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Abstra
t3D Fa
e Re
ognition a
ross Pose and ExpressionByXiaoguang Lu
Fa
e analysis and re
ognition has a large number of appli
ations, su
h as se
u-rity, 
ommuni
ation, and entertainment. Current two-dimensional image based fa
ere
ognition systems en
ounter diÆ
ulties with large fa
ial appearan
e variations dueto pose, illumination, and expression 
hanges. We have developed a fa
e re
ognitionsystem that utilizes three-dimensional shape information to make the system morerobust to large head pose 
hanges. Two di�erent modalities provided by a fa
ial s
an,namely, shape and intensity, are utilized and integrated for fa
e mat
hing. While the3D shape of a fa
e does not 
hange due to head pose (rigid) and lighting 
hanges, it isnot invariant to non-rigid fa
ial movement, su
h as expressions. Colle
ting and stor-ing multiple templates to a

ount for various expressions for ea
h subje
t in a largedatabase is not pra
ti
al. We have designed a hierar
hi
al geodesi
-based resam-pling s
heme to derive a fa
ial surfa
e representation for establishing 
orresponden
ea
ross expressions and subje
ts. Based on the developed representation, we extra
tand model three-dimensional non-rigid fa
ial deformations su
h as expression 
hanges



for expression transfer and synthesis. For 3D fa
e mat
hing purposes, a user-spe
i�
3D deformable model is built driven by fa
ial expressions. An alternating optimiza-tion s
heme is applied to �t the deformable model to a test fa
ial s
an, resulting in amat
hing distan
e. To make the mat
hing system fully automati
, an automati
 fa
ialfeature point extra
tor was developed. The resulting 3D re
ognition system is able tohandle large head pose 
hanges and expressions simultaneously. In summary, a fullyautomati
 system has been developed to address the problems of 3D fa
e mat
hing inthe presen
e of simultaneous large pose 
hanges and expression variations, in
ludingautomati
 feature extra
tion, integration of two modalities, and deformation analysisto handle non-rigid fa
ial movement (e.g., expressions).
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Chapter 1
Introdu
tion
1.1 Fa
e Re
ognitionAutomati
 human fa
e re
ognition has re
eived substantial attention from resear
hersin biometri
s, pattern re
ognition, and 
omputer vision 
ommunities [46, 169, 184,74, 99℄. The ma
hine learning and 
omputer graphi
s 
ommunities are also in
reas-ingly involved in fa
e re
ognition. This 
ommon interest among resear
hers workingin diverse �elds is motivated by our remarkable ability to re
ognize fa
es and the fa
tthat this human a
tivity is a primary 
on
ern both in everyday life and in 
yberspa
e.In addition, there are a large number of 
ommer
ial, se
urity, and forensi
 appli
a-tions that require the use of fa
e re
ognition te
hnologies. These appli
ations in
ludeautomated 
rowd surveillan
e, a

ess 
ontrol, mugshot identi�
ation (e.g., for issu-ing driver li
enses), fa
e re
onstru
tion, design of human 
omputer interfa
e (HCI),multimedia 
ommuni
ation (e.g., generation of syntheti
 fa
es), and 
ontent-basedimage database management. A number of 
ommer
ial fa
e re
ognition systems are1



available, for example, 2D systems from Cognite
 Systems GmbH [3℄, Eyemati
 [5℄(now Neven Vision [14℄), Viisage [17℄ (now merged with Identix [11℄), and Identix;and 3D systems from A4Vision [2℄, Geometrix [10℄, and Genex Te
hnologies [8℄.Biometri
s deals with automati
 re
ognition of people based on their distin
tiveanatomi
al (e.g., fa
e, �ngerprint, iris, retina, hand geometry, vein, voi
e, et
.) andbehavioral (e.g., signature, gait) 
hara
teristi
s. Fa
e is an e�e
tive biometri
 at-tribute/indi
ator. Di�erent biometri
 indi
ators are suited for di�erent kinds of iden-ti�
ation appli
ations due to their performan
e with regard to intrusiveness, a

u-ra
y, 
ost, and easy of sensing [12℄ (see Fig. 1.1(a)). The fa
e biometri
 providesgood non-intrusiveness with a relatively low a

ura
y. Among the six biometri
 in-di
ators 
onsidered in [83℄, fa
ial features s
ored the highest 
ompatibility, shownin Fig. 1.1(b), in a ma
hine readable travel do
uments (MRTD) system based on anumber of evaluation fa
tors [83℄.Global biometri
 revenues were $719 million in 2003. They are expe
ted to rea
h$4.6 billion by 2008 [12℄, driven by large-s
ale publi
 se
tor biometri
 deployments,the emergen
e of transa
tional revenue models, and the adoption of standardizedbiometri
 infrastru
tures and data formats. Among emerging biometri
 te
hnologies,fa
ial biometri
s is proje
ted to rea
h annual revenues of $802 million in 2008.Fa
e re
ognition s
enarios 
an be 
lassi�ed into two types, (i) fa
e veri�
ation (orauthenti
ation) and (ii) fa
e identi�
ation (or re
ognition). In the Fa
e Re
ognitionVendor Test (FRVT) 2002 [137℄, whi
h was 
ondu
ted by the National Institute ofStandards and Te
hnology (NIST), another s
enario was added, 
alled the `wat
hlist'. 2



(a) (b)Figure 1.1: Comparison of various biometri
 features: (a) based on zephyr analysis,
opyright by International Biometri
 Group [12℄; (b) based on MRTD 
ompatibility[83℄.� Fa
e veri�
ation (\Am I who I say I am?") is a one-to-one mat
h that
ompares a query fa
e image against a template fa
e image whose identityis being 
laimed. To evaluate the veri�
ation performan
e, the veri�
ationrate (the rate at whi
h legitimate users are granted a

ess) vs. false a

eptrate (the rate at whi
h imposters are granted a

ess) is plotted, 
alled theRe
eiver Operating Chara
teristi
 (ROC) 
urve. A good veri�
ation systemshould balan
e these two rates based on operational needs.� Fa
e identi�
ation (\Who am I?") is a one-to-many mat
hing pro
ess that
ompares a query fa
e image against all the template images in a fa
e databaseto determine the identity of the query fa
e (see Fig. 1.2). The identi�
ationof the test image is done by lo
ating the image in the database that has thehighest similarity with the test image. The identi�
ation pro
ess is a \
losed"3



test, whi
h means the sensor takes an observation of an individual that is knownto be in the database. The test subje
t's (normalized) features are 
omparedto the other features in the system's database and a similarity s
ore is foundfor ea
h 
omparison. These similarity s
ores are then numeri
ally ranked in ades
ending order. The per
entage of time the highest similarity s
ore is the
orre
t mat
h for all the individuals is referred to as the \top mat
h s
ore."If any one of the top-r (namely rank) similarity s
ores 
orresponds to the testsubje
t, it is 
onsidered as a 
orre
t mat
h in terms of the 
umulative mat
h.The per
entage of time one of the top-r similarity s
ores is the 
orre
t mat
h forall individuals is referred to as the \Cumulative Mat
h S
ore". The \CumulativeMat
h S
ore" 
urve is the rank-r versus per
entage of 
orre
t identi�
ation,where rank-r is the number of top-r similarity s
ores reported.

Figure 1.2: Fa
e identi�
ation s
enario.4



� The wat
h list (\Are you looking for me?") method is an open-universe test.The test individual may or may not be in the system wat
h list. The query is
ompared to the fa
es in the system's database and a similarity s
ore is reportedfor ea
h 
omparison. These similarity s
ores are then numeri
ally ranked so thatthe highest similarity s
ore is presented �rst. If a similarity s
ore is higher thana preset threshold, an alarm is raised, indi
ating that the individual is presentin the system's database. There are two main items of interest for wat
h listappli
ations. The �rst is the per
entage of time the system raises the alarm andit 
orre
tly identi�es a person on the wat
hlist. This is 
alled the \Dete
tionor Identi�
ation Rate". The se
ond item of interest is the per
entage of timethe system raises the alarm for an individual that is not in the wat
hlist. Thisis 
alled the \False Alarm Rate."
1.2 Challenges in Fa
e Re
ognitionAlthough a great deal of e�ort has been devoted to 2D intensity image based fa
ere
ognition task, it still remains a 
hallenging problem in a general setting. Su

essful2D fa
e re
ognition systems have been deployed only under 
onstrained situations.One major fa
tor limiting the appli
ations of 2D fa
e re
ognition systems is thathuman fa
e image appearan
e has potentially very large intra-subje
t variations dueto � 3D head pose� Illumination (in
luding indoor / outdoor)5



� Fa
ial expression� O

lusion due to other obje
ts or a

essories (e.g., sunglasses, s
arf, et
.)� Fa
ial hair� Aging [97℄.On the other hand, the inter-subje
t variations 
an be small due to the similarity of in-dividual appearan
es. Figure 1.3 gives examples of intra-
lass appearan
e variations.Figure 1.4 illustrates examples of appearan
e variations of di�erent subje
ts. Adiniet al. demonstrated that the variations between the images of the same fa
e due tolighting and viewpoint 
hanges 
ould be larger than the images of di�erent fa
es [23℄.Currently, image-based fa
e re
ognition te
hniques 
an be mainly 
ategorized into twogroups based on the fa
e representation that they use: (i) appearan
e-based, whi
huses holisti
 texture features; (ii) model-based, whi
h employs shape and texture ofthe fa
e, along with 3D depth information.
Figure 1.3: Fa
ial appearan
e variations due to 
hanges of pose, illumination, expres-sion, and fa
ial a

essories (beard).FRVT (Fa
e Re
ognition Vendor Test) [7℄ is an independently administered te
h-nology evaluation of mature fa
e re
ognition systems by NIST. In 2002, ten 
ommer-
ial produ
ts were evaluated in FRVT 2002. The task designed for FRVT is very 
lose6



