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Abstract

Information Fusion in Fingerprint Authentication

By

Arun Abraham Ross

Although the problem of automatic fingerprint matching has been extensively

studied, it is nevertheless, not a fully solved problem. In this thesis, an information

fusion approach is adopted to address some of the limitations of existing fingerprint

matching systems. A hybrid fingerprint system that utilizes both minutiae points

and ridge feature maps to represent and match fingerprint images has been devel-

oped. The hybrid matcher is shown to perform significantly better than a traditional

minutiae-based matcher. The ridge feature maps extracted by this technique have

also been used to align and register fingerprint image pairs via a correlation pro-

cess, thereby obviating the need to rely on minutiae points for image registration.

To address the problem of partial prints obtained from small-sized sensors, a finger-

print mosaicking scheme has been developed. The proposed technique constructs a

composite fingerprint template from two partial fingerprint impressions by using the

iterative control point (ICP) algorithm that determines the transformation param-

eters relating the two impressions. To mitigate the effect of non-linear distortions



in fingerprint images on the matching process, an average deformation model has

been proposed. The model is developed by comparing a fingerprint impression with

several other impressions of the same finger and observing the common ridge points

that occur in them. An index of deformation has been suggested in this context to

aid in the selection of an ‘optimal’ fingerprint impression from a set of impressions.

Finally, techniques to combine fingerprint information with the other biometric traits

of a subject (viz., face and hand geometry) are presented. To enhance user conve-

nience, a learning methodology has been used to compute user-specific parameters in

a multibiometric system. Information fusion systems, as presented in this thesis, are

expected to be more reliable and robust than systems that rely on a single source of

information.
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Chapter 1

Introduction

1.1 Biometrics

A wide variety of systems require reliable personal authentication schemes to either

confirm or determine the identity of individuals requesting their services. The purpose

of such schemes is to ensure that the rendered services are accessed by a legitimate

user, and not anyone else. Examples of these systems include secure access to build-

ings, computer systems, laptops, cellular phones and ATMs. In the absence of robust

authentication schemes, these systems are vulnerable to the wiles of an impostor.

Traditionally, passwords (knowledge-based security) and ID cards (token-based

security) have been used to restrict access to systems. However, security can be eas-

ily breached in these systems when a password is divulged to an unauthorized user

or a card is stolen by an impostor; further, simple passwords are easy to guess (by an

impostor) and difficult passwords may be hard to recall (by a legitimate user). The

emergence of biometrics has addressed the problems that plague traditional verifica-
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tion methods. Biometrics refers to the automatic identification (or verification) of an

individual (or a claimed identity) by using certain physiological or behavioral traits

associated with the person. By using biometrics it is possible to establish an identity

based on ‘who you are’, rather than by ‘what you possess’ (e.g., an ID card) or ‘what

you remember’ (e.g., a password). Biometric systems make use of fingerprints, hand

geometry, iris, retina, face, hand vein, facial thermograms, signature, voiceprint, gait,

palmprint, etc. (Figure 1.1) to establish a person’s identity [5, 6]. While biometric

systems have their limitations [7], they have an edge over traditional security methods

in that it is significantly difficult to lose, steal or forge biometric traits; further, they

facilitate human recognition at a distance (e.g., face and gait).

(a) Fingerprint (b) Face (c) Hand Geometry

0 1 2 3 4 5 6 7 8

x 104
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(d) Signature (e) Iris (f) Voice

Figure 1.1: Examples of some of the biometric traits used for authenticating an
individual.

Biometric systems also introduce an aspect of user convenience that may not

be possible using traditional security techniques. For example, users maintaining

2



different passwords for different applications may find it challenging to recollect the

password associated with a specific application. In some instances, the user might

even forget the password, requiring the system administrator to intervene and reset

the password for that user. A Meta Group study reports that a password-related

help desk call may cost as much as $30 in terms of support staff time and money [8].

Maintaining, recollecting, and remembering passwords can, therefore, be a tedious

and expensive task. Biometrics, on the other hand, addresses this problem effectively,

thereby enhancing user convenience: a user can use different ‘passwords’ (biometric

traits) for different applications, with ‘password’ recollection not being an issue at

all.

A typical biometric system operates by acquiring biometric data from an indi-

vidual, extracting a feature set from the acquired data, and comparing this feature

set against the template feature set in the database. In an identification scheme the

comparison is done against templates corresponding to all the enrolled users in order

to recognize the individual (a one-to-many matching); in a verification scheme, the

comparison is done against only those templates corresponding to the claimed identity

in order to verify the claim (a one-to-one matching). Thus, identification (“Whose

biometric data is this?”) and verification (“Does this biometric data belong to Bob?”)

are two different problems with different inherent complexities [9]. The templates are

typically created at the time of enrollment, and depending on the application may or

may not require human personnel intervention. Figure 1.2 illustrates the enrollment

and verification modules of a typical biometric system.

The verification problem may be formally posed as follows: given an input feature
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vector XQ and a claimed identity I, determine if (I, XQ) belongs to ω1 or ω2, where

ω1 indicates that the claim is true (a genuine user) and ω2 indicates that the claim

is false (an impostor). Typically, XQ is matched against XI , the biometric template

corresponding to user I, to determine its category. Thus,

(I, XQ) ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω1 if S(XQ, XI) ≥ η,

ω2 otherwise,

(1.1)

where S is the function that measures the similarity between XQ and XI
1, and η is a

predefined threshold. Therefore, every claimed identity is classified as ω1 or ω2 based

on the variables XQ, I, XI and η, and the function S.

The identification problem, on the other hand, may be stated as follows: given

an input feature vector XQ, determine the identity Ik, k ∈ {1, 2, . . .N, N + 1}. Here

I1, I2, . . . IN are the identities enrolled in the system, and IN+1 indicates the reject

case where no suitable identity can be determined. Hence,

XQ ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ik if max

k
{S(XQ, XIk

)} > η, k = 1, 2, . . .N,

IN+1 otherwise,

(1.2)

where XIk
is the biometric template corresponding to identity Ik, and η is a predefined

threshold.

Biometric systems are being increasingly deployed in large scale civilian appli-

cations (Figure 1.3). The Schiphol Privium scheme at the Amsterdam airport, for

1The value S(XQ, XI) is termed as a similarity score or matching score

4



Verification Module

QX

Biometric Sensor

User

Enrollment Module

Feature Extractor

Accepted/
Rejected

Claimed Identity, I

Identity, I

XI

Template
Database

IX

User

Biometric Sensor

Feature Matcher

Feature Extractor

Matching Score

Figure 1.2: The enrollment module and the verification module of a biometric system.
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example, employs iris scan cards to speed up the passport and visa control proce-

dures [10]. Passengers enrolled in this scheme insert their card at the gate and look

into a camera; the camera acquires the eye image of the traveller and processes it

to locate the iris, and compute the Iriscode [11]; the computed Iriscode is compared

with the data residing in the card to complete user verification. A similar scheme is

also being used to verify the identity of Schiphol airport employees working in high-

security areas. Thus, biometric systems can be used to enhance user convenience

while improving security.

A simple biometric system has four important modules:

1. Sensor Module which captures the biometric data of an individual. An example

is a fingerprint sensor that captures fingerprint impressions of a user.

2. Feature Extraction Module in which the acquired data is processed to extract

feature values. For example, the position and orientation of minutiae points in

a fingerprint image would be computed in the feature extraction module of a

fingerprint system.

3. Matching Module in which the feature values are compared against those in

the template by generating a matching score . For example, in this module,

the number of matching minutiae between the query and the template can be

computed and treated as a matching score.

4. Decision-making Module in which the user’s claimed identity is either accepted

or rejected based on the matching score generated in the matching module
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Biometric systems in civilian applications. (a) A border passage sys-
tem using iris recognition at London’s Heathrow airport (news.bbc.co.uk). (b) The
INS Passenger Accelerated Service System (INSPASS) at JFK international airport
(New York) uses hand geometry to authenticate travellers and significantly reduce
their immigration inspection processing time (www.panynj.gov). (c) Ben Gurion
airport in Tel Aviv (Israel) uses Express Card entry kiosks fitted with hand geom-
etry systems for security and immigration (www.airportnet.org). (d) The FacePass
system from Viisage is used in point-of-sale verification applications like ATMs, there-
fore, obviating the need for PINs (www.viisage.com). (e) Indivos’ “Pay by Touch”
service uses fingerprints to help customers speed up payments in restaurants and
cafeterias. When an enrolled customer places her finger on the sensor, the system
retrieves her financial account and updates it (www.kioskbusiness.com). (f) The
Identix TouchClock fingerprint system is used in time and attendance applications
(www.cardsolutions.com).
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(verification). Alternately, the system may identify a user based on the matching

scores (identification).

1.2 Fingerprint as a Biometric

Among all biometric traits, fingerprints have one of the highest levels of reliability [12]

and have been extensively used by forensic experts in criminal investigations [13]. A

fingerprint refers to the flow of ridge patterns in the tip of the finger. The ridge flow

exhibits anomalies in local regions of the fingertip (Figure 1.4), and it is the position

and orientation of these anomalies that are used to represent and match fingerprints.

Although not scientifically established, fingerprints are believed to be unique across

individuals, and across fingers of the same individual [14]. Even identical twins having

similar DNA, are believed to have different fingerprints [15]. Traditionally, fingerprint

patterns have been extracted by creating an inked impression of the fingertip on paper.

The electronic era has ushered in a range of compact sensors that provide digital

images of these patterns. These sensors can be easily incorporated into existing

computer peripherals like the mouse or the keyboard (Figure 1.5), thereby making

this mode of identification a very attractive proposition. This has led to the increased

use of automatic fingerprint-based authentication systems in both civilian and law-

enforcement applications.
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RIDGE BIFURCATION

RIDGE ENDING

 CORE

Figure 1.4: A fingerprint image with the core and four minutiae points marked on it.
The ridge pattern along with the core and delta points define the global configuration,
while the minutiae points define the local structure.

Sensor
Sensor

(a) (b)

Figure 1.5: Fingerprint sensors installed on (a) a keyboard (the Cherry Biometric
Keyboard has a smart card reader and a fingerprint sensor attached to it); (b) a
mouse (the ID Mouse manufactured by Siemens has a capacitance-based fingerprint
sensor placed on a USB mouse).
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1.2.1 Fingerprint Representation

The uniqueness of a fingerprint is determined by the topographic relief of its ridge

structure and the presence of certain ridge anomalies termed as minutiae points.

Typically, the global configuration defined by the ridge structure is used to determine

the class [16, 17] of the fingerprint, while the distribution of minutiae points is used

to match and establish the similarity between two fingerprints [1, 18]. Automatic

fingerprint identification systems, that match a query print against a large database

of prints (which can consist of millions of prints), rely on the pattern of ridges in the

query image to narrow their search in the database (fingerprint indexing), and on the

minutiae points to determine an exact match (fingerprint matching). The ridge flow

pattern itself is seldom used for matching fingerprints.

1.2.2 Fingerprint Matching

Fingerprint matching techniques can be broadly classified as being minutiae-based or

correlation-based. Minutiae-based techniques attempt to align two sets of minutiae

points and determine the total number of matched minutiae [19, 20, 1]. Correlation-

based techniques, on the other hand, compare the global pattern of ridges and furrows

to see if the ridges in the two fingerprints align [21, 22, 23, 24]. The performance

of minutiae-based techniques rely on the accurate detection of minutiae points and

the use of sophisticated matching techniques to compare two minutiae sets which

undergo non-rigid transformations. The performance of correlation-based techniques

is affected by non-linear distortions and noise present in the image. In general, it has
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been observed that minutiae-based techniques perform better than correlation-based

ones. Correlation-based techniques suffer from the following problems [25]: (a) A

fingerprint image may have non-linear warping due to the effect of pressing a convex

elastic surface (the finger) on a flat surface (the sensor). Moreover, various sub-regions

in the sensed image are distorted differently due to the non-uniform pressure applied

by the user. It is difficult to compare two such distorted prints, even if translation

and rotation effects are considered. (b) Based on the moisture content of the skin,

the acquired images may have either thin or thick ridges. Further, the quality of

the images acquired using the sensor may vary with time, thereby complicating the

correlation process.

1.2.3 Difficulties and Challenges in Fingerprint Matching

Although the problem of automatic fingerprint matching has been extensively

studied2, it is nevertheless, not a fully solved problem. There are a variety of un-

resolved issues that need to be addressed effectively in this rather popular biometric

technique. Some of the challenges are described below:

1. The new generation solid-state sensors are being increasingly used to acquire

fingerprint images. These sensors when embedded in compact systems like lap-

tops, mouse, and cellular phones provide a small contact area (e.g., 0.6”×0.6” in

a Veridicom sensor) for the fingertip and, therefore, sense only a limited portion

of the fingerprint. This complicates the problem of matching impressions due

2The earliest published work on automatic fingerprint matching and classification can be traced
back to the 1960s [26, 27, 28].
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to the lack of sufficient minutiae information. It is, therefore, essential to aug-

ment minutiae information with alternate information available in fingerprints

in order to deal with the issues introduced by partial fingerprint images.

2. Due to advancements in sensor technology, a variety of fingerprint sensors with

different specifications are now available (Figure 1.6). However, a fingerprint

matching system developed for a particular sensor is very often not compatible

with images acquired using other sensors. This lack of inter-operability limits

the utility of a matcher.

Figure 1.6: A variety of fingerprint sensors with different specifications (e.g., sensing
technology, image size, image resolution, image quality, etc.) are now available.

3. The fingerprint matching performance is affected by the non-linear distortions

present in the fingerprint image. These distortions are a consequence of the

imaging process which requires the finger to be pressed against the sensor sur-

face. To facilitate good matching performance, these distortions have to be
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accounted for prior to the matching stage.

4. While it is acknowledged that the fingerprints of a person do not change over

time, it is possible for minor cuts and bruises to alter the ridge structure of

fingerprints (Figure 1.7). Moreover, the moisture content of the fingertip may

change over time affecting the quality of the fingerprint image being acquired

from a user. The template fingerprint data obtained during enrollment time may

not capture these variations. A protocol to update template data is necessary

to maintain system performance.

5. Some users consistently provide poor quality fingerprints due to the dry nature

of their skin (Figure 1.8). It is difficult to extract features from such poor quality

images. Users providing such noisy fingerprint data might find it difficult to

enroll in and interact with a biometric system that uses only fingerprints. To

address this issue, a multibiometric system, that uses other biometric traits in

addition to fingerprints, has to be considered.

1.3 Thesis Contributions

In this thesis, multiple sources of information are consolidated to enhance the per-

formance of automatic fingerprint authentication systems. A few of the challenges

presented in the earlier section are, consequently, addressed. The four major contri-

butions of this thesis are listed below.

1. A hybrid fingerprint matcher that avails of both the minutiae and texture infor-
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(a) (b)

Figure 1.7: Effect of noisy images on a fingerprint authentication system. (a) Fin-
gerprint obtained from a user during enrollment. (b) Fingerprint obtained from the
same user during verification. The development of scars or cuts can result in erroneous
fingerprint matching results.

mation present in fingerprint images has been developed. The texture informa-

tion is extracted by applying a set of 8 Gabor filters to an enhanced fingerprint

image, and texture features are represented using ridge feature maps.

2. To address the problem of partial prints, a fingerprint mosaicking scheme has

been developed. The proposed scheme examines two partial impressions of a

finger and constructs a composite template image that includes information

from the individual prints.

3. An average deformation model for fingerprint images has been proposed. This

model accounts for the non-linear distortions present in fingerprint images. The

model is developed by comparing a fingerprint impression with several other

impressions of the same finger and observing the common ridge points that
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(a) (b)

(c) (d)

Figure 1.8: Non universality of fingerprints: Four different impressions of a subject’s
finger exhibiting poor quality ridges. A fingerprint system might not be able to enroll
this subject since minutiae information cannot be reliably extracted.
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occur in them.

4. To enhance the performance of a fingerprint system, the face and hand geometry

traits of a subject are also used. By fusing information gleaned from multiple

biometric indicators, the performance of a biometric system can be improved.

The proposed multibiometric system also employs a learning technique to com-

pute user-specific parameters in order to improve verification performance.

In the subsequent chapters, a detailed description of each of these contributions

is provided.

16



Chapter 2

Fingerprint Representation using

Ridge Feature Maps

Most fingerprint matching systems rely on the distribution of minutiae on the finger-

tip to represent and match fingerprints. The advent of solid-state sensors presents

new opportunities as well as fresh challenges to traditional fingerprint matching algo-

rithms. These sensors provide only a small contact area (0.6”×0.6”) for the fingertip

and, therefore, sample only a limited portion of the fingerprint pattern (e.g., 300×300

pixels at 500 dpi). An optical sensor, on the other hand, may have a contact area

of approximately 1” × 1”, resulting in images of size 480 × 508 pixels at 500 dpi.

Hence, the number of minutiae points that can be extracted from a fingerprint sam-

ple acquired using a solid-state sensor is smaller compared to that acquired using an

optical sensor. Figures 2.1 and 2.2 illustrate this difference. Also, multiple impres-

sions of the same finger, acquired at different instances using a solid-state sensor, may

overlap over a small region region due to the rotation and translation of subsequent
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(a) (b)

(c) (d)

Figure 2.1: Fingerprint images acquired using the solid state Veridicom sensor (a)
and the optical Digital Biometrics sensor (b). The detected minutiae points have
been marked in both the fingerprint images. 14 minutiae have been detected in the
first case (c), and 39 in the second (d).

fingerprints. The minutiae-based matching schemes will not perform well in such

situations due to the lack of a sufficient number of common minutiae points between

the two impressions. Thus, there is a need to explore complimentary representations

of fingerprints.

While the ridge flow pattern is generally used for classifying fingerprints, it is

seldom used in matching. We develop a hybrid fingerprint matching scheme that

uses both minutiae and ridge flow information to represent and match fingerprints.
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Figure 2.2: Histogram of the number of minutiae points extracted from images ac-
quired using the Veridicom and Digital Biometric sensors. A total of 2, 500 fingerprint
impressions were used to compute these histograms for each sensor. The histograms
suggest that substantially fewer minutiae points are available in images obtained from
solid-state sensors.

(a) (b) (c)

Figure 2.3: Three impressions of a user’s fingerprint exhibiting partial overlap: the
overlap between (a) and (b), and (a) and (c) is limited.
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A set of 8 Gabor filters, whose spatial frequencies correspond to the average inter-

ridge spacing in fingerprints, is used to capture the ridge strength at equally spaced

orientations. A square tessellation of the filtered images is then used to construct

an eight-dimensional feature map, called the ridge feature map. The ridge feature

map along with the minutiae set of a fingerprint image is used for matching purposes.

The proposed technique has the following features: (i) the entire image is taken into

account while constructing the ridge feature map; (ii) minutiae matching is used

to determine the translation and rotation parameters relating the query and the

template images for ridge feature map extraction; (iii) filtering and ridge feature

map extraction are implemented in the frequency domain thereby speeding up the

matching process; (iv) filtered query images are cached to greatly increase the one-

to-many matching speed. The hybrid matcher performs better than a minutiae-based

fingerprint matching system.

