5 Summary

In this chapter, we presented the approximate kdeameéans algorithm, an efficient approximation
for the kernek-means clustering algorithm, suitable for big data set® Key to the efficiency of
approximate kernek-means is the fact that it does not require the calculatigh@pairwise sim-
ilarities between all the data points. By restricting thestér centers to lie in a subspace spanned
by a small set of randomly sampled data points, it is able topde the clusters using only a small
portion of the kernel matrix. Consequently, it has lowemimg time and memory complexity than
kernelk-means and other kernel-based clustering algorithms. We slaown theoretically that,
the difference in the clustering error of the approximatmkek-means and the kernktmeans
algorithms, reduces linearly as the number of sampled paicteases. Experimental results also
show that the performance of approximate ketagleans is comparable to that of kerkeheans
and other state-of-the-art approximate kernel clustealggrithms, in terms of the cluster quality,
while its running time is close to that of linear clusteringaithms such ak-means. Though not
as easily parallelizable &smeans, it requires lesser data replication and commuaicttan ker-
nelk-means. Hence, it can handle distributed data sets moreeatficthan kernek-means. The
proposed approximate kernelmeans achieves our objective of clustering big data sétsesitly

and accurately.
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Chapter 3

Kernel-based Clustering Using Random

Feature Maps

3.1 Introduction

Although the approximate kernkimeans algorithm is accurate and scalable, it has the foitpw

limitations:

e The approximate kernédtmeans algorithm samples a subsetopoints from the data set,
and constructsaxm kernel matrixk 'z, between the points in the data set and the sampled
points. Whem is in the order of billions, and the number of clusters is alsmparably
large, calculating thé(nm) matrix Kz may be infeasible. For instance, if we were to
cluster the Tiny image data set containggmillion images into75, 062 clusters (the true
number of classes in the data set), approximate ké&rnmetans would require about = 10°
samples. This would boil down to calculating ab@utrillion similarity values, which is

computationally expensive.

e Approximate kernek-means cannot efficiently handle out-of-sample clusterireg the

problem of assigning new data points to clusters after thsteting is complete. In order to
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find the cluster label for a new poigt, we need to compute
() = m(x", I3, = o Koy — 2"y, k € [C],

wherep = [k(x*,X1),. .., k(x*,X,)] anday, is the k" row of theC' x m matrix a, con-
taining the weights of the sampled points in each of ¢helusters. This operation has

O(m*C + mC? + md) running time complexity and can be inefficient for large

To address the above limitations, we propose two algorittvmsh use random feature maps to
obtain anO(m)-dimensional embedding of the Hilbert space associatel thg kernelx(-, -),
wherem < n [42]. Our first algorithm called th®FF clusteringalgorithm obtains vector repre-
sentations of the data points to formsan m pattern matrix. This pattern matrix is clustered using
a linear clustering algorithm likk-means to obtain the data partitions. This algorithm, like t
approximate kernel k-means, h@gnm) running time complexity and memory requirements. The
second algorithm, which we call ti8V clusteringlgorithm, is designed along the lines of spectral
clustering. It approximates the eigenvectors ofithen kernel matrix by the dominart singular
vectors of the pattern matrix, and obtains the data panmtliyp clustering these singular vectors in
O(nC?) time. The SV clustering algorithm providegadimensional representation of the cluster

centers, using which previously unseen data points candigreesl to clusters efficiently.

3.2 Background

The matrix approximation methods discussed in Sectionss@reially factorize the kernel matrix
to obtain a low-dimensional representation of the data. tAeoform of kernel approximation,
initially proposed for supervised kernel-based learniggRahimi and Recht in [147], involves
factorizing the kernel function instead of the kernel mathy mapping the data explicitly into a

low-dimensional randomized feature space.
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A kernel functions(-, -) is shift-invariantif x(x,y) = x(x — y) for all x,y € R%. Popular
examples of shift-invariant kernels are the RBF and Laplakernels. Lep(w) denote the Fourier

transform of such a kernel functiotfix — y), i.e.

= y) = [ plw)exp(iw (x - y))aw.
Rd
According to the following theorem from harmonic analygiéw) is a valid probability density

function, provided the kernel function is continuous, pigsidefinite and scaled appropriately.

Theorem 2. (Bochner’s theorem [152]) A continuous kermgk, y) = x(x —y) onR¢ is positive

definite if and only if(¢) is the Fourier transform of a non-negative measure.

For instance, the Fourier transform [26] of the RBF kernattion is the Gaussian probability
distribution function. Letw be ad-dimensional vector sampled fropiw). The kernel function

can be approximated as

K(x,y) =By [f(w,x)" f(w,y)], (3.1)

where

f(w,x) = (cos(w'x),sin(w'x))".

We can approximate the expectation in (3.1) with the emglincean overn Fourier components
{w1,...,w,}, sampled from the distributiop(w), and obtain the following representation for

the pointx:

z(x) = L(cos(wlTX), ..., cos(w,) x),sin(w] x), ..., sin(w, x)). (3.2)

vm

The featureg(x) are called th&kandom Fourier Features he kernel similarity between any two

pointsx andy can be approximated by the inner product between the randamedf features
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Algorithm 6 RFF Clustering
1. Input:
e D = {xi,...,%X,},%; € R% the set ofn d-dimensional data points to be clustered
clustered
¢ \: the RBF kernel width parameter
e (' the number of clusters
e m: the number of Fourier components K m < n)
2: Output: Cluster membership matrix € {0,1}¢*"
3: Draw m independent samples;, ..., w,, from the Gaussian distributioV" (0, 7). Let
W =(wi,...,Wp).
4: Compute the matrixf = [cos (XW)sin (XW)], whereX = (xi,...,x,)  is the input
pattern matrix.
5. Run thek-means algorithm (Algorithm 1) o/ with the number of clusters set t@, and
obtain the membership matrix.

corresponding to the data points, i.e.

R(x,y) = z(x) "2(y). (3.3)
Given a data seD = {xi,...,x,}, we can obtain its low-dimensional representat’ian:
{z(x1),...,2(x,)}, and apply a fast linear learning algorithm instead of executing a kernel-

based learning algorithm dn. This allows us to learn the non-linear relations in the eéfieiently
using linear machines.

This kernel approximation has been employed in severakiaogle learning tasks such as
classification [25,147,182], regression [123], data casgion [146] and novelty detection [164].
Random feature maps have been extended to shift-varianeleesuch as intersection ker-
nels [110, 179] and other positive definite kernels using Islain and Taylor expansions of the

kernel function [81, 92].

3.3 Kernel Clustering using Random Fourier Features

Random feature maps can be used for clustering big dataffeisrdly. We propose an algo-
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(@) (b) (©)

Figure 3.1 A simple example to illustrate the RFF clusteafgprithm. (a) Two-dimensional data
set with500 points from two cluster260 points in each cluster), (b) Plot of the matfikobtained
by samplingn = 1 Fourier component. (c) Clusters obtained by executingeans orr{.

Table 3.1 Comparison of the confusion matrices of the RFfetd-means, andk-means algo-
rithms for the two-dimensional semi-circles data set, ammbhg 500 points €50 points in each of
the two clusters).

H Classl\ Classz\ \

H Classl\ Classz\ \

H Class 1\ Class 2\

Cluster 1 220 41 Cluster 1 250 0 Cluster 1 132 129
Cluster 2 30 209 Cluster 2 0 250 Cluster 2 118 121
(a) RFF clustering (b) Kernelk-means (c) k-means

rithm called theRFF clusteringalgorithm, which first projects the data set into a low-digienal

space using random Fourier feature maps, and then exdeateans on the transformed data.

Let D = {xi,...,x,} represent the input data set, and, -) be the kernel function. We

assume thak(-, -) is shift-invariant and satisfies the conditionx,x) = x(0) = 1. Let K =

[k(x4,%;)], ., denote the kernel matrix. The matrix

(3.4)

denotes the data matrix obtained by mapping each poi® using the random feature map).

1The assumption of shift-invariance is made only for simiplic Random feature maps can be used for other
positive semi-definite kernels as well, as demonstrate8ing2].
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Using (3.3), we can approximate the kernel mafiby
K=HTH. (3.5)

We can replace the kernel matrix in the kernelk-means optimization problem (1.11) with
the approximate kernel matriX in (3.5), leading to the following optimization problem:

maxtr(UH " HU "), (3.6)
veP

whereU = (uy,...,uc)" is the cluster membership matriR, = {U € {0,1}¢*": UT1 = 1},

U = [diag(Ul)]_l/2 U, and1 is a vector of all ones. By comparing the above problem to the
k-means optimization problem (1.12), it becomes evidertttti@problem in (3.6) can be solved
by executingk-means on the matrix/. Algorithm 6 describes the RFF clustering algorithm for
clustering using the random Fourier features obtained filoenRBF kernel. We illustrate the
algorithm in Figure 3.1. Figure 3.1(a) shows a two-dimenaialata set containing00 points
from two semi-circular clusters. The two clusters are idiextt perfectly when the kernégkmeans
algorithm is executed on this data set. For the purpose wdtithition, we sampled one Fourier
component (i.em = 1) and generated a two-dimensional mattixo represent the data. A plot of
this representation is shown in Figure 3.1(b). Note thatwteclusters are more separated in this
space than in the original feature space. Figure 3.1(c) stioevclusters obtained wh&mmeans is
executed orf{. The error, in terms of the number of points that are grouptthe wrong cluster,

is about14%, as shown in the confusion matrices in Table 3.1. A confusiatrix shows the
mapping between the true class labels and the cluster ldb@th cluster is assigned a class label,
corresponding to the true label of the majority of the datasdn the cluster. Each ent(¥;, ¢) in

the confusion matrix represent the number of data points fttassc assigned to cluster. The
diagonal entries represent the number of points that hase &gsigned to the correct cluster. The

confusion matrices show that the accuracy of the RFF clingt@igorithm is close to that of the
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kernelk-means algorithm, and higher than that of kkeeans algorithm.

3.3.1 Analysis

In this section, we first analyze the computational compyexithe RFF clustering algorithm, and

then examine the quality of the data partitions generated.

3.3.1.1 Computational complexity

Sampling from the Fourier transform of the kernel functisrairelatively inexpensive operation
for most shift-invariant kernels. For instance, severitieint techniques have been proposed for
sampling from a Gaussian distribution in the literature][SBhe crux of the proposed RFF clus-
tering algorithm thus lies in computing the low-dimensibreammdom Fourier features/. Given

m d-dimensional Fourier components, the mapping to the mairoan be performed i (ndm)
time. Leet al. proposed the Fastfood algorithm which reduces the runring tomplexity of
this operation ta)(nmlog(d)) [107]. Instead of directly multiplying the data matri with the
random Gaussian matri¥” to obtain the matrix{, they combinél?” with a Walsh-Hadamard ma-
trix. Multiplication with Hadamard matrices can be perfaunin loglinear time, thereby reducing
the running time. As Gaussian matrices combined with Haddmmeatrices behave like Gaussian
matrices, this does not affect the kernel matrix approxiomegignificantly. Executingg-means on
H takesO(nm(C1) time, wherel is the number of iterations required for convergence. Tthes,
overall running time complexity of the RFF clustering aligfom is O (nm log(d) + nmC1). Only

O(nm) memory is required to store the matrik

3.3.1.2 Approximate error

To examine the difference between the clustering solutafriee kernelk-means algorithm and
the RFF clustering algorithm, we must first bound the kerppraximation errorHK — IA(H . In
F

the following theorem, we show that this error decreaseiseatate ofO(1/1/m):
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Theorem 3. For anyé € (0, 1), with probabilityl — §, we have

H}?-KHFg 21“573/5) + 21“;5/5) :0(\/%). (3.7)

Proof. We use the following result from [165] to prove this theorem:

Lemma 4. Let H,. be a Hilbert space and be a random variable o117, p) with values in#,.
Assumégl(|| < M < oo almost surely. Denote?(¢) = E(||¢]|?). Let{z;}™, be independent

random drawers op. For any0 < ¢ < 1, with confidencé — 4,

%Z(&_E[&D - 2M17r711(2/6)+\/202(§)ﬂ11n(2/5). (3.8)
Define
alw) = %(COS(WTXQ,...,COS(WTXH))T and
s Tx sin(w'x,))".
b(w) = ﬁ(sm(w 1), ,sin( n))

Leté = a(w;)a(w;)" + b(w;)b(w;)". We haveE[¢;] = E[a(w;)a(w;)T + b(w;)b(w;)"] = K
and||&;| % = |la(w,)|> + [b(w,)||* = 1, which impliesM = o2 = 1. We obtain the result (3.7)

by substituting these values in (3.8). O

Kisa good approximation ok provided that the number of Fourier componentss suffi-
ciently large. We can now obtain an upper bound on the difileebetween the solutions of the

kernelk-means optimization problem in (1.11) and the optimizapawblem in (3.6):

Theorem 4. Let U* and U}, be the optimal solutions ofl.11)and (3.6), respectively. Let/* =

U*[D*]7Y/2 and U, = Uz [Dz,]"*/2 denote the normalized versionsif and U, where D* =

87



diag([U*]"1) and D?, = diag([U;]"1). For anyd € (0, 1), with probability1 — &, we have

41n(2/0) N 81n(2/0)

tr ([(7* U TK[U — (7;;]) < 222 =
ok

Proof. We have

tr([U*]TKU*)

IN

([0 KU + HK—KHF

IN

tr([Uz)TKUL) + HK B [A{HF

IA

tr([Uz)T KU + 2 HK— I?HF

Since t[U*]TKU*) > tr([Uz|TKU?,), we have
e[0T KU*) — tr([0%]T KU%)| < 2 HK - fc‘ ‘F.

We complete the proof by using the result from Theorem 3 amdstiong convexity property of

tr(UTKU). O

3.4 Kernel Clustering using Random Fourier Features in Con-

strained Eigenspace

Despite its simplicity, RFF clustering may suffer from higbmputational cost. As seen in
Theorem 4, a large number of random Fourier components magduéred to achieve a low ap-
proximation error. As a consequence, we need to exdenteans over a high-dimensional space,
leading to high runtime complexity. To address this prohlera propose using an idea similar

to that in the approximate kernklmeans algorithm, and constrain the cluster centers ta liee
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Algorithm 7 SV Clustering
1. Input:
e D={xy,...,%,},% € R% the set ofn d-dimensional data points to be clustered
¢ )\: the RBF kernel width parameter
e (' the number of clusters
e m: the number of Fourier components K m < n)
2: Output: Cluster membership matrix € {0, 1}“*"
3: Draw m independent samples, ..., w,, from the Gaussian distributiaf/ (0, i]) Let
W= (Wi,...,Wp).
4: Compute the matrid{ = [cos (XW)sin (XW)], whereX = (x,,...,x,)  is the input
pattern matrix.
5: Compute the left singular vectors &f corresponding to its top’ singular values to obtain the
matrix Ve = (Vi,..., Vo).
6: Run thek-means algorithm (Algorithm 1) o with the number of clusters set t6 and
obtain the membership matrix.

subspace spanned by the top eigenvectors of the kernekmiagti{ ()\;, v;)}_, denote the eigen-
values and eigenvectors of the kernel maftixranked in the descending order of the eigenvalues.
Let H, = sparivy,...,vc) represent the space spanned by the domifasigenvectors. The

kernelk-means problem in (1.7) can be approximated as

C n
. Ugi
min  max Y - : llew() — k(xi, )3, (3.9)

VEP fenemali 3 i

wherec,(-) represent the cluster centets,= (uy,...,uc)" is the cluster membership matrix,
P = {U € {0,1}°*" : U1 = 1}, and1 is a vector of all ones. The above problem (3.9)
can be solved by executifrgmeans on the top eigenvectorsiof i.e. by solving the following
optimization problem:

- 7T
rgggtr(U[VCVC 1U"), (3.10)

whereVg = (v, ..., ve), andU = [diag(U1)]""/? U. This method leads to a significant reduc-
tion in computational cost when compared to the RFF clusgesigorithm, as each data point is
represented by @-dimensional vector ankkmeans needs to be executed over a lower dimensional

space.
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However, computing the eigenvectorsiofrequires the computation of thex n kernel matrix,
which is infeasible when is large. We circumvent this issue by approximating therrgetors of
K using the singular vectors of the random Fourier featuned tlaereby avoid computing the full
kernel matrix. More specifically, we compute the @singular values and the corresponding left
singular vectors of{, denoted by{(Xi, vi)}<,, and represent the data pointsinby the matrix
Vo = (v1,...,Ve). We then solve the approximate optimization problem

T U T T
rgggtr(U[VcVC]U ) (3.11)

by executingk-means on the matri¥, to obtain theC clusters. This procedure, named as the
SV clustering algorithm, is outlined in Algorithm 7. It hasetsame input and output as the RFF
clustering algorithm, but differs in the final two steps. Ag tdimensionality of the input to the
k-means clustering step in the SV clustering algorithm isifigantly smaller than that in the RFF
clustering algorithm, SV clustering is more efficient thaRFRclustering, despite the overhead of

computing the singular vectors.

3.4.1 Analysis

In this section, we discuss the computational complexityefSV clustering algorithm and bound

its approximation error.

3.4.1.1 Computational complexity

As the initial steps in the SV clustering algorithm are thmeaas the RFF clustering algorithm,
these steps have the same running time complexity. In addlitie algorithm involves performing
the singular value decomposition &f. If the top singular vectors off are found using con-
ventional methods, the runtime complexity of the SVD stelde O(nm?). We reduce this

complexity in our implementation by using the approxima#bSechnique proposed in [70]. We
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samples rows from H to form ans x 2m matrix S. The top eigenvectors &f ' S, denoted by
V= (v1,...,V¢), are close to the top eigenvectorsiéf H and the singular vectors @f can be
recovered from the eigenvectors$f.S asHV . Using this approximation, the runtime complex-
ity of SVD is reduced td (smmin {s, m}). The time taken to executemeans on the singular
vectors isO(nC?l).

Whenmax(m, s, [, C') < n, both the RFF and SV clustering algorithms have linear tiora
plexity. However, the time taken by thkemeans step in the SV clustering algorithngnC?1),
as opposed t®(nmCl), the time taken by thk-means step in the RFF clustering algorithm. As
C is usually much lesser than, the SV algorithm is much more efficient than the RFF clustgri
algorithm.