Figure 1.4: Inter-subje
t variations versus intra-subje
t variations. (a) and (b) areimages from di�erent subje
ts, but their appearan
e variations represented in theinput spa
e 
an be smaller than images from the same subje
t, (b), (
), and (d).These images are taken from the Yale database [18℄.to the real appli
ation s
enarios. On Mar
h 2003, NIST issued the evaluation reportfor FRVT 2002, whi
h reports the then state-of-the-art in fa
e re
ognition [138℄.FRVT 2002 
onsisted of two tests: the High Computational Intensity (HCInt)Test and the Medium Computational Intensity (MCInt) Test. Both tests required thesystem to be fully automati
, and manual intervention was not allowed. Parti
ipants
ould sign up to take either or both tests.The High Computational Intensity (HCInt) Test was designed to test state-of-the-art systems on extremely 
hallenging real-world images. These were full-fa
e stillfrontal images. This test 
ompared still database images against still images of an7



unknown person. The HCInt required parti
ipants to pro
ess a set of approximately121,000 images, and mat
h all possible pairs of images from the 121,000-image set.This required performing 15 billion mat
hes in 242 hours. The results from the HCIntmeasure the performan
e of fa
e re
ognitions systems on large databases, examine thee�e
t of database size on performan
e, and estimate variability in system performan
e.The Medium Computational Intensity (MCInt) Test 
onsisted of two separateparts: still and video. MCInt was designed to provide an understanding of an algo-rithm's 
apability to perform fa
e re
ognition tasks with several di�erent formats ofimagery (still and video) under varying 
onditions. The still portion of the MCInt
ompared a database of still images against still images of unknown people, the im-ages were 
aptured under di�erent s
enarios that di�ered in time between enrollmentand test images, 
hanges in illumination, and variations in pose. The video por-tion of the test was designed to provide an initial assessment of whether or not video(whi
h 
an be viewed as a sequen
e of still images) helps in in
reasing fa
e re
ognitionperforman
e.Figure 1.5 plots identi�
ation performan
e of the top three 
ommer
ial fa
e re
og-nition produ
ts, namely Cognite
, Eyemati
, and Identix, on HCInt dataset. Thedatabase 
onsists of 37,437 individuals. Figure 1.6 demonstrates that the identi�
a-tion rate signi�
antly deteriorates due to the head pose 
hanges.FRVT 2002 results also demonstrate that identi�
ation performan
e is dependenton the size of the database. For every doubling of the database size, performan
ede
reases by 2� 3% points. As the size of the fa
e database in
reases, not only thea

ura
y, but also the sear
h speed be
omes an important issue. Indexing s
hemes 
an8



utilize features of a human fa
e at di�erent levels. Feature points, su
h as eye 
ornersand nose tip, provide fa
ial geometry metri
s, based on whi
h the anthropometri
statisti
s [64℄ 
an be applied; semanti
 features, su
h as gender and ethni
ity, 
an beused to redu
e the sear
h spa
e.

Figure 1.5: Identi�
ation results for the three best fa
e re
ognition systems on HCIntdataset [137℄.Sin
e FRVT 2002, a number of new fa
e re
ognition te
hnologies have been de-veloped that have the promise of improving performan
e by an order of magnitude.The Fa
e Re
ognition Grand Challenge (FRGC) [6℄ was organized to help developnew fa
e re
ognition te
hnologies. It is hoped that FRGC results will be an order ofmagnitude, for example, a
hieving a GAR (genuine a

ept rate) of 98% at FAR (falsea

ept rate) of 0:1%, better than the results obtained in FRVT 2002. The te
hnologiesbeing developed under FRGC in
lude high resolution still images, three dimensionalfa
e s
ans, and multi-sample still imagery. The FRGC is stru
tured into two stages,version 1 (ver1.0) and version 2 (ver2.0). Ver1.0 is designed to introdu
e parti
ipants9



Figure 1.6: Evaluation of non-frontal fa
e identi�
ation tasks [137℄. \Left/right" and\up/down" show identi�
ation rates for the non-frontal images. Left/right (morphed)and up/down (morphed) show identi�
ation rates for the morphed non-frontal images.Performan
e is obtained on a database of 87 individuals.to the FRGC 
hallenge problem format and its supporting infrastru
ture. Ver2.0 isdesigned to 
hallenge resear
hers to meet the FRGC performan
e goal. The FRGCVer2.0 dataset 
ontains about 50; 000 fa
ial re
ordings from 625 subje
ts and six ex-periments. In experiment 1, the gallery 
onsists of a single 
ontrolled still image of aperson and ea
h probe 
onsists of a single 
ontrolled still image. Experiment 2 studiesthe e�e
t of using multiple still images of a person on performan
e, i.e., multiple stillqueries vs. multiple still templates. Experiment 3 measures the performan
e of 3Dfa
e re
ognition. In experiment 3, the gallery and probe set 
onsist of 3D images ofa person. Experiment 4 measures re
ognition performan
e from un
ontrolled images.In experiment 4, the gallery 
onsists of a single 
ontrolled still image, and the probeset 
onsists of a single un
ontrolled still image. Experiments 5 and 6 examine mat
h-10



ing 3D to 2D images. In both these experiments, the gallery 
onsists of 3D images.However, in experiment 5, the probe set 
onsists of a single 
ontrolled still 2D im-age. In experiment 6, the probe set 
onsists of a single un
ontrolled still 2D image.See [135, 136℄ for details of FRGC Ver2.0 proto
ols and the results. FRVT 2006 willdetermine if (i) the goals of FRGC are rea
hed, (ii) progress in fa
e re
ognition sin
eFRVT 2002, and (iii) e�e
tiveness of newly developed fa
e re
ognition te
hnologies.
1.3 Lands
ape of 3D/2D Fa
e Re
ognitionThe human fa
e is a 3D obje
t, 
ontaining shape (3D surfa
e) and texture (2D inten-sity) information. Depending on whi
h modality is used at enrollment and veri�
ationstages, the fa
e re
ognition s
enarios 
an be 
ategorized as shown in Fig. 1.7.

Figure 1.7: Fa
e re
ognition appli
ation s
enarios.While most of the e�ort has been devoted to fa
e re
ognition from two-dimensional(2D) images [184℄, an in
reasing number of approa
hes are utilizing depth informationprovided by 2.5D range images [42, 98, 75, 22, 156, 49, 31, 82, 131, 38, 105, 104℄.11



Current 2D fa
e re
ognition systems 
an a
hieve good performan
e in 
onstrainedenvironments; however, they still en
ounter diÆ
ulties in handling large amountsof fa
ial variations due to head pose, lighting 
onditions, and fa
ial expressions [7℄.Be
ause the human fa
e is a three-dimensional (3D) obje
t whose 2D proje
tion(image or appearan
e) is sensitive to the above 
hanges, utilizing 3D fa
e information
an improve the fa
e re
ognition performan
e [33, 7℄. 3D fa
ial surfa
e does not
hange due to head pose 
hanges, providing a signi�
ant advantage over 2D intensityimages in 
ase of (large) head pose 
hanges. Range images 
aptured expli
itly by a3D sensor (e.g., [4, 13, 10, 8, 2℄) in
orporate fa
ial surfa
e shape information, whi
his related to the fa
ial anatomi
al stru
ture, unlike the appearan
e, whi
h is a�e
tedby the environment. It is also more diÆ
ult to fake a 3D fa
e 
ompared to a 2D fa
eimage to 
ir
umvent the fa
e re
ognition system. In FRGC and FRVT 2006 [6, 7℄, notonly the 2D intensity image, but also the 3D range map is in
luded in the evaluationproto
ols [135℄.Besides the range and intensity maps, thermal and (near) infrared modalities havebeen pursued for fa
e re
ognition [171, 152℄. The thermal imagery has the advantageof handling illumination variations. However, these images depend on a subje
t'smetaboli
 state and are not invariant to pose 
hanges similar to the intensity imagebased fa
e re
ognition systems [152℄. Li et al. [100℄ developed a high-a

ura
y fa
ere
ognition system based on the near-infrared modality using an a
tive illuminationsour
e. Although the system a
hieves a good performan
e under various lighting
onditions, the system is designed for 
ooperative users in appli
ations su
h as a

ess
ontrol, and it is not 
lear if the proposed system 
an handle head pose 
hanges.12



1.4 3D Fa
e Re
ognitionIn this thesis, we address the problem of using both 3D and 2D modalities for fa
ere
ognition. The gallery (template) 
ontains 3D models or 2.5D fa
ial s
ans andthe query/test set 
onsists of multiview 2.5D fa
e s
ans (a 2.5D range image and aregistered 2D intensity images), provided by a 
ommer
ial 3D sensor.In the databases 
olle
ted at Mi
higan State University, all range images (down-sampled to 320 � 240 with a depth resolution of s 0:1mm) were 
olle
ted using aMinolta Vivid 910 s
anner [13℄. The subje
t stands in front of the s
anner at a dis-tan
e of about 1:5m. This s
anner uses stru
tured laser light to 
onstru
t the fa
eimage in less than a se
ond. Ea
h point in a s
an has a 
olor (r, g, b) as well asa lo
ation in 3D spa
e (x; y; z). Ea
h fa
ial s
an has around 18; 000 e�e
tive points(ex
luding the ba
kground). Figure 1.8 shows the data 
olle
tion s
enario and anexample of these s
ans.
(a) (b) (
) (d)Figure 1.8: An example of Minolta Vivid 910 fa
ial s
an. (a) data 
apture s
enario;(b) intensity (texture) image; (
) range image, showing points 
loser to the sensor inred; (d) 3D visualization.Ea
h s
an provided by the Minolta sensor is 
alled a 2.5D s
an, whi
h is a sim-pli�ed 3D (x, y, z) surfa
e representation that 
ontains at most one depth value (zdire
tion) for every point in the (x, y) plane, asso
iated with a registered 
olor im-13



age, see Fig. 1.8 for an example. Ea
h 2.5D s
an 
an only provide a single viewpoint (partial view) of the obje
t (see Figures 1.9 and 1.10), instead of the full 3Dview. However, during the training (enrollment) stage, a 3D fa
e model 
an be 
on-stru
ted by taking several s
ans from di�erent viewpoints. We address the s
enariothat mat
hes a 2.5D fa
ial test s
an to 3D models stored in a gallery (2.5D vs. 3D).Currently, mat
hing 2.5D s
ans to 3D models has a limited range of appli
ations,su
h as middle-to-high se
urity a

ess 
ontrol, due to the relatively high 
ost of 3Ddata 
apture. But, with 
ontinued progress in 3D imaging te
hnology [19, 20℄, 
ost-e�e
tive non-intrusive 3D data 
apture will be
ome available in the very near future.The 3D fa
ial stru
ture re
onstru
tion from images has re
eived substantial attention[47, 182, 121, 33℄, not only to improve the visual quality, but also for improving themetri
al a

ura
y [57℄. 3D model 
onstru
tion based on 2.5D s
ans is presented inChapter 4.Although 3D fa
e models provide a more 
omplete representation than a 2.5Dfa
e s
an, a single 2.5D fa
e s
an 
an also be used as a template. In this thesis, theproposed algorithms, in
luding feature extra
tion, 3D fa
e mat
hing, and deformationanalysis, are also appli
able to the s
enarios of mat
hing multiview 2.5D fa
e s
ansto 2.5D fa
e s
ans (2.5D vs. 2.5D, whi
h is used in FRGC and FRVT 2006). Weevaluate the proposed algorithms in both s
enarios (2.5D vs. 3D; and 2.5D vs. 2.5D).
1.5 DatabaseFive databases are used in our experiments.14