2.1 Introduction

The ridge pattern in a fingerprint may be viewed as an oriented texture pattern

having a fixed dominant spatial frequency and orientation in a local neighborhood.

The frequency is due to the inter-ridge spacing present in the fingerprint (figure

2.4(a)), and the orientation is due to the flow pattern exhibited by the ridges (figure

2.4(b)). By capturing the frequency and orientation of ridges in non-overlapping local

regions in the fingerprint, a distinct representation of the fingerprint is possible. One

such representation has been discussed in [29]. However, to match two fingerprints
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using such a representation, a suitable alignment of the underlying ridge structures

is essential.

(a) (b) (c)

Figure 2.4: Fingerprint as an oriented texture pattern. (a) the constant inter-ridge
spacing in a local region of the fingerprint; (b) the dominant direction of the ridges
in (a); (c) the power spectrum of (a).

We describe a fingerprint representation scheme, that constructs a feature map

by observing the local ridge orientation in a fingerprint image. The local ridge char-

acteristics are extracted via a set of Gabor filters that are pre-tuned to a specific

frequency corresponding to the average inter-ridge spacing in a fingerprint image. An

input fingerprint image is filtered using this set of Gabor filters; a square tessella-

tion [30] is then applied to each filtered image to examine the local response to the

filter; a feature vector which measures the energy in the filtered images for each of

the tessellated cells is next obtained. A collection of these feature vectors (over the

tessellation) constitutes the ridge feature map used to represent a fingerprint. Fin-

gerprint matching entails determining the similarity between two such ridge feature

maps. This representation is used along with the minutiae set of the fingerprint im-

age for matching purposes. The proposed representation and matching scheme are
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motivated by the following observations:

1. Global image information, as defined by the ridge pattern of the fingerprint,

is not being explicitly used during the matching phase in most of the current

matching systems. We believe that the ridge pattern, when observed at various

resolutions and orientations, provides discriminatory information that can be

used for matching fingerprints.

2. Minutiae information may not be very discriminative in the case of solid-state

sensors which typically capture only a small area of the fingertip. For example,

the average number of minutiae points extracted from Digital Biometrics optical

sensor images (500 × 500 image at 500 dpi) is 45 compared to 25 minutiae

obtained from Veridicom solid-state sensor images (300×300 image at 500 dpi).

Alternate representations, to supplement minutiae information, are necessary to

maintain sufficient fingerprint identification performance in such cases. Further,

in poor quality images, while it is difficult to accurately locate minutiae points,

the ridge pattern features may be easier to detect.

2.2 Fingerprint as Oriented Texture

Jain et al. [29] have proposed a novel representation scheme that captures global and

local features of a fingerprint in a compact fixed length feature vector termed as Fin-

gerCode. This technique makes use of the texture features available in a fingerprint

to compute the feature vector. Their scheme for generic representation of oriented

texture relies on extracting a core point in the fingerprint. A circular region around
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the core point is located and tessellated into sectors as shown in Figure 2.5(a). The

pixel intensities in each sector are normalized to a constant mean and variance, and

filtered using a bank of 8 Gabor filters to produce a set of 8 filtered images. Gray scale

variance within a sector quantifies the underlying ridge structures and is used as a

feature. The 640-dimensional feature vector is the collection of all the features, com-

puted from all the 80 sectors, in each of the filtered image. The FingerCode captures

the local information, and the ordered enumeration of the tessellation captures the

invariant global relationships among the local patterns. The matching stage simply

computes the Euclidean distance between the two corresponding FingerCodes. This

technique, however, suffers from the following shortcomings:

1. The frame of reference is based on a global singular point (i.e., the core point).

Detection of the core point is non-trivial; futhermore, the core point may not

even be present in the captured fingerprint images.

2. The alignment is based on a single reference point and is, therefore, not very

robust with respect to errors in the location of the reference point.

3. The tessellation does not cover the entire image. Furthermore, if the core were

to be detected close to the boundary of the image, the tessellation will include

an extremely small portion of the image (Figure 2.5(c)).

The technique proposed here has the following advantages:

1. Unlike in [29], the filtering is done on the enhanced images rather than the

raw input images. The enhanced images have lower noise content than the raw

images.
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Figure 2.5: Tessellating the fingerprint image using a circular and a square grid. The
square tessellation, unlike the circular one, is not affected by the location of the core
point in the image. (a) Circular tessellation (80 sectors) about a core point. (b)
Square tessellation (169 cells) over the entire image. (c) Circular tessellation about a
core detected close to the boundary of the image. (d) Square tessellation over image
shown in (c). The images were acquired using the Veridicom sensor.
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2. Instead of using circular tessellation, a square tessellation is used (Figure

2.5(b)). The tessellation covers the entire image, and all the tessellated cells

are of the same size. Moreover, the tessellation is not based on detecting any

landmark points.

3. The fingerprint images are aligned using the overall minutiae information; this

is more robust than using only the core point for aligning image pairs.

4. In the absence of reliable minutiae information, we describe a correlation based

technique that utilizes ridge feature maps alone.

2.3 Image Filtering using Gabor Filters

A 2D Gabor filter can be thought of as a complex plane wave modulated by a 2D

Gaussian envelope. These filters optimally capture both local orientation and fre-

quency information1 and their development was motivated by observing the linear

response of the receptive field in simple striate cortex cells. By tuning a Gabor filter

to a specific frequency and direction, the local frequency and orientation information

can be obtained. Thus, they are suited for extracting texture information from im-

ages. Daugman has successfully used these filters to extract salient features from the

human iris [11].

An even symmetric Gabor filter has the following general form in the spatial

1They are optimal in the sense that they try to minimize simultaneously the joint space-spatial
frequency uncertainty [31, 32].
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domain:

Gθ,f(x, y) = exp

{−1

2

[
x′2

δ2
x

+
y′2

δ2
y

]}
cos(2πfx′), (2.1)

x′ = xsinθ + ycosθ,

y′ = xcosθ − ysinθ,

where f is the frequency of the sinusoidal plane wave at an angle θ with the x-axis,

and δx and δy are the standard deviations of the Gaussian envelope along the x and

y axes, respectively.

For extracting the response of the ridge at various orientations of the Gabor filter,

the parameters (f , δx, δy, θ) are set to the following values:

(i) The frequency, f , corresponds to the inter-ridge distance in fingerprint images.

For the 300 × 300 (500 dpi) images obtained using the Veridicom sensor and resized

to 240 × 240 (see section 2.6.5), the average inter-ridge spacing is about 8 pixels.

Hence, f = 1
8

= 0.125.

(ii) The selection of the standard deviation values, δx and δy, involves a trade-off.

Larger values are more robust to noise, but will not capture ridge information at a

fine level. Smaller values, on the other hand, are less robust to noise in the image,

but capture ridge information very well. Based on empirical data [33], both these

values were set to 4, i.e., δx = δy = δ = 4.

(iii) Eight different orientations are examined. These correspond to θ values of 0◦,

22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦ (Figure 2.6).

These parameters are fixed during the matching process, allowing for pre-storing
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the Gabor filter representations in a lookup table referred to as the Gabor filter bank.

This filter bank precalculates the Fourier representation of the Gabor filter for all

orientations of interest. This formulation substantially improves the matching time

in a one-to-many matching scheme.

(a) 0o (b) 22.5o (c) 45o (d) 67.5o

(e) 90o (f) 112.5o (g) 135o (h) 157.5o

Figure 2.6: Gabor filters in spatial domain with eight different orientations used for
feature extraction. f= 0.125, δx = δy = δ = 4.

2.3.1 Fingerprint Enhancement

Enhancement is the process by which the clarity of the ridge and furrow structures

in the fingerprint images is improved to facilitate the feature extraction process [33]

[34]. Fingerprint enhancement helps in reducing the noise content in the fingerprint

image. Enhancement, however, can also introduce false ridges, resulting in spurious

or missing minutiae points. Since the ridge feature map representation proposed here

relies on the dominant ridge directions in each tessellated cell, the introduction of
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false ridges is not a serious problem. The minutiae features are also extracted after

processing the enhanced fingerprint image. The enhancement algorithm is based on

the technique described in [33]. Figure 2.7 shows a fingerprint image before and after

enhancement.

(a) (b)

Figure 2.7: Fingerprint image (a) before and (b) after enhancement.

2.3.2 Fingerprint Segmentation

The ridge feature map is constructed using the feature values computed at each tes-

sellated cell. Certain cells may predominantly contain background information, and

therefore, the feature values computed at these cells will not be an accurate indication

of ridge strength. Thus, the purpose of segmentation is to separate the foreground

and background regions in a given fingerprint image. The foreground corresponds to

those regions in the image that have relevant fingerprint information (i.e., the ridges

and valleys of the fingerprint), while the background represents those regions that do

not have the relevant information. Cells with predominantly background information
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are not used during the matching stage. Segmentation is done by observing the local

variation of intensity on the original gray-scale image [1].

The algorithm to segment a fingerprint image is as follows:

1. The intensity of the input fingerprint image is normalized to the range [0, 1].

Such a normalization ensures that the effect of any rapid changes in intensity

over the image is minimized.

2. The image is binarized by selecting a threshold that corresponds to one-hal f of

the mean of the normalized image intensity (Figure 2.8(b)).

3. A 3× 3 median filter is applied to the binarized image. This operation removes

any undesirable “salt-and-pepper” noise that may be present in the binarized

image (Figure 2.8(c)).

4. An edge detection algorithm is applied to the binary image to get the outline

of ridges (Figure 2.8(d)).

5. Graham’s convex hull algorithm [35] is applied on the edge image to generate

a polygon that segments the fingerprint image (Figure 2.8(e)).

2.3.3 Filtering Enhanced Image

Filtering requires convolving the enhanced image, H , with each of the 8 Gabor filters

in the spatial domain. However, convolution in the spatial domain would be extremely

slow. For example, a 256×256 image convolved with a 16×16 filter would need ∼ 107

multiplications (assuming that the convolution operation has not been optimized). In
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(a) (b) (c)

(d) (e)

Figure 2.8: Segmenting a fingerprint image. (a) The original fingerprint image. (b)
The binarized fingerprint image. (c) The median filtered image. (d) The edge image
outlining the ridges. (e) The segmented fingerprint image.
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order to speed-up this operation, we perform the convolution in the frequency domain.

Let F(H) denote the discrete Fourier transform of H , and let F(Gθ) indicate the

discrete Fourier transform of the Gabor filter having the spatial orientation θ as

described by Equation (2.2). Thus, the Gabor filtered image, Vθ, may be obtained

as,

Vθ = F−1[F(H)F(Gθ)], (2.2)

where F−1 is the inverse Fourier transform. Eight filtered images are obtained as a

result of this filtering (Figure 2.9).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.9: Results of the filtering process on the image shown in Figure 2.7(b). The
8 images correspond to the 8 different orientations of the Gabor filter.
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2.4 Ridge Feature Maps

2.4.1 Tessellation of Filtered Images

While a filtered image in its entirety can be used as a representation scheme, the

presence of local distortions would adversely affect the matching process. Moreover, it

is the local variations in ridge structure (combined with the global ridge configuration)

that provide a better representation of the fingerprint. To examine local variations,

the image is tessellated into square cells, and features from each of the cells are

computed (Figure 2.10). The size of a cell is chosen to correspond to approximately

the width of two ridges (16× 16). A 8 pixel wide border of the image is not included

in the tessellation. This results in nc = 15 cells in each row and column of the square

grid. The total number of tessellated cells over the image is, therefore, Nc = 225.

The variance of the pixel intensities in each cell across all filtered images is used as

a feature vector. The variance corresponds to the energy of the filter response, and

is, therefore, a useful measure of ridge orientation in a local neighborhood. Those

tessellated cells that contain a certain proportion of background pixels are labeled as

background cells and the corresponding feature value is set to 0.

2.4.2 Ridge Feature Map Definition

Let Cθ(i, j) refer to the (i, j)th cell in the square grid that is placed on the filtered

image Vθ. The variance, σ2
θ(i, j), represents the feature value corresponding to the

cell. Thus, for each Vθ, a feature map of variance values can be obtained. Let Rθ
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(a) (b) (c)

Figure 2.10: Tessellating the filtered image. (a) A fingerprint image filtered with a
Gabor filter oriented at 157.5◦. (b) A square tessellation of the filtered image. (c)
The ridge feature map (nc × nc) representation of the fingerprint.

denote the feature map associated with the filtered image Vθ. Then,

Rθ = {σ2
θ(i, j)}, (2.3)

where θ ∈ {0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦}, i = 1 . . . nc, j = 1 . . . nc.

An eight-dimensional feature map corresponding to the 8 filtered images is ob-

tained in this way (Figure 2.11). These ridge feature maps are used to represent and

match a query image with a template.

2.5 Minutiae Extraction

Minutiae extraction refers to the process by which the minutiae points are detected in

a fingerprint image. Each minutiae is characterized by its (x, y) location in the image,

and the orientation θ of the ridge on which it is detected. The ridge information in

a 64 × 64 region around the (x, y) point is associated with every minutiae which is

useful when two minutiae sets are being matched. The minutiae extraction scheme

33



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.11: Feature maps representing the variance in intensity in the filtered images
for each cell. For purposes of visualization, the feature values have been scaled to the
0 - 255 range.
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(Figure 2.12) can be broadly classified into the following stages:

(i) Orientation Field Estimation: The orientation of the fingerprint image is computed

in non-overlapping blocks by examining the gradients of pixel intensities in the x and

y directions within the block.

(ii) Ridge Detection: The ridges present in the fingerprint image are identified by

applying masks that are capable of accentuating the local maximum gray level values

along the normal direction of the local ridge direction.

(iii) Ridge Thinning: The ridge map constructed in the earlier stage is used to obtain

a thinned ridge image.

(iv) Minutiae Detection: A set of rules is applied to the thinned ridges to label

minutiae points (ridge endings and ridge bifurcations). As a postprocessing step, a

refinement algorithm is applied to remove spurious minutiae points.

Minutiae matching involves a point matching operation on the two minutiae sets.

Jain et al. apply a elastic string matching technique to compare the two minutiae

sets [1]. The output of the matching process is a matching score that indicates the

similarity of the two minutiae sets being compared, and a correspondence map that

indicates pairing of minutiae points from the two sets. The correspondence map is

used to compute the transformation parameters necessary to align the two fingerprint

images.
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Input Image Orientation Field

Minutiae Points Thinned Ridges

Extracted Ridges

Figure 2.12: Flowchart of the minutiae extraction algorithm [1].
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2.6 Alignment Using Minutiae Information

The process of fingerprint matching involves comparing a query print with a set of one

or more template prints. Prior to the matching process, features are extracted from

all the template images (Figure 2.13). The hybrid fingerprint matcher proposed here

utilizes two distinct sets of fingerprint information for matching fingerprints: minutiae

features, and ridge feature maps. When a query image is presented, the matching

proceeds as follows: (i) the query and template minutiae features are matched to

generate a minutiae matching score and a transformation parameter (translation and

rotation) that relates the query and template fingerprints; (ii) the rotation parameter

is used to rotate the 8 Gabor filters and the modified filters are applied to the query

image; (iii) the filtered query images are then translated and rotated according to

the parameters; (iv) the ridge feature map is extracted from these filtered images;

(v) the query and template ridge feature maps are matched; (vi) the minutiae and

ridge feature map matching results are combined to generate a single matching score

(Figure 2.14).

2.6.1 Aligning Query and Template Images

For comparing the ridge feature maps of two images, it is necessary that the images

themselves are aligned appropriately to ensure an overlap of common region in the

two fingerprint images. This is done by determining the transformation parameters,

(tx, ty, tφ), that would align the query image with the template. As indicated in section

2.5, the correspondence map provided by the minutiae matcher is used to compute
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Minutiae Extraction

Tesselation

Feature Extraction

Enhanced Image Minutiae Features

Enhancement

Fingerprint Image

Filtering in frequency domain
(8 Gabor filters)

8 Filtered Images Ridge Feature Map

Figure 2.13: Template feature extraction. A minutiae set and a ridge feature map
are extracted from the input fingerprint image.
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Query image

Score

Score

Matching

Minutiae set

Ridge feature map

Minutiae set

Ridge feature map

TemplateQuery

Score

Matching

Sum Rule

Minutiae

Feature Map
Matching

Transformation parameters to align query with template
before extracting ridge feature map of query

Figure 2.14: The matching process. The minutiae matching module provides the
transformation parameters necessary to align the query image with the template.
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(tx, ty, tφ). The estimated rotation parameter (tφ) is the average of the difference

in individual rotation values of all corresponding minutiae pairs. The translation

parameters (tx, ty) are computed using the spatial coordinates of the minutiae pair

that resulted in the best alignment.

Once the transformation parameters, (tx, ty, tφ), are obtained, the query image can

be aligned with the template. But rotating the query image will result in artifacts that

may affect the subsequent filtering operation. In order to avoid this, appropriately

rotated Gabor filters are applied to the query image. The resulting filtered images

are then rotated and feature values extracted. Let H represent the enhanced query

image, and (tx, ty, tφ) be the translation and rotation parameters obtained using the

minutiae matching information. Then the filtered image, Vθ,tφ, is obtained as,

Vθ,tφ = RottφF−1[F(H)F(Gθ−tφ)], (2.4)

where Rottφ indicates that the filtered image is rotated by an angle tφ. The notation

Vθ,tφ is used to indicate that the filtered image corresponding to filter orientation θ−tφ

was rotated through an angle tφ. The filtered image is then translated by (tx, ty), in

order to ensure that the tessellation of the query image would overlap with that of

the template.

2.6.2 Matching Scores

The minutiae matching score is a measure of the similarity of the minutiae sets of

the query and template images; the higher the matching score the better the match.
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The similarity score is normalized in the [0, 100] range. The ridge feature maps of the

query and the template images are compared by computing the sum of the Euclidean

distances of the 8-dimensional feature vectors in the corresponding tessellated cells.

Cells that are marked as background, are not used in the matching process. This

results in a distance score measure; a higher distance score indicates a poor match.

The distance score is normalized in the [0, 100] range, and converted to a similarity

score by simply subtracting it from 100.