The values chosen for ands introduce a trade-off between the clustering quality arid ef
ciency. Higher values result in better clustering quality lesser speedup. In our implementation,
we found that a reasonably good accuracy can be achievedtinggbe value ofn to range be-
tween1% and2% of n, and settings to around2% of n. Lowerm/n ratio values work well as

increases.

3.4.1.2 Approximation error

The SV clustering algorithm relies on the assumption of thistence of a large eigengap. This
theory that has been adopted by many earlier kernel-baggeditains which rely on the spec-
tral embedding of the data [118], essentially implies thastattributes of the data can be well
approximated by vectors in the low-dimensional space sgébwy the top eigenvectors.

The following theorem proves that when the last C eigenvalueg \;}?__ , of K are suffi-
ciently small, the subspag@é can be well approximated by the subspatespanned by the tof’

eigenvectors ofs.

Theorem 5. Let £ and E, represent the optimal clustering errors in the kernel k-meproblem
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(1.7)and the optimization problei(3.9), respectively. We have

E—E< > A
i=C+1
Proof. Let {c}(-)}¢{_, andU* be the optimal solutions to (1.7). Let(-) represent the projection
of ¢} into the subspac®(,. For anyx(x;,-), letg;(-) andh;(-) be the projections of(x;, -) into

the subspac®{, and spatvc.q, ..., Vv,), respectively. We have

C n
. Ui
Eo = min max 33— le(r) = wlxi,0)lf5,

U cp()eHa 1 i1 n
C n U*
7 a 2
< S () — wx I,
k=1 =1
C n %
7 a 2 2
= Y 7,]: (et () = g5, + 1Ra()]l5,)
k=1 i=1
1 C n
2
< Bt oS SO,
k=1 i=1
< E+ i
i=C+1

O

We prove a set of preliminary lemmas before presenting oum mesult in Theorem 6 which

bounds the clustering error of the SV clustering algorithm.

Lemma 5. (Result from matrix perturbation theory [166]) L&k;, v;), i € [n]| be the eigenvalues
and eigenvectors of a symmetric matrixc R"*" ranked in the descending order of eigenvalues.

SetX = (vq,...,ve)andY = (vegq, ..., v,). Given a symmetric perturbation matri, let

E E
XV EXY) = " "
E21 E22
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Let||-|| represent a consistent family of norms and let

vy =||Eall,d = Ac — Aot1 — || En|| — || Eoz] -

If § > 0and2 < 1, then there exists a unique matixe R("~)*C satisfying

2y
Pl| < —
1Pl < =
such that
X' = (X4YP)I+P'P)"V% and
Y = (Y-XP)(I+PP")~'/2

are the eigenvectors of + E.

Lemma 6. Givend € (0,1), we assumérc — A1) > 3A, where

A 2C/0) | [PRE/E) 3.12)

m m

there exists, with probability — 6, a matrix P € R"~*C satisfying

2A
1Pl < —— —
Ac — Act1 — A

such that
Vo = (Ve + VeP)(I+PTP)7'2,
whereVe = (V1,...,9¢), Ve = (vi,...,ve), andVe = (e, ..., vy).

93



Proof. LetE = K — K. Using Theorem 3 and Lemma 5, we have
y=|[Ve EVel| < ||| < A,
and

5 = Ac—dow — [[VEEVo|| - ||[VIEVe|

> )\C—)\C+1—A>O.

As A\c — Aoy > 3A, we also have < % allowing us to apply Lemma 5 and obtain the required

result. O

Lemma 7. Under the assumptions of Lemma 6, with a probability 4, we have

18A?

C
~ 2 2
Vi —vil P <2||P|R < —————
S 1% =il < 21171 < 5

whereA is defined in(3.12)

Proof. DefineA = P(I+PTP)"Y2andB = I — (I + PTP)~'2. Let{v;}_, be the eigenvalues

of PT P. Using the result from Lemma 6, we have

C
~ = 2

SoAFi =il = ||[VeA|[; + Ve B[
i=1

< ||l +1IBIf%

C
H HF ;(1+ﬁ)2
< 2||P|I%.
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We complete the proof by using the fact that

1Pl — 28 o838
Ao —Acr1 — A T Ao — Aoqa

O

In the following theorem, we bound the approximation errfidhe SV clustering algorithm and
show that it yields a better approximation of kernel clusigthan the RFF clustering algorithm,

provided there is a sufficiently large gap in the eigenspettr

Theorem 6. Let U* and U}, be the optimal solutions 0f3.10) and (3.11) and letU* and (7;;
represent their normalized versions (as defined in Theorgmedpectively. Givea € (0, 1),

assumé\o — \c.1) > 3A, whereA is defined in(3.12) With probabilityl — ¢, we have

~ ~ ~ ~ 18A? 1
r([U- - " -U*]) < ——————=0(=—).
(8- 070" - 03) < o (m)
Proof. This theorem is a direct result of Lemmas 6 and 7. O

Theorem 6 shows that, like the RFF clustering algorithm,SNeclustering algorithm’s ap-
proximation error reduces as the number of Fourier compisrieoreases, albeit at a higher rate

of O(1/m).

3.4.2 Out-of-sample Clustering

The SV clustering algorithm can be used to efficiently assigister labels to data points that
were not seen previously. The cluster centers in the SVealusgt algorithm lie in the subspace

H, = sparivy, ..., V), and can be expressed as linear combinations of these sector

n
- 1 -
Cp = — 5 UkiVi,
ng <
i=1
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wheren,, is the number of data points in th€" cluster. Given a data poist: € R¢, we can obtain

its cluster label using the following double projection eate:

(i) Compute the random Fourier features

T
m

T * T

1
2(x*) = ——(cos(w{ x*), ..., cos(w, x*),sin(w] x*), ..., sin(w, x*)).

(il) Projectz(x*) into the subspac#, to obtainv*.
(iii) Assign x* to the cluste which minimizes||c, — v*||.

Using this process, cluster labels can be assignédind) time.

3.5 Experimental Results

3.5.1 Data sets

We evaluated the performance of the RFF and SV clusterirggittigns on the CIFAR-10, MNIST,
Forest Cover Type, Imagenet-34, Poker, and Network Irdrusiata sets. The medium-sized
CIFAR-10 and MNIST data sets are used to compare the perfarenaf the proposed algorithms
with the kernek-means algorithm. The remaining data sets are used to dérat@the scalability

of the algorithms to large data sets.

3.5.2 Baselines

Using the medium-sized CIFAR-10 and MNIST data sets, we @atpthe proposed algorithms
with the kernek-means algorithm, to demonstrate that their clusterinfpp@ance is close to that
of the kernelk-means in terms of cluster quality. We also compared thefiopaance with the

approximate kerndt-means algorithm and the Nystrom approximation based igeattistering
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algorithm. We also gauged the performance of our algorithgasnst that of thk-means algorithm

to show that they achieve better cluster quality.

3.5.3 Parameters

We used the RBF kernel for all the kernel-based algorithmallaihe data sets. We set the kernel
width equal topd, whered is the average pairwise Euclidean distance between thedatts and
parametep is tuned in the rang@, 1] to obtain optimal performanée We varied the number
of Fourier components: from 100 to 2,000. For the approximate kern&means and spectral
clustering algorithmsy: represents the size of the sample drawn from the data setaline of s,
the number of rows sampled frofi to compute the approximate singular vectors, was sg¥ito
of the total number of data points The number of clusterS was set equal to the true number of
classes in the data set.

All algorithms were implemented in MATLABand run on &.8 GHz processor using0
GB RAM. All results are averaged ovef runs of the algorithms. In each run of the proposed
algorithms, we used a different set of randomly sampled iEo@omponents. For the baseline
algorithms which use a subset of the data, we used diffeesmtamly sampled subsets in each

run.

3.5.4 Results
3.5.4.1 Running time

The running time of the baseline algorithms and the prop&ddeand SV algorithms are recorded

in Table 3.2. The number of Fourier componentdor the RFF and SV clustering algorithms

2The average pairwise similarity was used only as a heutistet the RBF kernel width, and not required by the
proposed algorithms. Other techniques may be employeditoseithe kernel and the kernel parameters.

3We used thé-means implementation in the MATLAB Statistics Toolbox ahd Nystrom approximation based
spectral clustering implementation [35] available at it&tumni.cs.ucsb.edu/ wychen/sc.html. The remainigg-al
rithms were implemented in-house.
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Table 3.2 Running time (in seconds) of the RFF and SV cluggexigorithms on the six benchmark
data sets. The parameter which represents the number of Fourier components for #fe &d
SV clustering algorithms, and the sample size for the apprate kernek-means and Nystrom
approximation based spectral clustering algorithms, igse: = 2,000. It is not feasible to
execute kernéd-means on the large Forest Cover Type, Imagenet-34, PalceNatwork Intrusion
data sets due to their large size. An approximate of the ngntime of kernek-means on these
data sets is obtained by first executing kekaeieans on a randomly chosen subsei00 data
points to find the cluster centers, and then assigning thaireng points to the closest cluster

center.

Data set RFF SV Approx. Nystrom Kernel k-means
clustering | clustering kernel approx. k-means
(proposed) | (proposed) | k-means based
spectral
clustering
CIFAR-10 3,418.21 58.32 37.01 116.13 725.32 159.22
(+£907.14) | (£38.68) | (£6.52) | (£1.97) (£7.39) | (£75.81)
MNIST 1,089.26 39.94 57.73 4,186.02 | 914.59 448.69
(4+483.63) (£5.64) | (£12.94) | (£386.17) | (£235.14) | (£177.24)
Forest 2,078.63 76.99 157.48 573.55 4,721.03 40.88
Cover Type || (£617.22) | (£17.04) | (£27.37) | (£327.49) | (£504.21) | (+6.4)
Imagenet-34| 1,333.85 212.32 1,261.02 | 1,841.47 | 154,416 31,076
(+6.53) (+4.75) (£37.39) | (£123.82) | (£32,302) | (&9, 355)
Poker 4,530.44 41.08 256.26 520.48 9,942 40.88
(+276.37) (£2.57) | (£44.84) | (£51.29) | (£1,476) | (£6.40)
Network 24,151 435.53 891.08 | 1,682.46 | 34,784 953.41
Intrusion (£6,351.34) | (£189.07) | (£237.17) | (£235.70) | (£1,493) | (£169.38)

was set ta2, 000 and the sample set size for the approximate kekrakeans and the Nystrom
approximation based spectral clustering algorithm was aét to2, 000. We first observe that
the RFF clustering algorithm took longer than the SV clustealgorithm on all the data sets.
Though both algorithms require the computation of the da&rimnH, the time taken to perform
this computation was insignificant when compared tokHneeans clustering time. RFF clustering
involves runningk-means on @m-dimensional matrix, which takes longer than runnikagneans
on aC-dimensional matrix. Although the SV clustering algorithmludes computing the singular
vectors ofH, the overhead of performing SVD is small, rendering it mdfieient than the RFF

clustering algorithm. On the CIFAR-10 data set, the SV eusg algorithm was at least times
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faster than the RFF clustering algorithm. On the MNIST datatbe SV clustering algorithm was
about20 times faster than the RFF clustering algorithm. Similaresigps were obtained for the
other data sets as well. We will see later that the SV cluggeaigorithm achieves similar clustering
accuracy as the RFF clustering algorithm. So we concludetb&V clustering algorithm is more
suitable for large scale kernel clustering than the RFRetusy algorithm.

The Nystrom approximation based spectral clustering #lgarfinds the clusters by executing
k-means on the top eigenvectors of a low rank approximateskenatrix derived from a randomly
sampled data subset of size It first obtains the eigenvectors of am x m matrix and then ex-
trapolates them to the top eigenvectors ofithe n kernel matrix. As the SV clustering algorithm
only finds the top singular vectors of anx m matrix, it is more efficient than the Nystrom ap-
proximation based spectral clustering algorithm. The S¥tdring algorithm was also faster than
approximate kernét-means on all the data sets.

As expected, the SV algorithm was faster than the kdemeeans algorithm on the CIFAR-10
and MNIST data sets. As itis prohibitive to execute kekagleans on the large Forest Cover Type,
Imagenet-34, Poker and Network Intrusion data sets, weorafydselected a subset 66, 000
points from these data sets, executed keksrakans on this subset to obtain the cluster centers, and
assigned the remaining points to the closest center. Wededahe time taken for this procedure
as the time taken by kernkimeans on these large data sets. The SV algorithm was fhatetttis
approximate version of kernkimeans as well on all the data sets. When the dimensionalityeo
data set was greater than the number of clusters in it, thel@®#ecing algorithm ran faster than

thek-means algorithm.

3.5.4.2 Cluster quality

Figure 3.2 records the silhouette coefficient values of ttop@sed and baseline algorithms on
the CIFAR-10 and MNIST data sets. The proposed algorithrheegaed values comparable to the

kernelk-means algorithm and the approximate ketateans algorithm, showing that they yield
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Figure 3.2 Silhouette coefficient values of the partitiobtamed using the RFF and SV clustering
algorithms. The parametet, which represents the number of Fourier components for Efedhd
SV clustering algorithms, and the sample size for the apprate kernek-means and Nystrom
approximation based spectral clustering algorithms,tisose = 2, 000.

similar partitions. The silhouette coefficient values af thlystrom approximation based spectral
clustering algorithm were marginally lower than those af tkmaining kernel-based clustering
algorithms. Thek-means algorithm yielded non-compact partitions withaikstte values closer

to 0.

Figure 3.3 shows the NMI values achieved by the proposeditigts and the baseline algo-
rithms. We first observe that the accuracy of all the kermeiell algorithms, including the proposed
algorithms, was better than that of tkeneans algorithm, demonstrating the fact that incorporat-
ing a non-linear similarity function improves the clustgyiperformance. On the CIFAR-10 and
MNIST data set, we observed that the performance of both lgorithms was similar to that of
kernelk-means. Comparison with kerneimeans is not feasible on the remaining data sets due to
their large size. The proposed algorithms outperformeappeoximate version of kernkimeans
in which a subset of the data was clustered and the remaimimgspvere assigned to the closest
center. The proposed algorithms’ performance was significhetter than that of the Nystrom ap-

proximation based spectral clustering algorithm on aladsgts. They performed only marginally
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worse than the approximate kerrkeineans algorithm. The difference in the NMI values of the

RFF clustering algorithm and the SV clustering is minimalrfost data sets.

3.5.4.3 Parameter sensitivity

The number of Fourier componentsplays a crucial role in the performance of the RFF and SV
clustering algorithms. The running time of the algorithmeampared with the approximate kernel
k-means and the Nystrom spectral clustering algorithms ififerdnt values ofm in Table 3.3.

In the table,m represents the number of Fourier components in the conteakedRFF and SV
clustering methods, and it represents the size of the sasn@len from the data set in the context
of approximate kerndd-means and Nystrom approximation based spectral clugtedimobserved
earlier, the SV algorithm is faster than the RFF clusterigg@thm. For instance, the SV algorithm
is aboutl5 times faster than the RFF algorithm on the CIFAR-10 data $etnwn = 100. The
speedup factor increased as the number of Fourier componenicreases. We note that the
speedup on the Network Intrusion data set became signifamagtwhenm > 500. The SV
clustering algorithm was also faster than approximate eddermeans for all values ofn, due

to the fact that unlike the approximate kerkemheans algorithm, the dimensionality of the input
to thek-means step (which dominates the running time) remainstaondespite the increase in
m. The dimensionality of the input kernel in the approximagenelk-means algorithm increases
linearly withm.

The silhouette coefficient values achieved by the algostlam the CIFAR-10 and MNIST
data sets, for different values of are shown in Figure 3.4. We first observe that the silhouette
values achieved by the proposed RFF and SV clustering #igusiincreased significantly as
increased. The values were initially much lower than thateexed by the approximate kerriel
means and Nystrom approximation based spectral clustalguyithms, but became comparable
whenm > 1, 000.

The NMI values achieved by the algorithms for different eswfm are shown in Figure 3.5.
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Figure 3.3 NMI values (in %) of the partitions obtained usthg RFF and SV clustering algo-
rithms, with respect to the true class labels. The parametexhich represents the number of
Fourier components for the RFF and SV clustering algorittand the sample size for the approx-
imate kernek-means and Nystrom approximation based spectral clugtaigorithms, is set to

m = 2,000. Itis not feasible to execute kerrlemeans on the large Forest Cover Type, Imagenet-
34, Poker, and Network Intrusion data sets due to their laize The approximate NMI values
of kernelk-means on these data sets are obtained by first executingl keameans on a randomly
chosen subset @0, 000 data points to find the cluster centers, and then assignagetinaining
points to the closest cluster center.
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We note that, although the SV clustering algorithm perfatmerse than the RFF clustering al-
gorithm in terms of NMI whenn is small, it yielded similar performance as the RFF clustgri
algorithm whenm was substantially large. On the MNIST data set, as the vdiue mcreased
from 100 to 2, 000, the average NMI achieved by the RFF clustering algoritheneased by about
15% whereas the SV clustering algorithm achieved an increag6%f Similar rates of increase
were observed on other data sets also. This verifies our thatrthe approximation error of the
SV clustering algorithm decreases at a higher rate withesjo the parametern, than that of
the RFF clustering algorithm. While the NMI values of the Qustering method are higher than
those of the Nystrom spectral clustering method fomaNalues on most data sets, they are only
marginally lower than those of the approximate kekagieans algorithm for smailh, and become

close to the approximate kernemeans values as increases.

I RFF clustering (proposed)

1 SV clustering (proposed)

I Approx. kernel k-means

[ Nystrom approx. based spectral clustering

0.5
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Figure 3.4 Effect of the number of Fourier component®n the silhouette coefficient values of
the partitions obtained using the RFF and SV clusteringrdlyns. Parametem represents the
number of Fourier components for the RFF and SV clusteriggradhms, and the sample size for
the approximate kerné&means and Nystrom approximation based spectral clugtalgorithms.

3.5.4.4 Scalability

We analyze the scalability of the proposed RFF and SV cligtelgorithms for different values

of n, d, C using the synthetic concentric circles data set. We set tingber of Fourier features
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Table 3.3 Effect of the number of Fourier component®n the running time (in seconds) of the
RFF and SV clustering algorithms on the six benchmark data dearametem represents the
number of Fourier components for the RFF and SV clusteriggradhms, and the sample size for
the approximate kerné&means and Nystrom approximation based spectral clugtalgorithms.