(a)
(b)Figure 1.9: A frontal 2.5D s
an viewed from di�erent viewpoints (a) and the full 3Dmodel (b).1.5.1 Mi
higan State University Database I (MSU-I)Currently, there is no publi
ly available multiview range (with registered texture)fa
e database, along with expression variations. We 
olle
ted the multiview MSU-Idatabase that 
ontained 100 subje
ts. Five s
ans with neutral expression for ea
hsubje
t were 
aptured to 
onstru
t the 3D model (see Se
. 4.1 for details). For ea
hsubje
t, another six s
ans were 
aptured for testing, in
luding 3 s
ans with neutralexpression and 3 with smiling expression. The s
an proto
ol used for ea
h subje
t isdemonstrated in Fig. 1.11. For a few subje
ts, we had fewer than 6 test s
ans. In total,the test database 
onsists of 598 independent s
ans (di�erent from training s
ans) ofthe same 100 subje
ts. All the s
ans varied in pose and fa
ial expression (only smilingexpression was available at the time of 
olle
tion). The test data distribution is listedin Table 1.1. In this thesis, the `pro�le' is used as the 
ounterpart of the `frontal'to des
ribe the pose of the s
an. In the MSU-I database, the `pro�le' s
ans were
aptured at more than 45 degrees from the frontal pose at ea
h side. Representative15



(a)
(b)Figure 1.10: (a) One pro�le range s
an viewed at di�erent viewpoints; (b) the full 3Dmodel.3D models and test s
ans are shown in Figs. 1.12 and 1.13, respe
tively.Table 1.1: Test data distribution in the MSU-I database.Frontal Pro�le SubtotalNeutral 99 213 312Smiling 98 188 286Subtotal 197 401 598

1.5.2 Mi
higan State University Database II (MSU-II)This database 
ontains multiple expressions and multiple poses simultaneously. Thereare 10 subje
ts in this database. Five s
ans with neutral expression for ea
h subje
twere 
aptured to 
onstru
t the 3D model. Test s
ans are 
aptured at 3 di�erentposes (frontal, left 30 degrees, left 60 degrees) with 7 di�erent expressions, whi
h areneutral, happy, angry, smile, surprise, de
ated, in
ated [38℄. The 
olle
tion proto
olfor one subje
t is provided in Fig. 1.14. In total, there are 210 (3� 7� 10) s
ans and10 3D gallery models. 16



(a) (b) (
) (d) (e)(f) (g) (h) (i) (j) (k)Figure 1.11: An example of data 
olle
tion for ea
h individual in the MSU-I database.(a)-(e) are used for 
onstru
ting the 3D model stored in the training database. (f)-(k) are used for testing, whi
h 
ontains variations in pose, lighting, and expression(smiling).
Figure 1.12: Some of the 3D fa
e models in the MSU-I database.1.5.3 University of South Florida database (USF)The USF database [16℄ provided by University of South Florida 
ontains 100 3Dfull-view fa
e models with neutral expression 
aptured by a Cyberware s
anner [4℄.Figure 1.15 shows 3D model examples in the USF database. No 2.5D test s
ans areavailable in the USF database.1.5.4 University of Notre Dame database (UND)The UND database is provided by University of Notre Dame 1 [43℄. It 
onsists of 953fa
ial s
ans from 277 subje
ts. All s
ans are frontal, with neutral expression. Similarto the MSU databases, this data was also 
olle
ted using Minolta 3D s
anner and1The database 
an be a

essed at http://www.nd.edu/�
vrl/UNDBiometri
sDatabase.html.17



Figure 1.13: Representative 2.5D test s
ans in the MSU-I database. Range map (top)and intensity map (bottom).downsampled to 320� 240 to redu
e 
omputational 
ost. Examples are provided inFig. 1.16. There is no 3D fa
e model available in the UND database. This databasealso 
overs the dataset used for 3D fa
e mat
hing in FRGC Ver1.0.1.5.5 FRGC Ver2.0 fa
e s
an databaseThe FRGC Ver2.0 fa
e s
an database 
ontains only (near) frontal 2.5D fa
ial s
ansand no 3D models are available. There are 4007 2.5D fa
e s
ans from 465 subje
ts,
aptured during Fall 2003 and Spring 2004 by a Minolta Vivid 900/910 series s
anner.In addition to the neutral expression, there are a number of expressions in
luded, su
has smiling (happiness), frown, astonishing (surprise), and pu�y 
heeks. See Fig. 1.17for examples. All s
ans were downsampled to 320�240 to redu
e 
omputational 
ost.
1.6 Thesis OutlineThis thesis is organized as follows: Chapter 2 presents a literature review of 2Dand 3D fa
e re
ognition. Chapter 3 des
ribes our automati
 fa
ial feature dete
tion18



Figure 1.14: Data 
olle
tion for the MSU-II database (7 expressions at 3 poses).
Figure 1.15: Some of the 3D fa
e models in the USF database.algorithm. In Chapter 4, we integrate both range and intensity modalities from fa
ials
ans to enhan
e the fa
e re
ognition a
ross large pose 
hanges. Chapter 5 proposesdeformation analysis for robust 3D fa
ial surfa
e mat
hing. Chapter 6 summarizesthe proposed work and presents the future dire
tions related to this work.

1.7 Thesis ContributionsFigure 1.18 illustrates the major framework of the proposed 3D fa
e mat
hing system.19



Figure 1.16: Example images in the UND database. Intensity images (top) and the
orresponding range images (bottom). From left to right, they are non-Asian female,non-Asian male, Asian female, and Asian male.Unlike previous work on 3D fa
e re
ognition, whi
h is mostly fo
used on mat
h-ing frontal test s
ans, our work is fo
used on mat
hing test/query s
ans 
apturedat large viewpoint 
hanges along with non-rigid deformations (e.g., expression varia-tions). The deformation is dire
tly analyzed in three-dimensional domain instead of2D texture images. The major 
ontributions of this thesis in
lude:1. 3D Mat
hing in the presen
e of large pose 
hanges. 3D fa
ial shape is utilizedto enhan
e the re
ognition performan
e.2. An automati
 feature extra
tion s
heme to lo
ate feature points in 2.5D s
answith large pose 
hanges, leading to a fully automati
 3D fa
e mat
hing system.3. Integration of surfa
e and appearan
e information to improve the re
ognitionperforman
e. 20



(a) (b) (
) (d) (e) (f)Figure 1.17: Example images in the FRGC Ver2.0 database, from the same subje
tbut with di�erent fa
ial expressions. (a) Neutral, (b) smile, (
) sad, (d) pu�y fa
e,(e) frown, (f) surprise. Intensity images (top) and the 
orresponding range images(bottom).4. A hierar
hi
al fa
ial surfa
e resampling s
heme to establish 
orresponden
e be-tween fa
ial s
ans (from di�erent subje
ts or from the same subje
t but withdi�erent expressions), whi
h 
an be used for 3D fa
e modeling.5. A framework for robust 3D fa
e surfa
e mat
hing in the presen
e of non-rigiddeformation (due to expression 
hanges) a
ross large pose 
hanges.

Figure 1.18: A s
hemati
 diagram of the proposed 3D fa
e mat
hing system.21



Chapter 2
Ba
kground
A great deal of progress has been made in improving the fa
e re
ognition performan
e,sin
e the early work on image based fa
e re
ognition systems in 1970s [73, 90℄. Fa
ere
ognition has attra
ted the attention of resear
hers from many di�erent areas, in-
luding 
omputer vision, pattern re
ognition, ma
hine learning, 
omputer graphi
s,and 
ognitive s
ien
e.
2.1 2D Image-Based Fa
e Re
ognitionBased on two-dimensional intensity images, a number of fa
e re
ognition algorithmshave been developed during the past three de
ades (see Fig. 2.1).2.1.1 Appearan
e-Based Fa
e Re
ognitionMany approa
hes to obje
t re
ognition are based dire
tly on images without the useof 3D fa
e models. Most of these te
hniques depend on a representation of fa
e images22



Figure 2.1: Major image based fa
e re
ognition methods.that indu
es a ve
tor spa
e stru
ture.Appearan
e-based approa
hes represent an obje
t in terms of several obje
t views(raw intensity images). An image is 
onsidered as a high-dimensional ve
tor, i.e., apoint in a high-dimensional ve
tor spa
e. Many view-based approa
hes use statisti
alte
hniques to analyze the distribution of the obje
t image in the ve
tor spa
e, andderive an eÆ
ient and e�e
tive representation (feature spa
e) a

ording to di�erentappli
ations. Given a test image, the similarity between the stored prototypes andthe test view is then 
arried out in the feature spa
e.Image data 
an be represented as ve
tors, i.e., as points in a high dimensionalve
tor spa
e. For example, a p � q 2D image 
an be mapped to a ve
tor x 2 Rpq,by lexi
ographi
 ordering of the pixel elements (su
h as by 
on
atenating ea
h rowor 
olumn of the image). Despite this high-dimensional embedding, the natural 
on-straints of the physi
al world (and the imaging pro
ess) di
tate that the data will,in fa
t, lie in a lower-dimensional (though possibly disjoint) manifold. The primarygoal of the subspa
e analysis is to identify, represent, and parameterize this manifold23



in a

ordan
e with some optimality 
riteria.
Let X = (x1; x2; : : : ; xi; : : : ; xN) represent the n�N data matrix, where ea
h xi isa fa
e ve
tor of dimension n, 
on
atenated from a p� q fa
e image, where n = p� q.Here n represents the total number of pixels in the fa
e image and N is the numberof di�erent fa
e images in the training set. The mean ve
tor of the training images� = 1N PNi=1 xi is subtra
ted from ea
h image ve
tor for normalization.
All the p� q images (with 256 gray s
ale) 
onstru
t the image spa
e. Ea
h image(ve
tor) 
orresponds to a point in this spa
e. Out of total (p�q)256 possible instan
esin this image spa
e, human fa
e images only reside in a very small portion. Themanifold or the distribution of all fa
es a

ounts for variations in fa
ial appearan
e.To analyze this fa
e manifold, both linear or nonlinear subspa
e analysis methods 
anbe applied. Although linear subspa
e analysis approa
hes have signi�
antly advan
edfa
ial re
ognition te
hnology, due to high nonlinearity of the fa
e manifolds [99℄, linearsubspa
e analysis does not have suÆ
ient modeling 
apa
ity to preserve the variationsof the fa
e manifold and distinguish between individuals to a
hieve highly a

uratefa
e re
ognition. Re
ent developments in nonlinear manifold analysis provide more
exibility and modeling power to analyze fa
e manifolds. However, the generalization
apability of nonlinear methods is a�e
ted by the sample size in real appli
ations,i.e., small number of fa
e sample images available for training 
ompared to the largevariations of fa
ial appearan
e in testing, leading to over�tting [142℄.24