2.6.3 Combining Matching Scores

The matching scores generated by comparing the minutiae sets and the ridge feature

maps, are combined in order to generate a single matching score. While a variety of

strategies [36] may be used to fuse these scores, we adopt the simple sum rule. Let

SM and SR indicate the similarity scores obtained using minutiae matching and ridge

feature map matching, respectively. Then, the final matching score, S, is computed

as,

S = αSM + (1 − α)SR, (2.5)

where α ∈ [0, 1]. For the experimental results reported in this paper, α was set to

0.5. It is possible to vary α to assign different weights to the individual matchers.

2.6.4 Fingerprint Identification

Fingerprint identification involves matching a query image against multiple templates

(corresponding to different users) in order to determine the best matching score and,
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therefore, the template that best resembles it. It is obvious that the processing time

required to perform identification (one-to-many matching) is substantially more than

that required for verification (one-to-one matching). In order to reduce the number

of matching operations, most fingerprint identification systems use some indexing

mechanism, to narrow the number of templates against which the query image has

to be matched. A variety of fingerprint indexing mechanisms have been proposed in

the literature [16][37] [38][39]. However, in the identification process described in this

paper, we do not use an indexing mechanism to limit the number of matchings. The

identification process requires filtering and rotating the query image for every match

that is performed (Eq. (2.4)). Computing Vθ,tφ is an expensive operation because

of the Fourier operations performed. To decrease the computational complexity in-

volved, a combination of frequency domain filtering, and filtered image-caching, is

done. Caching Vθ,tφ avoids recomputing this filtered image. Each time a query image,

Q, is presented, the following sequence of operations is performed:

Step 1: Let the image-cache be represented by K. Set K = Φ (the empty set).

Step 2: Extract the minutiae set of Q, MQ

For all the templates {Ti} in the database, represented by their minutiae set {MTi}

and ridge feature map {RTi}, do steps 3 to 7.

Step 3: Compute the transformation parameters, (tx, ty, tφ), relating Q and Ti, using

the minutiae sets MQ and MTi as described earlier.

Step 4: If Vθ,tφ ∈ K, do step 6.

Step 5: Compute Vθ,tφ according to Eq. (2.4). K = K
⋃

Vθ,tφ.

Step 6: Offset Vθ,tφ using (tx, ty) and perform tessellation and ridge feature map ex-
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traction. Let RQ be the ridge feature map of the query image.

Step 7: Use MQ, MTi , RQ and RTi to generate the matching scores SM and SR.

Combine scores using Eq. (2.5).

Step 5 is performed only when Vθ,tφ has not been computed at an earlier stage,

thus improving the speed of the one-to-many matching process.

2.6.5 Experimental Results

The fingerprint database used in our experiments consists of fingerprint impressions

obtained from 160 non-habituated, cooperative subjects using the Veridicom sensor

(300×300 images at 500 dpi). The data was collected over two sessions. The subjects

mainly consisted of students, faculty and staff at Michigan State University, and their

relatives and friends. Approximately 35% of the subjects were women. In the first

session, each subject was asked to provide 2 impressions of each of 4 different fingers -

the left index finger, the left middle finger, the right index finger and the right middle

finger. A set of 1, 280 (160 × 4 × 2) images were collected in this way. The subjects

were requested to provide their fingerprint images again, after a period of 6 weeks.

During the second session, the same procedure was adopted, and an additional 1, 280

images were obtained. Thus, a total of 2, 560 images were acquired over two time

sessions (Figure 2.15). We refer to this database as the MSU VERIDICOM database.

The 300 × 300 images were resized to 256 × 2562 in order to speed-up the Fourier

transformations.

2The images were first resized to 240× 240 using a bicubic interpolation; they were then padded
with zeros to increase the size to 256 × 256. The padding was necessary to avoid the wrap-around
distortions at the border when the image is convolved with the Gabor filters.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.15: Eight 300 × 300 fingerprint impressions acquired using the Veridicom
sensor. Images (a) - (d) correspond to the right index finger of one subject, and
images (e) - (h) correspond to the right middle finger of another subject. The images
were resized to 256 × 256 to speed-up Fourier operations.

The performance of a biometric system can be measured by reporting its False

Accept Rate (FAR) and False Reject Rate (FRR) at various thresholds. These two

error rates are brought together in a Receiver Operating Characteristic (ROC) curve

that plots the FRR against the FAR at different thresholds. (Alternately, the genuine

accept rate (GAR), which equals 1-FRR, may be plotted against the FAR). The FAR

and FRR are computed by generating all possible genuine and impostor matching

scores and then setting a threshold for deciding whether to accept or reject a match.

A genuine matching score is obtained when two feature vectors corresponding to the

same individual are compared, and an impostor matching score is obtained when

feature vectors from two different individuals are compared.

The ROC curves depicting the performances of the minutiae, ridge feature map
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and hybrid matchers are shown in Figure 2.16. The hybrid technique outperforms

the minutiae-based scheme over a wide range of FAR values. For example, at a

FAR of 0.1%, the GAR of the minutiae matcher is ∼ 67%, while that of the hybrid

matcher is ∼ 84%. The equal error rate of the hybrid technique is observed to be

∼ 4%. The experiments also show that the minutiae information and ridge flow

information complement each other. Consider Figure 2.17 that shows two different

impressions of a finger. For this pair, matching the minutiae sets results in a high

matching score, but matching the ridge feature map results in a low score (due to the

limited amount of foreground overlap between the two impressions). The hybrid score,

however, results in a positive match (at a certain matching threshold) between the two

impressions. Now consider the fingerprint impressions (of another finger) in Figure

2.18. The minutiae matching score is rather low in this case (due to spurious minutiae

being detected in both images), while the ridge feature map matching score is high

(enhancing the image provides sharp dominant ridge directions). The hybrid score

results in a positive match of the two impressions (at a certain matching threshold),

thereby underlining the importance of the proposed technique.

The experiments reported here were conducted on a Pentium III, 800 Mhz pro-

cessor, running Windows 2000. Minutiae extraction took ∼ 1 second, while ridge

feature map computation took ∼ 0.3 seconds. The time taken to match two minutiae

sets and generate the transformation parameters was ∼ 0.02 seconds. Matching two

ridge feature maps took ∼ 0.01 seconds. The total time for fingerprint verification

(one-to-one matching) was ∼ 1.4 seconds. However, fingerprint identification (one-

to-many matching), involving 1, 000 templates, took only ∼ 0.2 seconds, because of
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Figure 2.16: ROC showing the performances of the three matchers. The hybrid
matcher is observed to perform better than the minutiae matcher.

(a) (b)

Figure 2.17: Two impressions of the same finger that have a high minutiae matching
score but a low ridge feature map matching score. The hybrid score results in a true
match.
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(a) (b)

Figure 2.18: Two impressions of the same finger that have a low minutiae matching
score but a high ridge feature map matching score. The hybrid score results in a true
match.

the filtered image-cache.

2.7 Alignment Using Ridge Feature Maps

To circumvent the problem of unreliable landmark points (i.e., core and minutiae

points), we propose a technique that uses the extracted feature sets themselves to align

and match fingerprint images. The feature set, in this case, is the ridge feature map

described in the earlier sections. A template fingerprint image is filtered using a set of

Gabor filters; a standard deviation map is next computed using each filtered image;

the standard deviation map is then sampled at regular intervals to generate the ridge

feature map. Fingerprint verification entails correlating the standard deviation map

of the query image with the ridge feature map of the template. A two-dimensional

correlation is performed thereby taking the spatial relationship between feature values

into account. A matching score is generated using the Euclidean distance metric
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between corresponding elements in the ridge feature map of the template and the

standard deviation map of the query image. Based on the matching score, and a

pre-specified threshold, the query image is declared to match successfully (genuine)

or unsuccessfully (impostor) with the template. In the following sections we describe

the feature extraction and correlation process in more detail.

2.7.1 Constructing the Ridge Feature Map

The 240×240 input fingerprint image, I, is convolved with the 8 Gabor filters, {Gθ}.

Since the input image may be noisy, it is first enhanced before applying the filters. A

segmentation algorithm is also applied on the input image to identify the foreground

and background regions. The foreground corresponds to those regions in the image

that have ridges and furrows, while the background represents those regions that do

not have this information (Figure 2.7(c)). Segmentation is useful during the matching

phase, when the distance between two feature maps is computed.

Let H indicate the 240 × 240 enhanced image. Let F(H) denote the discrete

Fourier transform of H , and let F(Gθ) indicate the discrete Fourier transform of the

Gabor filter having the spatial orientation θ as described by Equation (2.2). Then

the Gabor filtered image, Vθ, may be obtained as,

Vθ = F−1[F(H)F(Gθ)], (2.6)

where F−1 is the inverse Fourier transform. 8 filtered images are obtained in this

way (Figure 2.9). Each Vθ is used to construct a standard deviation image, Sθ,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.19: The standard deviation map, {Sθ} of the filtered images shown in Figure
2.9. Each image is 240 × 240.

where Sθ(x, y) represents the standard deviation of the pixel intensities in a 16 × 16

neighborhood of (x, y) in Vθ. The standard deviation map, S = {Sθ}, comprises of

8 images corresponding to the 8 filtered images. Thus, the standard deviation map,

S, captures the variation in the ridge strength at various orientations (Figure 2.19).

Each standard deviation image, Sθ, is then sampled at regular intervals (every 16th

pixel) in both the horizontal and vertical directions to obtain the ridge feature image,

Rθ (Figure 2.20). The ridge feature map, R = {Rθ}, is composed of these 8 images.

The size of Rθ (15 × 15) is lesser than that of Sθ (240 × 240). We, therefore, have a

compact fixed-length (15× 15× 8 = 1, 800-valued) representation for the fingerprint.

2.7.2 Fingerprint Matching Using Ridge Feature Maps

The process of fingerprint matching involves comparing a query print with a set of

one or more template prints. Prior to the matching process, ridge feature maps are
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(e) (f) (g) (h)

Figure 2.20: The ridge feature map, {Rθ}, of the filtered images shown in Figure 2.9.
Each image is 15 × 15.

extracted from all template images present in the database. When a query print, Q,

is presented to the system, it is matched against a template ridge map, RT = {RT
θ }

as follows:

1. The query image is enhanced and the set of 8 Gabor filters is applied to the

enhanced image, resulting in 8 filtered images.

2. The standard deviation map, SQ = {SQ
θ }, for the query image is constructed

using these filtered images.

3. Each of the 8 template ridge feature images, RT
θ , is ‘expanded’ to the size

of SQ
θ by interpolating with 0’s. Let the ridge feature map consisting of the

interpolated images be indicated by ST = {ST
θ }.

4. To determine the alignment between SQ and ST , a 2D correlation of the two

maps is performed. Correlation involves multiplying corresponding entries in
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the two maps at all possible translation offsets, and determining the sum. The

offset that results in the maximum sum is chosen to be the optimal alignment

between the two maps. Correlation is done in the frequency domain, and every

offset is appropriately weighted. The weighting is necessary to account for the

amount of overlap between the two maps. Let UTQ represent the unweighted

correlation matrix, and CTQ represent the weighted correlation matrix. Let

N × N be the size of a standard deviation image (N = 240). Then,

UTQ =
∑

θ

{F−1[F(SQ
θ )

∗
F(ST

θ )]} (2.7)

CTQ(x, y) =
UTQ(x, y) ∗ N ∗ N

(N − hx)(N − wy)
, x = 1 . . .N, y = 1 . . . N (2.8)

where,

hx =| [(x +
N

2
)modN ] − N

2
| and wy =| [(y +

N

2
)modN ] − N

2
|

The optimal offset (tx, ty) required to align SQ with ST is then determined as,

(t′x, t
′
y) = arg max

x,y
{CTQ(x, y)}, x = 1 . . .N, y = 1 . . . N
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tx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t′x if t′x < N

2
,

t′x − N if t′x ≥ N
2
.

(2.9)

ty =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t′y if t′y < N

2
,

t′y − N if t′y ≥ N
2
.

(2.10)

Equations (2.9) and (2.10) are used to decide if the offsets are negative or

positive.

5. At this optimal offset, the Euclidean distance between corresponding non-zero

foreground elements in {SQ
θ } and {ST

θ } is computed. This distance is treated

as the matching score between the query print, Q and the template, T . Based

on the matching score, and the pre-specified threshold, the query image is said

to have matched successfully or unsuccessfully with the template.

The above procedure does not account for the rotational offset between the query

and the template feature maps. To account for rotational offsets, various rotated

versions of the template ridge feature map may be correlated with the query fea-

ture map, and the optimal alignment computed. Alternately, FFT-based registration

techniques (like the Fourier-Mellin transform) may be employed.

2.7.3 Experimental Results

Our experiments on the MSU VERIDICOM database decribed earlier indicate that

the proposed technique provides a fairly good alignment of fingerprint image pairs.

52



10−1 100 101
40

50

60

70

80

90

100

False Accept Rate (%)

G
en

ui
ne

 A
cc

ep
t R

at
e 

(%
)

Minutiae+Ridge Feature Map
Ridge Feature Map
Minutiae
Equal Error Line

Figure 2.21: ROC curves depicting matching performance of the correlation-based
technique.

We compare the proposed technique with a minutiae-based matcher by plotting the

Genuine Accept Rate against the False Accept Rate at various thresholds of the

matching score. As expected, the minutiae-based matcher demonstrates better per-

formance than the correlation-based matcher. However, fusing the two matchers (by

normalizing and adding the matching scores) results in an improved performance of

the fingerprint verification system. The ROC curves exhibiting these behaviors is

shown in Figure 2.21.

It must be mentioned that the transformation parameters computed using minu-

tiae points is more accurate than those computed using the ridge feature maps. How-

ever, in images where minutiae points cannot be reliably derived, the ridge feature

maps will prove to be a suitable alternative. This will be especially true in fingerprint

images exhibiting cuts and bruises.
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2.8 Summary

In this chapter a novel fingerprint representation technique that uses ridge feature

maps has been presented. A hybrid fingerprint matching technique that combines

minutiae information with the ridge feature map has also been described. Ex-

periments indicate that the hybrid technique performs much better than a purely

minutiae-based matching scheme. Further, the ridge feature maps have been used

to register (align) two fingerprint images via a correlation process. The matching

performance of the hybrid system is tightly coupled with the accuracy of aligning the

fingerprint images using minutiae points. The following areas of improvement can

also be studied:

1. New matching methods for comparing the ridge feature maps of two images.

2. Development of fusion architectures to improve performance of the hybrid

matcher.

3. Constructing the ridge feature maps using adaptive methods for optimal selec-

tion of the Gabor filters.
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Chapter 3

Fingerprint Mosaicking

A fingerprint-based verification system has two distinct phases of operation: (i) the

enrollment phase, during which multiple impressions of a fingerprint are acquired

and stored in the database as templates, and (ii) the authentication phase, where

the query image of a user is matched against the stored templates pertaining to

that user (Figure 3.1). The solid-state sensors that are being increasingly deployed

in commercial applications, however, sense only a limited portion of the fingerprint

pattern present in the tip of the finger. The amount of information (e.g., number of

minutiae points) that can be extracted from such partial prints is substantially lower

compared to that which can be extracted from more elaborate prints sensed using an

optical sensor or even inked prints. As observed in Chapter 2, the average number

of minutiae points extracted from a Digital Biometrics optical sensor (500 × 500

image at 500 dpi) is 45 compared to 25 minutiae obtained from a Veridicom sensor

image (300 × 300 image at 500 dpi). This loss of information affects the matching

performance of the verification system - the relatively small overlap between the
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Template Images

Query Image

Figure 3.1: Fingerprint verification: Multiple impressions of the same finger are stored
in the database as templates. The query image is matched against the components
of the template to verify the claimed identity.

template and query impressions results in fewer corresponding points and therefore,

results in higher false rejects and/or higher false accepts (Figure 3.2).

To deal with this problem, we have developed a fingerprint mosaicking scheme

that constructs a composite fingerprint template using evidence accumulated from

multiple impressions. A composite template reduces storage, decreases matching

time and alleviates the quandary of selecting the “optimal” fingerprint template from

a given set of impressions. In the proposed algorithm, two impressions (templates) of

a finger are initially aligned using the corresponding minutiae points. This alignment

is used by a modified version of the well-known iterative closest point algorithm (ICP)

to compute a transformation matrix that defines the spatial relationship between the

two impressions. The resulting transformation matrix is used in two ways: (a) the

two template images are stitched together to generate a composite image. Minutiae
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(a) Template Image (b) Query Image

Figure 3.2: Two impressions (300×300) of the same finger acquired using the Veridi-
com sensor. The two impressions are observed to have very little overlap.

points are then detected in this composite image; (b) the minutia sets obtained from

each of the individual impressions are integrated to create a composite minutia set.

Our experiments show that a composite template improves the performance of the

fingerprint matching system by ∼ 4%.

3.1 Introduction

Typically, two types of representations are used to assess the similarity between a

pair of fingerprints: (a) the global representation that examines the structure and

flow of ridges over the entire print, and (b) the local representation, that exploits the

position and orientation of certain singular points, called minutiae, that are present in

the print (e.g., ridge endings and ridge bifurcations). By building a composite image,

the amount of information available for these two types of representation increases.

For example, the number of minutiae points used to represent a fingerprint may

increase when minutiae information from two impressions of a finger are integrated.

Similarly, the amount of ridge information available for global representation may
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increase as well. The challenge lies in accurately registering multiple impressions of

the finger in order to extract more information. An accurate registration would aid

in efficient mosaicking of the impressions.

Registering fingerprint images, however, is a difficult problem for the following

two reasons: (a) The ridges in a fingerprint image may have non-linear distortions

due to the effect of pressing a convex elastic surface (the finger) on a flat surface

(the sensor). Moreover, these distortions may be present only in certain regions of

the sensed image due to the non-uniform pressure applied by the subject. (b) The

presence of dirt deposits on the sensor or the finger can result in noisy or occluded

images. It is rather difficult to register pairs of fingerprint images that are distorted

differently or affected by noise.

Ratha et al. [42] have developed a mosaicking scheme to integrate multiple snap-

shots of a fingerprint. The multiple snapshots are acquired as the user rolls the finger

on the surface of the sensor and, therefore, a specific temporal order is imposed on

the image frames when constructing the composite image. The authors examine 5

composition schemes that stack the grayscale images together and construct a com-

posite mosaicked image, by associating a confidence value with every pixel. They

evaluate the efficacy of these schemes by observing the area and quality (in terms

of the number of valid minutiae points detected) of the composite image. Their

experiments indicate that the mosaicked image has a substantially larger area and,

consequently, more number of minutiae points are detected. It has to be noted that in

their technique, successive impressions will have spatial proximity. But, in the case

of dab fingerprint impressions obtained at different time instances, the parametric
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Rolled versus dab prints. (a) - (d): A sequence of 4 rolled fingerprint
impressions obtained using the Digital Biometric sensor. Successive image frames are
known to have spatial proximity. (e) - (h): Four impressions of a finger obtained at
different time instances using a Veridicom sensor. The transformation between the
impressions is not known.

transformation between impressions is not known. This complicates the problem of

mosaicking fingerprint images captured at different time instances.

We approach the problem of fingerprint mosaicking by treating the acquired fin-

gerprint images as 3D surfaces. The rationale behind this is the observation that the

imaging process involves pressing the 3D surface of the fingertip on a 2D flat surface.

We assume that the resulting 2D intensity image indicates the pressure with which a

user holds the finger against the surface of the sensor. Therefore, the intensity images

may be treated as 3D range (surface) images.