104

m RFF clustering | SV clustering | Approx. kernel | Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering
100 89.94 5.39 12.29 0.91
(+18.96) (£1.63) (4.66) (20.16)
200 176.47 6.09 39.91 1.86
(£47.59) (£1.76) (£15.11) (40.20)
500 449.23 10.71 13.20 5.61
(+103.61) (£3.32) (+2.14) (+1.89)
1,000 1,176.74 16.46 49.50 26.24
(£276.07) (£6.54) (£22.17) (45.26)
2,000 3,418.21 58.32 37.01 116.13
(£907.14) (£38.68) (£6.52) (£1.97)
(@) CIFAR-10
m RFF clustering | SV clustering | Approx. kernel | Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering
100 85.36 3.85 26.57 6.00
(+25.64) (£2.37) (£3.12) (£0.89)
200 122.31 4.66 17.98 46.70
(4+48.31) (+1.78) (4£7.99) (+8.51)
500 272.57 9.22 24.72 342.38
(+£111.25) (+£1.22) (48.46) (+105.80)
1,000 517.48 17.46 36.34 914.18
(+44.6) (+1.43) (+6.92) (+215.77)
2,000 1,089.26 39.94 86.43 4163.76
(+483.63) (5.64) (+£12.71) (+383.37)
(b) MNIST




Table 3.3 (cont'd)

m RFF clustering | SV clustering | Approx. kernel | Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering
100 154.97 9.62 19.10 11.75
(+65.72) (£2.57) (46.35) (+£1.73)
200 174.88 10.77 24.21 13.65
(65.36) (£1.67) (+12.48) (+1.59)
500 534.01 22.15 32.48 41.92
(4216.18) (+6.08) (411.64) (7.89)
1,000 1,032.58 35.46 66.15 124.83
(4:221.56) (+5.20) (419.25) (+38.32)
2,000 2,078.63 76.99 157.48 534.77
(+617.22) (+17.04) (427.37) (+323.76)
(c) Forest Cover Type
m RFF clustering | SV clustering | Approx. kernel | Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering
100 24.43 17.72 551.70 125.82
(0.92) (£1.09) (£120.53) (48.26)
200 57.66 33.82 676.39 183.31
(£2.15) (£0.96) (£10.94) (+4.63)
500 163.74 84.34 906.07 461.52
(45.54) (+4.62) (£209.53) (47.48)
1,000 340.23 160.89 1028.99 586.66
(411.30) (+5.65) (4:34.83) (91.72)
2,000 1,333.85 212.32 1261.02 1841.47
(+6.53) (+4.75) (437.39) (+123.82)

(d) Imagenet-34
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Table 3.3 (cont'd)

m RFF clustering | SV clustering | Approx. kernel | Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering
100 144.22 12.32 55.57 10.88
(+11.88) (+1.70) (+£11.22) (+1.65)
200 411.32 17.35 89.14 46.78
(+34.34) (+2.07) (+32.12) (+4.21)
500 654.98 22.82 117.57 90.57
(+132.70) (£2.48) (£20.17) (£18.57)
1,000 2,287.53 27.37 202.84 261.14
(+159.06) (£2.09) (+44.25) (+20.51)
2,000 4,530.44 41.08 256.26 479.73
(£276.37) (£2.57) (+44.84) (+47.46)
(e) Poker
m RFF clustering | SV clustering | Approx. kernel | Nystrom approx. based
(proposed) (proposed) k-means based spectral clustering
100 2,252.44 147.93 736.59 145.21
(+465.94) (£62.03) (£238.31) (£22.76)
200 5,371.85 258.86 697.04 169.27
(1, 765.02) (+41.32) (+442.25) (+38.15)
500 5,296.87 245.37 586.14 366.42
(£3, 321.66) (+£158.57) (+£130.23) (+£175.57)
1,000 24,151.47 435.53 763.75 589.57
(6, 351.34) (+189.07) (488.55) (+54.14)

(f) Network Intrusion
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Figure 3.5 Effect of the number of Fourier componentsn the NMI values (in %) of the partitions
obtained using the RFF and SV clustering algorithms, on ithbenchmark data sets. Parameter
m represents the number of Fourier components for the RFF ®incluStering algorithms, and
the sample size for the approximate kerkeheans and Nystrom approximation based spectral
clustering algorithms.
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m to 1,000. Figures 3.6(a) and 3.7(a) show that the running time of tRE Bnd SV clustering
algorithms vary nearly linearly as the number of points iae tata set varies from = 100 to
n = 107, with dimensionalityd = 100 and number of cluster§ = 10. The scalability plots of
the RFF and SV clustering algorithms are similar to the $xkthaplots of the approximate kernel
k-means algorithm, because all three algorithms have litearcomplexity with respect ta.

The dimensionality of the data set affects the time takewdtzulation of the Fourier features.
The order of increase in the running time of the two algorghasd varies fromd = 10to d =
1,000, with n = 10° andC = 10, are shown in Figures 3.6(b) and 3.7(b).

As the number of clusters was increased from= 10 to C' = 1,000, with » = 10° and
d = 100, the running time of the RFF and SV algorithms increases stifieearly with C, as
shown in Figures 3.6(c) and 3.7(c). We note that the numbelusters affects the running time
of the SV clustering algorithm more than that of the RFF @tisg algorithm, because the SV

clustering algorithm projects the data int6¢’adimensional space before clustering.
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Figure 3.6 Running time of the RFF clustering algorithm fiffedent values of (a), (b) d and (c)
C.

3.5.4.5 Out-of-sample clustering

To evaluate the performance of our algorithm on out-of-dardpta points, we divided each data
set into two parts, one containir®d% of the data, and the other containing the remairiog.

We call the first part as theraining setand the second part as thest setin accordance with
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Figure 3.7 Running time of the SV clustering algorithm fdifetent values of (a), (b) d and (c)

C.

the convention followed in supervised learning problem admputed the cluster centers using
the training set, and assigned each test point to the clokeséer center, using the SV clustering

algorithm. The class assignment of a test point was detedrby the majority class in the cluster

to which it was assigned.

We compared the performance of our algorithm with the weidernel principal component
analysis (WKPCA) extension for out-of-sample data poipteposed in [11]. This method first
finds the eigenvector€ = (zi,...,z¢) of the matrix D~ M K corresponding to its smallest
C eigenvalues, wher® = diag(K 1) is the degree matrix and/ = [ — 3—11"D™*
is a centering matrix, and then encodes the eigenvectarsbinery codewords based on their

sign. These codewords are clustered to obfaipinary codewordgcy, ..., cc}. The following

procedure is employed to obtain the cluster label for a newtpd:

(i) Projectx* on to the space spanned by the eigenvectors of the trainingsse Z, where

*

o = (k(X*,%x1),..., k(X" x,)).
(i) Compute the codeword* = sign(¢*).

(iii) Assign x* to the clustert which minimizesdy,, (c*, cx), wheredy,, represents the Ham-

ming distance [66] between the vectefsandc,, defined as

dHM(Xaaxb) = \Xa - Xb\
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The WKPCA extension requires the eigendecomposition of ann matrix, which takes)(n?)

time. In addition, arO(n) vector needs to be computed to perform label assignment.

We also compare the performance of the proposed algorititmtive approximate kernét

means algorithm. The test poixt is added to the cluster whose center, given by
ci(-) = o) Koy, — 20" oy,

is closest. In the above expressign= [k(x*,X1),. .., k(X" Xn)], {X1,...,Xm} are the set of
sampled data pointsi? is the kernel similarity between the sampled points, apds thek!” row

of cluster center coefficient matrix, given by (2.10).

We report the running time and accuracy on the six data s@igle 3.4. The running time is
divided into training time and testing time. The trainingié for WKPCA includes the time taken
to compute the kernel matrix for the training data and iteeigctors, and the time taken to convert
the eigenvectors to the cluster codewords. The testingititte time taken for data projection and
Hamming distance computation for all the test data points. tke approximate kerné&means
algorithm, the training time includes the time to clustez thaining data and obtain the cluster
center coefficient matrixe. The testing time includes the time taken to compute thelaiityi
between the test data points and the sampled data pointsharidche to assign the cluster labels
to the test data points. For SV clustering, the training is@efined as the time taken to compute
the random fourier features and the singular vectors fotréiaing data, and the testing time is

defined as the time taken to assign labels to test data.

The WKPCA method took about) seconds, on an average, to assign labels ta 2he00
test images in the CIFAR-10 data set, whereas our methodlesskthan5 seconds, form =
1,000. On the MNIST data set, the WKPCA method took ab®ii seconds to cluster the test
set containingl4, 000 data points, significantly longer than the proposed algorjtwhich took

around60 seconds, forn = 1, 000. It is infeasible to evaluate the performance of WKPCA on the
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large data sets. We observed that both the proposed algoaitid the WKPCA method achieved
similar classification performance on the CIFAR-10 and MNifata sets. A reasonably good
accuracy was achieved on the remaining large data sets B proposed algorithm also runs

faster than the approximate kerkeineans algorithm, and achieves comparable test accuracy.

Table 3.4 Running time (in seconds) and prediction accufiacy) for out-of-sample data points.
Parametern represents the sample size for the approximate kdameéans algorithm and the
number of Fourier components for the SV clustering algaritithe value ofn is set tol, 000 for
both the algorithms. It is not feasible to execute the WKP@oathm on the large Forest Cover
Type, Imagenet-34, Poker, and Network Intrusion data setdaltheir large size.

Data set CIFAR | MNIST | Forest | Imagenet| Poker Network
-10 Cover -34 Intrusion
Type

Training | WKPCA 755.02 | 910.90 - - - -
time (+91.35) | (£84.37)
Approx. 26.24 62.11 39.38 1913 391.04 998.36
kernel (£2.36) | (£3.58) | (£3.93) | (£414) | (£120.1) | (£812.73)
k-means
SV 5.96 10.48 25.28 155.89 49.75 115.73
clustering || (£0.83) | (£0.51) | (+1.61) | (£4.77) (+6.09) (+3.50)

Testing | WKPCA 39.68 29.50 - - - -
time (£2.77) | (£4.69)
Approx. 22.47 55.38 26.76 1543 373.45 213.68
kernel (£2.05) | (£1.75) | (£0.97) | (£412) | (£119.5) | (£29.28)
k-means
SV 5.33 2.12 5.97 80.24 14.24 121.35
clustering || (£2.25) | (£0.57) | (+2.33) | (£0.02) (+£0.51) | (£32.50)

Accuracy | WKPCA 80.70 84.84 - - - -
Approx. 83.08 88.76 59.39 88.50 55.40 57.30
kernel (£0.01) | (£0.001) | (£0.10) | (£0.002) | (£0.001) | (40.03)
k-means
SV 83.13 88.33 58.42 80.56 55.41 59.03
clustering || (£0.04) | (£0.52) | (£0.64) | (£0.01) | (£0.04) | (£0.03)
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3.6 Summary

The RFF clustering and the SV clustering algorithms, pregdas this chapter, use random Fourier
features to obtain a good approximation of kernel clustetising an efficient linear clustering
algorithm. We have analytically bound the approximatiomeof both these methods. We have
shown that, when there is a large gap in the eigenspectruhedéarnel matrix, as is the case in
most big data sets, the SV clustering algorithm which chsdiee singular vectors of the random
Fourier features is a more effective and scalable appraiomaf kernel clustering, allowing large
data sets with millions of data points to be clustered usempél-based clustering. It also solves
the out-of-sample clustering problem efficiently. The RH#stering algorithm can be trivially
parallelized by replicating the random Gaussian matrios&ithe computing nodes, calculating
the random Fourier features for a subset of the data in ead, mmd employing the parallkd
means algorithm to cluster the random Fourier feature matriobtain the cluster labels. The SV
clustering algorithm can be similarly parallelized, byngsthe distributed Lanczos eigensolver to
obtain the eigenvectors of the random Fourier feature matri

The approximate kern&tmeans algorithm in Chapter 2 and the random Fourier festinased
algorithms in this chapter are all based on sampling the skttand using the samples as basis
functions for the cluster centers. While approximate kekameans employs the data-dependent
Nystrom kernel approximation, and obtains the basis fonestiby factorizing the kernel matrix,
the basis functions in RFF and SV clustering algorithms ageddent on the kernel function.
Therefore, these algorithms require a large number of Epuamponents to achieve cluster qual-
ity equivalent to that of the approximate kertkemneans algorithm. Kernel selection is also very
crucial in the RFF and SV clustering algorithms. We have $eclion using scale-invariant kernel
functions in our work, but these algorithms can be extendgubtynomial and intersection kernels

using the schemes prescribed in [92] and references thépedbtain the basis functions.
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Chapter 4

Stream Clustering

4.1 Introduction

In addition to the large volume, big data is also charaaterizy “velocity” - the continuous pace
at which data flows in from sources such as sensors, machiee#rks, and user interaction with
websites. Analysis of this real-time data can help in makialmable decisions. For instance,
intrusions can be detected in IP networks by analyzing th&aor& traffic.

Clustering streaming data is challenging due to the folhgutivo reasons:

(i) Streaming data sets are often too large to load in memibigy could potentially be un-
bounded. Only a small subset of the data may be stored, deyemlthe amount of memory

available. So the data can be accessed at most once, and

(i) the data is non-stationary, i.e. the distribution oé ttlata changes over time. The data that

arrived more recently has higher relevance than the older da

Batch clustering algorithms such k$neans and kernégtmeans, assume that the data is com-
pletely available in memory at the time of clustering. Thésoaassume that the input data is

drawn from the mixture of a fixed set of distributions, anddima of clustering is to identify these
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component distributions. Therefore, batch clusteringilgms cannot be directly used to cluster
streaming data. Stream clustering algorithms model the d@tamically. Cluster labels are as-
signed to data points as they arrive, in an online manneea8trclustering algorithms generally
consist of two stages: (i) an online phase, where the stredaisl summarized into “prototypes”
as it arrives, and (ii) an offline phase where these protatgpe used to obtain the clusters. The set
of prototypes are dynamically updated to account for théugham of the clusters in the streaming
data.

Many stream clustering algorithms use measures such asuttiel&an distance to define the
pairwise similarity. As demonstrated in the earlier chegptikernel-based algorithms achieve better
clustering quality than linear clustering algorithms. Hwer, kernel-based clustering algorithms
are ill-suited to streams because of their high computatioomplexity. In this chapter, we adapt
the kernek-means algorithm to efficiently handle streaming data. Theg@sed algorithm samples
the data points as they arrive and constructs an approxkeatel matrix using the sampled points.
The sampling is performed with probability proportionalthe statistical leverage scores [34] of
this matrix, a measure of the importance of the data poirtte. Sempled data points are stored in
memory and used to determine the cluster labels of the inogohata points. We show that only a
small subset of the data needs to be stored in memory, therdiancing the efficiency of kernel

clustering for data streams.

4.2 Background

Data stream clustering has been studied extensively in dkterp recognition and data mining
literature. Most stream clustering algorithms summairieedata stream using special data struc-
tures, and obtain the cluster representatives using thsmsuy. They differ by the data structures
used to summarize the data; common data structures aredogesets, and grids (See Table 4.1).

Stream and LSearch algorithms split the incoming data ihtmks, cluster the chunks indi-
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Table 4.1 Major published approaches to stream clustering.

| Approaches for stream clustering | Examples |

CF-Trees Stream [79], Stream LSearch [140], Scalable
k-means [30], Single-pagssmeans [62]

Microcluster trees CluStream [8], ClusTree [98], ClusTrel [124],
DenStream [32], HPStream [9]

Coresets StreamKM++ [6]

Grids D-Stream [36], ODAC [149]

Approximate clustering Streamingk-means approximation [10], Fast
streamingk-means [162]

Kernel-based Incremental spectral clustering [139], Adap-
tive non-linear clustering [86], sKKM [84],
TechnoStream [134]

vidually to find the cluster prototypes, and then clustesg¢hprototypes to obtain the final clus-
ters [79, 140]. These algorithms cannot be used to perfoahtirae clustering. The Cluster-
ing Feature (CF) Tree was introduced by Zhatal. as a part of the BIRCH clustering algo-
rithm [197]. A CF-Tree summarizes the data stream into aahabry of nodes. Each node contains
a set of CF-vectors comprising the linear sum and the squanedof a set of points, which are
close to each other. The CF-Tree has been used in severahsttastering algorithms such as
scalablek-means, and single-pakgneans algorithms [30, 62]. The idea of CF-vectors was then
extended to “micro-clusters” which include the tempor&brmation about the data [32,98, 124].
This information is used to detect evolutionary changeb@data stream. For instance, the CluS-
tream algorithm stores the linear and squared sums of thestamps of the data points in the
microcluster, in addition to the linear sum and the squated sf the data points. These times-
tamp values are used to assign weights to the data pointebthgiving more importance to the
new data than older data while clustering. Similarly, theSttBam algorithm weights the clusters

using the temporal information and assigns data to moret@testers [9].

A coreset is a weighted subset of points that approximatanthé data set up to a pre-defined

error margin. The StreamKM++ algorithm summarizes the datam into a set of coresets or-
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ganized into a hierarchy known as the coreset tree [6]. Eade im the tree contains a subset of
points represented by a set of prototypes. The final cluatersbtained by grouping the coreset
representatives in the root node of the coreset tree. Gasedbalgorithms such as DStream and
DGClust partition thel-dimensional feature space into grid cells [36,149]. Eathsrepresented
by a tuple containing the timestamps, a cluster label andiémsity of the grid. Data points are
added to the grids and the grid summaries are updated inotallyeas the data points arrive. Ap-
proximate clustering algorithms such as streankimgeans [10, 162] choose a subset of the points
from the stream, ensuring that the selected points are tntlisom each other as possible, and

executek-means on the data subset.

To the best of our knowledge, based on published literatemy, few attempts have been made
to use non-linear similarity measures for clustering datass. The agglomerative hierarchical
clustering algorithm is adapted to use kernel distance areasn [193]. The incremental spectral
clustering algorithm [139] extends spectral clusteringtteam data by treating each new edge in
the graph as a vector appended to the similarity matrix. FTaphgLaplacian, its eigenvalues and

eigenvectors are updated incrementally with the new edges.