Linear (subspa
e) AnalysisThree 
lassi
al linear appearan
e-based 
lassi�ers, PCA [162℄, ICA [24℄ and LDA[155, 27℄ are introdu
ed here. Ea
h 
lassi�er has its own representation (basis ve
tors)of a high dimensional fa
e ve
tor spa
e based on di�erent statisti
al viewpoints. Byproje
ting the fa
e ve
tor to the basis ve
tors, the proje
tion 
oeÆ
ients are used asthe feature representation of ea
h fa
e image. The mat
hing s
ore between the testfa
e image and the training prototype is 
al
ulated (e.g., as the 
osine value of theangle) between their 
oeÆ
ient ve
tors. The larger the mat
hing s
ore, the betterthe mat
h.All the three representations 
an be 
onsidered as a linear transformation fromthe original image ve
tor to a proje
tion feature ve
tor, i.e.Y =W TX; (2.1)where Y is the d�N feature ve
tor matrix, d is the dimension of the feature ve
tor,and W is the transformation matrix. Note that d << n.(1) PCAPrin
ipal Component Analysis (PCA) �nds Y , whi
h best a

ounts for the distri-bution of fa
e images within the entire image spa
e [162℄. These ve
tors de�ne thesubspa
e of fa
e images, and the subspa
e is 
alled the fa
e spa
e. All fa
es in thetraining set are proje
ted onto the fa
e spa
e to �nd a set of weights that des
ribes the
ontribution of ea
h ve
tor in the fa
e spa
e. To identify a test image, one needs to25



proje
t the test image onto the fa
e spa
e to obtain the 
orresponding set of weights.By 
omparing the weights for the test image with the set of weights of the fa
es inthe training set, the fa
e in the test image 
an be identi�ed.
The key pro
edure in PCA is based on Karhunen-Loeve transformation [92℄. Ifthe image elements are 
onsidered to be random variables, the image may be seenas a sample of a sto
hasti
 pro
ess. The Prin
ipal Component Analysis basis ve
torsare de�ned as the eigenve
tors of the n� n total s
atter matrix ST ,ST = NXi=1 (xi � �)(xi � �)T : (2.2)The transformation matrix WPCA is 
omposed of the eigenve
tors 
orresponding tothe d largest eigenvalues. The eigenve
tors (a.k.a. eigenfa
e) 
orresponding to the 7largest eigenvalues, derived from ORL fa
e database [15℄, are shown in Fig. 2.4. The
orresponding average fa
e is given in Fig. 2.3. ORL fa
e samples are provided inFig. 2.2. After applying the proje
tion, the input ve
tor (fa
e) in an n-dimensionalspa
e is redu
ed to a feature ve
tor in a d-dimensional subspa
e. Also the eigenve
-tors 
orresponding to the 7 smallest eigenvalues are provided in Fig. 2.5. For mostappli
ations, the eigenve
tors 
orresponding to very small eigenvalues are 
onsideredas noise, and not taken into a

ount during identi�
ation. Several extensions of PCA,su
h as modular eigenspa
es [134℄, have been developed to deal with pose 
hanges andprobabilisti
 subspa
es [120℄ in order to derive a more meaningful similarity measureunder the probabilisti
 framework. 26



Figure 2.2: Fa
e samples from the ORL fa
e database.
Figure 2.3: The average fa
e (derived from the ORL fa
e database [15℄).(2) ICAIndependent Component Analysis (ICA) [87℄ is similar to PCA ex
ept that thedistribution of the 
omponents are designed to be non-Gaussian. Maximizing non-Gaussianity promotes statisti
al independen
e [87℄. Unlike PCA, whi
h utilizes these
ond-order statisti
s, ICA explores higher order statisti
s.

Figure 2.4: Eigenve
tors (eigenfa
es) 
orresponding to the 7 largest eigenvalues,shown as p � p images, where p � p = n (derived from the ORL fa
e database[15℄). 27



Figure 2.5: Eigenve
tors 
orresponding to the 7 smallest eigenvalues, shown as p� pimages, where p� p = n (derived from the ORL fa
e database [15℄).Bartlett et al. [24℄ provided two ar
hite
tures based on Independent ComponentAnalysis, statisti
ally independent basis images and a fa
torial 
ode representation,for the fa
e re
ognition task. The ICA separates the high-order moments of the inputin addition to the se
ond-order moments utilized in PCA. Both the ar
hite
tures leadto a similar performan
e. The basis ve
tors based on fast �xed-point algorithm [86℄for the ICA fa
torial 
ode representation are illustrated in Fig. 2.6. There is no spe
ialorder imposed on the ICA basis ve
tors.
Figure 2.6: ICA basis ve
tors shown as p�p images; there is no spe
ial order for ICAbasis ve
tors (derived from the ORL fa
e database [15℄, based on the se
ond ar
hite
h-ture [25℄). The software available at http://www.
is.hut.�/proje
ts/i
a/fasti
a/ wasused to 
ompute ICA.(3). LDABoth PCA and ICA are unsupervised methods that 
onstru
t the fa
e spa
e with-out using the fa
e 
lass (
ategory) information. In linear dis
riminant analysis (LDA),the goal is to �nd an \optimal" way to represent the fa
e ve
tor spa
e to maximizethe dis
rimination between di�erent fa
e 
lasses. Exploiting the 
lass information 
an28



be helpful to the identi�
ation tasks [27℄.The Fisherfa
e algorithm [27℄ is derived from the Fisher Linear Dis
riminant(FLD), whi
h uses 
lass spe
i�
 information. By de�ning di�erent 
lasses with di�er-ent statisti
s, the images in the learning set are divided into the 
orresponding 
lasses.Then, te
hniques similar to those used in the Eigenfa
e algorithm are applied. In gen-eral, the Fisherfa
e algorithm results in a higher a

ura
y rate in re
ognizing fa
es
ompared to the Eigenfa
e algorithm.The Linear Dis
riminant Analysis �nds a transform WLDA, su
h thatWLDA = argmaxW W TSBWW TSWW ; (2.3)where SB is the between-
lass s
atter matrix and SW is the within-
lass s
atter matrix,de�ned as SB = 
Xi=1 Ni(xi � �)(xi � �)T ; (2.4)
SW =X
i=1Xxk2Xi (xk � �i)(xk � �i)T : (2.5)In the above expression, Ni is the number of training samples in 
lass i, 
 is thenumber of distin
t 
lasses, �i is the mean ve
tor of samples belonging to 
lass i andXi represents the set of samples belonging to 
lass i. The LDA basis ve
tors aredemonstrated in Fig. 2.7.Table 2.1 lists the major advantages and weakness of these three appearan
e-based29



Figure 2.7: First seven LDA basis ve
tors shown as p � p images (derived from theORL fa
e database [15℄).approa
hes.Table 2.1: Pros and 
ons of three linear appearan
e-based methods.Advantages DisadvantagesPCA � The most des
riptive repre-sentation in terms of the leastsquare re
onstru
tion errors� Easy to implement. Usuallyused as the baseline algorithm
� It is not the most dis
rimina-tive for 
lass separation, sin
eit does not take any 
lass la-bel information into a

ount.ICA � Utilizes higher-order statis-ti
s, instead of only these
ond-order statisti
s inPCA � No general 
losed-form solu-tion. Iterative methods areused to obtain the ICA rep-resentationLDA � Utilizes the 
lass label infor-mation in the derivation ofthe representation for the fa
ere
ognition task, a 
lassi�
a-tion problem. � Small sample size problemarising from the small numberof available training samples
ompared to the dimensional-ity of the sample spa
eMu
h progress has been re
ently made on linear subspa
e analysis for fa
e re
ogni-tion, su
h as multilinear analysis, two-dimensional PCA, and 2D Fisher dis
riminantanalysis. Vasiles
u and Terzopoulos [164℄ proposed an approa
h based on multilin-ear tensor de
omposition of image ensembles, utilizing the higher-order tensors based30



multilinear algebra to resolve the 
onfusion of multiple fa
tors 
ontained in the samefa
e re
ognition system, su
h as illumination and pose. The resulting representationof fa
ial images was 
alled TensorFa
es. Instead of representing the image as a ve
tor,Yang et al. [176℄ 
onsidered an image as a 2D matrix and developed a two-dimensionalPCA algorithm for fa
e re
ognition. Using the 2D matrix representation of fa
ial im-ages, Kong et al. [95℄ generalized the 
onventional LDA into 2D Fisher dis
riminantanalysis and applied it to fa
e re
ognition.Non-linear (manifold) AnalysisThe fa
e manifold is more 
ompli
ated than linear models. Linear subspa
e analysisis an approximation of this non-linear manifold. Dire
t non-linear manifold modelings
hemes are explored to learn this non-linear manifold. The kernel prin
ipal 
ompo-nent analysis (KPCA) is introdu
ed in the following along with several other manifoldlearning algorithms.The kernel PCA [149℄ applies a nonlinear mapping from the input spa
e RM tothe feature spa
e RL, denoted by 	(x), where L is larger than M . This mapping ismade impli
it by the use of kernel fun
tions satisfying the Mer
er's 
ondition [163℄k(xi; xj) = 	(xi) �	(xj); (2.6)where kernel fun
tions k(xi; xj) in the input spa
e 
orrespond to inner-produ
t in thehigher dimensional feature spa
e. Be
ause 
omputing the 
ovarian
e matrix is basedon inner-produ
ts, performing a PCA in the feature spa
e 
an be formulated with31



kernels in the input spa
e without the expli
it 
omputation of 	(x). Suppose the
ovarian
e matrix in the feature spa
e is 
al
ulated as�K = < 	(xi)	(xi)T > : (2.7)The 
orresponding eigen-problem is �V = �KV . It has been proved [149℄ that V 
anbe expressed as V =PNi=1wi	(xi), where N is the total number of training samples.The equivalent eigenvalue problem 
an be formulated in terms of kernels in the inputspa
e N�w = Kw; (2.8)where w is a N -dimensional ve
tor, K is a N �N matrix with Kij = k(xi; xj).The proje
tion of a sample x onto the nth eigenve
tor V n 
an be 
al
ulated bypn = (V n �	(x)) = NXi=1 wni k(xi; xj): (2.9)Figure 2.8 gives a 2D example of KPCA to demonstrate the derived representation.Similar to traditional PCA, the proje
tion 
oeÆ
ients are used as features for fa
e
lassi�
ation. Yang [178℄ explored the use of KPCA for the fa
e re
ognition prob-lem. Unlike traditional PCA, KPCA representation (proje
tion 
oeÆ
ient ve
tor)
an have higher dimensionality than the input image. But a suitable kernel and the
orresponding parameters 
an only be determined empiri
ally.Manifold learning has attra
ted mu
h attention in the ma
hine learning 
om-munity. ISOMAP [158℄ and LLE [143℄ have been proposed to learn the non-linear32