In order to generate the transformation matrix defining the spatial relationship

between two impressions, we employ the iterative closest point (ICP) algorithm that

registers two 3D surface images when sufficient number of corresponding points are

available between the two surfaces. The correspondences are used to compute an
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initial approximate alignment between the two surfaces; the ICP algorithm then at-

tempts to find an optimal alignment such that the sum of distances between control

points in one surface and the corresponding tangential planes in the other is mini-

mized. Details of the algorithm is provided in the following section.

3.2 Fingerprint Image Registration

The problem of registering multiple 3D surfaces has received much attention in the

literature (see [43, 44] and the references therein). A typical application of registration

is 3D object model construction where multiple views of an object are integrated [45].

However, a variety of other applications exist for surface registration [46], including

medical image analysis [47], terrain matching [48], etc.

A 3D surface registration algorithm seeks to find the best transformation T that

relates two entities P and Q whose range images1 are given by RP and RQ, respec-

tively. Thus the goal of a registration algorithm is to find T such that the following

objective function, D(RP , RQ), is minimized:

D(RP , RQ) =
∑
p∈RP

‖T p − f(p)‖, (3.1)

where

f : P → Q | ∀p ∈ RP , f(p) ∈ RQ.

The transformation, T , that is used to optimally align entities P and Q, usually

1The terms range image and 3D surface are used interchangeably in this chapter. Typically, a
3D surface is constructed from a range image
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depends upon the distortions present in the range images. Thus, T may be rigid,

affine, polynomial, or elastic. For our application we assume T to be a rigid trans-

formation. T can, therefore, be expressed as follows in homogeneous coordinates:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ tx

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ ty

− sin β cos β sin γ cos β cos γ tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.2)

Here α, β and γ are the rotation angles about the x, y and z axes, respectively, and

tx, ty and tz are the translation components along the three axes. Thus the matrix

T has 6 independent parameters.

In reality, the function f is not known and, therefore, the objective function in

equation (3.1) has to be replaced by an evaluation function that assumes knowledge

of a set of corresponding points in RP and RQ. Therefore, given a set of N pairs

of corresponding points, (pi, qi), pi ∈ RP , qi ∈ RQ and i = 1 . . . N , one can try to

minimize the evaluation function e(RP , RQ):

e(RP , RQ) =

N∑
i=1

‖T pi − qi‖2. (3.3)

If the correspondences are not known, then it is not possible to register the images.

Corresponding points are typically selected by extracting higher level features (e.g.,

edges, corners, texture, points of locally maximum curvature, etc.) from the two
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surfaces, and looking for similarities between the two sets of extracted features.

If the corresponding points are known, then the evaluation function shown in

Equation (3.3) can be minimized by simply searching for the global minimum in

the 6-dimensional parametric space using an iterative procedure. Such a procedure,

however, does not guarantee convergence to a global minimum. To circumvent this

problem, Chen and Medioni [49] assume that an initial approximate transformation,

T0, is known. A good starting approximation assures that the global minimum is

reached quickly and surely.

Equation (3.3) imposes a strict correspondence between points pi and qi. If the

pair of points selected are incompatible (i.e., they are located on different surfaces in

the two images), then an iterative procedure may converge very slowly. In order to

deal with this issue, the ICP algorithm is used. This algorithm tries to minimize the

distances between points in one image to geometric entities (as opposed to points)

in the other. Chen and Medioni [49] attempt to minimize the distance of a point on

one surface, to the tangential plane of the corresponding point in the other surface.

Thus, they minimize

ek(RP , RQ) =

N∑
i=1

d2
s(T kpi, S

k
j ), (3.4)

where, ds is the distance from the point to the plane, and Sj is the tangential

plane corresponding to qj in surface RQ. Once an initial alignment is provided, the

control points are automatically chosen by examining homogeneous regions in the two

images.
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An iterative procedure is adopted to converge to the global minimum (and hence

the superscript k in the above equation). Since an approximate initial transformation

matrix is known, convergence to the global minimum is assured, and since there is a

relaxation in the condition of strict correspondence between points (equation (3.4)),

convergence is faster.

3.3 Fingerprint Mosaicking

We pose the fingerprint mosaicking problem as a 3D surface registration problem that

can be solved using a modified ICP algorithm. The initial alignment of fingerprint im-

ages IP and IQ is obtained by extracting minutiae points from each individual image,

and then comparing the two sets of minutiae points using an elastic point matching

algorithm [50]. The comparison proceeds by first selecting a reference minutiae pair

(one from each image), and then determining the number of corresponding minutiae

pairs using the remaining sets of points in both the images. The reference pair that

results in the maximum number of corresponding pairs is chosen. Let (p0, q0) be

the reference minutiae pair and let (p1, q1), . . . (pN , qN) be the other corresponding

minutiae pairs. Here, pi = (pxi
, pyi

, pzi
, pθi

) and qi = (qxi
, qyi

, qzi
, qθi

), where (x, y)

are the spatial coordinates of the minutiae points, z is the intensity of the image at

(x, y) and θ is the minutiae orientation. The initial transformation, T 0, is computed

using Horn’s method of unit quaternions [51] that operates on the (x, y, z) values. In

this technique, the translation parameters in Equation (3.2) are computed using the

centroid of the point sets (pxi
, pyi

, pzi
) and (qxi

, qyi
, qzi

), and the rotation components
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are computed using the cross-covariance matrix between the centroid-adjusted pairs

of points.

3.3.1 Preprocessing the Fingerprint Image

Since the ICP algorithm uses distances from points to planes, it is very sensitive to

rapid and abrupt changes in surface direction. Therefore, the fingerprint images are

first median filtered using a 3×3 mask. This operation removes any undesirable “salt-

and-pepper” noise that may be present in the valleys (furrows) of the fingerprint image

(which may contribute to abrupt changes in the range image). The intensity values

of the median filtered image are then scaled to a narrow range of values ([10, 20]) to

ensure a fairly smooth change in surface direction in the corresponding range image

of the fingerprints (Figure 3.4(b)).

3.3.2 Fingerprint Segmentation

The purpose of segmentation is to separate the foreground and background regions in

the given intensity image. The foreground corresponds to those regions in the image

that have valid fingerprint information (i.e., the ridges and valleys of the fingerprint),

while the background represents those regions that do not have this information. It is

useful to mask out the background of the images before registering the images using

the ICP algorithm. This prevents the ICP algorithm from choosing control points in

the background region (which is possible due to the homogeneity in intensity in these

regions) and then attempting to align the images using these points.
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The algorithm to segment an image is as follows: (a) The preprocessed grayscale

fingerprint image is converted to a binary image by examining the histogram of in-

tensities and choosing a threshold. (b) An edge detection algorithm is applied to the

binary image to get the outline of ridges. (c) Graham’s convex hull algorithm [35] is

used to generate a polygon that segments the fingerprint image (Figure 3.4(c)).

3.3.3 Fingerprint as a Range Image

The intensity values are directly used as range values. Therefore, the intensity value

of the image at the planar coordinate (x, y) is treated as the range value at that

location. We now have two range images RP and RQ, that are obtained from the

corresponding intensity images IP and IQ, respectively. Figure 3.4(d) illustrates this

mapping for a portion of the image in 3.4(c).

3.3.4 Registering Fingerprint Images

The two range images, RP and RQ, are now subject to the iterations of the ICP

algorithm. At each iteration k, the transformation T k that minimizes Ek in Equation

(3.4) is chosen. The process is said to have converged when,

| Ek − Ek−1 |
N

< ε,

where ε is some threshold, ε ≈ 0.

The final transformation matrix, T solution, is used in the following two ways.

1. It is used to integrate the two individual images and create a composite image
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(a) (b)

(c) (d)

Figure 3.4: Mapping an intensity image to a range image. (a) The original intensity
image. (b) The intensity image after median filtering and scaling. (c) The segmented
intensity image. (d) The range image corresponding to the boxed region (rotated by
∼ 90o) in (c).
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Average Size Average Number of Minutiae
Input Image 300 × 300 22

Mosaicked Image 336 × 332 30

Table 3.1: Increase in average image size and average number of detected minutiae
as a result of mosaicking.

whose spatial extent is generally larger than the individual images. Minutiae

points are then extracted from this larger image.

2. The minutiae sets from the individual images are augmented using T solution.

Mosaicked Images

The given intensity images IP and IQ are integrated into a new image IR. Since

T solution transforms IP into IQ, we compute the new spatial coordinates of every pixel

IP in IR. We extract a new minutiae set (MR1) from this image using the algorithm

described in [50] (see figure 3.5(e)). Note that the spatial extent of the composite

image is generally larger than the individual images. Figure 3.6 shows the result of

mosaicking on six different fingerprint pairs. Table 3.1 lists the increase in image size

and the number of detected minutiae in the composite image.

The mosaicking procedure may sometimes result in poorly aligned images. This

can happen when: (i) the segmentation of either of the images is erroneous, (ii) the

images are noisy, or (iii) there are very few (< 5) corresponding points available to

provide a valid initial alignment (Figure 3.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Composite template construction: (a) First image after segmentation.
(b) Second image after segmentation. (c) Initial alignment. (d) Final alignment. (e)
Minutiae extracted from mosaicked images. (f) Composite minutiae set obtained by
augmenting individual minutiae sets.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: The result of mosaicking six pairs of fingerprint impressions. The spatial
extent of the mosaicked image is observed to be larger than that of the component
images.
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(a) (b)

Figure 3.7: Examples of poorly mosaicked image pairs.

Integrating Images

The intensity images IP and IQ are integrated into a new image IR. Since Tsolution

transforms IP into IQ, we compute the new spatial coordinate of every pixel IP in IR.

We extract a new minutiae set (MR1 from this composite image using the algorithm

described in [50] (see figure 3.5).

Augmented Minutiae Sets

Let MP refer to the minutiae set extracted from IP and MQ refer to the minutiae set

extracted from IQ. The composed minutiae set MR2 is obtained by computing the

(x, y, θ) parameter of each minutia in the composite image. The new (x, y) coordinates

(i.e., the spatial coordinates) of the minutiae points (of the first image) is determined

by simply multiplying the old coordinates with the transformation matrix (Figure

3.5f). 2 The minutiae orientation, θ, is not recomputed.

2Since the first image is transformed to align with the second, this computation has to be done
for the first image only.
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3.4 Experimental Results

We have conducted the following experiments to validate the effectiveness of the

transformation and integration described in section 3.3.4. We have two different

techniques to obtain a composite minutiae set. The two minutiae sets are indicated

by MR1 (obtained by extracting minutiae from the composite image), and MR2

(obtained by integrating individual minutiae sets). We treat these sets as template

minutiae sets against which a query minutiae set can be matched.

Fingerprint images of 640 different fingers, corresponding to 160 different subjects,

were acquired using the Veridicom sensor as described in the previous chapter. 4

different impressions of each of these fingers were obtained over two different sessions

separated by a period of six weeks (2 impressions in each session). The two impressions

acquired at the same session were used to construct the template minutiae set of a

finger, while the other two impressions were used as query images during the test phase

of the experiment. Thus, 640 pairs of images were used to construct the minutiae

templates MR1 and MR2, and the rest (1280) were used as query images.

Given a minutiae set MU (of the query image IU), and the template minutiae sets

MP , MQ, MR1 and MR2, we perform the following comparisons: (i) MU with MP ,

(ii)MU with MQ, (iii) MU with MR1, and (iv) MU with MR2. Thus we get a set of

four scores corresponding to these comparisons. The ROC curves depicting the per-

formance of these 4 different matchings are shown in figure 3.8. It is clear from these

graphs that a composite template image results in improved matching performance.

We further observe that a better matching performance is obtained by using MR1
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Figure 3.8: The ROC curves indicating improvement in matching performance after
mosaicking templates. Utilizing the minutiae points that are extracted from the
composite fingerprint image (MR1) results in the best matching performance.

rather than MR2. This may be due to incorrect minutiae orientation in MR2. Note

that when augmenting the two minutiae sets, MP and MQ, no systematic technique

is used to adjust the minutiae orientation in the composite minutiae template, MR2 .

While the use of MR1 results in better matching performance, generating MR1

introduces several spurious minutiae that have to be carefully discarded. The spurious

minutiae are a consequence of misalignment of the ridges present in the two individual

impressions that are being integrated.

3.5 Summary

We have described a fingerprint template construction technique that integrates infor-

mation available in two different impressions of the same finger. The method makes
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use of corresponding minutiae points to establish an initial approximate alignment,

and a modified ICP algorithm to register the two impressions. The transformation

matrix generated by the ICP algorithm is used to construct composite information

from the individual impressions. Our experiments indicate that mosaicking the im-

ages together and then extracting the (template) minutiae set results in a better

matching performance.

The mosaicking scheme suggested here has been used to register two impressions

of a finger. By repeated application of this procedure several impressions of a finger

(> 2) may be integrated. Fingerprint mosaicking elegantly addresses the problem of

partial fingerprint images and is, therefore, an essential component of a fingerprint

recognition system.
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Chapter 4

A Deformable Model for

Fingerprint Matching

Fingerprint images are typically acquired using a contact-based sensor wherein a user

places1 her finger on the surface of the sensor. The elastic nature of the human

skin, coupled with the non-uniform pressure applied by the finger on the sensor,

result in fingerprint images whose ridges exhibit non-linear distortions. For reliable

matching, these non-linear distortion effects must be accounted for prior to comparing

two fingerprint images. Models based on affine transformations have been used to

offset the effects of distortion, but they invariably lead to unsatisfactory matching

results since the distortions are basically elastic in nature (Figure 4.1).

Given several template impressions of a finger, we estimate the “average” defor-

mation for each template image corresponding to that finger based on the thin plate

1A live-scan fingerprint is usually acquired using the dab method, in which the finger is placed
on the surface of the sensor without rolling. (It is possible to capture a rolled live-scan fingerprint,
although an elaborate scanner arrangement may be necessary in this case).
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Figure 4.1: Aligning two impressions of the same finger using an affine transformation.
Due to non-linear distortions, the alignment is not accurate in some regions. Only
fingerprint ridges are shown for clarity [2].

spline (TPS) model. The estimated average deformation is then utilized to align the

minutiae points between the template and query images during the matching stage.

It is shown that the use of an average deformation model leads to a better alignment

between the two sets of points as opposed to a rigid transformation. The average

deformation is computed using two types of landmark points: minutiae points and

ridge points. Further, an index of deformation is proposed for choosing the best de-

formation model arising from a set of template impressions corresponding to a finger.

Experimental data consists of 1600 fingerprints corresponding to 50 different fingers

collected over a period of 2 weeks. It is shown that the average deformation model

leads to an improvement in the alignment between impressions originating from the

same finger.
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4.1 Introduction

As indicated earlier, the problem of automatic fingerprint matching involves determin-

ing a measure of similarity between two fingerprint impressions by comparing their

ridge structure and/or the spatial distribution of the minutiae points [24, 23, 18, 53].

The image acquisition process, however, introduces non-linear distortions in the ridge

structure and, consequently, in the spatial location of minutiae points, thereby con-

founding the matching process. This distortion is a function of several parameters

including the orientation of the sensor with respect to the finger, the amount of pres-

sure applied by the subject, the disposition of the subject (sitting or standing), the

motion of the finger prior to its placement on the sensor, the moisture content of

the skin (dry, oily or wet), the elasticity of the skin, etc. Therefore, the distortions

observed in a fingerprint vary from one acquisition to the next. For reliable matching,

these non-linear distortions must be accounted for prior to comparing two fingerprint

images. Deformation models based on affine transformations invariably lead to unsat-

isfactory matching results since the distortions are basically elastic in nature (Figure

4.1).

To deal with the problem of non-linear distortion in fingerprint images, four types

of approaches have been discussed in the literature. The first approach accounts for

distortion in the image acquisition stage by capturing the least distorted print from the

user. Ratha et al. [54] describe a system which does not accept an input image if the

user applies excessive force on the sensor, thereby minimizing the effect of distortions

on the acquired image. The system operates by measuring the forces and torques
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applied on the sensor. Dorai et al. [55] observe a video sequence of the fingertip as it

interacts with the sensor and measure the distortion in successive frames. When

excessive distortion is observed, the system requests the user to provide another

fingerprint. These systems require specialized hardware and the ability to perform

extensive computations in real-time. As a result, they do not offer a practical solution

to fingerprint deformation for real-time and embedded fingerprint applications.

In the second approach, the distortion is estimated during the matching stage.

Thebaud [56] uses a gradient descent technique to compute local warps when com-

paring two fingerprints. The fingerprint correlation score is used as the objective

function. Besides being time consuming, this technique potentially results in a higher

False Accept Rate (FAR) since it performs local warping to force a match between the

two images. Kovács-Vajna [18] uses minutiae triplets to compare two minutiae sets.

By not using the entire minutiae pattern at once, the cumulative effect of distortion

is avoided. Bazen and Gerez [57] use a thin-plate spline (TPS) model to account for

non-linear distortions while comparing two minutiae sets.

In the third approach, the distortion is removed before the matching stage. Senior

and Bolle [58] have developed a model which assumes that ridges in a fingerprint

are constantly spaced, and that deviations from this model indicate the presence of

elastic distortions. They apply local warps in regions exhibiting such deviations to

make the local ridge distances nearly equal the average inter-ridge spacing. Their

experimental results show a significant improvement in genuine matching scores (i.e.,

the matching score when comparing two impressions of the same finger), as indicated

by the t-statistic. However, their assumption that inter-ridge spacing in a fingerprint
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(a) (b)

(c) (d)

(e)

Figure 4.2: Alignment of two impressions of the same finger using affine transforma-
tion. (a) and (b) are the gray scale images; (c) and (d) are the thinned (skeletonized)
images of (a) and (b), respectively; and (e) shows the alignment based on the thinned
images. Ridge lines do not align in (e).
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is constantly spaced is not always valid. Watson et al. [59] construct distortion

tolerant filters for each (template) fingerprint before performing a correlation type of

matching. Their experiments show that applying the filter before matching improves

the performance.

The fourth approach is more suited for introducing distortions in synthetic fin-

gerprints. Cappelli et al. [60] have attempted to model the distortions that could

occur in a fingerprint image by considering three concentric regions in a fingerprint;

the inner and outer regions are assumed to have no distortions although ridges in the

outer region can be translated and rotated with respect to the ridges in the inner

region; the region in between is assumed to undergo non-linear distortions in order to

accommodate the transition of ridges from the inner to the outer region. The authors,

however, do not use this model to perform fingerprint matching. Rather, they use it

to synthesize multiple impressions of the same finger [61].