The stream kernddmeans algorithm [84] divides the data set into windows adiime-steps,
and performs clustering using the data points in every twiseoutive windows. Information from
the current time-step is passed on to the to the next tinpehstae form of meta-vectors containing
weights for each of thé' clusters. Jairet al. proposed a two-tier system called the adaptive non-
linear clustering algorithm to perform stream clusterisgg non-linear similarity [86]. In the first
tier, the incoming data points are partitioned into segmesgparated from each other by novel data
points. A data poink is considered novel if the kernel-based distance fsota the mean of the
data points in the current segment is greater than the @dered threshold. In the second tier,
the representative segments are identified and projeded ilow-dimensional space spanned by
the dominant principal coordinates of the data in kernetsf@6]. The cluster labels for the data

points are obtained by clustering the low-dimensionalesentations of the data. This technique
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requires the eigendecomposition of a large number of pantee second tier. The proposed
method uses the complete history of data, and does not eeqoimplex operations, unlike the

existing methods.

4.3 Approximate Kernel k-means for Streams

Data Stream
———

Xl

1-p Label
p t Cluster
' Assignment ™ Labels

Y

Sample set S P Clustering

Figure 4.1 Schema of the proposed approximate stream Kemebkns algorithm.

In Chapter 2, we presented the approximate kekrmkeans algorithm which constrained the
cluster centers to the span of a subset of the data points."\plog a similar strategy to cluster
streaming data. The key idea is to sample the data pointegsathive and construct the kernel
matrix incrementally using the sampled points. This appnaxe kernel matrix is used to cluster
the sampled points. The cluster labels are assigned to 8snpied data points using their kernel
similarity with the sampled points. A high level overviewtbie proposed clustering framework
is presented in Figure 4.1. Our framework consists of thme®gry components, working in
tandem: (i) importance sampling, (ii) clustering, and) @uster label assignment. The sampling
component samples the points from the stream, and corstiluetapproximate kernel matrix.
The clustering and label assignment components updatdubteis and the number of clusters

dynamically, and assign cluster labels to all the data pamthe stream.
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We describe each of these components in the following sestio

4.3.1 Sampling

One of the obstacles to using kerdeteans for clustering stream data is that it requires the
computation of the: x n kernel matrix, where: is the number of points in the data set. It is
infeasible to compute the full kernel matrix for stream da¢gause: is potentially unbounded.
The approximate kernel-based clustering algorithms meg@an Chapters 2 and 3 also need to
store the entire data in memory, before constructing thecpate kernel matrices. The stream
clustering algorithm proposed in this chapter alleviateés issue by incrementally sampling a
subset of the points from the stream, and using only thisefuiosconstruct the kernel matrix.
We maintain a bufferS in memory to store the sampled points; the number of pairits S' is
constrained by the user-defined parameteendM (m < s < M). Let K;_; represent the kernel
matrix at time(t — 1) with K; = x(x1,x;). When a data point; arrives at time, we update the

kernel matrix as

K _ T
¥ with probabilityp,.
K = v K(x¢,Xy) (4.1)
K with probability1 — p;,
whereK, | = [k(x;,x;)], X, X; € S, andy = (k(x, X1), . . ., (X4, X))

The simplest method of determining whether or not to add a gatntx, to S, is to per-
form independent Bernoulli trials, i.ex; is stored inS with probability p;, = % However,
Bernoulli sampling results in a large kernel approximatsoror, and requires a large number of
points to be stored in memdryTo alleviate this issue, we perform importance samplirsgeiad

of Bernoulli sampling. The sampling probabilipy for each pointx; is based on its “impor-

We demonstrate this using a synthetic data set in Figurea#@ using four large benchmark data sets in Sec-
tion 4.5.

118



Figure 4.2 lllustration of importance sampling on a two-dimional synthetic data set containing
1,000 points alongl0 concentric circles1(00 points in each cluster), represented by “0” in Fig-
ure (a). Figure (b) shows) points sampled using importance sampling, and Figuresn@) @)
show50 and 100 points selected using Bernoulli sampling, respectivelye $ampled points are
represented using “*”. All thd 0 clusters are well-represented by j&ét points sampled using
importance sampling. On the other haad points sampled using Bernoulli sampling are not ad-
equate to represent theseclusters (Clustet in red has no representatives). At led8d points
are needed to represent all the clusters.

tance”, defined in terms of the statistical leverage scd®8k [Let the kernel matrix{; at timet
be decomposed ds; ~ VoV, , whereC represents the number of active clustaastimet,
Yo =diag A, ..., \¢) contains the highest eigenvalues of(;, andV = (vy, ..., v¢) contains

the corresponding eigenvectors. The probability of adgioigt x, to .S is defined by

(4.2)

2
)
2

1
=gV

WhereVéj) is the j*" row of V. Statistical leverage scores measure the correlationeasthe

eigenvectors of the matrik; and the standard basis. A high score indicates that thespamneling

2We refer to the set of clusters that the data points in theeb§fbelong to at time as the set of active clusters.
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data point has a large influence in the approximation of thraédtematrix. The subset of data
corresponding to the largest statistical leverage valteeghe& most informative, and can represent
the distribution of the entire data. By performing impodarsampling on the data stream, the
samples that have not been adequately represented by stieg@siamples are added to the buffer.
Statistical leverage scores have been used successfulytdm low rank matrix approxima-
tions of large matrices, perform large scale regressionadiner large scale data analysis opera-
tions [28, 34]. The following lemma adapted from [74] shoWwatt at timet, the approximation
error between the true kernel matrix for thpoints{x;, x, ..., x;} and the low-rank kernel ma-
trix constructed using this sampling scheme is minimizedemvthe number of samples Hat

timetiss =Q(ClnC):

Lemma 8. Let K be at x t SPSD matrix, and’cz = (vy,...,v¢) represent the eigenvectors
corresponding to the tog’-dimensional eigenspace &f. Let Kz represent the x s matrix
obtained by sampling the columns &f with probability defined in(4.2) and K be thes x s
submatrix of'z corresponding to the sampled columns. For a given failugbpbility§ € (0, 1],

and approximation factor € (0, 1], if s > 3200¢2C'In (4C/4), we have
|k = KeR 7RG <K = Kl + €K - KL
2

whereK* is the best”-rank approximation of<, and|| - || and|| - || represent the spectral norm

and trace norm respectivéely

By using importance sampling, we obtain a good approximatdfdhe true kernel by sampling
just a fraction of the data set. Figures 4.2(a)-(d) illustthe advantage of importance sampling
over Bernoulli sampling on a two-dimensional data set dairig 1, 000 points from10 clusters.

Each true cluster is a concentric circle of varying radiugh w00 points, as shown in Figure 4.2(a).

3Lemma 8 bounds the error between the approximate kernelhantite kernel for a set afdata points. We
demonstrate empirically in Section 4.5 that the accumdlateor as time increases is well-bounded.
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Figure 4.2(b) also shows) points sampled using importance sampling. We observe lirtaea 0
clusters are adequately represented bystheampled points. Figure 4.2(c) shows thatpoints
sampled from the data using Bernoulli sampling do not represll the clusters, as the probability
of sampling data points from all the clusters is low. All thesters are represented only whig)

points are sampled, as shown in Figure 4.2(d).

4.3.2 Clustering

Let s be the number of points in the bufférandC' be the number of active clustérat timet.
After the kernel matrixk; is constructed in accordance with (4.1), the data pointS tan be

partitioned intoC' clusters by solving the kernkimeans problem

.
rgggtr(UKtU ) (4.3)
whereU = (uy,...,uc)T is the cluster membership matrik], = [diag(U/1)]""/? U, domain

P ={U € {0,1}¢*¢ : UT1 = 1}, and1 is a vector of all ones. The running time complexity
of this step would b&(s?). We further reduce this complexity by constraining the usenters
to a smaller subspace, spanning thedbpigenvectors of the kernel matrix;, along the lines of

the spectral clustering algorithm. We pose the clusterimdplem as the following optimization

problem:
. Uk N
min max ci(+) — kx4, (4.4)
YR o CCREATN
where?{, = span(vy, ..., v¢). The cluster centers can be expressed as linear combigatidime

eigenvectors of the kernel matrix:

Yy Tkt v = VoS, e [O), 45)

=1 j5=1
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wheren,, is the number of points in the" cluster, andy, = (Ui 1, Uy, - - -, Ukvs)T. By substitut-

ing (4.5) in (4.4), we obtain the following trace maximizatiproblem:

maxtr(UVeScVa UT). (4.6)

ueP

Y2 In the

The above problem can be solved efficiently by execukimgeans on the matrik->
following lemma, we show that the error incurred due to thgrapimation (4.4) is bounded, when
the lowest eigenvalues of the kernel matrix have small ntagas, which is true for most real data

sets [45]:

Lemma 9. Let F and E, represent the optimal clustering errors (A4.3) and (4.6), respectively.

We have

|E_Ea| < i )\i-

i=C+1
Proof. Let {c;(-)}¢_, andU* be the optimal solution to (4.3). Let(-) represent the projection of
c; into the subspac®(,. For anyx(x;, -), letg;(-) andh;(-) be the projections of(x;, -) into the

subspacé{, and spatv¢., 1, ..., V), respectively. We have

Ui
E, = min max ZZ k ||k () — K(x, )HH

IN
e
M

f
?
?
=

(e () = gi()y, + 11hi()l13,,)

i~
M

(I <E+Z)\
k=1 i=1 i=C+1

INA
=
_l’_
w |
Mo
§

O

We note that the eigenvalues and eigenvectors do not neeal rie-domputed for clustering,

122



as they were already computed while calculating the lewesmgres. This eliminates the need
for computing and storing the kernel matii, as only its top eigenvalues and the corresponding
eigenvectors are required for both sampling and clusteri@tarting withV, = 1 andXs =
k(x1,X1), we can update the eigensystem incrementally as the datesoiive. Efficient methods

to update the eigenvectors and eigenvalues incrementallgiscussed in Section 4.4.

4.3.3 Label Assignment

Data points are assigned cluster labels using the clustéerseobtained from the sampled data
points in a manner similar to the SV clustering algorithm ma@ter 3, and the active clusters are
updated using a fading cluster mechanism, similar to thed by the adaptive non-linear clustering
algorithm [86]. Each clustek is associated with a timestamprepresenting the last time a data

point was assigned thig" cluster label, and a recency value defined by a monotonidiamc

Ji(t) = exp (= (£ — i), (4.7)

wherev is a user-defined parameter, representing the decay ratdwsdtar [9]. A data poink; is

added to clustet* if

K = arg min e () - 95, . and fi-(t) > 1, (4.8)

wherec,(-) is the cluster center given by (4.%)(-) is the projection of(x;, -) into the subspace
spanned by the eigenvectdrg, andn is a user-defined lifetime threshold which determines how
long a cluster remains active. If the recenfy(t) of the closest clustet* is less tham, then a
new cluster is created with the data pakpt After the cluster assignment is made, the timestamp
and the recency value of the assigned cluster are updatedte® whose recency is less than

(called stale clusters) are deleted, and the data pointeibuffer that belong to these stale clusters
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are removed from the buffer.

Algorithm 8 describes the proposed stream clustering noetAte input to the algorithm is
the data strear®, kernel functionx(-, -), initial number of clusterg’, buffer size parametersn(
and M), and clustering fading mechanism parametersuid ). Selection of kernel function
and initial number of cluster§' is based on domain knowledge. Several articles in the titeza
describe techniques to learn the kernel function from the 2,177, 200]. The parameters
and M should be set such that the initial and final sample sets rostdficient representatives
from all the clusters. The parameteraindr, should be selected based on how fast the categories
are expected to change in the stream. Heuristics to set fa@ameters are discussed further in

Section 4.5.

4.4 Implementation and Complexity

The two major operations in the proposed algorithm are: edatn of leverage scores, and
clustering of the top’' eigenvectors of the approximate kernel matrix udiageans. Both the
operations require the eigenvalues and eigenvectors dfettmel matrix. Lets be the number of
points in the sample sétat timet. Eigendecomposition of anx s kernel matrixk; takesO(s?)
time, if performed naively. However, we can update the esgstem incrementally using the fast
rank-one update mechanism proposed in [31]. Given the d@mmpositionk, = VXV, and

vectory € R, this method finds the eigendecompositior{ &f, + ¢y ") as

.
K+ opp! = [v i] 2% {v —] (4.9)



Algorithm 8 Approximate Stream Kernétmeans

1:

e el
W N kRO

14:
15:

16:

17

©eNoOdR N

Input:
o D= {x1,x%y,...},x; € R% the data stream to be clustered
k(- +) 1 RE x R — R: the kernel function
C" the initial number of clusters
m.: the initial number of points to be sampled ¢~ C)
M: maximum number of points allowed in the sample set<{ M)
~: cluster decay rate
n: cluster lifetime threshold
Output: Cluster labels for the data points in the stream
Initialize S = {x;}, Vo = 1 andX¢s = k(x1, x1).
fort=1,2,...,mdo
SetS = S U {x:}.
Update the eigenvalueg; and eigenvectorg, using (4.9).
end for
Cluster the data points ifi into C' clusters by executingkmeans oY ¢
Set the last update timg = ¢, k € [C].
Evaluate the recency functiofy(t), k € [C] according to (4.7).

1/2

cfort=m+1,m+2,...do

Calculate the probability, using (4.2) and sef = S U {x, } with probabilityp;.

If x; was added t& in Step 12, update the eigenvalies and eigenvectorg. using (4.9),
and recluster the points ifi by executingk-means ori/-X'/2, otherwise find the cluster
k* whose center is closest 1.

If fi-(t) > n, assignx, to k*, otherwise create a new cluster withand setC' = C' + 1.

Find the clusters whose recengy(t) < 7,k € [C], and remove these stale clusters. Set
C = C — ¢, wherec is the number of stale clusters.

2
If card(S) >= M, find indexq = arg min ‘ ‘Véf) ‘ )2 and remove data poirt, from 5.
end for

wherew = (I — VVT) ¢ is the component of(; that is orthogonal td/, andY’ contains the

dominant eigenvalues of the sparse matrix

h) VTcp

PV |

This operation, repeated every time a new data point is itgpthie system, can be performed in

O(sC + C?) time.
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Clustering is performed every time a point is added to thepdasetS, which takesO(sC?1)
time, wherel is the number of iterations required to reach convergenoeorder to reduce the
running time, we can employ lazy reclusteringapproach, by which we perform the clustering
after everyT’ data point additions. To further enhance the efficiency efdlgorithm, the data
points can also be processed in batches of Bize

In summary, the time taken by the proposed approximatemstieganelk-means algorithm
to cluster a data set of size is O (ndM +nCM + nC? + M?C?l) ~ O (nd+ nC'), when
max(C,d, M,l) < n. This contrasts with thé(n?) running time complexity of typical kernel-

based clustering.

4.5 Experimental Results

4.5.1 Data sets

The proposed stream clustering algorithm inputs the daia batches, and can handle potentially
unbounded data sets, hence the size of the data set is nifitsigin The dimensionality of the data
set plays an important role in the kernel similarity compiotaand the eigensystem update. We
demonstrate the effectiveness of the proposed algorithth@€IFAR-10, MNIST, Forest Cover

Type, Imagenet-34, Poker, and Network Intrusion data sets.

4.5.2 Baselines

We compared the performance of the proposed algorithm withrecent stream clustering al-
gorithms (StreamKM++ and sKKM), which have been shown tdgrer better than the other

stream clustering algorithms. The StreamKM++ algorithini¢éa linear stream clustering algo-
rithm, which in the same spirit as the proposed algorithriraexs the core points in the streaming

data, and uses these core points to determine the clustirgehe algorithm maintains a set
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of buckets, each of size.. Data points are added to the first bucket untipoints are received.
They are then recursively merged with the points in the syileset buckets to form a coresetrof
points, using a coreset tree. The coresets are finally cedtesing th&k-means++ algorithm [12]
to obtain the cluster centers. The performance of this d@lgurdepends on the coreset size

The streaming kerné&-means (sKKM) algorithm proposed in [84] processes theidatAunks
of sizem. The initial data chunk is clustered using kerkgheans. Weighted kern&tmeans is
used to cluster the subsequent data chunks. The clustarsdram the preceding data chunk
are used to obtain the weights. We show that the proposedxdppate stream kern&-means is
more effective than these algorithms. We also compare tHerpgance of the proposed algorithm
with (i) the batchk-means algorithm to show that our algorithm achieves higheuracy, and (ii)
the batch kernek-means algorithm to evaluate the loss in the cluster quaig could execute
the kernelk-means algorithm only on the medium-sized CIFAR-10 and MNt&ta sets due
to its quadratic time complexity. For the remaining datss sete executed kernddmeans on
a 50, 000-sized randomly selected subset of the data, and assigeeetrtaining points to the
closest cluster centers. This gives us an approximatidmedtiine taken to execute kerrleieans
on the full data set. We finally evaluate the performance efloposed approximate stream
kernelk-means algorithm when each data point is sampled with pibityah/2, and show that
importance sampling plays a significant role in reducingrtteenory requirements and enhancing

the clustering accuracy.

4.5.3 Parameters

We used the universal RBF kernel for the proposed algorithditiae kernel-based baseline algo-
rithms on all the data sets. We tuned the kernel width usiitysgrarch in the rangé, 1] to obtain
best performance. For the proposed approximate strearslkemeans algorithm, we varied the
initial sample size fromn = 1,000 to m = 5, 000 in multiples of1, 000, and the maximum buffer

size fromM = 5,000 to M = 20,000 in multiples of5, 000, to constrain the memory used to
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4 GB. We employed the lazy reclustering approach Witlset to50, and processed the data in
batches of size3 = 10,000. We set the cluster decay factpr= 0.5 as suggested in [86], and
varied the lifetime thresholg asn = exp(—~7), wherer = {1,2,...,5}. The coreset size and
chunk size parameters for the StreamKM++ and sKKM algorittwere varied fromi, 000 to
5,000. The initial number of cluster§' was set equal to the true number of classes in the data set,
for all the algorithms.

We obtained the code for the StreamKM++ algorithm from ththars!, and implemented
the other algorithms in MATLAB. We executed each algorithintimes on &.8 GHz processor
with the memory constrained tbGB for the stream clustering algorithms, anditoGB for the
batch clustering algorithms. We present the mean and \@iahthe time taken for clustering
(in milliseconds) and the clustering quality, measuredemmis of the Silhouette coefficient and
NMI [104], over thesel 0 runs. Different permutations of the data set were input éoclistering

algorithms in each run.