Figure 2.8: Contour plots of the �rst six prin
ipal 
omponent proje
tions. Ea
h
ontour 
ontains the same proje
tion values onto the 
orresponding eigenve
tors.Data is generated by 3 Gaussian 
lusters. A RBF kernel is used. The 
orrespondingeigenvalues are given above ea
h subplot. Noti
e that the �rst three 
omponents havethe potential to extra
t the individual 
lusters [149℄.manifold, where the learned manifold has been shown for fa
e images. Yang [177℄applied LDA to the fa
e re
ognition problem using geodesi
 distan
e, whi
h is thebasis of the ISOMAP. He et al. [80℄ proposed a `lapla
ianfa
es' approa
h based onthe lo
ality preserving proje
tions to represent the fa
e subspa
e. These manifoldlearning algorithms are interesting, but further exploration is needed to demonstratetheir performan
e in fa
e re
ognition for real appli
ations.Current appearan
e-based fa
e re
ognition systems en
ounter diÆ
ulties in pra
-ti
e due to the small number of available training fa
e images and 
omplex fa
ialvariations en
ountered in the test images. Human fa
e appearan
e has a number ofvariations resulting from varying lighting 
onditions, di�erent head pose, and fa
ialexpressions. In real-world situations, only a small number of samples for ea
h sub-33



je
t are available for training. If a suÆ
ient amount of representative data is notavailable, Martinez and Kak [119℄ showed that the swit
h from nondis
riminant te
h-niques (e.g., PCA) to dis
riminant approa
hes (e.g., LDA) is not always warrantedand may sometimes lead to poor system design. Therefore, fa
e synthesis, whereadditional training samples 
an be generated from the available samples, is helpful toenhan
e the performan
e of fa
e re
ognition systems [165, 183, 106℄. Further, te
h-niques su
h as 
lassi�er 
ombination [116℄ and data resampling [111℄ 
an help enhan
ethe a

ura
y of the appearan
e-based fa
e re
ognition system.
2.1.2 Model-based fa
e re
ognitionThe model-based fa
e re
ognition s
heme 
onstru
ts a model of the human fa
e, whi
his able to 
apture the fa
ial variations. The prior knowledge of a human fa
e is utilizedin model 
onstru
tion. For example, feature-based mat
hing derives distan
e andrelative position features between fa
ial elements (e.g., eyes, nose ....). Kanade [90℄developed one of the earliest fa
e re
ognition algorithms based on automati
 featuredete
tion. By lo
alizing the 
orners of the eyes, nostrils, et
. in frontal views, hissystem 
omputed parameters for ea
h fa
e, whi
h were 
ompared (using a Eu
lideanmetri
) against the parameters of known fa
es. A more re
ent feature-based system,based on elasti
 bun
h graph mat
hing, was developed by Wiskott et al. [173℄ as anextension to their original graph mat
hing system [96℄. By integrating both shapeand texture, Cootes et al. [51, 61℄ developed a 2D morphable fa
e model, throughwhi
h the fa
e variations are learned. Blanz and Vetter explored a more advan
ed34



3D morphable fa
e model to 
apture the true 3D stru
ture of human fa
e surfa
ealong with fa
ial appearan
e [33℄. Both morphable model methods 
ome under theframework of `interpretation through synthesis'.The model-based s
heme usually 
ontains three steps: 1) Constru
ting the model,2) �tting the model to the given fa
e image, and 3) using the parameters of the �ttedmodel as the feature ve
tor to 
al
ulate the similarity between the query fa
e andprototype fa
es in the database to perform the re
ognition.Feature-based Elasti
 Bun
h Graph Mat
hing(1) Bun
h GraphAll human fa
es share a similar topologi
al stru
ture. Wiskott et al. presenta general in-
lass re
ognition method for 
lassifying members of a known 
lass ofobje
ts. Fa
es are represented as graphs, with nodes positioned at �du
ial points(su
h as the eyes, the tip of the nose, some 
ontour points, et
.; see Fig. 2.9), andedges labeled with 2-D distan
e ve
tors.

Figure 2.9: Multiview fa
es overlaid with labeled graphs [173℄.Ea
h node 
ontains a set of 40 
omplex Gabor wavelet 
oeÆ
ients, in
luding both35



phase and magnitude, known as a jet (shown in Fig. 2.10). Wavelet 
oeÆ
ients areextra
ted using a family of Gabor kernels with 5 di�erent spatial frequen
ies and 8orientations; all kernels are normalized to be of zero mean.

Figure 2.10: A Gabor jet [96℄ 
ontains the phase and magnitude of the 
oeÆ
ientsobtained from the 
onvolution between Gabor �lters and the orginal image.Fa
e re
ognition is based on labeled graphs. A labeled graph is a set of nodes 
on-ne
ted by edges; nodes are labeled with jets; edges are labeled with distan
es. Thus,the geometry of an obje
t is en
oded by the edges while the gray value distributionis pat
h-wise en
oded by the nodes (jets). An example is shown in Fig. 2.11.While individual fa
es 
an be represented by simple labeled graphs, a fa
e 
lassrequires a more 
omprehensive representation in order to a

ount for all kinds ofvariations within the 
lass. The Fa
e Bun
h Graph has a sta
k-like stru
ture that
ombines graphs of individual sample fa
es, as demonstrated in Fig. 2.12. It is 
ru
ialthat the individual graphs all have the same stru
ture and that the nodes refer to thesame �du
ial points. All jets referring to the same �du
ial point, e.g., all left-eye jets,are bundled together in a bun
h, from whi
h one 
an sele
t any jet as an alternative36



Figure 2.11: Labeled graph [96℄. Ea
h node is a set of jets. The edges 
onne
tingnodes denote the distan
es, en
oding the geometry of the (fa
e) obje
t.des
ription. The left-eye bun
h might 
ontain a male-like eye, a female-like eye, both
losed or open, et
. Ea
h �du
ial point is represented by a set of alternatives andfrom ea
h bun
h any jet 
an be sele
ted independently of the jets sele
ted from theother bun
hes. This provides full 
ombinatorial power of this representation even ifit is 
onstru
ted only from a few graphs.(2) Elasti
 Graph Mat
hingTo identify a new fa
e, the fa
e graph is positioned on the fa
e image using elasti
bun
h graph mat
hing. The goal of Elasti
 graph mat
hing is to �nd the �du
ialpoints on a query image and thus to extra
t from the image a graph whi
h maximizesthe graph similarity fun
tion. This is performed automati
ally if the fa
e bun
hgraph (FBG) is appropriately initialized. A fa
e bun
h graph (FBG) 
onsists of a
olle
tion of individual fa
e model graphs 
ombined into a sta
k-like stru
ture, in37



Figure 2.12: The left �gure shows a sket
h of a fa
e bun
h graph [173℄. Ea
hof the nine nodes is labeled with a bun
h of six jets. From ea
h bun
h, oneparti
ular jet has been sele
ted, indi
ated as gray. The a
tual sele
tion dependson the test image, e.g., the fa
e onto whi
h the fa
e bun
h graph is mat
hed.Though 
onstru
ted from six sample fa
es only, this bun
h graph 
an potentiallyrepresent 69 = 10; 077; 696 di�erent fa
es. The right �gure shows the same 
on-
ept interpreted slightly di�erently by Tullio Peri
oli (\Un�nished Portrait" 1985)[http://www.
nl.salk.edu/�wiskott/Proje
ts/Bun
hGraph.html℄.whi
h ea
h node 
ontains the jets of all previously initialized fa
es from the database.To position the grid on a new fa
e, the graph similarity between the image graph andthe existing FBG is maximized. Graph similarity is de�ned as the average of the bestpossible mat
h between the new image and any fa
e stored within the FBG minus atopographi
al term (see Eq. 2.11), whi
h a

ounts for distortion between the imagegrid and the FBG. Let S� be the similarity between two jets, de�ned asS�(J; J 0) = Pj aja0j 
os(�j � �0j � ~d~kj)qPj a2jPj a02j ; (2.10)where aj and �j are magnitude and phase of the Gabor 
oeÆ
ients in the jth jet,respe
tively; ~d is the displa
ement between lo
ations of the two jets; ~kj determines38



the wavelength and orientation of the Gabor wavelet kernels [96℄. For an image graphGI with nodes n = 1; : : : ; N and edges e = 1; : : : ; E and an FBG B with model graphsm = 1; : : : ;M , the graph similarity is de�ned asSB(GI ; B) = 1NXn maxS�(JIn; JBmn )� �EXe (�~xIe ��~xBe )2(�~xBe )2 ; (2.11)where � determines the relative importan
e of jets and metri
 stru
ture, Jn is the jetat node n, and �~xe is the distan
e ve
tor used as labels at edges e. After the gridhas been positioned on the new fa
e, the fa
e is identi�ed by 
omparing the similaritybetween that fa
e and every fa
e stored in the FBG. Graphs 
an be easily translated,rotated, s
aled, and elasti
ally deformed, thus 
ompensating for the varian
e in fa
eimages, whi
h is 
ommonly en
ountered in a re
ognition pro
ess.AAM - A 2D Morphable ModelAn A
tive Appearan
e Model (AAM) is an integrated statisti
al model that 
ombinesa model of shape variation with a model of the appearan
e variations in a shape-normalized frame. An AAM 
ontains a statisti
al model of the shape and gray-levelappearan
e of the obje
t of interest, a model that 
an generalize to almost any validexample. Mat
hing to an image involves �nding model parameters that minimize thedi�eren
e between the image and a synthesized model example, whi
h is proje
tedonto the image. The potentially large number of parameters makes this a diÆ
ultproblem.(1) AAM Constru
tion 39



The AAM is 
onstru
ted based on a training set of labeled images, where landmarkpoints are marked on ea
h example fa
e at key positions to outline the main features(shown in Fig. 2.13). To ensure the pre
ise lo
ation of landmarks, manual labeling isneeded in the 
urrent model 
onstru
tion s
heme [53, 99℄.

Figure 2.13: The training image is split into shape and shape-normalized texture [52℄.The shape of a fa
e is represented by a ve
tor 
onsisting of the positions of thelandmarks, S = (x1; y1; : : : ; xn; yn)T , where (xj; yj) denotes the 2D image 
oordinateof the jth landmark point. All shape ve
tors of fa
es are normalized into a 
ommon
oordinate system. The prin
ipal 
omponent analysis is applied to this set of shapeve
tors to 
onstru
t the fa
e shape model, denoted as: S = �S + PSBS, where S is ashape ve
tor, �S is the mean shape, PS is a set of orthogonal modes of shape variation,and BS is a set of shape parameters.In order to 
onstru
t the appearan
e model, the example image is warped tomake the 
ontrol points mat
h the mean shape. Then the warped image region
overed by the mean shape is sampled to extra
t the gray level intensity (texture)information. Similar to the shape model 
onstru
tion, a ve
tor representation isgenerated, G = (I1; : : : ; Im)T , where Ij denotes the intensity of the sampled pixel inthe warped image. PCA is also applied to 
onstru
t a linear model G = �G+ PGBG ,40



where �G is the mean appearan
e ve
tor, PG is a set of orthogonal modes of gray-levelvariation, and BG is a set of gray-level model parameters.Thus, the shape and texture of any example fa
e 
an be summarized by the ve
torsBS and BG. The 
ombined model is the 
on
atenated version of BS and BG, denotedas follows: B = 0BB� WSBSBG 1CCA = 0BB� WSP TS (S � �S)P TG (G� �G) 1CCA ; (2.12)whereWS is a diagonal matrix of weights for ea
h shape parameter, as a normalizationfa
tor, allowing for the di�eren
e in units between the shape and gray s
ale models.PCA is applied to ve
tor B also, B = QC, where C is the ve
tor of parameters forthe 
ombined model.The model was built based on 400 fa
e images, ea
h with 122 landmark points[61℄. A shape model with 23 parameters, a shape-normalized texture model with113 parameters, and a 
ombined appearan
e model with 80 parameters (
ontaining98% variations of the observation) are generated. The model used about 10,000 pixelvalues to make up the fa
e.(2) AAM FittingGiven a test image and the fa
e model, the metri
 used to measure the mat
hquality between the model and image is � = jÆIj2, where ÆI is the ve
tor of intensitydi�eren
es between the given image and the synthesized image generated by themodel tuned by the model parameters, 
alled the residual. The AAM �tting seeksthe optimal set of model parameters that best des
ribes the given image. Cootes41



[51℄ observed that displa
ing ea
h model parameter from the 
orre
t value indu
es aparti
ular pattern in the residuals. In the training phase, AAM learns a linear modelthat 
aptures the relationship between parameter displa
ements and the indu
edresiduals. During the model �tting, it measures the residuals and uses this model to
orre
t the values of 
urrent parameters, leading to a better �t. Figure 2.14 showstwo examples of the iterative AAM �tting pro
ess.