Several difficulties arise when we try to ascertain the extent of non-linear distor-

tion in fingerprint impressions. The distortion present in impressions of a finger is not

known in advance, thereby making normalization to a true template as in [58] impos-

sible. A reference template fingerprint having no distortion effects is never available

given multiple impressions of a finger; in other words, distortion effects should ap-

propriately be measured in relative, rather than in absolute, terms between pairs of

impressions. Bazen and Gerez [57] report the estimation of relative distortions be-

tween pairs of impressions based on the minutiae point pattern correspondence (see

Figure 4.3). In this paper, we present an approach of estimating relative distortions

based on ridge curve correspondence (see Figure 4.4). Modelling distortion effects

79



based on ridge curve correspondence offers several advantages over minutiae point pat-

tern matching, consequently leading to improved authentication performance. Unlike

minutiae points, which can be sparsely distributed in regions of a fingerprint image,

ridge curves are spread all over the image domain resulting in a more reliable estimate

of the distortion. The spatial continuity of ridge curves enables sampling of a large

number of points on the ridges for establishing correspondences, including points in

the vicinity of undetected minutiae points. Obtaining correspondences for undetected

minutiae points is not possible when correspondences are based solely on (detected)

minutiae point patterns. Also, in some poor quality images, minutiae information

cannot be reliably extracted and thus, should not be used to construct a fingerprint

distortion model. For the above reasons, ridge curve-based warping techniques result

in a more robust and reliable estimate of the distortion in fingerprint impressions, and

consequently, incorporating this distortion model in the authentication stage yields

superior matching performance.

Most of the earlier techniques deal with the problem of non-linear distortion on

a case by case basis, i.e., for every pair of fingerprint impressions (or for every fin-

gerprint impression), the distortion removal technique, via a deformation model, is

applied and a matching score generated. No attempt has been made to develop a

finger-specific deformation model that can be computed offline and later used for

matching. The main advantage of such a scheme is that once a finger-specific model

has been computed and stored along with the template, re-computation of the model

is not necessary during the matching stage. When multiple impressions of a user’s

fingerprint are available, a technique is proposed for computing the average defor-
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mation model in the training stage using the thin plate spline (TPS) warping model

based on ridge curve correspondence. The average deformation model corresponding

to each fingerprint impression is an overall description of the relative distortions of

the remaining impressions with that impression (called the baseline impression). In

other words, we describe distortion effects by (i) a baseline impression and (ii) the

average deformation model with respect to the baseline impression. An optimal base-

line impression with the most consistent distortions (that is, distortions that deviate

the least from the average) is selected by means of an index of deformation. The

optimal baseline impression is not an impression with no distortion effects; it is the

impression relative to which other impressions of the same finger have the most con-

sistent (least variable) distortions. We show that by removing distortion effects using

the optimal baseline impressions (and their average deformation models), superior

matching performance is obtained in the authentication stage.

4.2 General Warping Methods

Warping methods can be used to obtain global deformation models for image registra-

tion. Applications of warping techniques abound in the statistical, medical imaging

and computer vision literature. There have been a variety of image registration tech-

niques motivated from different principles; examples include warping by elastic de-

formations [62, 63], optical or fluid flow [64, 65, 66], diffusion processes [67], Bayesian

prior distributions [68, 69], and thin-plate splines (TPS) [70, 71, 72]. Only recently

have warping techniques based on deformation models been used to model distortions
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Figure 4.3: An example of minutiae correspondences between two impressions of a
finger.

Figure 4.4: An example of ridge curve correspondences between two impressions of a
finger.
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in fingerprint images for the purpose of matching [73, 57]. Warping enables the distor-

tions to be estimated and subsequently removed prior to matching. It is shown in [57]

that this procedure results in superior matching performance compared to algorithms

which either do not model distortions or model them using rigid transformations.

Distortion models based on TPS were used in [73] and [57].

Earlier work in modelling the non-linear distortion in fingerprint images used only

the spatial distribution of the minutiae points [73, 57]. One disadvantage of using

the minutiae point pattern for estimating the non-linear deformation is that minutiae

points may be sparse in some areas of the fingerprint. As a result, the estimated

deformation model exhibits high variability in such regions leading to sub-optimal

deformation models. A more fundamental and rich feature of fingerprint images

is their ridge structure. A skeletonized version of a fingerprint image, known as

the thinned image, can be used to extract ridge curve information (see Figure 4.2).

Obtaining the deformation model based on aligning the ridge curves offers several

advantages. Firstly, ridge lines are distributed over the entire fingerprint image and

thus, a more reliable deformation model can be obtained. Secondly, the likelihood

of incorrectly corresponding two ridge curves is much less than corresponding two

minutiae points, due to the richer intrinsic information available in curves compared

to points. Consequently, the deformation model based on ridge curves yields better

matching performance compared to minutiae points as is shown in this paper.

When multiple impressions of a finger are available, it is observed that the non-

linear distortion present in them vary significantly. Further, these distortions are

different for different pairings of the impressions (Figure 4.5). Thus, we address the
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(a)

(b) (c)

(d) (e)

Figure 4.5: Non-linear deformations (with rotation and translation parameters re-
moved) associated with two pairings involving the same template: (a) Template im-
age; (b) and (c) Query images; (d) and (e) Non-linear deformation of (a) into (b) and
(c), respectively.
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following two problems: (i) obtain a deformation model based on ridge curve corre-

spondence that can be incorporated in the matching stage, and (ii) given multiple

deformation models for a finger (each model corresponds to one impression of the

finger), select the optimal model that gives the most consistent distortion effects

measured from a baseline impression. In this paper, we develop an average defor-

mation model given multiple impressions of a single finger together with an estimate

of its variability based on ridge curve correspondences. An index of deformation

is suggested as a means of selecting a baseline impression with an associated aver-

age deformation model with the least variability. The average deformation model is

incorporated in the matching stage when a query fingerprint is compared against a

template fingerprint. Experimental results indicate that better matching performance

is achieved by incorporating deformation models (and average deformation models)

based on ridge curves as opposed to using only minutiae points.

4.3 The Fingerprint Warping Model

Let I0(x, y) and I1(x, y) denote two fingerprint impressions, where (x, y) ∈ S for a

domain S ⊂ R2. Our convention is to refer to I0 and I1 as the template and query

images, respectively. A warping of I0 to I1 is defined as the function F : S → S such

that

I0(F (x, y)) = I1(x, y) (4.1)

for (x, y) ∈ S. The function F is called the warping function which takes I0 to I1. In

our application we register the two impressions I0 and I1 by matching corresponding
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ridge curves. Thus, in equation (4.1), the warping function, F : S → S, registers two

sets of ridge curves derived from I0 and I1. Let uk ≡ uk(t) = (uk1(t), uk2(t))
T , t ∈ Ck,

denote a parameterized ridge curve in I0 for k = 1, 2, . . . , n, and let vk ≡ vk(t) =

(vk1(t), vk2(t))
T , t ∈ Dk and k = 1, 2, . . . , n, denote the corresponding parameterized

ridge curves in I1; here, n is the total number of corresponding curves. The two sets of

ridge curves, one set in I0 and the other in I1, with known correspondences is denoted

by the pair (U, V ) where U = (u1, u2, . . . , un)T and V = (v1, v2, . . . , vn)T . We assume

that each correspondence pair is aligned as close as possible using rigid transformation

prior to non-linear warping. This can be achieved using the Procrustes analysis (see

[74]) after pairs of corresponding points are obtained using the methodology outlined

below. For n pairs of ridge curve correspondences, a warping function, F , that warps

U to V , subject to perfect alignment, is given by the conditions

F (uk) = vk (4.2)

for k = 1, 2, . . . , n.

4.3.1 Establishing Ridge Curve Correspondences

Given a pair of grayscale fingerprint images, I0 and I1, we obtain their thinned ver-

sions, R0 and R1, using the algorithm described in [1]. A thinned image is a binary

image (see Figures 4.2 (c) and (d)) with grayscale values of 0 (indicating ridges) and

255 (indicating valleys). Each thinned image can be thought of as a collection of ridge

curves. In order to develop ridge curve correspondences, we proceed as follows:
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1. Minutiae points are extracted from I0 and I1 using the algorithm described in [1].

Let M0 = (m0,1, m0,2, . . . , m0,K0) and M1 = (m1,1, m1,2, . . . , m1,K1) denote the

two minutiae sets of cardinalities K0 and K1, respectively. Here, each minutiae

point mi,j is characterized by its location in the image, the orientation of the

associated ridge, and the grayscale intensity of pixels in its vicinity.

2. Minutiae correspondences between M0 and M1 is obtained using the elastic

string matching technique described in [1]. The output of the matcher is a

similarity score in the range [0,1000] and a set of correspondences of the form

C = {(m0,aj
, m1,bj

) : j = 1, 2, . . . , K} where K ≤ min{K0, K1}, and the ajs

(bjs) are all distinct. Figure 4.3 shows an example of the minutiae point pattern

correspondence for two impressions of a finger.

3. Once the correspondence between M0 and M1 is established, the ridge curves

associated with these minutiae points are extracted from R0 and R1 using a

simple ridge tracing technique. A minutiae point that is a ridge ending has

one ridge curve associated with it while a ridge bifurcation has three associated

ridges. In the case of a ridge ending, the ridge curve correspondence between

the two images can be easily established since each minutiae point has only one

associated ridge curve. However, in the case of a ridge bifurcation, the problem

of establishing ridge curve correspondences is non-trivial due to the presence

of multiple ridge curves for each minutiae point; each of the three component

ridge curves of one minutiae point can potentially match with any component

of the other impression.

87



23
θ

13

12

θ

θ

3

2

1
r

r

r

O
X

X

X

2
s

X

γ

γ

γ

s

s 23

13

12

3

1
O

X

X

Figure 4.6: Vector representation of ridge bifurcation used to establish correspon-
dences between component ridge curves. O marks the bifurcation points in corre-
spondence, and X marks the points on the ridges at Euclidean distance d from O.

To resolve this ambiguity, each ridge curve corresponding to the minutiae point

in I0 (I1) is represented as a directional vector rj (sj), j = 1, 2, 3, based on two

points on the ridge curve: the minutiae point and the d-th point (d = 20) on

the ridge from the minutiae (see Figure 4.6). We define θj,k (γj,k) to be the

angle that rj (sj) makes with rk (sk), for k = j. We find the vector rj (sj) for

which the angles {θj,k, k = j} ({γj,k, k = j}) are both obtuse. This establishes

the first ridge curve correspondence, say, r1 ∼ s1, without loss of generality.

We then compute the cross products cr = r2 × r3 and cs = s2 × s3. We assign

the correspondence r2 ∼ s2 and r3 ∼ s3 if cr and cs are of the same sign, and

r2 ∼ s3 and r3 ∼ s2, otherwise. Figure 4.4 shows an example of ridge curve

correspondence for a pair of impressions of a finger.

4.3.2 Sampling Ridge Curves

Having determined the corresponding ridge curves, we next establish a correspondence

between points on these curves by sampling every q-th point (q = 20) on each of the

ridge curves. For the correspondence pair (U, V ), we have uk ≡ uk(t) and vk ≡ vk(t)

for k = 1, 2, . . . , n. The sampling of the k-th corresponding ridge curves, say at
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points t1, t2, . . . , tgk
, yields gk pairings of the form (uk(tj), vk(tj)) for j = 1, 2, . . . , gk.

Thus, we have a total of N =
∑n

k=1 gk points in establishing the correspondence.

We denote this set of corresponding points by U = (�∗
∞,�∗

∈, . . . ,�∗
N )T and V =

(�∗
∞,�∗

∈, . . . ,�∗
N )T ). We use TPS to estimate the non-linear deformation F based

on these points. TPS represents a natural parametric generalization from rigid to

mild non-rigid deformations. The deformation model for TPS is given in terms of the

warping function F (u), with

F (u) = c + A · u + W Ts(u), (4.3)

where u ∈ S, c is a 2× 1 translation vector, A is a 2× 2 affine matrix, W T is a N × 2

coefficient matrix, s(u) = (σ(u − u∗
1), σ(u − u∗

2), . . . , σ(u − u∗
N))T where

σ(u) =

⎧⎪⎪⎨⎪⎪⎩
||u||2log(||u||), ||u|| > 0

0, ||u|| = 0.

(4.4)

In equation (4.3), there are 6 and 2N parameters corresponding to the rigid and

non-rigid parts of the deformation model, respectively, resulting in a total of 2N + 6

parameters to be estimated. The restrictions

F (u∗
j) = v∗

j , (4.5)

j = 1, 2, . . . , N provide 2N constraints. For the parameters to be uniquely estimated,

we further assume that W satisfies the two conditions (i) 1T
NW = 0 and (ii) UT

s W = 0,
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where 1N is the vector of ones of length N . Thus, the parameters of the TPS model

can be obtained from the matrix equation

⎡⎢⎢⎢⎢⎢⎢⎣
H 1N U

1T
N 0 0

UT 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
W

cT

AT

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
V

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.6)

where H is the N × N matrix with entries hij = σ(u∗
i − u∗

j).

The matrix equation in (4.6) gives rise to a TPS model that minimizes the bending

energy subject to the perfect alignment constraints in (4.5). A more robust TPS model

can be obtained by relaxing the constraints in equation (4.5), and instead determining

the function F which minimizes the expression

N∑
j=1

(v∗
j − F (u∗

j))
T (v∗

j − F (u∗
j)) + λJ(F ), (4.7)

where

J(F ) =

2∑
j=1

∫
S

{(
∂2Fj(x, y)

∂x2

)2

+ 2

(
∂2Fj(x, y)

∂x∂y

)2

+

(
∂2Fj(x, y)

∂y2

)2
}

dx dy (4.8)

represents the bending energy associated with F = (F1, F2)
T , Fj is the jth component

of F , and λ > 0. The case λ = 0 gives rise to the TPS model described by equation

(4.6). For general λ > 0, the parameters of the resulting TPS model can be obtained

using equation (4.6) with H replaced by H + λIN , where IN is the N × N Identity
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matrix.

4.4 Average Deformation Model

Suppose we have L impressions of a finger, T1, T2, . . . , TL. Each impression, Ti, can

be paired with the remaining impressions, Tj, j = i, to create L − 1 pairs of the

form (Ti, Tj). For the pair (Ti, Tj), we obtain a non-linear transformation Fij by

employing the technique described in section 4.3. Note that Fij transforms every

pixel in the template fingerprint, Ti, to a new location. Thus, we can compute the

average deformation of each pixel u in Ti as

F̄i(u) =
1

L − 1

∑
j �=i

Fij(u). (4.9)

There will be L average deformation models corresponding to the L impressions

of the finger. The average deformation is the typical deformation that arises when we

compare one fingerprint impression of a finger (the baseline impression) with other

impressions of the same finger. Figure 4.7 shows that changing the baseline impression

for the finger will result in a different average deformation model for that finger (the

Φ values are as discussed in section 4.4.1). Figure 4.8 shows the average deformation

for 3 different fingers; it can be clearly seen that the average warping functions are

different for the 3 fingers indicating that the fingerprint deformation is finger-specific.
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(a) Φ = 15.54

(b) Φ = 17.97

(c) Φ = 48.79
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(d) Φ = 83.12

(e) Φ = 94.34

(f) Φ = 232.53

Figure 4.7: The average deformation model (shown as deformations on a reference
grid) corresponding to 6 templates of a finger sorted in increasing Φ-values. (a) is
chosen to be the optimal template since it has the least Φ-value.
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(a) Φ = 46.68

(b) Φ = 37.59

(c) Φ = 85.18

Figure 4.8: The average deformation model (shown as deformations on a reference
grid) of 3 different fingers .
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4.4.1 The Φ Index of Deformation

We consider the following two questions in this section:

1. Which of the L average deformation models can be considered to be the optimal

model for this finger?

2. Will the optimal model, when incorporated in the matching stage, result in

improved performance compared to the suboptimal models?

In order to address these questions, we first define the pixel-wise covariance matrix

associated with the i-th average deformation, F̄i, as follows:

DF̄i
(u) =

1

L − 1

∑
j �=i

(Fij(u) − F̄i(u)) · (Fij(u) − F̄i(u))T , (4.10)

where Fij is the deformation function that warps Ti to Tj . The covariance matrix

defined at each pixel u, is a measure of the variability associated with the estimated

deformation functions. Two choices of pixel-wise measures of variability are given by

(i) the determinant, φ(DF̄i
(u)) = |DF̄i

(u)|, and (ii) the trace, φ(DF̄i
(u)) = tr(DF̄i

(u)).

Pixels with large (small) values of φ indicate high (low) variability in the deformations

Fij . We propose to use the values of φ to determine the optimal model for a given

finger. We define the ith index of deformation, Φi, as

Φi =
1

|S|

|S|∑
u=1

φ(DF̄i(u)), (4.11)
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where, φ(D) = tr(D), and |S| is the number of pixels in the domain S. Subsequently,

we choose Ti∗ as the template with the smallest variability in deformation if i∗ =

arg miniΦi. In effect, we choose that template Ti that minimizes the average variation

across pixels measured in terms of Φi. Low (high) values of the index of deformation

indicate that the warping functions are similar (dissimilar) to each other.

4.4.2 Eliminating Erroneous Correspondences

For each baseline fingerprint impression, it is important to determine the set of minu-

tiae points that are correctly paired to form a correspondence. The reason for this

is that the average deformation model is sensitive to the accuracy of the ridge curve

correspondence, which in turn depend on the minutiae correspondence. It is, there-

fore, necessary to check the correctness of the minutiae correspondences prior to

obtaining the ridge curve correspondences. Figure 4.9(a) gives an example of two

incorrect minutiae correspondences which result in incorrect ridge curve correspon-

dences (Figure 4.9(b)). These erroneous correspondences have to be eliminated prior

to computing the average deformation model; failure to exclude such minutiae points

results in a warping model that exhibits spurious distortions. This is done using the

technique described below.

For the given baseline fingerprint impression, minutiae points that have a corre-

spondence with at least � (� = 5) of the remaining L − 1 impressions are extracted.

We denote the set of all extracted minutiae points by M = {mi, i = 1, 2, . . . , K},

where K is the total number of such minutiae points. Each mi has a correspond-
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(a)

(b)

Figure 4.9: Examples of incorrect minutiae correspondences (a) resulting in erroneous
ridge curve correspondences (b).
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(a)

(b) Φ = 102.16 (c) Φ = 67.78

Figure 4.10: Effect of eliminating unreliable minutiae correspondences on the average
deformation model; (a) template fingerprint, (b) average deformation model with
p = 100, and (c) average deformation model with p = 60.
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ing minutiae point in at least � of the L − 1 impressions. We denote these pairings

by (mi, p1), (mi, p2), . . . , (mi, p�i
), where �i is the total number of pairings. We now

develop a measure of reliability for minutiae point mi as follows:

1. Sampled ridge point correspondences are obtained for each (mi, pj), j =

1, 2, . . . , ni based on which a TPS deformation model, F(mi,pj) is computed.

The average deformation model for the minutiae point mi is given by

F̄mi
(u) =

1

�i

�i∑
j=1

F(mi,pj)(u).

Here, the average deformation model is obtained in a 10×10 square region, say

Smi
, centered at mi.