45.4 Results
45.4.1 Clustering efficiency and quality

Clustering time for our algorithm is computed as the avetage taken to assign a label to each
data point. For the baseline algorithms, we computed time by dividing the total time taken to
cluster the data set by the number of points in the data sgurés 4.3, 4.4 and 4.5 compare the
running time, silhouette coefficient and NMI values, respety, of the proposed algorithm with
the baseline algorithms, when the parameters: 5,000, M = 20,000 andT = 1. As expected,
the proposed algorithm was faster than the batch ké&nsans algorithms and its approximation
(described in Section 4.5.2) on most of the data sets, butlomger than thé&-means algorithm,

because our algorithm has to compute the kernel similanityies top eigenvectors unlike the

4The code for StreamKM-++ is available at http://www.aldomi-engineering.de/software-projects?
view=project&task=show&id=17
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Figure 4.3 Running time (in milliseconds) of the stream wtiag algorithms. The parameters for
the proposed approximate stream keikebeans algorithm are setto = 5,000, M = 20, 000,
andrT = 1. The coreset size for the StreamKM++ algorithm, and the khaire of the sKKM
algorithm are set t8, 000. It is not feasible to execute kernlelneans on the Forest Cover Type,
Imagenet-34, Poker, and Network Intrusion data sets dubdio large size. The approximate
running time of kernek-means on these data sets is obtained by first executinglkemeans on

a randomly chosen subsetff, 000 data points to find the cluster centers, and then assigneng th
remaining points to the closest cluster center.
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Figure 4.4 Silhouette coefficient values of the partitiobtatmed using the proposed approximate
stream kernek-means algorithm. The parameters for the proposed algontlere set tan =
5,000, M = 20,000, andT = 1. The coreset size for the StreamKM++ algorithm, and the khun

size of the sKKM algorithm were set @ 000.

means algorithm. The silhouette coefficient values of ttippsed algorithm are comparable to
those of the kernék-means, showing that they yielded similar partitions. ThélMchieved by

our algorithm is higher than that &fmeans because of the use of non-linear similarity measures
The proposed algorithm also outperforms the approximatameof the kernek-means algorithm,
described in Section 4.5.2. On the CIFAR-10 data set, thehdagrnelk-means achieved an NMI

value 0f16.9%. The proposed algorithm achieves comparable NMI valu&$%).

Compared to the StreamKM++ algorithm, the proposed algariachieves higher clustering
quality, both in terms of silhouette coefficient and NMI,halugh it takes slightly longer to as-
sign cluster labels to the points. This is due to the fact thatalgorithm needs to update and
cluster the eigenvectors of the approximate kernel matnixech batch of data points. The pro-
posed algorithm offers the advantage that the clusterdatm be obtained in real-time, unlike
the StreamKM++ algorithm which needs to process all the daiats before assigning the clus-
ter labels. For instance, the proposed algorithm was abtuster abou®, 700 images from the

CIFAR-10 data set per second, which is equivalent to a speabdaut8 MBps. On the remaining
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Figure 4.5 NMI (in %) of the clustering algorithms with respéo the true class labels. The
parameters for the proposed approximate stream kkrmedans algorithm are set to = 5, 000,

M = 20,000, andT = 1. The coreset size for the StreamKM++ algorithm, and the klsize of

the sKKM algorithm are set t6, 000. It is not feasible to execute kernlelmeans on the Forest
Cover Type, Imagenet-34, Poker, and Network Intrusion data due to their large size. The
approximate NMI values of kern&means on these data sets is obtained by first executinglkerne
k-means on a randomly chosen subses@f000 data points to find the cluster centers, and then
assigning the remaining points to the closest cluster cente
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Figure 4.6 Change in the NMI (in %) of the proposed approxeséiteam kernéd-means algorithm
over time. The parameters, M and T were set ton = 5,000, M = 20,000 andT = 1,
respectively.

three data sets, the clustering speed ranges $bBps to 700 KBps. Our algorithm also outper-
forms the sKKM clustering algorithm in terms of clusteringgdjty. While the sKKM algorithm is
slower than the proposed algorithm on the CIFAR-10 datatsetpeed is at par with the proposed
algorithm on the remaining data sets. The StreamKM++ algariobtains clusters from coresets
which summarizell the points in the data set. The sKkKM algorithm relies on tHerimation
from only two time steps and discards most of the historictdrimation. The proposed approxi-
mate stream kern&means algorithm finds the middle ground by retaining paaéptuseful data
points using importance sampling, and discarding the retfteodata points. This is reflected in

the silhouette and NMI values achieved by the algorithms.

Figure 4.6 shows how the NMI values of the proposed algorithdue to the accumulation
of the kernel approximation error over time. We observe thatreduction in NMI is slow and
stabilizes over time for most of the data sets, showing tmatjpproximation error reduces over
time. The error accumulation can be further minimized bygtdting the points in the buffer more
frequently (as discussed in Section 4.4), although thislavimerease the running time. The user

can trade-off between the efficiency and accuracy by turiegpairameters of the algorithm.

132



4.5.4.2 Parameter sensitivity:

The proposed approximate stream kelzateans algorithm relies on five parameters: initial sam-
ple sizem, maximum buffer sizé\/, initial number of clusterg’, cluster decay rate and cluster
lifetime threshold). We study the influence of these parameters on the algostperformance
and present heuristics to set the parameter values:
¢ Initial sample sizem: The time taken by the proposed algorithm to cluster eachptzta
x, IS influenced by the number of points in the buffemt timet, because the size of the
eigenvector matriX/- increases proportionally. The buffer size at timén turn, depends
on the firstm data points{xy, ..., x,,} input to the system. More data points are sampled
from the stream and added £ if the initial sample does not contain a sufficient number of
representative points. On the CIFAR-10 data set, the nuibadditional points sampled
reduced fron®, 087 to 4, 434 as the initial sample siz@ was increased frorh, 000 to 5, 000.
Similar trends were observed for the remaining data setsedls ftigure 4.7 compares the
running time of the proposed algorithm with the StreamKM+## aKKM algorithms as the
parametern is varied. Recall thatn represents the coreset size and the chunk size for the
StreamKM++ and sKKM algorithms, respectively. Aswas increased, the time taken for
clustering by the baseline algorithms also increased. As&rd, the proposed algorithm
took slightly longer than the StreamKM++ and sKKM algorithfior most data sets, espe-
cially whenm was large. However, the NMI values achieved by the propokgutithm are
much higher than those achieved by the baseline algoritamshown in Figure 4.9. Our
algorithm’s accuracy improves significantlyiasncreases, while there is minimal improve-
ment in the cluster quality of the StreamKM++ algorithm. §hmprovement in accuracy
compensates for the higher running time of the proposedittign. These results indicate
that the initial sample, determined by the order of the datgs a crucial role in the perfor-
mance of the proposed algorithm. The variance in the NMIddndeduce as: increases,

again indicating that the order of the data is important. $itleouette coefficient values
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I Approximate stream kernel k-means (proposed)

I StreamKM++
I sKKM
15 100
) [%2] [%2]
g3 €2 go
5810 58
28 29 60
c = c =
SE SE 40
20
0 1000 2000 3%)0 4000 5000 O1000 2000 3%)0 4000 5000
(a) CIFAR-10 (b) MNIST
80
(2] 50 [%2]
2830 2840
c = c =
SE20 SE
X c X =20
10
01000 2000 3(7)7(1)0 4000 5000 01000 2000 3%)0 4000 5000
(c) Forest Cover Type (d) Imagenet-34
100 200
[} [%2]
gt
pars) palrs)
28 28
S = 50 S =100
SE SE
X c X c 50
01000 2000 3000 4000 5000 01000 2000 3000 4000 5000

(e) Poker (f) Network Intrusion

Figure 4.7 Effect of the initial sample size on the running time (in milliseconds) of the proposed
approximate stream kernklmeans algorithm. Parameterrepresents the initial sample set size,
the coreset size and the chunk size for the approximatawstkeeelk-means, StreamKM++ and
sKKM algorithms, respectively. The parametdisand r are set toM = 20,000 andr = 1,
respectively.
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I Approximate stream kernel k-means (proposed)
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Figure 4.8 Effect of the initial sample size on the silhouette coefficient values of the proposed
approximate stream kernkelmeans algorithm. Parameterrepresents the initial sample set size,
the coreset size and the chunk size for the approximatawstkeenelk-means, StreamKM++ and
sKKM algorithms, respectively. The parametdisand r are set toM = 20,000 andt = 1,

respectively.

achieved by the proposed algorithm vary minimally with ease in the initial sample size,
as shown in Figure 4.8.

e Maximum buffer size M: The maximum buffer sizé/ does not affect the algorithmic
efficiency of the proposed algorithm, provided thdt ~ 2m, and the initial sample is
representative of the stream. M is small, data points need to be removed more often
from the buffer to accommodate for the newly sampled datatppwhich results in an
increased running time as shown in Table 4.2. For instankcenw/ was set t®, 000, about
2,500 points were removed from the buffer, whereas no points reezlbe removed when
M = 20,000, resulting in a2 millisecond reduction of the clustering time per data point
The silhouette coefficient values vary minimally with, as recorded in Table 4.3. The NMI
value increases a¥ increases because a larger number of representative data gan be
stored in the buffer, as shown in Table 4.4.

o Cluster decay rater, lifetime threshold n» and number of clustersC: The final number

of clusters at the end of clustering depends on the ordeffitigeodata set, and the cluster
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Figure 4.9 Effect of the initial sample size on the NMI (in %) of the proposed approximate
stream kernek-means algorithm. Parameter represents the initial sample set size, the coreset
size and the chunk size for the approximate stream kdameéans, StreamKM++ and sKKM
algorithms, respectively. The parametéfsandr are set tal/ = 20,000 andr = 1, respectively.
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Table 4.2 Effect of the maximum buffer siZé¢ on the running time (in milliseconds) of the pro-
posed approximate stream kerkRgheans algorithm. Parameter settings= 5,000, 7 = 1.

[ M [ 5000 [ 10,000 | 15,000 | 20,000 |
CIFAR-10 | 9.34 | 850 9.57 7.48
(£0.76) | (£3.33) | (£2.79) | (£1.24)

MNIST 11.05 | 10.35 | 8.99 9.94
(£2.22) | (£4.04) | (£0.41) | (£1.75)

Forest 7.07 | 2417 | 40.65 | 5855

Cover Type || (£0.27) | (£6.69) | (£12.81) | (£21.57)
Imagenet-34| 10.57 18.77 48.15 57.91

(£2.62) | (£4.85) | (£18.18) | (£22.20)
Poker 7.38 21.06 44.04 62.38

(£3.56) | (£9.57) | (£17.76) | (£32.31)
Network 12.09 27.15 43.05 161.89
Intrusion || (£2.57) | (£7.07) | (£15.31) | (£69.43)

Table 4.3 Effect of the maximum buffer sizd on the Silhouette coefficient of the proposed
approximate stream kernkelmeans algorithm. Parameter settings= 5, 000, 7 = 1.

[ M [ 5000 [ 10,000 | 15,000 | 20,000 |
CIFAR-10]] 553 | 563 | 692 | 7.75
(xe —02) || (£0.12) | (£0.04) | (£0.29) | (+0.26)
MNIST || 80.50 | 77.72 | 82.19 | 8251
(xe —02) || (£0.84) | (£0.66) | (£1.29) | (£1.75)

Table 4.4 Effect of the maximum buffer sizé¢ on the NMI (in %) of the proposed approximate
stream kernek-means algorithm. Parameter settings= 5,000, 7 = 1.

[ M | 5000 [ 10,000 | 15,000 | 20,000 |
CIFAR-10 6.22 8.07 15.49 15.40
(££0.27) | (£2.73) | (£0.18) | (£0.39)
MNIST 20.15 29.97 48.31 48.31
(££0.26) | (£0.87) | (£1.50) | (£1.50)

Forest 0.56 0.72 12.19 14.27
Cover Type || (£0.07) | (£0.05) | (£0.02) | (£2.13)
Imagenet-34| 1.58 1.73 6.55 7.04
(£1.27) | (£1.62) | (£1.19) | (£1.24)
Poker 0.64 22.54 39.11 36.09
(£3.45) | (£2.92) | (£4.19) | (£4.94)
Network 13.71 13.86 13.75 14.32
Intrusion || (£0.01) | (£0.40) | (£0.30) | (£0.10)
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Table 4.5 Effect of the cluster lifetime threshajd= exp(—~7) on the running time (in mil-
liseconds) of the proposed approximate stream keksrakans algorithm. Parameter settings:
m = 5,000, M = 20, 000.

. - | 1 [ 2 | 3 [ 4 | 5 |
CIFAR-10 7.48 9.28 8.33 8.54 9.08
(£1.24) | (£1.03) | (£1.53) | (£1.66) | (+1.12)
MNIST 9.94 9.25 9.31 9.42 10.31
(£1.75) | (£0.46) | (£0.59) | (£0.61) | (£1.25)
Forest 5855 | 42.80 | 48.78 | 40.09 | 41.88

Cover Type || (£21.57) | (£17.26) | (£20.72) | (£13.81) | (£15.90)
Imagenet-34| 57.91 60.25 55.77 57.24 54.98
(£22.20) | (£24.43) | (£26.20) | (£24.57) | (£31.10)
Poker 62.38 44.39 4411 42.65 43.66
(£32.31) | (£16.04) | (£15.62) | (£17.48) | (£16.27)
Network 161.89 | 164.61 165.18 | 162.36 | 163.05
Intrusion (£0.69) | (£0.70) | (£0.71) | (£0.68) | (£0.64)

Table 4.6 Effect of the cluster lifetime threshojd= exp(—~7) on the Silhouette coefficient of the
proposed approximate stream kerkeheans algorithm. Parameters:= 5,000, M = 20, 000.

.~ | 1 [ 2 [ 38 [ 4 [ 5 |
CIFAR-10[ 7.75 7.66 6.40 | 6.35 | 6.07
(xe —02) || (£0.26) | (£0.24) | (£0.19) | (£0.20) | (+0.22)
MNIST || 8251 | 8251 | 8251 | 8251 | 8251
(xe —02) || (£1.75) | (£0.01.75) | (£1.75) | (£1.75) | (£1.75)

Table 4.7 Effect of the cluster lifetime threshajd= exp(—~7) on the NMI (in %) of the proposed
approximate stream kernklmeans algorithm. Parameters:= 5, 000, M = 20, 000.

L [t [ 2 | 38 | 4 | 5 |
CIFAR-10 15.49 15.55 15.41 15.45 15.50
(£0.39) | (+0.23) | (£0.33) | (+0.23) | (0.25)
MNIST 48.31 a47.77 49.45 45.98 47.74
(£1.40) | (£1.49) | (£1.48) | (+1.40) | (41.49)
Forest 14.27 12.10 12.11 12.10 12.10
Cover Type || (£2.13) | (£0.03) | (£0.03) | (£0.03) | (£0.03)
Imagenet-34| 7.04 7.04 6.95 6.95 7.76
(£1.24) | (£1.24) | (£1.14) | (£1.14) | (£1.54)
Poker 36.09 32.07 32.07 36.09 32.07
(£4.94) | (£4.41) | (£4.41) | (£4.94) | (£4.41)
Network 14.32 13.65 13.65 13.65 13.66
Intrusion || (£0.10) | (£0.06) | (£0.06) | (£0.06) | (£0.06)
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Table 4.8 Comparison of the performance of the approximagas kernek-means algorithm
with importance sampling and Bernoulli sampling.

Data set CIFAR MNIST Forest Imagenet Poker Network
-10 Cover -34 Intrusion
Type
Importance || Running 7.48 9.94 58.55 57.91 62.38 161.89
sampling || time (ms) || (£1.24) | (£1.75) | (£21.57) | (£22.20) | (£32.31) | (+£0.69)
Silhouette 7.75 82.51 - - - -
coefficient | (£0.26) | (£1.75)
(xe — 02)
NMI 15.49 48.31 14.27 7.04 36.09 14.32
(%) (£0.39) | (£1.40) | (£2.13) | (£1.24) | (£4.94) | (£0.10)
Number 5,434 6,136 16,561 14,735 6,265 14,886
of points || (£2,093) (£34) (£3,710) | (£1,790) (£132) (£2,627)
sampled
Bernoulli Running 2091.50 | 2210.77 | 1257.03 | 3002.45 86.43 923.16
sampling || time (ms) || (£47.34) | (£58.05) | (£39.33) | (£77.97) | (£1.86) | (£40.41)
Silhouette 0.72 8.11 - - - -
coefficient || (£0.01) | (£0.13)
(xe — 02)
NMI 11.33 14.35 3.93 4.97 2.90 6.50
(%) (+£4.9) | (£0.05) | (£0.7) (£0.19) | (£0.02) | (+0.15)
Number 31,483 23,000 | 407,220 | 389,177 50,000 | 1,711,101
of points || (£717) | (£203) | (£5,807) | (£11,325) | (£100) | (444,866)
sampled

decay and lifetime parameteysandn. For instance, when the points in the CIFAR-10 data
set were input in their true order (i.e. allimages from claa® input before all images from
classj (i < j)) for C =5,y = 0.5 andn = exp(—~) = 0.61, 10 clusters were found. On
the other hand, when the data was permuted randomly an@@dsthere was no increase
in the number of clusters because no clusters became staeumber of clusters increased
more rapidly wheny andn were set to lower values because the clusters became sie fa
This also influences the clustering time minimally. The eiffef the parameten on the
running time is recorded in Table 4.5. While the silhouettefficient values remain almost
constant whem changes, the NMI values are better for lower values ahdr, as shown in

Tables 4.6 and 4.7.
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Sampling techniques: Table 4.8 shows how the performance of the proposed algorth the
six data sets changes, when importance sampling is reptgcadampling procedure where each
data point is sampled with probability/2, and no limit is placed on the size of the sample set.
We record, for each sampling procedure, the running timeiliiseconds, the NMI values and the
average number of points stored in memory after all the daitstghave been clustered. We also
record the silhouette coefficient values for the CIFAR-10 MNIST data sets. For importance
sampling, we set the initial sample set stze= 5,000 and the recency threshold parameter
=1. We observe that the number of points sampled with Belingarnpling is much higher than
that with importance sampling. For instance, abdut83 points are sampled from the CIFAR-
10 data set when Bernoulli sampling is employed, whereag amnbut5, 434 points are sampled
using importance sampling. In addition, the cluster quaditBernoulli sampling is much lower
than that of importance sampling. This is because the kapmioximation error is much higher
when the data is sampled with equal probability. The runtiimg is also higher when compared

to the proposed algorithm with importance sampling due éddihge number of sampled points.