Initial Iteration #3 Iteration #8 Iteration #11 Converged OriginalFigure 2.14: Examples of the AAM �tting iterations [52℄.(3) Fa
e Re
ognition by AAMFor all the training images, the 
orresponding model parameter ve
tors are used asthe feature ve
tors. Linear dis
riminant analysis is utilized to 
onstru
t the dis
rim-inant subspa
e for fa
e identity re
ognition. Given a query image, the AAM �ttingis applied to extra
t the 
orresponding feature ve
tor. The re
ognition is a
hievedby �nding the best mat
h between the query feature ve
tor and the stored prototypefeature ve
tors, both of whi
h are proje
ted onto the dis
riminant subspa
e.42



3D Morphable ModelThe human fa
e is a surfa
e that lies intrinsi
ally in the 3D spa
e. Therefore, inprin
iple, the 3D model is better for representing fa
es, espe
ially to handle fa
ialvariations, su
h as pose and illumination. Blanz et al. [32, 34℄ proposed a methodbased on a 3D morphable fa
e model that en
odes shape and texture in terms of modelparameters and an algorithm that re
overs these parameters from a single image of afa
e. For fa
e identi�
ation, they used the shape and texture parameters of the modelthat are separated from imaging parameters, su
h as pose and illumination. Fig. 2.15illustrates the s
heme. To handle the extreme image variations indu
ed by these pa-rameters, one 
ommon approa
h taken by various resear
h groups is to use generativeimage models. For image analysis, the general strategy of all these te
hniques is to�t the generative model to a test image, thereby parameterizing it in terms of themodel. In order to make identi�
ation independent of imaging 
onditions, the goalis to separate intrinsi
 model parameters of the fa
e from extrinsi
 imaging param-eters. The separation of intrinsi
 and extrinsi
 parameters is a
hieved expli
itly bysimulating the pro
ess of image formation using te
hniques from 
omputer graphi
s.(1) Model Constru
tionGeneralizing the morphing pro
ess between pairs of three-dimensional obje
ts,the morphable fa
e model is based on a ve
tor spa
e representation of fa
es [165℄.The database used in the study by Blanz and Vetter [33℄ 
ontains s
ans of 100 malesand 100 females re
orded with a CyberwareTM 3030PS s
anner. S
ans are stored in43



Figure 2.15: The three-dimensional morphable fa
e model, derived from a databaseof laser s
ans, is used to en
ode gallery and probe images. For identi�
ation, themodel 
oeÆ
ients of the probe image are 
ompared with the 
oeÆ
ients of all galleryimages [34℄.

ylindri
al 
oordinates relative to a verti
al axis. The 
oordinate and texture valuesof all the n verti
es of the referen
e fa
e (n = 75; 972) are 
on
atenated to form shapeand texture ve
tors S0 = (x1; y1; z1; : : : ; xn; yn; zn)T ; (2.13)T0 = (R1; G1; B1; : : : ; Rn; Gn; Bn)T : (2.14)Ve
tors Si and Ti of the subje
ts i = 1 : : : N in the database are formed in a 
ommon
oordinate system. Convex 
ombinations of the examples produ
e novel shape and44



texture ve
tors S and T . Previous results [32℄ indi
ate that the shape and textureinformation 
an be 
ombined independently:S = NXi=1 aiSi; T = NXi=1 biTi: (2.15)Two ve
tors S and T 
an also be represented as:S = �S + N�1Xi=1 �iSi; T = �T + NXi=1 �iTi; �S = 1N NXi=1 Si; �T = 1N NXi=1 Ti; (2.16)where �S is the mean shape and �T is the mean texture.(2) Model FittingImage synthesis renders the new proje
ted positions of verti
es of the 3D modelalong with illumination and 
olor. During the pro
ess of �tting the model to a testimage, not only the shape and texture 
oeÆ
ients �i and �i are optimized, but alsothe following rendering parameters, whi
h are 
on
atenated into a ve
tor �: the headorientation angles �, � and 
, the head position (Px; Py) in the image plane, size s,
olor and intensity of the light sour
es L, as well as 
olor 
onstant, and gain ando�set of 
olors, shown in Fig. 2.16.The primary goal in analyzing a fa
e is to minimize the sum of square di�er-en
es over all 
olor 
hannels and all pixels in the input image and the symmetri
re
onstru
tion, EI =Xx;y kIinput(x; y)� Imodel(x; y)k2: (2.17)45



Figure 2.16: The goal of the �tting pro
ess is to �nd shape and texture 
oeÆ
ients �and � su
h that rendering R� produ
es an image Imodel that is as similar as possibleto Iinput [34℄.Under a probabilisti
 framework, the overall 
ost fun
tion to be minimized is derivedas [34℄: E = 1�2NEI +Xi �2i�2S;i +Xi �2i�2T;i +Xi (�i � ��i)2�2R;i : (2.18)A modi�
ation of sto
hasti
 gradient des
ent algorithm is used to optimize the 
ostfun
tion, resulting in a set of 
orresponding parameters �global and �global. The fa
emodel is divided into four regions { eyes, nose, mouth and the surrounding fa
esegment. The optimization is also applied separately for ea
h region to obtain theparameters for ea
h lo
al segment, i.e., �r1; �r1; : : : ; �r4 and �r4. The �tting pro
essis demonstrated in Fig. 2.17. Up to seven feature points need to be manually labeledto 
ondu
t the �tting pro
ess [33℄ (see Fig. 2.18 for examples).(3) Re
ognitionThe similarity between two fa
e images is de�ned as:S = Xglobal;r1;r2;r3;r4� h�; �0iMk�kM � k�0kM + h�; �0iMk�kM � k�0kM�; (2.19)46



Figure 2.17: Examples of model �tting [34℄. Top row: synthesis using initial parame-ters; middle row: results of �tting, rendered on top of the input images; bottom row:input images. The �fth 
olumn is an example of a poor �t.
where h�; �0i =Xi � � �0�2S;i ;h�; � 0i =Xi � � � 0�2T;i ;k�k2M = h�; �iMThe query image will be assigned the identity in whi
h the similarity between thequery and the 
orresponding prototype is maximized.47



Figure 2.18: Up to seven feature points were manually labeled in front and side views,up to eight were labeled in pro�le views [33℄.2.1.3 Other S
hemesBesides the above-mentioned te
hniques, a number of other interesting approa
heshave been explored from di�erent perspe
tives, su
h as lo
al feature analysis [133℄,statisti
al model based, and 
omponent-based fa
e re
ognition methods. Examplesof the statisti
al model based s
heme are 1D Hidden Markov Model (HMM) [146℄,pseudo-2D HMM [125℄, and Gaussian Mixture Model [41, 117℄. Instead of 
onsider-ing fa
e image from global view, 
omponent-based s
hemes [81℄ analyze ea
h fa
ial
omponent separately.
2.1.4 SummaryImage-based fa
e re
ognition is still a very 
hallenging topi
 after almost three de
adesof exploration. Popular algorithms being 
ategorized into appearan
e-based andmodel-based s
hemes have been brie
y reviewed here. Table 2.2 provides the prosand 
ons of these two types of fa
e re
ognition methods.Pose and lighting 
hanges are two major fa
tors that degrade the performan
e ofthe 
urrent image-based fa
e re
ognition systems [137, 77℄. Georghiades et al. [69℄48



extensively explored the illumination 
hange and synthesis for fa
ial analysis usingappearan
e-based approa
hes to a
hieve an illumination-invariant fa
e re
ognitionsystem. Basri and Ja
obs [26℄ proved that the set of all re
e
tan
e fun
tions (themapping from surfa
e normals to intensities) produ
ed by Lambertian obje
ts underdistant, isotropi
 lighting lies 
lose to a nine-dimensional linear subspa
e. Theiranalysis was based on using spheri
al harmoni
s to represent lighting fun
tions. Theproposed algorithm was utilized and extended by Zhang and Samaras [180℄ for image-based fa
e re
ognition under illumination 
hanges. Although a good deal of e�ort hasre
ently been devoted to handling the pose and/or illumination 
hanges in 2D fa
ialimages for fa
e re
ognition, sensitivity to variations in pose and lighting 
onditions(espe
ially the pose 
hanges) is still a 
hallenging problem for image-based methods.
2.2 3D Image A
quisitionRange imaging systems 
olle
t three-dimensional 
oordinate data from visible obje
tsurfa
e in a s
ene. Dense surfa
e a
quisition is one of the most 
hallenging tasks in
omputer vision. Resear
h over the last two de
ades has led to a number of highspeed and high pre
ision 3D sensors.The triangulation based sensors observe the obje
t from at least two di�erentangles. In order to obtain three-dimensional measurements, point 
orresponden
eshave to be established, allowing a 3-D shape to be re
onstru
ted in a way that isanalogous to the way the human eye works.The family of triangulating sensors 
an be further subdivided into a
tive and pas-49



sive triangulation systems. A
tive triangulation systems illuminate the s
ene ratherthan relying on natural or un
ontrolled lighting.A stereo 
amera is the prime example of passive opti
al triangulation. For stereovision, two or more 
ameras are used to view a s
ene. Determining the 
orrespon-den
es between left and right view for a bino
ular stereo system by means of imagemat
hing, however, is a diÆ
ult and slow pro
ess. For faithful 3-D re
onstru
tion ofobje
ts, passive stereo vision te
hniques depend on texture information on surfa
es.One of the most 
ommon forms of a
tive range sensing is opti
al triangulation.The fundamental prin
iple is illustrated in Fig. 2.20(a) taken from [55℄. A fo
usedbeam of light illuminates a tiny spot on the surfa
e of an obje
t. For a matte surfa
e,this light is s
attered in many dire
tions, and a 
amera re
ords an image of the spot.We 
an 
ompute the 
enter pixel of this spot and tra
e a line of sight through thatpixel until it interse
ts the illumination beam at a point on the surfa
e of the obje
t.The triangulation geometry [29℄ is shown in Fig. 2.19. The 
amera 
enter of the lenslies at (0; 0; 0). The point (x; y; z) is proje
ted onto the image plane at pixel (u; v),su
h that ux = fz and vy = fz , where f is the fo
al length of the 
amera. Let � be theproje
tion angle. The (x; y; z) 
oordinates of the surfa
e point 
an be 
omputed as:
x = b(f 
ot � � u) � u; (2.20)y = b(f 
ot � � u) � v; (2.21)z = b(f 
ot � � u) � f: (2.22)50