2. Let

DF̄mi
(u) =

1

�i

�i∑
j=1

(F(mi,pj)(u) − F̄mi
(u)) · (F(mi,pj)(u) − F̄mi

(u))T (4.12)

denote the site-wise variability measure of the deformations F(mi,pj) around F̄mi
.

The average variability is measured by

Rmi
=

1

|Smi
|

|Smi |∑
u=1

trace(DF̄mi
(u))

with small values of Rmi
indicating better reliability. Correspondences pertain-

ing to those minutiae points with Rmi
values lower than the p-th percentile (e.g.,

p = 60) are used to develop the average deformation model for the template
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fingerprint.

For the incorrect minutiae correspondences in Figure 4.9, the value of R for the top

minutiae point was 93.2 (the 60-th percentile value of R was 55.5 for this template)

while the lower minutiae point occurred in less than 5 corresponding pairs and hence

was eliminated. Figure 4.10(a) shows the average deformation model that results for

this template when all correspondences are used (i.e.,p = 100); Figure 4.10(b) gives

the deformation model for p = 60.

4.5 Experimental Results

In order to apply the TPS model to reliably estimate fingerprint deformation, we need

to have several impressions of the same finger. Large number of impressions of a finger

are not available in standard fingerprint databases (e.g., FVC 2002 [75]). Therefore,

fingerprint images of 50 fingers were acquired using the Identix sensor (256×255, 380

dpi) over a period of two weeks in our lab. There were 32 impressions corresponding

to every finger, resulting in a total of 1600 impressions. One half of the impressions

(L = 16 for each finger, resulting in 800 impressions) were used as templates to

compute the average deformation model for each finger, while the remaining 800

impressions were used as query images for testing. For each template image, T ,

the minutiae set, MT , and the thinned image, RT , were extracted. The average

deformation model of T , F̄T , was obtained based on pairings with the remaining

15 impressions of the same finger (equation (4.7) with λ = 0.1). The minutiae set

MT was transformed to the deformed set, MDT ≡ F̄T (MT ) using F̄T . A total of
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(a)

(b)

(c)

Figure 4.11: Improved alignment of template and query images using ridge curve
correspondences (right panel). The alignment using minutiae correspondences are
shown in the left panel. Both sets of alignment use the TPS warping model.
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Figure 4.12: Improvement in matching performance when ridge curve correspondences
is used to develop the average deformation model.

10−1 100
78

79

80

81

82

83

84

85

86

False Accept Rate(%)

G
en

ui
ne

 A
cc

ep
t R

at
e(

%
)

Minutiae Correspondences
Sub−optimal Templates Using Ridge Correspondences
Φ−optimal Templates Using Ridge Correspondences

Figure 4.13: Matching performance when the Φ index of deformation is used to se-
lect optimal templates. Both optimal and suboptimal templates using ridge curve
correspondences result in superior matching performance compared to minutiae cor-
respondences.
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800 sets (50 × 16) of deformed minutiae points were thus obtained. In order to

test the matching performance of the deformed minutiae sets, and the utility of the

index of deformation, Φ, the following two experiments were conducted. In both

these experiments, the minutiae matcher described in [1] was used to generate the

matching (similarity) score.

In the first experiment, the matching performance using the average deformation

model was evaluated. Every template image, T , was compared with every query

image, Q, and two types of matching scores were generated for each comparison:

the matching score obtained by matching (i) MT with MQ, and (ii) MDT with MQ.

The Receiver Operating Characteristic (ROC) curve plotting the genuine accept rate

(GAR) against the false accept rate (FAR) at various matching thresholds is pre-

sented in Figure 4.12. An overall improvement of 2% is observed when the average

deformation model is used to distort MT prior to matching.

In the second experiment, the advantage of using the index of deformation is

demonstrated. The Φ-index of deformation (with φ(D) = tr(D)) of every template

image is used to rank the templates according to their variability in the distortion.

The template images can now be split into two sets: (i) impressions with the least Φ

values for every finger (the Φ-optimal templates) and (ii) the remaining impressions

for every finger (the Φ-suboptimal templates). We repeated the matching procedure

outlined above using these two template sets. The resulting ROC curve is shown

in Figure 4.13. From the figure, it is clear that using Φ-optimal templates results

in better performance compared to using Φ-suboptimal templates. Further, the Φ-

suboptimal templates still yield better performance compared to the non-distorted
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templates thus demonstrating the importance of the average deformable model.

4.6 Summary

In this chapter, a deformation model for estimating the distortion effects in finger-

print impressions has been proposed. The distortion is computed based on ridge

curve correspondence. It has been shown that the deformation model based on ridge

curve correspondence gives superior authentication performance compared to minu-

tiae point pattern matching. The warping model samples the ridge curve and uses

thin-plate splines for estimating the non-linear deformation. An index of deforma-

tion has also been proposed for selecting the “optimal” template from a given set of

fingerprint impressions.

The work presented here can be expanded in several ways. An interesting exer-

cise would be to design an incremental approach to updating the average deformation

model, i.e., updating the current average deformation model of a finger by using infor-

mation presented by newly acquired fingerprint impressions. The technique proposed

here uses a simple pixel-wise averaging measure to compute the average deformation

model. This measure is sensitive to extreme deformations borne out by outliers; thus,

more robust measures of describing the finger specific average deformation model are

needed. The effect of the number of training samples (used to develop the average

deformation model ) on the matching performance has to be systematically studied.

Non-linear deformation in fingerprints is a consequence of utilizing contact-based

sensors for imaging the fingertip. Using an acoustic (ultrasound) camera to procure
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fingerprint images may help avoid this problem [76]. However, an ultrasound camera

introduces other challenges that may affect the quality of the image (e.g., a high

quality reconstruction procedure is required to “assemble” an image). Further, the

cost of the camera and its size may limit its deployment in real-world applications.
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Chapter 5

Multibiometrics

In the previous chapters information integration involved looking for complementary

information present in a single biometric trait, namely, fingerprint. However, bio-

metric systems using a single biometric trait for authentication purposes have the

following limitations:

1. Noise in sensed data: The sensed data might be noisy or distorted. A fingerprint

with a scar, or a voice altered by cold are examples of noisy data. Noisy data

could also be the result of defective or improperly maintained sensors (e.g.,

accumulation of dirt on a fingerprint sensor) or unfavorable ambient conditions

(e.g., poor illumination of a user’s face in a face recognition system). Noisy

biometric data may be incorrectly matched with templates in the database

(Figure 1.7), resulting in a user being incorrectly rejected.

2. Intra-class variations: The biometric data acquired from an individual during

authentication may be very different from the data that was used to generate
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the template during enrollment, thereby affecting the matching process. This

variation is typically caused by a user who is incorrectly interacting with the

sensor (Figure 5.1), or when the sensing operation is modified during the veri-

fication phase (e.g., by changing sensors - the sensor interoperability problem).

As another example, the varying psychological makeup of an individual, might

result in vastly different behavioral traits at various time instances.

3. Restricted degrees of freedom: While a biometric trait is expected to vary sig-

nificantly across individuals, there may be similarities in the feature sets used to

represent these traits. This limitation restricts the degrees of freedom provided

by the biometric trait. For example, Gorman [7] states that the discrimina-

tion capability of fingerprints (i.e., keyspace) is about 104 - 105, whereas an 8-

character password of randomly chosen characters has a keyspace of 6.6× 1015.

Every biometric trait has some upper bound in terms of its discrimination ca-

pability.

4. Non-universality: While every user is expected to possess the biometric trait

being acquired, in reality it is possible for a subset of the users to not possess

a particular biometric. A fingerprint biometric system, for example, may be

unable to extract features from the fingerprints of certain individuals, due to

the poor quality of the ridges (Figure 1.8). Thus, there is a failure to enroll

(FTE) rate associated with using a single biometric trait. It has been empirically

estimated that around 4% of fingerprint images have poor quality ridges. den

Os et al. [77] report the FTE problem in a speaker recognition system.
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5. Spoof attacks: An impostor may attempt to spoof the biometric trait of a

legitimate enrolled user in order to circumvent the system. This type of attack

is especially relevant when behavioral traits such as signature [78, 79] and voice

[80] are used. However, physical traits are also susceptible to spoof attacks. For

example, it has been convincingly demonstrated that it is possible to construct

artificial fingers/fingerprints in a reasonable amount of time to circumvent a

fingerprint authentication system [81].

Test Test
Parameter

False Reject
Rate

False Accept
Rate

Fingerprint FVC 2002 [75] Users mostly
in age group
20-39

0.2% 0.2%

Face FRVT 2002 [82] Enrolment
and test im-
ages were col-
lected in in-
door environ-
ment and
could be on
different days

10% 1%

Voice NIST 2000 [83] Text
dependent

10-20% 2-5 %

Table 5.1: Error rates associated with fingerprint, face and voice biometric systems.
The accuracy estimates of biometric systems depend on a number of test conditions.

Some of the limitations imposed by single biometric systems can be overcome

by installing multiple sensors that capture different biometric traits. Such systems,

known as multibiometric systems [84], are expected to be more reliable due to the

presence of multiple, independent pieces of evidence [85]. These systems are also

able to meet the stringent performance requirements imposed by various applications
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(a) (b) (c)

Figure 5.1: Intra-class variation associated with an individual’s face image. Due to
change in pose, an appearance-based face recognition system will not be able to match
these 3 images successfully, although they belong to the same individual [3].

[86]. Multibiometric systems address the problem of non-universality, since multiple

traits ensure sufficient population coverage. Further, multibiometric systems provide

anti-spoofing measures by making it difficult for an intruder to spoof the multiple

biometric traits of a genuine user simultaneously. By asking the user to present a

random subset of biometric traits, the system ensures that a ‘live’ user is indeed

present at the point of data acquisition.

Multibiometric biometric systems have received much attention in recent litera-

ture. Brunelli et al. [87] describe a multibiometric system that uses the face and

voice traits of an individual for identification. Their system combines the scores of

five different classifiers operating on the voice and face feature sets, to generate a

single matching score that is used for identification. Bigun et al. develop a statis-

tical framework based on Bayesian statistics to integrate information presented by

the speech (text-dependent) and face data of a user [88]. Hong et al. use face and

fingerprints for person identification [86]. Their system consolidates multiple cues
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by associating different confidence measures with the individual biometric matchers.

A commercial product called BioID [89] uses voice, lip motion and face features of

a user to verify identity. General strategies for combining multiple classifiers have

been suggested in [90] and [36]. All the approaches presented in [90] (the highest

rank method, the Borda count method and logistic regression) attempt to reduce or

rerank a given set of classes. These techniques are thus relevant to the identification

problem in which a large number of classes (identities) are present. Prabhakar and

Jain show in [91] that selecting classifiers based on some “goodness” statistic may be

necessary to avoid performance degradation when using classifier combination tech-

niques. There is also a large amount of literature dealing with combination strategies

for matching scores (see for example [92], [93], [94]).

5.1 Fusion in Biometrics

Multibiometric systems integrate information presented by single or multiple biomet-

ric indicators. The information can be consolidated at various levels. Figure 5.2

illustrates the various levels of fusion possible when combining two (or more) biomet-

ric systems. The three possible levels of fusion are: (a) fusion at the feature extraction

level, (b) fusion at the matching score level, (c) fusion at the decision level.

1. Fusion at the feature extraction level: The data obtained from each sensor is

used to compute a feature vector. As the features extracted from one biometric

indicator are independent of those extracted from the other, it is reasonable to

concatenate the two vectors into a single new vector. The new feature vector
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Fingerprint
Templates

DMFU FU FUDM

Decision ModuleMatching Module
Feature Extraction 

Templates

Templates

Face

Module
Feature Extraction Matching Module Decision Module

Module

Templates

MM Accept/Reject

Accept/Reject

Accept/Reject

Accept/Reject

Accept/Reject

Fingerprint
Fingerprint

Face

Figure 5.2: A bimodal biometric system showing the three levels of fusion; FU: Fusion
Module, MM: Matching Module, DM: Decision Module.
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now has a higher dimensionality and represents a person’s identity in a different

(and, hopefully, more discriminating) hyperspace. Feature reduction techniques

may be employed to extract useful features from the larger set of features.

2. Fusion at the matching score level: Each system provides a similarity score

indicating the proximity of the input feature vector with the template vector.

These scores can be combined to assert the veracity of the claimed identity.

Techniques such as logistic regression may be used to combine the scores re-

ported by the two sensors. These techniques attempt to minimize the FRR for

a given FAR [95].

3. Fusion at the decision level: Each sensor captures a biometric attribute and the

resulting feature vectors are individually classified into the two classes - accept

or reject. A majority vote scheme, such as that employed in [96] can be used

to make the final decision.

Fusion in the context of biometrics can take the following forms:

1. Single biometric multiple representation.

2. Single biometric multiple matchers.

3. Multiple biometric fusion.

5.1.1 Single Biometric Multiple Representation

This type of fusion involves using multiple representations of a single biometric indi-

cator. Typically, each representation has its own associated matcher/classifier. The
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similarity scores reported by these classifiers are then consolidated. Cappelli et al.

[97] describe a fingerprint classification system 1 that combines a structural classifier

with a KL transform-based classifier by integrating the scores generated by the two

classifiers. This is done by first mapping the scores (which are distance measures)

into a common domain via a double sigmoid function and then taking a weighted

average in the new domain. Jain et al. [98] also use multiple classifiers for fingerprint

indexing. Their technique uses a K nearest neighbor classifier and a set of 10 neural

network classifiers to classify fingerprints. General strategies for combining multiple

classifiers have been suggested in [90]. All the approaches presented there (the highest

rank method, the Borda count method and logistic regression) attempt to reduce or

rerank a given set of classes. These techniques are thus relevant to the identification

problem in which a large number of classes (identities) are present.

The fusion in this approach takes place at the matching stage, after the classifiers

report a similarity score for each class. Prabhakar and Jain [91] observe that the

classifiers used for fusion have to be carefully selected in order to avoid performance

degradation.

5.1.2 Single Biometric Multiple Matchers

It is also possible to incorporate multiple matching strategies in the matching module

of a biometric system and combine the scores generated by these strategies. Jain

et al. [95] use the logistic function to map the matching scores obtained from two

1The system classifies a fingerprint into one of five classes - Arch, Left loop, Right loop, Whorl and
Tented arch. Thus it is not a biometric system by itself, as it does not perform person identification
or verification.
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different fingerprint matching algorithms into a single score. The authors demonstrate

that such an integration strategy improves the overall performance of a fingerprint

verification system.

This type of fusion also takes place at the matching stage of a biometric system.

Although there are multiple matchers in this case, all matchers operate on the same

representation of the biometric data.

5.1.3 Multiple Biometric Fusion

Multimodal fusion refers to the fusion of multiple biometric indicators. Such systems

seek to improve the speed and reliability (accuracy) of a biometric system [86] by

integrating matching scores obtained from multiple biometric sources. A variety

of fusion schemes have been described in the literature to combine these various

scores. These include majority voting, sum and product rules, k-NN classifiers, SVMs,

decision trees, Bayesian methods, etc. (see for example [92, 36, 88, 99, 93, 94]).

An important aspect that has to be addressed in fusion at the matching score level

is the normalization of the scores obtained from the different domain experts [87].

Normalization typically involves mapping the scores obtained from multiple domains

into a common domain before combining them. This could be viewed as a two-step

process in which the distributions of scores for each domain is first estimated using

robust statistical techniques [100] and these distributions are then scaled or translated

into a common domain.

Besides the techniques described above, other types of fusion are also possible in
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biometrics. (i) A fingerprint biometric system may store multiple templates of a user’s

fingerprint (same finger) in its database. When a fingerprint impression is presented

to the system for verification, it is compared against each of the templates, and the

matching score generated by these multiple matchings are integrated. (ii) A system

may store a single template of a user’s finger, but acquire multiple impressions of

the finger during verification. (iii) Another possibility would be to acquire and use

impressions of multiple fingers for every user. These possibilities have been discussed

in [101].

5.2 Multibiometric System

The choice and number of biometric traits used in designing a multibiometric system

are variables that have to be decided before deploying the system. Fingerprint systems

exhibit very good performance and are very popular since the sensors used to acquire

them can be easily embedded in a system. Most of the working population have hands

and, therefore, hand geometry would be a good choice also. Face images can be easily

acquired and even non-experts can compare face images in the case of repudiation

claims where an individual uses a facility and then denies having used it. We use face,

hand geometry and fingerprints to design and evaluate our multibiometric system. A

brief description of the face and hand geometry indicators used in our experiments is

given below.
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5.2.1 Face Verification

Face verification involves extracting a feature set from a two-dimensional image of

the user’s face and matching it with the template stored in the database. The fea-

ture extraction process is often preceded by a face detection process during which

the location and spatial extent of the face is determined within the given image.

This is a difficult process given the high degree of variability associated with human

faces (color, texture, expression, pose, etc.). The problem is further compounded by

the presence of complex backgrounds and variable lighting conditions (Figure 5.3).

A variety of techniques have been described in the literature to locate the spatial

coordinates of a face within an image [102, 103, 104]. Once the boundary of the

face is established, we use the eigenface approach to extract features from the face

[105, 106]. In this approach a set of orthonormal vectors (or images) that span a

lower dimensional subspace is first computed using the principal component analysis

(PCA) technique. The feature vector of a face image is the projection of the (original

face) image on the (reduced) eigenspace. Matching involves computing the Euclidean

distance between the eigenface coefficients of the template and the detected face.

Figure 5.3: The problem of face detection is compounded by the effects of complex
lighting and cluttered background.
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5.2.2 Hand Geometry

Hand geometry, as the name suggests, refers to the geometric structure of the hand.

This structure includes width of the fingers at various locations, width of the palm,

thickness of the palm, length of the fingers, etc. Although these metrics do not vary

significantly across the population, they can nevertheless be used to verify the identity

of an individual. Hand geometry measurement is non-intrusive and the verification

involves a simple processing of the resulting features. Figure 5.4 shows the hand

geometry system that was used in our experiments. The system computes 14 feature

values comprising of the lengths of the fingers, widths of the fingers and widths of

the palm at various locations (Appendix A).

(a) GUI for capturing hand
geometry. The five pegs aid
in proper placement of the
hand on the platen.

(b) 14 hand features corre-
sponding to various length
and width measurements.

Figure 5.4: A Hand Geometry System. The sensor provides both the top and side
views of the subject’s hand. Features are extracted using the image of the top-view
only.
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5.2.3 Combining the three modalities

The database for our experiments consisted of matching scores obtained from three

different modalities - face, fingerprint and hand geometry. However, data pertaining

to all three modalities were not available for a single set of users. The mutual non-

dependence of the biometric indicators allows us to assign the biometric data of one

user to another.