4.6 Applications: Twitter Stream Clustering

Twitter® is a popular microblogging social network for sharing imi@tion over the web. It has
over 100 million active users posting oveEb0, 000 short messages (calledeet$ per minute,
which include personal updates, real-time informationdlesents, news etc. Each tweet contains
a text message limited tbl0 characters, and can include user-mentions, links, andieomstin
addition to plain text. Tweets are also often annotated hatshtagghat denote keywords related
to the tweets. A large body of work on topic detection, evetedtion, hashtag recommendation,
and sentiment analysis has been performed on the Twitta{tiét144]. Clustering has been used

to find trending topics in Twitter posts, find user commusit@sed on the similarity of their posts,

S, twi tter. com
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and automatically annotate tweets with hashtags [16, 14d]order to demonstrate the practical
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Figure 4.10 Sample tweets from tASP.NETcluster.

applicability of the proposed approximate stream kekagleans algorithm, we used it to cluster
the Twitter data, and find the most-tweeted-about techmedogyer a period of time. We used the
Twitter streaming search API to obtain over a billion tweggserated during the month of January
2015, using the followin@0 popular keywords as hashtag search queries: Python, Rerlata,
Ruby, C++, JavaScript, VBScript, Scala, Objective C, PHPI.SPostgresql, GO, Julia, Erlang,
HTML, XML, Swift, and ASP.NET. We filtered out the non-Endilisveets, removed the hashtags
and eliminated stop words to obtain a vocabulary contaigingd2 terms. We used the correspond-
ing tf-idf (term frequency-inverse document frequencygtéees [125], and the timestamp of the

tweets as features for calculating the kernel, defined by

fa fo

(0 30) = Aexp (= tsa = tsul) + (1= X) e

wherets, and f, denote the timestamp and the tf-idf features of a tweetesgmted by data point
x,, respectively. The first term in the kernel function ensthes two tweets which were generated
in the same time period are likely to be assigned to the sanstet| and the second term ensures

that two tweets with similar vocabulary are grouped togetki¢e gave equal importance to both
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Figure 4.11 Sample tweets from tRd ML cluster.

the timestamp and the tf-idf features by settihg= 0.5. We set the parameters = 5, 000,

M = 10,000, C' = 20, v = 0.5, 7 = exp(—y) = 0.6 and B = 10,000. Our algorithm assigned

a cluster label to each tweet in ab@00 milliseconds. Treating the hashtags as the ground truth
label$, we obtained an average clustering accuracg16t in terms of NMI. On the other hand,
the StreamKM++ algorithm took abo88 milliseconds per tweet, and achieved an NMI value of
40%, and the sKKM algorithm took abo@ seconds per tweet, and achieved an NMI value of
53%. Figures 4.10 and 4.11 show some sample tweets from the ASPadd HTML clusters,
respectively. We observed that, by giving equal importandée timestamp of the tweet, and the
words in the tweet, we obtain clusters containing tweets hlhge both temporal proximity and
vocabulary similarity. Retweets are always assigned te#mee cluster as the original tweet. For

example, the tweets abosticky headerare assigned to the HTML cluster, as seen in Figure 4.11.

6Although hashtags are prone to error, they are the bestitaiof the topic of a tweet. They have been used as
topic labels in many other studies including [75, 150].
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More recent tweets rather than old tweets are stored in thmane Figure 4.12(a) shows the
trends of the top-five clusters over the month. This coireidell with the true trend of the top
topics shown in Figure 4.12(b). We found that the order ofytaxity of the topic clusters is

ASP.NET, HTML, SQL, JavaScript, Perl, C++, Postgresqglheyt GO, PHP, Swift, Scala, Java,
Ruby, C#, XML, Erlang, Julia, Objective C and VBScript; wdthe true order of topic popularity
is ASP.NET, HTML, Python, JavaScript, Perl, Java, PHP, RB®L, C++, Swift, C#, Scala,

Postgresql, XML, Erlang, Julia, GO, Objective C, and VBSCri

0.6 ASP.NET
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SQL
0.4r —— JavasScript
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o
)
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(b) True trends of the topics
Figure 4.12 Trending clusters in Twitter. The horizontakaepresents the timeline in days and
the vertical axis represents the percentage ratio of thebeuof tweets in the cluster to the total

number of tweets obtained on the day. Figure (a) shows tmelsrebtained by the proposed
approximate stream kernkelmeans algorithm, and Figure (b) shows the true trends.
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4.7 Summary

In this chapter, we have proposed an efficient and effeati@etrme kernel-based stream clustering
algorithm, called approximate stream kerkeheans. Experimental results show that the proposed
algorithm offers a good trade-off between clustering efficy and clustering quality. Further,
unlike some state-of-the-art kernel-based stream clagte@igorithms, the proposed algorithm
can control the decay and birth of clusters, thereby dynaligicontrolling the final number of
clusters. The key to the efficiency of the proposed algorithrithe sampling of the streaming
data based on their importance, defined in terms of the titatiseverage scores. This allows
us to maintain the long-term history of the streaming dathaso limit the memory required to
store the data. We cater to the drift in the data distribubigmplacing thresholds on the life of a
cluster. We demonstrated empirically that the proposedriign can cluster fast streams such as
the Twitter stream with limited memory, and achieve highastering accuracy than the current

stream clustering algorithms.
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Chapter 5

Kernel-Based Clustering for Large Number

of Clusters

5.1 Introduction

Document and image data sets, containing millions of highedsional points, usually belong to
a large number of clusters. Finding clusters in such datisetomputationally expensive using
kernel-based clustering techniques. Our aim is to speeceurekbased clustering for data sets
with large number of clusters. In this chapter, we preseraramt of the online kernel clustering
algorithm discussed in Chapter 4, called sparse kernel k-means algorithmimich can efficiently
cluster large data sets into thousands of clusters, withifgigntly lower processing and memory
requirements, and high clustering accuracy [38, 39].

Approximate kernel clustering algorithms such as apprexérspectral clustering [67, 157]
and approximate kernétmeans (from Chapter 2) reduce the running time of kernedtehing
by uniformly sampling ann-sized subset of the data, and constructing a low-rank appete
kernel matrix using the sampled data. These approacheseaddea running time complexity of

kernel clustering t@)(nmd + nmC'). Note that the running time increases proportionately with
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Table 5.1 Complexity of popular partitional clustering@lighms: n andd represent the size and
dimensionality of the data respectively, afidepresents the number of clusters. Parameter C'
represents the size of the sampled subset for the sampdisedlapproximate clustering algorithms.
ng, > C represents the number of support vectors. DBSCAN and Caalgyithms are depen-
dent on user-defined intra-cluster and inter-cluster destdhresholds, so their complexity is not
directly dependent of'.

| Clustering algorithms | Complexity |
k-means [87] O(nCd)
DBSCAN [61] O(nlog(n)d)
Canopy [126] O(nCd)
Kernelk-means [72] O(n?d + nz(])
Spectral clustering [118] O(n*d + n3 +nC?)
Support vector clustering [19] O(n%dng,)
Approximate spectral clustering [67] O(nmd + nm(C')
Approximate kernek-means [40] O(nmd + nmC)

the number of clusters (See Table 5.1). As demonstrated apt€hs 2 and 3, these algorithms
take very long to cluster the data set when the number oferfsist in the order of thousands. In
addition, the number of samples required to obtain a good approximation is dependent on the
rank of the kernel matrix, which is in turn dependent on thember of clusters in the data [74].
Clustering data sets with large number of clusters usingetlagorithms requires samplig(n)
number of data points, to sufficiently represent all theteltss This renders the approximate kernel

clustering algorithms also non-scalable.

The proposed sparse kerrlemeans algorithm reduces the running time and memory com-
plexity of kernel clustering using two key ideas: (i) keraglproximation using incremental im-
portance sampling, and (ii) kernel sparsity. Importancaang involves selecting data points
based on their novelty, measured in terms of statisticarbgye scores [34]. Fewer samples
(m = Q(C'log () are required to construct a good kernel approximationgusirportance sam-
pling than uniform sampling. However, finding the statigtieverage scores for the entire data
involves computing the eigenvectors of the fulk n kernel matrix, which is computationally ex-

pensive [56]. We design an efficient online method to sanf@edata based on their importance,
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thereby reducing the time required for sampling.

We also reduce the complexity of kernel computation andtetirsy by using sparsification.
We compute the-nearest neighbor graph (wheras a user-defined parameter) for the sampled
points and use this sparse kernel matrix to obtain the clesteters. Clustering is performed
efficiently by first projecting the data into a subspace spdrby the top eigenvectors of the sparse
kernel matrix, and then clustering the projected pointagisi modifieck-means algorithm, which
uses randomizekid-trees [132] to find the nearest cluster center for each datd.p

The runtime complexity of the proposed algorithm is lineaniandd, and logarithmic inC'.

We show that only a small subset of the data needs to be santipedby reducing the memory
requirements. We demonstrate empirically using sevenathmaark data sets that the proposed
clustering algorithm is scalable to data sets containingans of high-dimensional data points,

and thousands of clusters.

5.2 Background

Importance sampling As discussed in Chapter 4, the principle behind importaacepéng is

to select a subset of the data that is most informative. Lek#rnel matrix’’ be decomposed
asK ~ VgXoVy, whereXq = diag)\y, ..., A¢) contains the highest eigenvalues of< and

Ve = (vi,...,ve) contains the corresponding eigenvectors. A data pojris sampled with
probabilityp;, defined as

' 5

1 i
Pl

2
, called the statistical leverage score for data point

whereV,\” is thei'” row of V. The term) )Véf)
2

x;, IS an indicator of the importance of the point. A high scaordicates that the corresponding
data point has a high influence in the approximation of theddenatrix.
We showed in Lemma 8 that importance sampling reduces thendepcy of the number of

samples required on the number of clusters significantigrdompared to uniform sampling.
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(@) (b)

Figure 5.1 lllustration of kernel sparsity on a two-dimemsil synthetic data set containihg)00
points alongl0 concentric circles. Figure (a) shows all the data pointgrésented by “0”) and
Figure (b) shows the RBF kernel matrix corresponding todlais. Neighboring points have the
same cluster label when the kernel is defined correctly fdtta set.

Kernel sparsity Another key component of the proposed algorithm is kernatsty. The pro-
posed algorithm uses thenearest neighborg (> C') of each point to construct a sparse kernel
matrix. The intuition behind this is the fact that, each gadmt is surrounded by points belonging
to the same cluster in the high dimensional feature spaoeidad the kernel function is appropri-
ately selected. Figure 5.1 illustrates this concept onmioedimensional concentric circles data set.
The RBF kernel matrix corresponding to this data is showniguie 5.1(b). Nearby data points
in terms of the kernel similarity tend to have the same chlateel. This idea has been previously
applied in several supervised local learning approachgs [Ehe local learning-based clustering
algorithm [188] and the local spectral clustering algoritfil18] also use the nearest neighbor
graphs to obtain the cluster labels for the data. Howevesgimethods require the computation of

the full n x n similarity matrices, rendering them non-scalable.

Finding the nearest neighbors of a data point from amosngstints would require the com-
putation ofO (s) similarities. Popular approximate nearest neighbor dlgms adopt one of the

following two approaches to find the nearest neighbors efiity [3]:

e Use hashing techniques such as locality sensitive hashimgh use hash functions to place

similar objects in the same bin [100, 198].
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e Use data structures likal-trees (also denoted &sdtrees) [131] and its variants like R-trees,
R’-trees and metric trees [154] to organize the data accotditigeir similarity and enable

efficient querying.

The randomizedd-trees [132] technique for approximate nearest neighborpeation in-
volves constructing multipled-trees and searching them in parallel. While a clasdiddalee is
built by splitting the data along the dimensions with thehaigt variance [131], each randomized
kd-tree splits the data along a dimension chosen randomly th@mopn, dimensions with the
highest variance. A priority queue with information abdut tlistance of each branch to the deci-
sion boundary is used to index into the multiple trees. les3l(slog s) time to build the trees,
and O(log s) time for each query. Therefore, the time taken for nearegthber computation
is significantly reduced, when a large number of queries nede performed on the same data
set. We employ randomizddl-trees in the proposed algorithm to first find the nearesthieigs
and build the sparse kernel matrix, and then to find the classger for each data point during

clustering.

The proposed algorithm offers the following advantages twe existing techniques to reduce

the running time of kernel-based clustering [40,42,67,183]:

(i) Itemploysimportance sampling, so fewer number of s@mple required to approximate the
kernel matrix, when compared to the approximation method40, 67, 157], which employ

uniform random sampling.

(il) Existing approximate kernel clustering algorithm®[87,157] need to perfor®(nm) ker-
nel similarity computations, where is the number of samples. The number of kernel sim-
ilarity computations performed by the proposed algoritlsn{np), where the number of
neighborg <« m. This also reduces the time and memory required for clugiedompared

to the other approximate clustering algorithms.
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(i) The clustering quality is better when compared to tixéstng approximate kernel cluster-
ing methods, even with a relatively small number of samplesause the most informative

samples are used to perform clustering.

(iv) It does not require the computation of the full kerneltrma unlike the local clustering meth-

ods in [118] and [188].

(v) Itis online in nature, i.e. the data is clustered in batcbf a user-defined siz, so it can

cluster very large data sets (including data streams).

5.3 Sparse Kernel k-means

The proposed sparse kerrdeimeans clustering algorithm is described in Algorithm 9.eTh
algorithm starts with the first» data points stored in a buffef of a fixed maximum size\/
(C <m < M). Let N(x;) represent the-nearest neighbors of data poigtin the RKHS. We

construct the-neighbor graphk® for them data points inS, defined by

K’ = [Kijlmxm , Where (5.2)
K., - k(xi,x;)  if x; € N(x;) andx; € N(x;),
0 otherwise.
We assume that nearby points in the Hilbert space belongtsaime cluster. The kernel function
should be appropriately defined for this assumption to biel v&@everal articles in the literature
describe techniques to learn the kernel function from tha dda.2,177, 200].
The remaining data is clustered in batch&s, D?, .. .} of size B, whereD! = {x!, ... x4}.

Let K° = Vo2 Vo', whereX, = diag\, ..., A\c) contains the tog” eigenvalues oK and

1The nearest neighbors are found efficiently using randohkiddrees. We use the kernel functigft, -) to define
the inter-point distance function.

150



Algorithm 9 Sparse Kerndt-means
1: Input:
o D={xy,...,%X,},%; €R% the set ofr d-dimensional data points to be clustered

k() RE x R4 — R: the kernel function

C': the number of clusters

m: minimum number of points to be sampled (> C)

p: number of neighbors for calculating the sparse kernelimgtr< m)

M: maximum number of points allowed in the sample set<{ M)

B: size of each input data batch

2: Output: Cluster labels for the data points

3: Initialize S = {x; ... x,,}.

4. Set the number of batches; = (n —m) /B and divide the remaining points in the data set

(D — S) into batchegD!, ..., D5}, whereD! = {x!,... x%}.

5: Compute the sparse kernel matfiX according to (5.2).

6: Decomposek® asK® = Vo3V, .

7. Cluster the data points ifi by executing approximatemeans (Algorithm 10) otz X'/2 to

obtain their cluster labels.

8. fort=1,2,...,ngdo

fori=1,2,...,Bdo

10: Calculate the probability! using (5.1).

11 SetS = S U {x!} with probabilityp!.

12: If x! was added t& in Step 11, update the eigenvalugs and eigenvector$; us-
ing (5.8), and recluster the points % by executing the approximatemeans algo-
rithm (Algorithm 10) onV-X.!/?, otherwise assign’ to clusterk*, where k* =
arg Igg} llck(+) — gt(-)||§{n, ci(+) is given by (5.6), and(+) is the projection of(x!, -)

©

into the subspace spanned by the eigenvedters

2

13: If card(S) > M, find indexq = arg mlin ‘Vél) H and remove data poit, from S.
2

14:  end for

15: end for
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Ve = (v1, ..., ve) contains the corresponding eigenvectors. The matiigeandX are updated

using each point! from D?, and the kernel matrix is updated as

Kt1 o7 . .
with probability p?,
K= e i) &9
Kt-1 with probability 1 — pt,

wherey is a sparse vector defined by= [ (x,x,)] ", x, € N (x!) N S, andp! is the importance
sampling probability defined in (5.1). Data poiitis added toS with probabilitypt. The cluster

labels for the points ity can be obtained by solving the kerteineans problem

TTIotrr T
rgggtr(UKU )R (5.4)
whereU = (uy,...,uc)T is the cluster membership matrik], = [diag(U/1)]""/? U, domain

P ={U € {0,1}°*: UT1 =1}, s = card(S), and1 is a vector of all ones. The cluster labels
for the unsampled points can be obtained by assigning thetimetalosest center. The running
time complexity of this step i$)(s?). We further reduce this complexity by constraining the
cluster centers to a smaller subspace, spanning the topveigters of the kernel matrik’, along
the lines of spectral clusterihg We pose the clustering problem as the following optimizati

problem:

C s
. Uk,
min - max Y Y ;f llew(:) = w(xi, )| [a, (5.5)

UEP {en()ealf_, £

where#, = spanvy, ..., ve). The cluster centers can be expressed as linear combigatidime

°Note that the eigenvalues and eigenvectors were computiel fividing the sampling probabilities (5.1), hence
the eigenvectors do not need to be re-computed for clugterin
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eigenvectors of the kernel matrix:

s C U -
6t = L,

i=1 j=1

= ZEysl? kel (5.6)
N
wheren,, is the number of points in the” cluster, andy, = (U1, Uy, - - -, Uhs)T. By substitut-

ing (5.6) in (5.5), we obtain the following trace maximizatiproblem:
r7 T77T
max tr(UVeXcVe U'). (5.7)

The above problem can be solved by execukimgeans on the matrii(czlc/2. The complexity of
runningk-means orVCE}J/2 would beO(sC?), which can again be computationally expensive for

largeC.

We alleviate this issue by employing an approximate vamdiihe k-means algorithm (Algo-
rithm 10), similar to the filtering algorithm in [91]. The mmputationally expensive step in the
k-means algorithm is computing the closest center for eatdmtzEint, which require®(sC) dis-
tance computations. We reduce the number of distance catnms by using randomizédl-trees

to find the closest cluster centers.