Figure 2.19: A
tive triangulation geometry [29℄.To s
an the entire surfa
e instead of one point, the beam 
an be fanned into aplane of laser light, as shown in Fig. 2.20(b). This light will 
ast a stripe onto thesurfa
e of the obje
t, whi
h is then imaged by a 
onventional video 
amera. We
an treat ea
h 
amera s
anline separately, �nd the 
enter of the imaged light, andinterse
t the line of sight with the laser plane. Thus, ea
h image gives us a rangepro�le (one point per s
anline), and by sweeping the light over the surfa
e of theobje
t, we 
an 
apture its shape. Figures 2.20(
) and (d) show a light stripe 
astonto an obje
t and the re
e
tion observed by the 
amera.To over
ome the need for well-behaved surfa
es and to speed up the evaluationsteps, a
tive triangulation systems proje
t spe
i�
 light patterns onto the obje
t.The light patterns are distorted by the obje
t surfa
e. These distorted patterns areobserved by at least one 
amera and then used to re
onstru
t the obje
ts surfa
e. Par-ti
ularly useful is a set of te
hniques, known as 
oded light te
hniques, that proje
ta sequen
e of well-de�ned binary patterns. Within this sequen
e, time-en
oded 
or-51



Figure 2.20: Opti
al triangulation. (a) 2D triangulation. A laser beam is used toilluminate the surfa
e. (b) 3D s
enario. (
) Red laser line proje
ted onto a real 3Dobje
t. (d) Re
e
ted light 
aptured by the CCD 
amera [55℄.responden
e information is in
luded.Two typi
al laser-based 
ommer
ial a
tive ranging sensing systems are MinoltaVivid series [13℄ and Cyberware 3D s
anner [4℄. Other 3D sensors are also available,su
h as 3DMD [1℄, Geometrix [10℄, A4Vision [2℄, and Genex [8℄.
2.3 Literature Review on 3D Fa
e Re
ognitionAlthough early work on range image based fa
e re
ognition started in late 80's, liter-ature on 3D fa
e re
ognition is not as ri
h 
ompared to the 2D intensity image basedfa
e re
ognition.Cartoux et al. [42℄ developed an iterative algorithm, whi
h evaluated the similarityof the Gaussian 
urvature values of the fa
ial surfa
e, to extra
t the quasi-symmetri
plane in the fa
ial s
an, to obtain the pro�le shown in Fig. 2.21. They used fa
ialpro�les to �t two fa
es in the least square sense for mat
hing.52



Figure 2.21: Quasi-symmetri
 plane and pro�le 
urve obtained from a given rangeimage [42℄.Lee and Milios [98℄ segmented the range image to obtain the 
onvex regions, basedon the sign of the mean and Gaussian 
urvatures at ea
h point. These 
onvex regions
orrespond to distin
t fa
ial features. Extended Gaussian Image (EGI) [85℄ is usedto represent ea
h 
onvex region. A similarity metri
 between two regions is de�nedto mat
h the features in the two fa
e images.Gordon [75℄ explored feature extra
tion for re
ognition based on depth and 
urva-ture features. First, she extra
ted high-level features that marked the salient featureson the fa
e surfa
e in terms of points, lines, and regions. For example, the nosebridge, nose base, and eye 
orner 
avities, were extra
ted to demar
ate the eye andnose. Then she de�ned and 
omputed the geometri
 measurements su
h as eye width,et
. In addition, a set of 
urvature-based measurements were obtained, e.g., Gaussian
urvature at the nose base. These des
riptor values formed a feature ve
tor to rep-resent a fa
e for mat
hing purposes. The mat
hing was 
ondu
ted using the nearestneighbor rule in the feature spa
e. While these features were dis
riminative in distin-53



guishing the subje
ts, in the presen
e of expression 
hanges not all the features werefound to be useful in mat
hing. For example, the variation in the Gaussian 
urvatureat the nose base due to expression 
hanges may be greater than the typi
al intra-
lassvariation within a subje
t.Nagamine et al. [124℄ analyzed the range data by 
ross-se
tions. They used hor-izontal, verti
al, and 
ir
ular 
ross-se
tions to obtain the interse
tion 
urves on thefa
ial surfa
e, shown in Fig. 2.22. The range values along the interse
tion 
urveformed the feature ve
tor. The Eu
lidean distan
e between the feature ve
tors ofthe two fa
ial surfa
es to be mat
hed was used to make the mat
hing de
ision. Itwas observed that the verti
al interse
tion 
urve 
rossing the 
entral area of the fa
e(in
luding nose and mouth) has good dis
riminating power.

Figure 2.22: Fa
ial 
ross-se
tions [124℄.A
hermann et al. [22℄ extended the eigenfa
e and Hidden Markov Model te
h-niques from the gray s
ale intensity image to the range image based re
ognition.Tanaka et al. [156℄ posed fa
e re
ognition as a 3D shape re
ognition problem of54



free-form 
urved surfa
es. They analyzed the maximum and minimum prin
ipal 
ur-vatures and dire
tions, based on whi
h two types of 3D dire
tional fa
ial features wereextra
ted, namely, ridge and valley. The fa
e surfa
es were represented using EGIsof ridge and valley ve
tors. The spheri
al 
orrelation 
oeÆ
ient [65℄ was 
omputedto measure the similarity between a test fa
e and a model fa
e.A
hermann et al. [21℄ used partial Hausdor� distan
e to measure the dissimilaritybetween two fa
ial surfa
es. The partial Hausdor� distan
e is somewhat robust to theoutliers, and 
an handle 
ases where the test data and the model are only partiallyoverlapped. In order to 
ompute the Hausdor� distan
e, two fa
ial surfa
es to bemat
hed need to be registered. A
hermann et al. �rst moved the 
enter of gravityof the 3D point set to the origin of the 
oordinate system. A plane was �tted to thepoint set and rotated to be parallel to the fo
al plane of the 
amera. To speedup theHausdor� distan
e 
omputation, a distan
e map in 3D spa
e was 
al
ulated. Pan etal. [131℄ utilized the partial dire
ted Hausdor� distan
e to align and mat
h two rangeimages for veri�
ation.Hesher et al. [82℄ applied the Prin
ipal Component Analysis (PCA) and Inde-pendent Component Analysis (ICA) to the range image in a way similar to the 2Dintensity image, and estimated probability models for the 
oeÆ
ients. They used thenose and nose ridge to align the two s
ans.Chua et al. [49℄ extended the use of Point Signature [50℄ to re
ognize frontal fa
es
ans with di�erent expressions, whi
h was treated as a 3D re
ognition problem ofnon-rigid surfa
es. The point signature was used to identify and register the rigidregions that were insensitive to the expression 
hanges, su
h as nose and eye so
ket.55



Only the rigid regions were used to register two fa
ial surfa
es for mat
hing (seeFig. 2.23).
Figure 2.23: Extra
ted rigid regions in fa
ial s
ans with expression 
hanges [49℄.Beumier and A
heroy [31℄ developed a stru
tured light based system to 
apturethe 3D image of the fa
e. Figure 2.24 provides an example. The 3D surfa
e mat
hingwas 
arried out at both 
entral and lateral pro�les, as shown in Fig. 2.25. They alsoobserved that the nose seemed to be a robust geometri
al feature. They extra
tedthe pro�les (
urves) both from depth and gray s
ale image for fa
e veri�
ation. Themajor diÆ
ulty reported in this work, whi
h limited the mat
hing a

ura
y, was thesensor noise.Wang et al. [168℄ utilized both 3D range images and 2D intensity images for fa
ere
ognition. The range image and the 
orresponding intensity image were alreadyregistered by the 3D sensor used in their study. Considering the tradeo� betweenfa
e representation eÆ
a
y and 
omputation requirements, they extra
ted four 3Dfeature points and ten 2D feature points (Figure 2.26). The point signature [50℄ andthe sta
ked Gabor �lter responses [173℄ were used as the 3D and 2D features forea
h point in the image, respe
tively. Ea
h extra
ted feature point (namely, �du
ialpoint) was asso
iated with a feature ve
tor 
ontaining values of 3D and 2D features.56



(a) (b)Figure 2.24: 3D fa
e image 
apturing system [31℄. (a) Stru
tured light proje
ted ontoa fa
e obje
t. (b) 3D re
onstru
tions from (a).Given a training set with the feature points manually labeled, the PCA was appliedto 
onstru
t the feature subspa
e, whi
h was used to identify the feature point in atest image. Two 
lassi�ers, one based on similarity fun
tion and the other based onsupport ve
tor ma
hine, were applied for fa
e re
ognition.Bronstein et al. [38℄ proposed an algorithm based on geometri
 invariants [62℄, inan attempt to deal with fa
ial expression variations for fa
e re
ognition. But, theiralgorithm was designed and tested for only frontal 3D s
ans, and it is not straight-forward to apply it to s
ans with large pose 
hanges. The 
anoni
al representationderived from the frontal s
ans is not 
omparable to the representation to the test s
andue to missing data.Tsalakanidou et al. [160℄ applied the PCA to derive depth and 
olor eigenfa
es.The produ
t rule was applied to the Eu
lidean distan
es 
al
ulated by ea
h modalityindividually to 
ombine depth and 
olor. 57



Figure 2.25: Central and lateral pro�les after intrinsi
 normalization [31℄.

Figure 2.26: Feature point de�nition. Four 3D feature points (
ross marks) and ten2D feature points (dot marks) [168℄.Work by Chang et al. [43℄ demonstrated that fa
e re
ognition systems based oneither two-dimensional texture information or 2.5D range information have similarperforman
e 
hara
teristi
s. However, they showed that signi�
ant improvements
an be made if a fa
e re
ognition system uses a 
ombination of texture and shapeinformation. They applied PCA to both 2D and 3D fa
e data.Boehnen and Russ [35℄ explored the 2D 
olor information as well as the 3D rangeimage to identify eyes, nose, and mouth. By analyzing Y CbCr 
olor spa
e, the skintone was extra
ted to segment the fa
e, and lo
ate the eye and mouth regions. The58



3D information 
ontained in the range image was then utilized to lo
ate the positionsof eyes, mouth, and nose tip. Some heuristi
s based on human fa
e models wereapplied to redu
e the sear
hing spa
e.
2.4 Summary2D intensity image based fa
e re
ognition systems 
an a
hieve reasonable performan
ewhen the test image is taken under the 
onditions similar to the training stage. How-ever, a number of fa
tors, espe
ially the head pose and illumination, 
an signi�
antlydeteriorate the re
ognition a

ura
y. 3D surfa
e information of the fa
e obje
t isinsensitive to the head pose and lighting 
hanges. The fa
e re
ognition 
ommunity isexploring the use of 3D range data to make fa
e re
ognition systems more robust tothe 
hanges. With advan
es in the 3D sensing te
hnology, sensors are be
oming morea�ordable and 
ompa
t. Most of the existing work on 3D fa
e re
ognition is fo
usedon frontal fa
ial s
an mat
hing. Issues su
h as mat
hing test s
ans in the presen
e oflarge pose 
hanges and handling non-rigid deformations (su
h as deformations 
ausedby expression) simultaneously need to be addressed to utilize the advantage of 3Ddata over 2D images and fa
ilitate the deployment of the 3D fa
e re
ognition system.
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Table 2.2: Pros and 
ons of appearan
e-based and model-based fa
e re
ognition meth-ods. Appearan
e-based Model-basedPros 1. Fa
e re
ognition problem istransformed to a fa
e spa
eanalysis problem, where anumber of well known statisti-
al 
lassi�
ation methods 
anbe utilized.2. Appli
able to low resolutionor poor quality images.
1. The model has an intrinsi
physi
al relationship with realfa
es.2. An expli
it modeling of fa
evariations due to pose, illumi-nation, and expression, givesthe possibility to handle these
hanges in pra
ti
e.3. Ability to Integrate prior hu-man knowledge.Cons 1. SuÆ
ient representative datais needed to sample the un-derlying distribution in fa
espa
e su

essfully.2. Does not utilize the prior(expert) knowledge of humanfa
es.3. Subje
t to the limitations infa
ial variations, su
h as 3Dpose, illumination, and ex-pression.4. Corresponden
e (betweentraining images) needs tobe established in advan
e,although the tangent distan
emay be used to tolerate small
orresponden
e displa
e-ments.