The database itself was constructed as follows: The fingerprint and face data were

obtained from user set I consisting of 50 users. Each user was asked to provide nine

face images and nine fingerprint impressions (of the same finger). This data was used

to generate 3, 600 (50 × 9 × 8) genuine scores and 22, 050 (50 × 49 × 9) impostor

scores for each modality. The hand geometry data was collected separately from user

set II also consisting of 50 users 2. This resulted in 3, 600 genuine scores and 22, 050

impostor scores for this modality also. Each user in set I was randomly paired with a

user in set II. Thus corresponding genuine and impostor scores for all three modalities

were available for testing. All scores were mapped to the range [0, 100]. Since the

face and hand scores were not similarity scores (they were distance scores), they were

converted to similarity scores by simply subtracting them from 100. A similarity

score x represents the proximity of two feature sets as computed by a classifier. A

score vector represents the scores of multiple classifiers. Thus, the vector (x1, x2, x3)

is a score vector, where x1, x2 and x3 correspond to the (similarity) scores obtained

from the classifers corresponding to the face, fingerprint and hand geometry systems,

2Some users from set I were present in set II.
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respectively.

The scatter plot of the genuine and impostor scores (3, 600 genuine scores, and

11, 025 impostor scores) is shown in Figure 5.5. The plot indicates that the two classes

are reasonably separated in 3-dimensional space; therefore, a relatively simple classi-

fier should perform well on this dataset. The ROC curves depicting the performance

of the individual modalities are shown in Figure 5.6.
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Figure 5.5: Scatter Plot showing the genuine and impostor scores in 3-D space. The
points correspond to 3, 600 genuine scores (+) and 11, 025 impostor scores (o).

Sum Rule

The simplest form of combination would be to take the weighted average of the scores

from the multiple modalities. This strategy was applied to all possible combinations

of the three modalities. Equal weights were assigned to each modality as the bias of

each classifier was not computed. Figure 5.7 and Figure 5.8 show the performance of
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Figure 5.6: ROC curves showing the performance of each of the three individual
modalities.

the sum rule on the three modalities.

Decision Trees

A decision tree derives a sequence of if-then-else rules using the training set in order to

assign a class label to the input data. It does this by finding out an attribute (feature)

that maximizes information gain at a particular node. The C5.0 program [107] was

used to generate a tree from the training set of genuine and impostor score vectors.

The training set consisted of 11, 025 impostor score vectors and 1, 800 genuine score

vectors. The test set consisted of the same number of impostor and genuine score

vectors. Figure 5.9 shows the construction and performance of the C5.0 decision tree

on the training and test sets.
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Threshold Genuine False
Accept Rate(%) Accept Rate(%)

38 100.00 11.75
41 99.77 4.54
42 99.33 2.83
43 98.66 1.75
44 97.55 0.80
45 95.77 0.31
46 94.66 0.12
47 93.11 0.01
49 87.55 0.00

Threshold Genuine False
Accept Rate(%) Accept Rate(%)

72 100.00 37.31
79 99.33 12.28
82 98.00 5.83
83 97.55 4.13
86 95.33 0.97
87 92.66 0.52
88 90.88 0.23
90 81.77 0.02
91 76.22 0.00

Figure 5.7: ROC curves showing an improvement in performance when scores are
combined using the sum rule.
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(b) Combining face, fingerprint and hand ge-
ometry scores

Threshold Genuine False
Accept Rate(%) Accept Rate(%)

41 100.00 49.19
46 99.55 6.77
47 98.66 2.20
48 97.55 0.32
51 84.00 0.00

Threshold Genuine False
Accept Rate(%) Accept Rate(%)

57 100.00 1.59
58 99.77 0.65
59 99.33 0.19
60 98.22 0.03
62 95.55 0.00

Figure 5.8: ROC curves showing an improvement in performance when scores are
combined using the sum rule.
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INPUT SCORES
(X1, X2, X3)

X1 <= 93.06

X2 <= 8.07

X1 <= 72.12

YES NO

YES YES NONO

YES NO

IMPOSTOR GENUINE

IMPOSTOR GENUINE

GENUINE
X2 <= 35.50

Evaluation on training data (11, 250 score vectors):

Genuine Class Impostor Class
Genuine Class 1, 720 80
Impostor Class 2 11, 023

Evaluation on test data (11, 250 score vectors):

Genuine Class Impostor Class
Genuine Class 1, 624 176
Impostor Class 4 11, 021

Figure 5.9: Construction and Performance of the C5.0 Decision Tree. The perfor-
mance is indicated by confusion matrices.
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Linear Discriminant Function

Linear discriminant analysis of the training set helps in transforming the 3-

dimensional score vectors into a new subspace that maximizes the between-class sep-

aration. Figure 5.10 shows the plot of the score vectors using the first and the second

discriminant variables.
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Figure 5.10: Linear Discriminant Analysis of the score vectors. The score vectors
have been plotted in a 2-dimensional space representing the first and the second
discriminant variables. There are 1, 800 genuine score vectors(+) and 11, 025 impostor
score vectors (o).

The test set vectors are classified by using the minimum Mahalanobis distance

rule (after first calculating the centroids of the two classes in the new feature space,

and then measuring the Mahalanobis distance). We assume that the two classes have

unequal covariance matrices. Table 5.2 shows the confusion matrices resulting from

using this rule on different partitioning of the data into training and test sets.
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Trial 1:

Genuine Class Impostor Class
Genuine Class 1, 800 0
Impostor Class 54 10, 971

Trial 2:

Genuine Class Impostor Class
Genuine Class 1, 800 0
Impostor Class 50 10, 975

Trial 3:

Genuine Class Impostor Class
Genuine Class 1, 800 0
Impostor Class 72 10, 953

Table 5.2: Performance of the linear discriminant classifier on three different trials
as indicated by the confusion matrices. In each trial the training and test sets were
partitioned differently.

Discussion

The experiments described above suggest that the sum rule performs better than

the decision tree and linear discriminant classifiers. The FAR of the tree classifier is

0.036% (±0.03%) and the FRR is 9.63% (±0.03%). The FAR of the linear discrimi-

nant classifier is 0.47% (±0.3%) and it’s FRR is 0.00%. The FRR value in this case is

a consequence of overfitting the genuine class as it has fewer samples in both the test

and training sets. The sum rule that combines all three scores has a corresponding

FAR of 0.03% and a FRR of 1.78% suggesting better performance than the other two

classifiers. It has to be noted that it is not possible to fix the FRR (and then compute

the FAR) in the case of the decision tree and linear discriminant classifiers.
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5.3 Learning User-specific Parameters

We develop techniques to further improve system performance in a multibiometric

system by learning user-specific matching thresholds and weighting, for individual

traits. Matching thresholds are used to decide if a matching score corresponds to a

genuine user or an impostor. Scores greater than the matching threshold indicate a

genuine user; scores lower than the threshold indicate an impostor. Biometric systems

typically use a common threshold across users. We show that by setting user-specific

thresholds, it is possible to improve system performance. Weighting is used to vary

the importance of matching scores of each biometric trait. By learning user-specific

weights, the performance of the system is shown to improve.

The automatic learning and update of system parameters help reduce the error

rates associated with an individual, thereby improving the performance accuracy of

the system. In a multibiometric system, it is essential that different biometric traits

be given various degrees of importance for different users. This is important especially

when the biometric trait of some users cannot be reliably acquired. For example, users

with persistently dry fingers may not be able to provide good quality fingerprints.

Such users might experience higher false rejects when interacting with a fingerprint

system. By reducing the weight of the fingerprint trait of such users, and increasing

the weights associated with the other traits the false reject error rate of these users

can be reduced. Further, the intra-class and inter-class variability associated with a

single biometric trait varies between users. Consequently, different users are prone to

different types of errors. The false reject rate (FRR) of users with large inter-class
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variations may be high. Similarly, the false accept rate (FAR) associated with users

having small inter-class variations may be high. Thus, the system invokes a specific

set of parameters based on the claimed identity, I. The biometric system learns user-

specific parameters by observing system performance over a period of time. This

will appeal to that segment of the population averse to interacting with a system

that constantly requests a user to provide multiple readings of the same biometric.

The emphasis is on tuning the system variables automatically, yet appropriately, to

attain performance gain. Therefore, adaptation in a multibiometric system entails the

following: (a) developing user-specific matching thresholds, and (b) assigning weights

to individual biometric traits.

5.3.1 User-specific matching thresholds

The matching thresholds for each user is computed using the cumulative histogram

of impostor scores corresponding to that user. Since genuine scores (matching scores

generated when comparing feature sets from the same user) would not be available

when the user begins to use the system, the impostor scores are used for this purpose.

The impostor scores are generated by comparing the feature sets of the user with fea-

ture sets of other users or with feature sets available in a predetermined impostor

database. The cumulative histogram at a value x, x = 1, 2, . . . 100, is the sum of all

those impostor scores lesser than or equal to x. The user-specific matching thresholds

are computed as follows:
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(a)
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(b)
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(c)

Figure 5.11: Intra-class variability and inter-class similarity of hand geometry features
depicted using Chernoff faces. (a) The feature sets associated with a user showing
large variability. (b) and (c) The feature sets associated with two different users
exhibiting similarity [4]
.
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1. For the ith user in the database, let ti(γ) correspond to the threshold in the cumu-

lative histogram that retains γ fraction of scores, 0 ≤ γ ≤ 1.

2. Using {ti(γ)} as the matching threshold, compute {FARi(γ), GARi(γ)}, where GAR is

the genuine accept rate.

3. Compute the total FAR and GAR as, FAR(γ) =
∑

i FARi(γ), GAR(γ) =
∑

i GARi(γ).

4. Use {FAR(γ), GAR(γ)} to generate the ROC curve.

We observe that the choice of threshold relies on the distribution of impostor

scores for each user (Figure 5.12). This is in contrast to traditional methods where

the threshold is established by pooling together the impostor scores associated with

all users. When the multibiometric system is deployed, the γ corresponding to a

specified FAR is used to invoke the set of user-specific thresholds, {ti(γ)}. Table 5.3

shows the user-specific thresholds (corresponding to a FAR of 1%) associated with

the 10 users whose data was collected over a period of two months. The ROC curves

indicating the improved performance is shown in Figure 5.13.

5.3.2 Weighting individual biometric traits

Each biometric trait provides a matching score based on the input feature set provided

and the template against which the input is compared with. These scores are weighted

according to the biometric trait used (w1 for finger, w2 for face and w3 for hand

geometry), in order to reduce the impostance of less reliable biometric traits (and
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Figure 5.12: The impostor distributions of the face biometric feature vector of 3 users.
(a), (c) and (e) are the histogram of impostor scores associated with the 3 users. (b),
(d) and (f) are the corresponding cumulative histograms. For γ = 0.3 it is observed
that the thresholds for each of the users is different.
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Figure 5.13: ROC curves exhibiting performance improvement when user-specific
thresholds are utilized to verify claimed identity. (a) Fingerprint; (b) Face.

User # Fingerprint Face Hand Geometry
1 14 91 94
2 17 91 95
3 15 92 95
4 12 94 95
5 11 91 90
6 11 90 92
7 16 95 94
8 19 92 97
9 11 90 96
10 19 94 93

Table 5.3: User-specific thresholds for the biometric traits of 10 users corresponding
to a FAR of 1% in each ROC curve.
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increase the influence of more reliable traits). Weighting the matching scores can be

done in the following ways.

Weighting all traits equally and using a user-specific threshold

Equal weights are assigned to the face, hand and fingerprint matching scores, and a

new score is obtained as,

Sfus =
3∑

k=1

1

3
Sk (5.1)

The user specific threshold is computed using the impostor distribution of Sfus

(for each user) using the procedure outlined in section 5.3.1. The performance im-

provement can be seen in Figure 5.14(a).
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Figure 5.14: ROC curves when using (a) equal weights for all three traits, and a
user-specific matching threshold, (b) user-specific weights for all three traits and a
common matching threshold.
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User # Fingerprint Face Hand Geometry
(w1) (w2) (w3)

1 0.5 0.3 0.2
2 0.6 0.2 0.2
3 0.4 0.1 0.5
4 0.2 0.4 0.4
5 0.5 0.2 0.3
6 0.6 0.1 0.3
7 0.6 0.1 0.3
8 0.4 0.2 0.4
9 0.5 0.1 0.4
10 0.6 0.2 0.2

Table 5.4: Weights of different traits for 10 users.

Estimating user-specific weights by ‘exhaustive’ search and using a com-

mon matching threshold

Here, the optimal weight for each trait is found by searching the space of weights

((w1, w2, w3)) for each user with the constraint, w1 + w2 + w3 = 1, such that the

total error rate is minimized. The total error rate is the sum of the false accept and

false genuine rates.

1. For the ith user in the database, vary weights w1,i, w2,i and w3,i over the range [0, 1],

with the constraint w1,i+w2,i+w3,i = 1. Compute Sfus = w1,iS1+w2,iS2+w3,iS3.

2. Choose that set of weights that minimizes the total error rate associated with the scores.

The total error rate is the sum of the false accept and false reject rates.

Table 5.4 lists the weights computed for the 10 users listed in table 5.3. Since the

weight estimation procedure utilizes the histograms of both the genuine and impostor
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scores, computing user-specific thresholds using impostor scores does not further im-

prove performance. We, therefore, use a common matching threshold. The resulting

performance is indicated by the ROC curve in Figure 5.14(b). From table 5.4, we

observe that for user 4, w1 = 0.2, a very low value. To understand this, we examined

the fingerprints corresponding to this user (Figures 5.15(a) and 5.15(b)). We note

that the ridge details are not very clear, and therefore the minutiae matching algo-

rithm did not provide correct matching scores. This demonstrates the importance of

assigning user-specific weights to the individual biometric trait. Similarly, user 3 has

a very small weight attached to the face biometric, possibly due to varying face poses

and lighting during data acquisition (Figure 5.15( c), 5.15(d) and 5.15(e)). User 2

has a small weight attached to hand geometry due to incorrect placement of the hand

and a curved little finger (Figures 5.15(f) and 5.15(g)).

5.4 Factors Affecting a User-specific Approach

The following issues will have to be considered while deploying biometric systems

with user-specific thresholds and weights:

1. A ‘smart’ user may deliberately provide poor quality biometric data constantly

(e.g., by touching the fingerprint sensor lightly), thereby forcing the system to

reduce the weights associated with a specific biometric. The user may then

claim that the biometric data belongs to someone else. Thus, the user accesses

a privilege, and later denies using it. To address such repudiation claims, one

could use the face images acquired during the verification phase to invalidate
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 5.15: (a) and (b) Fingerprint images of user 4 whose ridge details are not very
clear (w1 = 0.2); (c),(d) and (e) Varying face poses of user 3 (w2 = 0.1); (f) and (g)
Incorrect placement of hand and the curved finger of user 2 (w3 = 0.2.)
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the user’s claim. However, this is a post-incidental solution in that it is invoked

after the weights have been lowered. A more effective solution would be to flag

unnatural alterations observed in the weight vector for every user.

2. An intruder attempting to violate a biometric system might target users with

known problems with their biometric data (e.g., users with calloused fingers or

arthritis of the hand). Such users will have low weights attached with certain

biometric traits and, therefore, the intruder has to spoof only those traits having

higher weights.

3. While acquiring biometric data from a user, certain extraneous (non-biometric)

information could also be used to verify the claimed identity. For example, if

a certain user typically enters a high-security room only during the day, then

the system could raise a flag when the user attempts to access the facility at

night. At this time, additional more-expensive biometric measurements may be

obtained to facilitate access.

4. The techniques mentioned in the chapter could also be used for a uni-biometric

system. For example, a minutiae-based fingerprint matcher could learn to

weight various regions of a user’s fingerprint differently by merely observing

matching minutiae pairs.

5.5 Summary

In this chapter we have demonstrated the following:
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1. The performance of a biometric system can be enhanced by computing user-

specific thresholds. These thresholds may be computed for individual biometric

traits, or may be computed after consolidating the scores provided by individual

traits. This improves user convenience by reducing the false reject rate.

2. The performance can be further improved by assigning user-specific weights to

the various traits when combining the matching scores. This weighting can be

computed from the training data of every user.

Multibiometrics eliminates the failure to enroll problem. By assigning smaller

weights to those traits for which a user’s sample are consistently noisy, one can ac-

commodate more people in the system. These parameters can be estimated from the

training data provided by the user. Future work could involve looking at ways to

perform template selection and template update. The choice of templates to repre-

sent feature sets, and the methodology initiated to update them would help improve

system performance (and user convenience) over a period of time. However, auto-

matic template selection (and update) has to be done in a reliable manner to prevent

unauthorized users from progressively replacing the biometric template of a legitimate

user with their traits.

The evidence presented by multiple traits can be used in different ways depending

on whether the authentication scheme requires identifying the individual or verifying

the claimed identity. As observed earlier, identification potentially requires matching

the extracted feature set against all templates (identities) in the database in order to

find out the best match. This could be prohibitive in terms of the number of compar-
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isons to be performed (especially when feature sets of multiple traits are involved),

resulting in a slow response time which is ill-suited in a real-time identification sys-

tem. To circumvent this, an indexing scheme, wherein the extracted feature set is

compared against a small subset of the database, is used to reduce the number of

comparisons to be performed and improve processing time. Hong and Jain [86] use a

face matching system to retrieve the top 5 matches for a user’s identity; a fingerprint

matcher is then applied to these 5 matches, and a final decision made by combining

the scores provided by these two matchers. Thus, the face and fingerprint systems

operate in the cascade mode, where one system is used to narrow down the number

of possible identities, before the other is used. In a verification scheme, on the other

hand, indexing is not required since the extracted feature set has to be compared

with only those templates corresponding to the claimed identity. In such systems the

feature sets extracted from multiple traits may be simultaneously used to produce

matching scores which are then consolidated to arrive at a decision. The individ-

ual biometric systems, in this case, operate in the parallel mode. The techniques

presented in this chapter are more suited for a verification system.
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Chapter 6

Conclusions and Future Work

6.1 Research Contributions

Researchers have invested a substantial amount of effort in studying fingerprints in

the context of forensics, computer vision, image processing, pattern recognition, and

biometrics. This seemingly simple pattern of ridges and valleys on the tip of a finger

has, therefore, received considerable attention. In spite of this attention, the problem

of automatic fingerprint matching continues to harbor plenty of challenges.

In this thesis we have approached the challenges in fingerprint matching from an

information fusion perspective. We first developed a hybrid matcher that combined

the minutiae and texture information present in a fingerprint. In the proposed tech-

nique, the texture information was represented using ridge feature maps which could

also be utilized to align and register pairs of fingerprint images. The hybrid system

presented here was shown to enhance the matching performance of a fingerprint sys-

tem. One of the advantages of using a hybrid approach is the complementary nature
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of the information being combined. This aids in decreasing the false accept rate (i.e.,

the false match rate) as follows: by examining the underlying ridge information via

ridge feature maps after aligning the images using minutiae points, the integrity of

the matcher is improved.