The proposed sparse kerteineans algorithm is dependent on three parameters: isatiaple
sizem, maximum buffer size\/, and the number of neighbopsused to build the sparse kernel
matrix. The parameters and M should be set such that the initial and final sample sets tonta
representatives from all the clusters. The paramestiould be set large enough to ensure that the
kernel matrix remains positive semi-definite and its ranfresater than the number of clustérs

Heuristics to set these parameters are discussed furt®eciion 5.5.
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Algorithm 10 Approximatek-means
1. Input:
e D={xy,...,%,},% € R% the set ofn d-dimensional data points to be clustered
e (' the number of clusters
e MAXITFER: Maximum number of iterations
2: Output: Cluster labels for the data points
3: Randomly initialize the cluster labe{$,, l,,...1,},; € [C].
Compute the cluster centets = > x;, k € [C].

li=k

e

5. Sett = 0;

6: repeat

7. Sett=t+1.
8:  Build randomizedd-tree index! for theC' centers [132].
9: fori=1,2,...,ndo

10: Find the approximate nearest centgr of data pointk; using the index.
11: Setl; = k*.
12:  end for

13:  Recompute the centefg;, co, ..., cc}.
14: until the labels do not change or- MAXITER

5.4 Analysis

5.4.1 Computational Complexity

The most computationally intensive operations in the psepoalgorithm are: (i) computing the
m x m kernel matrixK® (Step 5), and finding its eigenvectors to obtain the levesagees (Step
6), and (ii) updating the eigenvectors in each iteratiow, @astering them using the approximate
k-means algorithm (Step 12). In order to obtain the eigemshnd eigenvectors of anx s
kernel matrix K* (wheres is the number of data points in the buffé), we need to perform
eigendecomposition ak*. Naive implementations of eigendecomposition take?) time. We

can reduce the time for computing the eigenvectors by makiognodifications to the algorithm:

(i) Use efficient algorithms such as Lanczos, subspacditerand trace minimization methods
to decompose the: x m kernel matrixK’® obtained from the first: points [21]. This reduces

the running time complexity of this step €(mp + m). In our implementation, we used the
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svds function in MATLAB to obtain the top_' eigenvalues and eigenvectors for the kernel

matrix corresponding to the first data points.

(i) Update the eigenvectoiig- incrementally in each iteration of the algorithm using igztate
mechanisms [31, 175], to reduce the time taken to procesgdimes in each batch. Using
the rank-1 update mechanism proposed in [31], we updateigeeectors inO(sp + p?)
time, wheres is the number of points in the buffér. Given the eigendecompositiofi;! =

VoYV, and vectorp € R™, this method finds the eigendecompositior(ﬁF + <p<pT) as

.
K+ pp" = {v l] 5 {v L} (5.8)

[[wl| |||

wherew = (I — VVT) ¢ is the component of* that is orthogonal td/, andY’ contains

the dominant eigenvalues of the sparse matrix

by VTcp

PV ]l

This method also eliminates the need to store the kernebmétrin memory. After the matrix
K° and its eigenvectors are obtained, only the vegtor (5.3) is required to updafé, andX.
The approximatd&-means algorithm first builds multiple randomizkditrees containing the
C cluster centers, and an index into these trees, which t@kéSog C) time. It then finds the
approximate nearest neighbors for each data poifitimO (s log C') time, with ane approximation
error. Therefore, the total time for clusteringoints using the approximakemeans algorithm is
O(C'log Cl + slog Cl), wherel is the number of iterations required for convergence. @hirsg
is performed every time a point is added to the sample&dedm the input batch of data points.
In order to further reduce the running time, we can empltazg reclusteringapproach, by which

we perform the clustering after evefydata point additions. Each unsampled data point can be
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assigned a cluster label by finding the closest centéX(ing C') time.

In summary, the overall running time complexity of the prepd sparse kern&tmeans algo-
rithm is O(npd + mp + m + QC'log Cl + QM log Cl 4+ nlog C), where( is the total number
of points sampled from the stream. We demonstrate in Sebtidhat the number of pointg
is close to the initial sample size. Therefore, the running time complexity can be simplified
asO(npd + mp + m + mC'log Cl + mM log Cl + nlogC) ~ O(npd + nlogC'), assuming
max(mp, mCl, mMI) < n. Therefore, the proposed algorithm has running time coxitylén-
ear inn, linear ind, and logarithmicirC'. Itis significantly faster than the kerneimeans algorithm
and the approximate kernel clustering algorithms, whicreli(nd + n*C') andO (nmd +nmC)
running time complexities, respectively. The amount of rmgmequired iO(mp + Md + MC),
for storing the initial kernel matri¥<°, the data points in the buffer and the eigenvectors of the

kernel matrix.

5.4.2 Approximation Error

The proposed sparse kerrlemeans algorithm essentially approximates the eigenkectothe
truen x n kernel matrix with the singular vectors of a sparse () matrix, where() is the total
number of points sampled from the data set using importaacgkng. In this section, we first
bound this approximation error (due to importance sampding sparsification), and then bound

the error incurred due to the approximation (5.5) for cluste

Theorem 7. Let K be then x n kernel matrix and letX” be then x Q kernel matrix between
then points in the data set and th@ sampled points. Lef = (z1, .. ., 2¢) represent the tog@’
eigenvectors of(, andd € (0, 1) be the smallest probability such th@tc — \¢11) > 3A, where
2\, 2 21n(2/6 &
A< Ullng +9|K|r % andy? = max K2 (X4, Xj).

Jj=1
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Assumingy = O(v/Q) andx(-,-) < 1,

9A
max |v; — z;|s <

lsisC 2(Ac — Acy1)’ (5:9)

with probability1 — §.

Proof. We will first establish a relationship between the singu&ters of the sparse kernel matrix
that is constructed by the proposed algorithm anditke: kernel matrixi< P = [ng’]nm defined

as follows:

o _ k(xi,x;)  if x; € N(x;) andx; € N(x;),
" 0 otherwise,

and then use the fact thak*?|, < |K|r to obtain the required result. L&t = (31,...,%,)
represent the eigenvectors &f?, X = (z1,...,2¢), andY = (Zo41, ..., 2,). Let L, be alinear

operator that maps any functigit-) to a functionL,,[f](-) € H, defined by

n

Lalf]() = = Z R(Xi, ) f (). (5.10)

1=1

The eigenfunctions [187] af,,, which form the basis of the spagg, are given by

~

1 n
Pil) = ——=>_ Fk(x;,"). (5.11)
vV )\Zn =1
Similar to L,,, let L represent the linear operator based on the sampled exgrdefesed by
1@
Lolfll) = 5 > k(i) f(x0). (5.12)
=1

We first prove a simpler result that establishes a relatiprsttween the subspac&sandV,

in the following lemma:
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Lemma 10. Leto € (0,1) be the smallest probability such thgtc — A1) > 3A, whereA is

defined as

2\ . 2 21n(2/6)

A = I Z K|y | Y
0 n <+ K% On

2M\ . 2 21n(2/6)

< —In- K _
=0 H5+7| |F On

There exists a matri® € R™~)xC satisfying

2A

Pllr <
1Pl < &

such that/ = (X + Y P)(I + PTP)~1/2,

Proof. The proof is based on the following results (Lemmas 11 andfrb?) [166] and [165],

respectively:

Lemma 11. Let (\;,v;),i¢ € [n] be the eigenvalues and eigenvectors of a symmetric ma-
trix A € R™*" ranked in the descending order of eigenvalues. Set= (vq,...,v¢) and

Y = (veuya,-- ., vy). Given a symmetric perturbation matrix, let

E E
XV EXY) = " "
E21 E22

Let|| - || represent a consistent family of norms and set
Y= [[Eall;0 = Ac — Aoq1 — [[Eull — | Baall-

If § > 0and2 < 1, then there exists a unique matidx € R"~“)*¢ satisfying|| P|| < 2, such
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that
X' =(X+YP)I+P'P)Y2Y =(Y —XP")(I+PP")™1/2

are the eigenvectors of + E.

Lemma 12. Let H,, be a Hilbert space and be a random variable 007, p) with values in#,.
Assumd|¢|| < M < oo almost surely. Denote?(¢) = E(||¢]|?). Let{z}2, be independent

random drawers op. For any0 < ¢ < 1, with confidencé — 4,

1<, 2M In(2/9) \/ 202(€) In(2/9)
5 ;(@ E[&)) ‘ < o + 5 : (5.13)
Let Ac = A\c — A\¢41. Define

A = [<H<Xi7 ')7 LnFL(XJW ')>7'ln]n><n7

B = [<H<Xi7 ')7 LQH(XJW '))HK]HXW

andE = B — A. We have
v=IXTEY ||p, 6 = Ac = | XTEX||p — |[YEY| .
Using the relationship,; = , /A%n oo Zigk(Xy,-), i =1,...,n, we have

XTEY),; = Z EZ

n

= /Z\ayi/z\b,j <H(Xi7 ')7 (Ln - LQ)’%(X]H )>7‘ln
a,b=1

= VAN(@i, (Lo — LQ)Pi)n.
= (@i, Ly/*(Ln — Lo)L)/*@j)n...

n
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We have similar results fak " EX andY " EY. Thus, we obtainy andé as

C n
v o= Y (@2 - DL LE,
i=1 j=C+1
< LY*(L, — Lo)Ly*|lr
C
§ = Ag— (@i, (L2 — Li* Lo L33,

i,j=1

n

—~ 1/2 1/2\ ~
| D (@, (12 - L Lo L) 33,
1,j=C+1

> Ac — ||L31/2(Ln — LQ)Lrlz/ZHF-

We substitute these bounds fpandd into Lemma 11 to obtain

1/2 1/2
T Ao = Ao — 122 = L Lo L e

We now bound|L? — L,lq/zLQLi/QIIF using Lemma 12. Leb;[f](-) = r(xi,-)f(x;) and§; =

L0 LY. We defineM ando? asM = max ||&||r, ando? = E; [||&]12].

X
1<i<n

We haveM < ||Ln||2||7’]l||F =)\ and
¢ = E |3t

= E|> (& L}@/%anLiﬂ@wm]

- E <’L€(Xi> ')7 Ln/{(xia )>H~ Z<9/5k7 L711/277iLi/2(ﬁk>Hn]
k=1

2
TR
n

IN

> (@ Li/sz}@p@cMH]
k=1

PR _ KR

2
o 9
—I||L <

IN
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We complete the proof by substituting the boundsXbands? into Lemma 12. O

Now we prove Theorem 7 using the result of Lemma 10. We have

mas vi 7l = Vo = Xl
< VP +PTPY 2+ (1 - (1 + PTPY )X
< Y IRIP+ I = (4 PTP) 2| X];
1

< Plr+1 -

VITTPIE

1Pl _ 3

< Pl + 1= /1= 1P < 1Pl + 25 <SPl

We obtain the required result using the fact that

2A 3A

Pl < < )
1Zle < Ac—Acr1 — A T Ao — Aoyt

We complete the proof by using the f4éf|» < 1 to obtain the relatioml\ = O <% + ﬁ) when
7 =0(VQ). O

In the following lemma, we show that the error incurred duthtpapproximation (5.5) is well-
bounded, provided that the tail of the eigenspectrum isdastying, which is true for most real

data sets [45]:

Lemma 13. Let £ and E, represent the optimal clustering errors (8.4) and (5.7), respectively.

We have

‘E_Ea| < Z )\z
i=C+1

Proof. Let {c;(-)}¢_, andU* be the optimal solution to (5.4). Lef(-) represent the projection of

c; into the subspac@l,,. For anyx(x;, -), let g;(-) andh;(-) be the projections of(x;, -) into the
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subspacé{, and spafvc. 1, ..., Vvs), respectively. We have

Uk,i
E, = min max ZZ k ||Ck —K(Xu )||Hﬂ

UGPck( GHak 1 i=1
kz
< ZZ RS (sz')HH
k=1 =1
C S Uk
K 2 2
< ZZ (Net() = a5, + a3,
k=1 i=1
1 C s
< E+-> Y IO, <E+ Z Ai.
Sk 1 =1 1=C+1

5.5 Experimental Results

5.5.1 Datasets

We demonstrate the effectiveness of the proposed sparsel kemeans algorithm using the

CIFAR-100, Imagenet-164, Youtube and Tiny data sets.

5.5.2 Baselines and Parameters

We compared the performance of the proposed algorithm Wwérkérnek-means [72] algorithm
on the CIFAR-100 data set. It is infeasible to execute thedde-means algorithm on the other
three data sets. We also evaluated its performance agh@lsiteans algorithm. We show that
although the proposed algorithm has a higher running tirmekhmeans, it yields better clustering
accuracy. Finally, we compared our algorithm with the agjpnate kernek-means algorithm from

Chapter 2, where the data is sampled with uniform probgpéitd a low rank approximate kernel
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is constructed using the sampled data. We show that impmrtsampling and kernel sparsity play

a significant role in reducing the time and memory requiretsien

We used the universal RBF kernel for the proposed algorithatlae kernel-based baseline al-
gorithms (kernek-means and approximate kerkemneans) on the CIFAR-100, Tiny and Imagenet-
164 data sets. For the Youtube data set, which contains bxtland image features, we used a

combination of the cosine similarity and the RBF kernel, riedias

fa [

1
K(Xq,Xp) = = |exp (—)\Hga - ngz) + m ’

2

where f, andg, denote the tf-idf and GIST features for data poipt respectively. We tuned the

kernel width for the RBF kernel using grid search in the rajige| to obtain best performance.

We varied the initial sample set size from = 5,000 to m = 20,000, and the number of
neighbors fronmp = 1,000 to m in multiples of5, 000. The maximum sample set size was set to
M = 50,000. The number of cluster§’ was set equal to the true number of classes in the data
set for the CIFAR-100 and Imagenet-164 data sets. The tmmauof classes is unknown for the
Youtube and Tiny data sets, so we set the number of clusteid &nj10, 000. The batch size3

was set equal to the initial sample size

We implemented all the algorithms in MATLAB, and executedrthl0 times each on a@.8
GHz processor. The memory used was constraingi {6B. We present the results (mean and
variance) over thé0 runs. Different permutations of the data set were input éccthstering algo-
rithms in each run. We used the randomikeetrees implementation in the FLANN library [132]
to find the approximate nearest neighbors in the proposexitdgn. The distance function used
by the library was defined as the inverse of the kernel simyléunction. The randomizeHld-tree
parameters were set as follows: the number of dimensigre 5, the number of trees t8, and

the approximation error to= 116,
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Table 5.2 Running time (in seconds) of the proposed sparselkemeans and the three baseline
algorithms on the four data sets. The parameters of the peabalgorithm were set taw =
20,000, M = 50,000, andp = 1,000. The sample sizen for the approximate kerndédmeans
algorithm was set equal 20, 000 for the CIFAR-100 data set arid), 000 for the remaining data
sets. It is not feasible to execute keriketneans on the Imagenet-164, Youtube and Tiny data
sets due to their large size. The approximate running timeeoielk-means on these data sets
is obtained by first executing the algorithm on a randomlyseimosubset di0, 000 data points to
find the cluster centers, and then assigning the remainiimggo the closest cluster center.

Dataset Sparse Kernel| Approx. | k-means| Kernel

k-means kernel k-means
(proposed) k-means

CIFAR-100 49,887 11,394 1,507 117,513

(£93) (£600) | (£332) (£211)
Imagenet-164 74,794 16,023 | 240,722 | 182,311
(£870) (£3,577) | (£5,351) | (£14,916)
Youtube 217,533 57,096 | 145,039 | 679,061
(£1,264) (£2,196) | (£1,436) | (£2,284)
Tiny 343,560 371,004 | 359,291 | 704,656
(£2,528) (£1,588) | (£7,045) | (£8,482)

5.5.3 Results

5.5.3.1 Running time

Table 5.2 compares the running time of our algorithm withapproximate kernéd-means, kernel
k-means an#t-means algorithms, when the parameterandp are equal t@0, 000 and1, 000, re-
spectively. On the CIFAR-100 data set, the proposed algoriikes longer than themeans algo-
rithm, as expected, because of the additional time reqémrddernel computation and eigensystem
calculation. It also takes longer than the approximatedddrameans algorithm, as it performs im-
portance sampling by calculating and updating the eigaaveof the sparse kernel matrix. On the
other hand, the approximate kertketneans algorithm selects the subset of the data using umifor
random sampling, and computes the cluster centers usiniguheank matrix constructed from
this subset. The proposed algorithm, the approximate k&meeans, and thiemeans algorithms

are significantly faster than the kerdemeans algorithm. The proposed algorithm spends more
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Figure 5.2 Sample images from three of i@ clusters in the CIFAR-100 data set obtained using
the proposed algorithm.

time in updating the eigenvectors and finding the leverageescthan clustering the eigenvectors
to obtain the cluster labels. Similar performance is obsgion the Imagenet-164, Youtube and
Tiny data sets. The proposed algorithm is also faster khaneans on the Imagenet-164 data set,
becaus&-means takes longer to converge. It is infeasible to comimeatéull kernel matrix for the
Imagenet-164, Youtube and Tiny data sets, so we were unabbetute kernét-means on them.
For these data sets, we executed kekagleans on &0, 000-sized randomly selected subset of
the data, and assigned the remaining points to the closesecicenters. The proposed algorithm
is also faster than this implementation of kerkeheans, because it takes a long time to find the
distance between the data points and the cluster centerasaign labels. The proposed algorithm

is also more accurate than this kerkgheans implementation on the Imagenet-164 data set.

5.5.3.2 Cluster quality

Figure 5.2 show examples of clusters obtained, using thesarnek-means algorithm, from the
CIFAR-100 data set. We assigned a class label to each ¢lbatad on the true class of majority
of the objects in the cluster. Table 5.3 records the silltewsefficient values of the partitions of
the CIFAR-100 data set. The sparse kekagieans algorithm achieves values closer to that of the

kernelk-means algorithm. The approximate kerkeheans an#-means algorithms are unable to
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Table 5.3 Silhouette coefficienk¢ — 02) of the proposed sparse kerdemeans and the three
baseline algorithms on the CIFAR-100 data set. The parametdhe proposed algorithm were
set tom = 20,000, M = 50,000, andp = 1,000. The sample size: for the approximate kernel
k-means algorithm was set equakto= 20, 000.