We then described a mosaicking scheme that integrated the information present in

two impressions of a finger. In this technique, fingerprint images were viewed as range

images, and the iterative control point (ICP) algorithm was used to register them. The

technique presented here utilized minutiae points to determine an initial alignment

between image pairs. The mosaicking process resulted in a composite template which

was more elaborate than the individual images. Mosaicking is an essential component

of a fingerprint system since it elegantly consolidates the information available in

several partial prints.

To account for non-linear distortions in fingerprints, an “average” deformation

model was proposed. In this approach, a fingerprint impression (baseline) was com-

pared with several other impressions of the same finger in order to determine the

“relative” non-linear deformation present in it. The average deformation model was

developed using thin-plate splines (TPS) and ridge curves were used to establish cor-

respondences between image pairs. The estimated average deformation was utilized

to pre-distort the minutiae points in the template image before matching it with the

minutiae points in the query image. The use of an average deformation model re-

sulted in a better alignment between the template and query minutiae points. An

index of deformation was also defined for choosing the deformation model with the

least variability from a set of template impressions corresponding to a finger.
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Finally, the fingerprint evidence of a user was combined with the face and hand

geometry traits to design a multibiometric system. A multibiometric system not

only improves matching performance as was demonstrated in this thesis, but it also

addresses the problem of non-universality and spoofing that are prevalent in unimodal

systems. Evidence consolidation was done at the matching score level in which the

matching scores generated by the various matchers were combined. The matching

performance was further improved by employing user-specific weights and user-specific

thresholds in the matching stage.

6.2 Future Research

Significant efforts are currently being undertaken to integrate biometrics into the

fabric of society (e.g., National ID card, US-VISIT program, etc.). It is, therefore,

imperative that researchers and practitioners systematically study the engineering

aspects of biometric systems that would ensure their successful installation in real-

world applications. The social and legal implications of biometric systems will also

have to be separately studied and understood, before deploying these systems on a

large scale.

We conclude this thesis by suggesting possible ways in which the research pre-

sented here may be expanded in order to build robust fingerprint (biometric) systems.

1. The hybrid matcher utilizes square tessellations to compare the texture (i.e.,

ridge flow) information across images. In view of the non-linear deformations

present in fingerprint images, it would be instructive to ‘distort’ the square
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cells in a non-linear fashion prior to the matching process. In fact, the average

deformation model suggested in this thesis may be used to pre-distort the square

tessellations in the template image.

2. The performance of the hybrid matcher is closely related to the accuracy of the

image registration (alignment) process. In the procedure presented in this the-

sis, it is the minutiae points that are used to accomplish registration. However,

for the sake of robustness, multiple alignment hypothesis may be used to de-

termine the transformation parameters that best relate two fingerprint images.

For example, the minutiae points, ridge curves, orientation field, ridge feature

maps and singular points could all be used to generate an alignment hypoth-

esis. These various hypothesis may then be consolidated to recover the true

transformation parameters. The availability of multiple alignment hypothesis

is especially useful when poor quality fingerprint images are involved.

3. The fingerprint mosaicking technique utilizes partial impressions of a fingerprint

to construct a more elaborate one. Given several partial impressions of a finger,

there is no systematic technique for determining which of these should be used

for generating the composite template. Thus, a method to automatically select

candidate impressions for mosaicking would improve the integrity of the com-

posite template. The candidate selection process could also be used to perform

automatic template selection and update in a biometric system.

4. The average deformation model for a fingerprint may be used to detect the

presence of a fake finger on the sensor. The minutiae points on a fake fingertip
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may not be distorted in the same way as those present on a live fingertip. (This

is true, for example, when the material used to synthesize the fake fingerprint

does not exhibit “skin-like” properties). Therefore, the system may request a

user to present multiple impressions of a finger during verification and derive the

relative non-linear distortion between the acquired impressions. These distor-

tions can then be compared with the average deformation model for the finger

in order to observe if they are similar. A lack of similarity might indicate the

presence of a fake finger.

5. The effect of score normalization on the matching performance of a multibio-

metric system has to be studied. In this thesis, a simple min-max normalization

technique is utilized to transform the matching scores of multiple modalities into

a common domain (i.e., all matching scores are mapped in a linear fashion to

the [0,100] range). However, other robust normalization techniques have to be

examined in order to offset the effect of outliers on the matching performance.

6. Fusion at the matching score level is the most popular approach to multibio-

metrics due to the ease in accessing and consolidating the scores generated by

multiple matchers. However, fusion at the feature extraction (representation)

level is expected to be more effective due to the richer source of information

available at this level. Therefore, it is important to study the possibility of

fusing information at this level. Concatenating compatible feature sets would

be one way to integrate information at this level. Integration at this level is

not without its challenges. For example, it would be difficult to concatenate
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two incompatible feature sets like the eigen-coefficients (for face) and minutiae

points (for fingerprint).

7. While multibiometric systems typically integrate “typical” physiological (e.g.,

fingerprint, iris, hand) and behavioral (e.g., gait, signature, voice) traits for

recognition , one could consider the use of atypical traits like the color of hair,

color of eyes, height of individual, and gender of individual in conjunction with

typical biometric traits to enhance recognition performance.
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Appendix A

Hand Geometry-based Biometric

System

In this appendix a biometric system that uses the geometry of a person’s hand for

recognition is described. A technique for computing the various features (invariant

to the lighting conditions of the device, presence of noise and the color of the skin)

is summarized. A prototype image acquisition system was developed to capture the

profile of the hand. Experiments on a database containing 50 users is presented.

A.1 Why Hand Geometry?

The suitability of a particular biometric to a specific application depends upon sev-

eral factors [50]; among these factors, the user acceptability seems to be the most

significant. For many access control applications, like immigration, border control

and dormitory meal plan access, very distinctive biometrics, e.g., fingerprint and iris,
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may not be acceptable for the sake of protecting an individual’s privacy. In such sit-

uations, it is desirable that the given biometric indicator be only distinctive enough

for verification but not for identification. As hand geometry information is not very

distinctive, it is one of the biometrics of choice in applications like those mentioned

above.

Hand geometry-based authentication is also very effective for various other rea-

sons. Almost all of the working population have hands and exception processing

for people with disabilities could be easily engineered [111]. Hand geometry mea-

surements are easily collectible due to both the dexterity of the hand and due to a

relatively simple method of sensing which does not impose undue requirements on

the imaging optics. Note that good frictional skin is required by fingerprint imaging

systems, and a special illumination setup is needed by iris or retina-based identifi-

cation systems. Further, hand geometry is ideally suited for integration with other

biometrics, in particular, fingerprints. For instance, an identification/verification sys-

tem may use fingerprints for (infrequent) identification and use hand geometry for

(frequent) verification. It is easy to conceptualize a sensing system which can simul-

taneously capture both fingerprints and hand geometry.

A.2 Background

Hand Geometry, as the name suggests, refers to the geometric structure of the hand.

This structure includes width of the fingers at various locations, width of the palm,

thickness of the palm, length of the fingers, etc. Although these metrics do not vary

147



significantly across the population, they can however be used to verify the identity

of an individual. Hand geometry measurement is non-intrusive and the verification

involves a simple processing of the resulting features. Unlike palmprint verification

methods [112, 113], this method does not involve extraction of detailed features of

the hand (for example, wrinkles on the skin).

Hand geometry-based verification systems are not new and have been available

since the early 1970s. However, there is not much open literature addressing the

research issues underlying hand geometry-based identity authentication; much of the

literature is in the form of patents [114, 115, 116] or application-oriented description.

Sidlauskas [117] discusses a 3D hand profile identification apparatus that has been

used for hand geometry recognition.

Authentication of identity of an individual based on a set of hand features is

an important research problem. It is well known that the individual hand features

themselves are not very descriptive; devising methods to combine these non-salient

individual features to attain robust positive identification is a challenging pattern

recognition problem in its own right.

A.3 Image Acquisition

The image acquisition system which we have used comprises of a light source, a

camera, a single mirror and a flat surface (with five pegs on it). The user places his

right hand - palm facing downwards - on the flat surface of the device. The five pegs

serve as control points for appropriate placement of the right hand of the user. The
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device also has knobs to change the intensity of the light source and the focal length

of the camera. The lone mirror projects the side-view of the user’s hand onto the

camera. The device is hooked to a PC with a GUI application which provides a live

visual feedback of the top-view and the side-view of the hand (Figure A.1) and has

the following functionality: (i) assists the user in correct positioning of the hand on

the surface of the device; (ii) acquires images of the user’s hand; (iii) displays images

that were captured previously; (iv) extracts features from a given image; (v) registers

the user in a database along with the extracted feature vector; (vi) checks whether

a given image of the hand matches any of the entries in the database; (vii) updates

a particular user’s entry in the database by recomputing the feature vector. In the

current prototype implementation, a 640 × 480 8-bit grayscale image of the hand is

captured.

Figure A.1: Hand geometry sensing device.
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A.3.1 Enrollment Phase

This process involves one of the following two tasks: (i) add a new user to the

database; (ii) update a current user’s feature vector. During the enrollment phase,

five images of the same hand are taken in succession; the user removes his hand com-

pletely from the device before every acquisition. These five images are then used to

compute the feature vector of the given hand. Recomputing a feature vector simply

involves averaging the individual feature values.

A.3.2 Verification Phase

This process involves matching a given hand to a person previously enrolled in the

system. Two snapshots of the hand are taken and the “average” feature vector is

computed. The given feature vector is then compared with the feature vector stored

in the database associated with the claimed identity. Let F = (f1, f2, ..., fd) represent

the d-dimensional feature vector in the database associated with the claimed identity

and Y = (y1, y2, ..., yd) be the feature vector of the hand whose identity has to be

verified. The verification is positive if the distance between F and Y is less than a

threshold value. Four distance metrics, absolute, weighted absolute, Euclidean, and
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weighted Euclidean, corresponding to the following four equations were explored:

d∑
j=1

| yj − fj | < εa, (A.1)

d∑
j=1

| yj − fj |
σj

< εwa, (A.2)√√√√ d∑
j=1

(yj − fj)2 < εe, and (A.3)

√√√√ d∑
j=1

(yj − fj)2

σ2
j

< εwe, (A.4)

where σ2
j is the feature variance of the jth feature and εa, εwa, εe, and εwe are threshold

values for each respective distance metric.

A.4 Feature Extraction

The hand geometry-based authentication system relies on geometric invariants of a

human hand. Typical features include length and width of the fingers, aspect ratio of

the palm or fingers, thickness of the hand, etc. [118]. To our knowledge, the existing

commercial systems do not take advantage of any non-geometric attributes of the

hand, e.g., color of the skin.

Figure A.2 shows the 16 axes along which the various features mentioned above

have been measured. The five pegs on the image serve as control points and assist

in choosing these axes. The hand is represented as a vector of the measurements

selected above. Since the positions of the five pegs are fixed in the image, no attempt

is made to remove these pegs in the acquired images.
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Figure A.2: The sixteen axes along which feature values are computed.

In order to offset the effects of background lighting, color of the skin, and noise,

the following approach was devised to compute the various feature values. A sequence

of pixels along a measurement axis will have an ideal gray scale profile as shown in

Figure A.3(a). Here Len refers to the total number of pixels considered, Ps and Pe

refer to the end points within which the object (viz., finger) to be measured is located,

and A1, A2 and B are the gray scale values.

The actual gray scale profile tends to be spiky as shown in Figure A.3(b). Our

first step is to model the above profile. Let the pixels along a measurement axis be

numbered from 1 to Len. Let X = (x1, x2, ..., xLen) be the gray values of the pixels

along that axis. We make the following assumptions about the profile:

1. The observed profile (Figure A.3(b)) is obtained from the ideal profile (Figure

A.3(a)) by the addition of Gaussian noise to each of the pixels in the latter.

Thus, for example, the gray level of a pixel lying between Ps and Pe is assumed
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(b) An observed profile

Figure A.3: The gray scale profile of pixels along a measurement axis.
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to be drawn from the distribution

G(x/B, σ2
B) =

1√
2πσ2

B

exp

{ −1

2σ2
B

(x − B)2

}
(A.5)

where σ2
B is the variance of x in the interval R, Ps < R ≤ Pe.

2. The gray level of an arbitrary pixel along a particular axis is independent of the

gray level of other pixels in the line. This assumption holds good because of

the absence of pronounced shadows in the acquired image.

Operating under these assumptions, we can write the joint distribution of all the pixel

values along a particular axis as

P (X/Θ) =

[
Ps∏
j=1

1√
2πσ2

A1

exp

{
− 1

2σ2
A1

(xj − A1)2

}]
[

Pe∏
j=Ps+1

1√
2πσ2

B

exp

{
− 1

2σ2
B

(xj − B)2

}]
[

Len∏
j=Pe+1

1√
2πσ2

A2

exp

{
− 1

2σ2
A2

(xj − A2)2

}]
,

(A.6)

where Θ = (Ps, Pe, A1, A2, B, σ2
A1, σ

2
A2, σ

2
B) and σ2

A1, σ2
A2 and σ2

B are the variances of

x in the three intervals [1, Ps], [Ps + 1, Pe] and [Pe + 1, Len], respectively.

The goal now is to estimate Ps and Pe using the observed pixel values along the

chosen axis. We use the Maximum Likelihood Estimate (MLE) method to estimate

Θ. By taking logarithm on both sides of Eq. (A.6) and simplifying, we obtain the
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likelihood function:

L(Θ) =
1

σ2
A1

Ps∑
1

(xj − A1)2 +
1

σ2
B

Pe∑
Ps+1

(xj − B)2

+
1

σ2
A2

Len∑
Pe+1

(xj − A2)2 + Ps log σ2
A1

+ (Pe − Ps) log σ2
B + (Len − Pe) log σ2

A2

(A.7)

The parameters can now be estimated iteratively; the parameter estimates at the

(k + 1)st stage, given the observation X = (x1, x2, ..., xLen), are given below.

P̂s

(k+1)
= arg min

Ps

L

⎛⎜⎜⎝ Ps, P̂e

(k)
, Â1

(k)
, Â2

(k)
,

B̂(k), σ̂2
A1

(k)
, σ̂2

A2

(k)
, σ̂2

B

(k)

⎞⎟⎟⎠

P̂e

(k+1)
= arg min

Pe

L

⎛⎜⎜⎝ P̂s

(k+1)
, Pe, Â1

(k)
, Â2

(k)
,

B̂(k), σ̂2
A1

(k)
, σ̂2

A2

(k)
, σ̂2

B

(k)

⎞⎟⎟⎠
B̂(k+1) =

∑ �

Pe
(k+1)

�

Ps
(k+1)

+1
xj

P̂e

(k+1) − P̂s

(k+1)

σ̂2
B

(k+1)
=

∑ �

Pe
(k+1)

�

Ps
(k+1)

+1
x2

j

P̂e

(k+1) − P̂s

(k+1)
−
{
B̂(k+1))

}2

Â1
(k+1)

=

∑ �

Pe
(k+1)

1 xj

P̂s

(k+1)

σ̂2
A1

(k+1)
=

∑ �

Pe
(k+1)

1 x2
j

P̂s

(k+1)
−
{

Â1
(k+1)

}2

Â2
(k+1)
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�

Pe
(k+1)

+1
xj
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(k+1)
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A2
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�

Pe
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−
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}2

(A.8)
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The initial estimates of A1, σ2
A1, A2, σ2

A2, B and σ2
B are obtained as follows: (i)

A1 and σ2
A1 are estimated using the gray values of the first NA1 pixels along the axis;

(ii) A2 and σ2
A2 are estimated using the gray values of the pixels from (Len − NA2)

to Len; (iii) B and σ2
B are estimated using the gray values of the pixels between

(Len/2 − NB) and (Len/2 + NB). The values of NA1, NA2 and NB are fixed for the

system; NA1 = 5, NA2 = 4 and NB = 5. The initial values of Ps and Pe are set to

Len/2 − 10 and Len/2 + 10, respectively.

Figure A.4 shows a hand image along with the positions of detected points (Ps

and Pe) along each of the 16 axes and the corresponding feature vector.

(a) Estimates of Ps and Pe along the 16 axes

(akasapuv 65 53 59 52 62 47 47 45 255 333 253 287 243 149 34 35)

(b) The corresponding database entry

Figure A.4: Computation of the feature vector.
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Figure A.5: Chernoff Faces representing the average feature vectors of 20 different
hands.

157



A.5 Experimental Results

The hand geometry authentication system was trained and tested using a database

of 50 users. Ten images of each user’s hand were captured over two sessions; in

each session the background lighting of the acquisition device was changed. Thus

a total of 500 images were made available. Out of 500 images, only 360 were used

for testing our hand geometry system. The remaining 140 images were discarded

due to incorrect placement of the hand by the user (see for example, Figure A.6).

Thus, user adaptation of this biometric is necessary. Two images of each user’s hand

were randomly selected to compute the feature vector which is stored in the database

along with the user’s name. Figure A.5 shows the chernoff faces [4] representing the

average feature vector of 20 of the users. 15 hand features have been mapped to the

attributes of the cartoon face as follows: 1-area of face; 2-shape of face; 3-length of

nose; 4-location of mouth; 5-curve of smile; 6-width of mouth; 7, 8, 9, 10 and 11-

location, separation, angle, shape and width of eyes; 12-location and width of pupil;

13, 14 and 15 -location, angle and width of eyebrow. The difference between any two

hand geometries as reflected in these cartoon faces appears to be significant.

Eqs. (A.1)-(4) are used for verifying whether the feature vector of a hand matches

with the feature vector stored in the database. In order to study the effectiveness

of various distance metrics, the genuine and impostor distributions are plotted for

matching scores obtained using each distance metric and an ROC curve generated

from each pair of distributions. A genuine matching score is obtained by comparing

two feature vectors from the same hand while an impostor matching score is obtained
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Figure A.6: Incorrect placement of hand.

by comparing the feature vectors of two different hands. Let us define the hit rate

to be the percentage of time the system matches a hand to the right entry in the

database, and the false acceptance rate to be the percentage of time the system

matches a hand to an incorrect entry in the database for a given threshold. The

ROC curve that plots the hit rate against the false acceptance rate is then computed

using the leave-one-out method. A feature vector in the database is matched against

those feature vectors representing a different user. The minimum of these distances

is taken as an impostor matching score. If the matching score falls below the chosen

threshold, it is considered to be a false acceptance by the system. This process is

repeated for all the users in the database. A genuine matching score is obtained

by matching a feature vector against those feature vectors that belong to the same

user and then taking the minimum of all such distances. If the matching score falls

below the chosen threshold then it is considered to be a hit. The ROC curve shown in
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Figure A.7 depicts the performance of the system for the weighted Euclidean distance

(Eq. A.4) which gave the best result. The system performance could be significantly

improved by (i) having habituated users; (ii) better registration of hand geometry

measurements; and (iii) using higher level features (like color of the skin, wrinkles

and folds on the skin etc.). Among these factors, registration appears to be the most

critical. Even though the pegs are used for registration in our system, the registration

accomplished by the pegs is not sufficiently accurate.
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Figure A.7: The ROC curve depicting the matching performance of the hand geom-
etry system.
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