Sparse kernel Approx. kernel | k-means| Kernel
k-means (proposed) k-means k-means

11.36 2.33 3.02 30.18

(£0.07) (£0.02) (0.01) | (£0.13)

I Sparse Kernel k—-means (proposed}
[ Approximate kernel k—means
I <-means

I Kernel k—-means

15 15 B
10 _10
=
Z
I 5
0 m 0

(a) CIFAR-100 (b) Imagenet-164

NMI

U1

Figure 5.3 NMI (in %) of the proposed sparse kerkeheans and the three baseline algorithms
on the CIFAR-100 and Imagenet-164 data sets. The paranudtdre proposed algorithm were
set tom = 20,000, M = 50,000, andp = 1,000. The sample sizen for the approximate
kernelk-means algorithm was set equal2@ 000 for the CIFAR-100 data set arid), 000 for the
Imagenet-164 data set. It is not feasible to execute kéenakans on the Imagenet-164 data set,
due to its large size. The approximate NMI value achieveddmpédk-means on the Imagenet-164
data set is obtained by first executing the algorithm on aagary chosen subset éf), 000 data
points to find the cluster centers, and then assigning thaireng points to the closest cluster
center.
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achieve similar silhouette values.

We analyze the prediction accuracy, in terms of NMI, of thepmsed sparse kernkelmeans
using the CIFAR-100 and Imagenet-164 data sets. As thelmgs kabels for the Youtube and Tiny
data sets are not available, we were unable to find the NMhigsd data sets. Figure 5.3 shows the
NMI values with respect to the true class labels, for eachefgorithms on the CIFAR-100 and
Imagenet-164 data sets. In Figure 5.3(a), it is observedhkeaNMI achieved by our algorithm is
close to that of the kernétmeans algorithm. The proposed algorithm outperforms ketteans
and approximate kerné&means on both the CIFAR-100 and Imagenet-164 data setspdbe

fact that it samples the most informative points from theackt.

5.5.3.3 Parameter sensitivity

Our sparse kerndt-means algorithm relies on three parameters: the initiadpta setm, the
maximum size of the sample skf, and the size of the neighborhopdWe evaluated the effect of
each of these parameters on the performance of the proplggeidhan, using the CIFAR-100 and
Imagenet-164 data sets.

e Initial sample: The initial sample used to construct the kerél, and obtain the initial
cluster labels plays a crucial role in the performance ofadgorithm as shown in Table 5.4,
Table 5.5 and Figure 5.4. They compare the performance gfrtiosed algorithm and the
approximate kerndt-means algorithm with increasing value. As expected, the running
time of both the algorithms increases as the initial samizke increases fromm = 5,000
tom = 20,000. Asm increases, the size of the initial kerngP, and the time to compute
and decompose it into its eigenvalues and eigenvectorsaserproportionately. The initial
sample also determines the number of points sampled fromataeset, as each input batch
is processed. More data points were sampled and added taftee ®, if the initial sample
did not contain sufficient number of representative poifitse time to cluster increases as

more points are added to the buffer. The silhouette coefficialues on the CIFAR-100
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Table 5.4 Comparison of the running time (in seconds) of tlup@sed sparse kernkimeans
algorithm and the approximate keremeans algorithm on the CIFAR-100 and the Imagenet-164
data sets. Parameterrepresents the initial sample set size for the proposeditigg and the size
of the sampled subset for the approximate kekagleans algorithm. The remaining parameters
of the proposed algorithm are settd = 50, 000, andp = 1, 000. Approximate kernek-means is

infeasible for the Imagenet-164 data set when- 10, 000 due to its large size.

m CIFAR-100 Imagenet-164
Sparse kernel| Approx. kernel || Sparse kernel| Approx. kernel
k-means k-means k-means k-means
5,000 6,192 1,693 24,029 15,691
(+424) (£339) (44, 469) (£3,786)
10,000 18,256 4,134 36,669 16,023
(+21) (£549) (£603) (£3,577)
15,000 34,192 7,856 53,142 -
(£2,652) (£929) (£3,058)
20,000 49,887 11,394 74,794 -
(+93) (£600) (£870)

Table 5.5 Comparison of the silhouette coefficient { 02) of the proposed sparse kerkeieans
algorithm and the approximate kerdemeans algorithm on the CIFAR-100 data set. Parameter
m represents the initial sample set size for the proposeditign and the size of the sampled
subset for the approximate kerreimeans algorithm. The remaining parameters of the proposed

algorithm were set td/ = 50, 000, andp = 1, 000.

| m | 5,000 | 10,000 | 15,000 | 20,000 |
Sparse kernel 19.42 11.77 11.67 11.36
k-means (proposed)| (£0.12) | (£0.04) | (+0.06) | (£0.07)
Approx. kernel 2.45 2.37 2.45 2.33
k-means (£0.03) | (£0.02) | (£0.02) | (£0.02)
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Figure 5.4 Comparison of the NMI (in %) of the proposed spa&maelk-means algorithm and
the approximate kernd-means algorithm on the CIFAR-100 and the Imagenet-164 skta
Parametern represents the initial sample set size for the proposeditigg and the size of the
sampled subset for the approximate kerkeheans algorithm. The remaining parameters of the
proposed algorithm were set fd = 50,000, andp = 1,000. Approximate kernek-means is
infeasible for the Imagenet-164 data set when- 10, 000 due to its large size.

data set decrease minimally whenincreases frond, 000 to 10, 000, but remain constant
for m > 10,000. On the other hand, there is minimal change in the silhowettees of the
approximate kerneéi-means algorithm for increasing. The NMI values achieved by our
algorithm increase considerably as the sample siz@creases, indicating that the initial
sample is important to the clustering accuracy of the pregadgorithm. Even with just
5,000 data points in the initial sample, our algorithm is able thiaee 13% NMI. On the
other hand, the approximate kerhemeans algorithm is unable to achieve the same with
even20, 000 samples. The performance of the sparse kdemeeans algorithm is best when
the sample size is set greater th@tg C, in accordance with Lemma 8.

e Maximum sample size: In our experiments, we set the maximum sample siz&t600.
We found that this parameter is not as critical as the irsaahple, provided that it is set large
enough to accommodate for a sufficiently representativepoan©On both the CIFAR-100
and Imagenet-164 data sets, the number of points added boiffee range fromi 00 to 500,

on an average. The number of points added decreases adtidlesainple sizen increases
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Table 5.6 Effect of the size of the neighborhgodn the running time (in seconds), the silhouette
coefficient and NMI (in %) of the proposed sparse kelzeleans algorithm on the CIFAR-100
and Imagenet-164 data sets. The remaining parameters q@irdpesed algorithm were set to
m = 20, 000, andM = 50, 000.

P CIFAR-100 Imagenet-164
Running time | Silhouette coefficient] NMI Running time NMI
(xe —02)

1,000 49,887 11.36 12.23 74,794 16.15
(£93) (£0.07) (£2.3) (£870) (4£0.004)

5,000 52,073 11.25 12.09 82,880 17.58
(4483) (40.06) (£0.02) || (£21,360) | (£0.10)

10,000 54,205 12.27 13.86 192,725 18.01
(4874) (£0.12) (£0.07) (43,874) (40.07)

15,000 55,062 11.32 14.00 247,911 18.23
(£837) (£0.09) (£0.01) (£7,789) (4£0.004)

from 5,000 to 20,000. For instance, on the CIFAR-100 data set, when= 5, 000, 453
additional points were added to the buffer. Whenr= 20, 000, only 69 points were added.

e Size of the neighborhood:The number of neighborsused to construct the sparse kernel
similarity is also important to the performance of the pregb sparse kernktmeans algo-
rithm. Table 5.6 shows how the running time, the silhouetifficient values, and the NMI
values on the CIFAR-100 and Imagenet-164 data sets areedfas the value gf increased
from 1, 000 to 15, 000, and the initial sample size was fixed a0, 000. The running time
doubles wherp increased fronp = 1,000 to p = 15,000, on both the data sets. This is
due to the fact that a larger number of similarity computatioeed to be performed as the
value ofp increases. However, although there is a small increaseisilthouette coefficient
and NMI values, the increase is not significant enough tefyute increase in the running
time. We conclude that the neighborhood size is an impopardmeter in determining the
efficiency of the algorithm.

e Number of clusters: We show the effect of varying the number of clust€rsn the perfor-

mance of the proposed algorithm, in Figures 5.5 and 5.6. Uiheing time of the algorithm

170



x 10

2800
o) 1.4
& g 2000 2y
o5 SE
£ 2400 2812
c = @
c? S o
S £ S c
@ 2200 @~ 1
2000
20 40 60 80 100 50 100 150
Number of clusters (C) Number of clusters (C)
(a) CIFAR-100 (b) Imagenet-164
x 10° x 10°
10 1 10
Q Q
ES 8 EZS 8
- c - c
28 6 28 6
c Qo c Qo
c @ c @ 4
SE 4 S £
4 4
2 ‘ ‘ ] ‘
0.5 1N b 1.f5 2 0.5 N tl) ; 1.5
umber o 4 umber o 4
clusters (C) x10 clusters (C) x10
(c) Youtube (d) Tiny
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increases with the number of clusters. However, unlike nahgr clustering algorithms
including the approximate kernkimeans, RFF, SV and approximate stream kekmmakans
clustering algorithms presented in the earlier chaptleesranning time of the sparse kernel
k-means algorithm increases almost logarithmically with ttumber of clusters, on most
data sets. The NMI values achieved by our algorithm alsease as the number of clus-
ters increase. We note that the NMI values of the proposettitign are better than those
achieved by the baseline algorithms, on both the CIFAR-eDimagenet-164 data sets, for

all values ofC'.

5.5.3.4 Scalability

We varied the number of points, the dimensionality and thaler of clusters in the concentric
circles data set, and executed our algorithm on these dtéosexamine its scalability. We used
the RBF kernel to compute the inter-point similarity. Thgalthm parameters:, p and M were

settom = 1,000, p = 100 andM = 20, 000 respectively, and the data was input in batchelof

Figures 5.7(a), 5.7(b) and 5.7(c) show that the proposeatithgn is linearly scalable with respect
to the size and dimensionality of the data set, and almoatiitgnically scalable with respect to the
number of clusters, in accordance with the complexity agialyn Section 5.4.1. In Figure 5.7(a),

the size of the data set is varied fram= 100 to n = 107, while the dimensionality and the

172



number of clusters are fixed ét= 100 andC' = 10. The running time of the proposed algorithm
increases linearly with. Figure 5.7(b) shows the running time of the proposed dlgarias the
dimensionality of the data varies betweén= 10 andd = 1,000, while n = 10° andC = 10.
Finally, the running time of our algorithm increases logariically as the number of clusters

increases fron®’ = 10 to C' = 1,000, with n = 10% andd = 100, as shown in Figure 5.7(c).

5.6 Summary

In this chapter, we have proposed the sparse k&n&ans clustering algorithm, which can effi-
ciently cluster large high-dimensional data sets into gdarumber of clusters. By sampling the
data points based on their novelty, defined in terms of thesstal leverage scores, we only store
the most informative points in the data, thereby limiting themory requirements. We need to
compute the kernel similarity of the data points only witepect to these sampled points, thus re-
ducing the running time complexity. We further reduce theing time complexity by introducing
sparsity into the kernel, based on the assumption that timek&inction is appropriately defined,
and nearby points in the kernel space have similar labels.d&#onstrated that the proposed

algorithm is scalable and accurate using several largehpesik data sets.
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Chapter 6

Summary and Future Work

As the amount of digital data continues to grow at a rapid, redatinued efforts to design and
develop scalable and efficient algorithms to organize tata dnd extract useful information from
it are essential. We have focused on the unsupervised ihgatask of clustering in this thesis.
While linear clustering algorithms (e.gk-means) are fast and scalable, they are incapable of
finding the underlying clusters in real-world data sets wiihh accuracy. On the other hand,
kernel-based clustering algorithms are accurate, but arecalable to big data sets. We have
proposed a number of kernel-based clustering algorithmshadre not only scalable to data sets
containing billions of data points, but also achieve clugtelity comparable to that of the existing
kernel-based clustering algorithms. The proposed alyostare primarily based amndomly
sampling the data sets and finding the clusters usingitasative optimization techniques. The
main contribution of this thesis is the design of approxeragorithms for the advancement of the
scalability of kernel-based clustering, while maintagthe cluster quality, and demonstrating the

performance of the proposed algorithms on diverse data sets
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6.1 Contributions

The approximate batch kernel clustering algorithms predads Chapters 2 and 3 make the fol-

lowing contributions:

e The approximate kern&means algorithm in Chapter 2 demonstrates that, by usirigron
random sampling, kernel-based clustering can be perform@dnmC + nmd) time, where
n is the size of the given data setjs its dimensionality(' is the number of clusters, and
m IS the number of samples from the data set« n). This running time complexity is
significantly smaller than th@(n?C + n%d) complexity of classical kernel-based clustering

algorithms, given that < n.

¢ In contrast to the approximate kerrkeineans algorithm, which decomposes the kernel ma-

trix into its low-rank components, the RFF and SV kernel ©@tuag algorithms, introduced

in Chapter 3, factor the kernel function using the Fouriangform, and project the data into
a low-dimensional space spanned by the Fourier compon€hts RFF and SV clustering
algorithms haveé (nm log(d) + nmC) andO(nmlog(d) +nC?) running time complexities,
respectively, wheren < n is the number of Fourier components. Both algorithms parfor
well on large high-dimensional data sets. The SV clusteailggrithm is faster than the RFF
and approximate kerné&tmeans algorithms, when the number of clustérs small (less

than100), with a minimal loss in cluster quality.

e The error incurred by the approximate kerkeheans algorithm due to samplingi$1/m),
which implies that the error reduces linearly, as the nunobeata points sampled from the
data set increases. Similarly, the error incurred by the RiRdF SV clustering algorithms
reduces at the rate 6f(1/,/m) andO(1/m), respectively, where: represents the number

of Fourier components used for projection.

e The best clustering quality is achieved by these approxirabgorithms, when the number
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of samples (or the number of Fourier componentis$ significantly greater tha@', and the

eigenvalues of the kernel matrix have a long-tailed diatrdn.

e The proposed algorithms achieve clustering quality simdahe kernek-means and spec-
tral clustering algorithms on large benchmark text and iendata sets, containing up 16

million data points, with significantly lower running time.

The online kernel clustering algorithms proposed in Chapteand 5 make the following contri-

butions:

e Data streams often contain unbounded number of data pemisis impossible to store the
entire data set in memory. It is also difficult to uniformlyngale streaming data sets because
of their arbitrary size. The approximate stream ketkeheans algorithm, introduced in
Chapter 4, relies oimportancesampling, and thereby uses only the most informative data
points in the stream to perform clustering. Importance sengps inherently a complex
procedure because it requires the eigendecompositioredeimel matrix. By devising an
efficient online method to perform importance sampling, \@eehreduced its running time
complexity. The approximate stream kerkeheans algorithm can cluster large stream data

sets inO(nd + nC) time.

e We have demonstrated the performance of the approximaanstkernek-means on the
Twitter stream. It can also be applied to find clusters in forndata, climate data, click-

streams etc.

e When the number of clusters in the data set is large (in the order of tens of thousands),
the existing kernel clustering algorithms have long rugrtimes as a result of their linear
running time complexity with respect t6. By using importance sampling to sample the data
set, and inducing sparsity into the kernel matrix conseddtom the sampled data points,

the sparse kernét-means algorithm, introduced in Chapter 5, reduces this tiamplexity
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to O(nd + nlog C'), with O(1/+/m) approximation error, where: is the number of points

sampled from the data set.

¢ We have demonstrated the scalability of the sparse kkrmadans algorithm on large hetero-
geneous data sets such as the Tiny image data set and thé&olatia set (text and image),

containing millions of data points with uptd, 000 clusters.

e The loss in the clustering quality by the approximate str&amelk-means and the sparse
kernelk-means algorithms is minimal when compared to the batchekkfmeans clustering

algorithm.

The crux of the proposed algorithms is to randomly sampldaige data sets and thereby, reduce
the number of similarity computations required to condtthie kernel matrix and cluster the data.
The sample size and the sampling strategy play a cruciaindhe performance of the algorithms.
While the proposed batch clustering algorithms select #mepdes uniformly from the given data
set, the online algorithms employ the more sophisticatqgebmance sampling strategy. The im-
portance sampling technique reduces the total number gblsamequired because it chooses the

data points intelligently, based on the data distribution.

6.2 Future Work

Kernel-based clustering research presented in this tis$er can be further advanced as follows:

e Parallelization. In contrast to linear clustering algorithms, kernel-baskgstering algo-
rithms need the computation of the kernel matrix, due to whieey are more difficult to
parallelize than linear clustering algorithms. The apprate kernel-based clustering algo-
rithms presented in this thesis are easier to paralleliae thassical kernel-based cluster-
ing algorithms. Unlike parallel versions of the classicairel-based clustering algorithms,

which require all the data to be replicated in all the nodls, approximate kernel-based
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clustering algorithms require only the sampled data pdimtse replicated. This reduces
the amount of memory required and the communication costh&Ve demonstrated how
the approximate kerndd-means algorithm can be executed on a distributed frameuork
Chapter 2. The RFF and SV clustering algorithms can be gipiearallelized. However,

the remaining approximate kernel-based clustering dalyms proposed in this thesis rely
on the eigenvectors of the approximate kernel matrices,n@ed effective online parallel
techniques for eigenvector updates. Parallelization e$¢halgorithms can aid in their de-

ployment to large scale computing frameworks.

Kernel selectionAs demonstrated in Chapter 1, the kernel function used toeldfie inter-
point similarity plays a crucial role in the efficiency anccaracy of kernel clustering. Em-
ploying the wrong kernel for clustering can adversely dffkee cluster quality, and can result
in clustering quality worse than that of linear clusterimgoaithms. However, choosing the
correct kernel, and selecting the kernel parameters is keolgang task. Although a few
algorithms have been proposed to learn the kernel from tteidaan unsupervised man-
ner, these algorithms have high running time complexityulteng in their non-scalability.
More scalable techniques have been developed to learn thelka the supervised and
semi-supervised settings, but obtaining the labels fgelalata sets is expensive and often
impossible. Development of scalable unsupervised keeaehing algorithms is a potential

direction for future work.

Overlapping clustersln applications such as user community detection in so&lorks,

users often belong to more than one community, causing tisteck to overlap with each
other. Very few efforts have been made to find such overlapgiusters using kernel-based
clustering techniques. Fuzzy kernel clustering techrscquey compute the probability that
a data point belongs to a cluster, and do not deterministiiatl the cluster memberships.

More concrete scalable techniques need to be developeditoverlapping clusters in data.
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