1. Model 
onstru
tion is 
ompli-
ated and laborious.2. Fa
ial feature points (land-marks) are diÆ
ult to extra
tautomati
ally with suÆ
ientrobustness.3. Model �tting is a sear
h pro-
ess, prone to be trapped intolo
al minimum; re
ognitionresults highly depend on the�tting results.4. A tradeo� between a

ura
yand 
omputational 
ost ismade in the �tting pro
ess.5. Relatively high resolution andgood quality fa
e images areneeded.6. Appropriate initialization ofthe model is needed.
60



Chapter 3
Fa
ial Feature Extra
tion
Fa
ial features 
ontained in a 2.5D s
an 
an be extra
ted at di�erent levels: low level,high level, and semanti
 level. Low-level features are the basi
 representation derivedfrom the s
ans at every point in the image, su
h as the 
urvature, shape index, et
.The high-level features are related to the human per
eption of a fa
e, su
h as eye
orners and the nose tip. Semanti
 features are at the abstra
t level, su
h as genderand ethni
ity. Features at di�erent levels provide di�erent types of information toanalyze the fa
ial s
an. We use the low-level features to extra
t the high-level featurepoints, whi
h are then used in the mat
hing stage. The semanti
 features are usedfor improving the performan
e of fa
e mat
hing and for speeding up fa
e retrievalfrom a database. Current sensor te
hnology 
an provide both depth and intensityinformation of the human fa
e obje
t; we utilize both modalities to extra
t the fa
ialfeatures. 61



3.1 Automati
 Feature Extra
tionIn both 2D and 3D fa
e re
ognition systems, alignment (registration) between thequery and the template is ne
essary [151, 7℄. In general, fa
e re
ognition systems in-
lude fa
e dete
tion, alignment, and re
ognition. Registration based on feature point
orresponden
e is one of the most popular methods [99℄. To make the fa
e re
ognitionsystem fully automati
, robust fa
ial feature extra
tion is one of the 
ru
ial steps.Fa
ial features 
an be of di�erent types: region [145, 54℄, landmark [173, 159℄,and 
ontour [52, 174℄. Generally, landmarks provide more a

urate and 
onsistentrepresentation for alignment purposes than region-based features and have lower 
om-plexity and 
omputational burden than 
ontour feature extra
tion. We sele
t a sub-set of the 
raniofa
ial landmarks (or the �du
ial points), as de�ned in anthropome-try [94, 64℄ (see Fig. 3.1, in
luding nose tip, inner eye 
orners, outside eye 
orners,and mouth 
orners. The sele
ted feature points de�ne a basi
 fa
ial 
on�guration. Inaddition to fa
e alignment, they 
an be used for tra
king, s
reening (fa
e retrieval),animation, et
. These feature points 
an also be used to initialize the a
tive ap-pearan
e models [52, 174℄ for higher-level feature extra
tion, su
h as extra
ting the
ontours of the eyes. In the presen
e of large head pose variations, heuristi
s used forfrontal s
ans may not hold, e.g., the nose tip is not the 
losest point to the sensor asin frontal s
ans. With the head pose unknown, the 
on�guration models of the fa
ialfeature points, su
h as EGM [173℄ and AAM [52℄, are diÆ
ult to apply without a goodinitialization. Therefore, head pose is also 
onsidered as a feature to be extra
ted.Registration in 3D spa
e a
hieves better alignment results to handle head pose62



(a) (b)Figure 3.1: Fa
ial �du
ial landmarks in anthropometry [94℄. (a) frontal; (b) pro�le.
hanges than in 2D spa
e. In 2D fa
e re
ognition systems, the two eye 
enters are
ommonly used for alignment [184℄. However, the eye 
enter regions, espe
ially withbrown and bla
k eyes, 
annot be reliably 
aptured by the 3D laser-based s
anner dueto the low re
e
tivity in the dark region [35℄. We extra
t more reliable feature points,su
h as eye 
orners to a
hieve the alignment in three-dimensional spa
e.Intensity images 
aptured by 2D 
ameras are 
loser to the input of the humanvisual system for interpreting fa
ial images. But robust fa
ial feature extra
tion fromintensity images only is still a 
hallenging problem. Properties derived from the inten-sity, su
h as edge and 
orner responses, are not robust to lighting and pose 
hanges.The range modality is relatively insensitive to lighting and pose 
hanges, but is sub-je
t to sensor noise. Due to the large intra-
lass variability, a single modality may notprovide 
onsistent feature point lo
alization a
ross a large population. A

umulat-ing eviden
e derived from di�erent modalities has the potential to make the feature63



extra
tion system more robust.A number of approa
hes have been proposed for feature extra
tion from (near)frontal fa
ial s
ans [168, 35℄. Wang et al. [168℄ used the point signature [50℄ and thesta
ked Gabor �lter responses [173℄ to identify 3D and 2D features. Boehnen andRuss [35℄ explored 2D 
olor information to extra
t skin tone regions and identify theeyes and the mouth. The 3D information 
ontained in the range image was utilizedto 
ompute the geometry 
onstraint. However, few of these studies address featureextra
tion in the presen
e of large pose 
hanges.We have fo
used on automati
ally extra
ting feature points and estimating thehead pose in the presen
e of large pose variations. A feature extra
tor based on thedire
tional maximum is proposed to estimate the nose tip lo
ation and the pose anglesimultaneously. A nose pro�le model represented by subspa
es is used to sele
t thebest 
andidates for the nose tip. Assisted by a statisti
al feature lo
ation model, amultimodal s
heme is presented to extra
t eye and mouth 
orners. The extra
ted fea-tures are used for fa
e alignment in three-dimensional spa
e. Utilizing the automati
feature extra
tion module, a fully automati
 3D fa
e re
ognition system is developedand evaluated.
3.1.1 Feature Extra
tionThe overall feature extra
tion pro
ess is shown in Fig. 3.2. Ea
h 2.5D s
an provides4 matri
es (raw data), X(r; 
), Y (r; 
), Z(r; 
), and M(r; 
) 1, where X, Y , and Z1r and 
 are the row and 
olumn indi
es, respe
tively.64



are the spatial and depth 
oordinates in the units of millimeters and M is the mask,indi
ating whi
h point is valid;M(r; 
) is 1 if the point p(r; 
) is valid and 0 otherwise.(The origin of the mask image is the top-left 
orner.) The 
oordinate system dire
tionsare illustrated in Fig. 3.3.

Figure 3.2: Automati
 feature extra
tion for 3D fa
e mat
hing.

Figure 3.3: Coordinate system dire
tions of a 2.5D s
an. The positive dire
tion ofZ is perpendi
ular to the image plane and toward the viewer. The s
an example isfrom Fig. 3.2.
3.1.1.1 Fa
e SegmentationThe �rst step in a fa
e re
ognition system is to extra
t the fa
ial area from theba
kground. A number of fa
e dete
tion algorithms have been developed to extra
tfa
es in 2D intensity images [179℄, from frontal fa
es [154, 144, 166℄ to multiview65



fa
es [101, 148℄. However, utilizing the mask M provided in raw data by the 3Ds
anner, we explore a simple but e�e
tive method to extra
t a fa
e area from theba
kground. Given a fa
ial s
an, the invalid points in X, Y , and Z are �ltered out bymatrix M . The fa
ial area is segmented by thresholding the horizontal and verti
alintegral proje
tion 
urves of M .The fa
e segmentation result of the fa
ial s
an in Fig. 3.2 is provided in Fig. 3.4.

Figure 3.4: Segmentation of fa
ial s
an. (a) Mask image; (b) horizontal integralproje
tion of M ; (
) verti
al integral proje
tion of M ; (d) fa
e segmentation result.
3.1.1.2 Nose Tip and Pose EstimationThe nose tip is a distin
tive point of the human fa
e, espe
ially in the range map. It isalso insensitive to the fa
ial expression 
hanges. The pose of a fa
e s
an is representedby the angle of rotation with respe
t to the frontal pose (zero degree). For a frontal66



fa
ial s
an, the nose tip usually has the largest z value. But, in the presen
e of largepose 
hanges, e.g., rotation along the yaw 2 dire
tion, this heuristi
 does not hold.However, if the original 
oordinate system is rotated with the same pose 
hange asthe non-frontal s
an, the nose tip will have the largest value along the rotated Z-axis.See Fig. 3.5. In other words, the nose tip still has the largest depth value if proje
tedonto the 
orre
ted pose dire
tion. We 
all it the dire
tional maximum. Sin
e the nosetip and the pose angle are 
oupled, we estimate them simultaneously.
Figure 3.5: Dire
tional maximum of the nose tip. The nose tip will have the largestvalue along the rotated Z-axis.We illustrate the proposed algorithm based on an example with yaw angle 
hanges.After the raw fa
e s
an is 
entered at its 
entroid, the nose tip extra
tion and poseestimation algorithm 
onsists of �ve steps: pose quantization, dire
tional maximum,pose 
orre
tion, nose pro�le extra
tion, and nose pro�le identi�
ation.1. Pose quantization. The yaw angle 
hange ranges from �90 degrees (fullright pro�le) to 90 degrees (full left pro�le) in the X-Z plane. This 180 degree range(Rpose) is quantized into Npose angles with equal angular interval (��). (�� and Nposevalues are 2 degrees and 91, respe
tively, in our experiments.) See Fig. 3.6.2. Dire
tional maximum. At ea
h pose angle �j (j = 1; : : : ; Npose), �nd the2The rotation with respe
t to the Y -axis. 67



Figure 3.6: Pose angle quantization.point with the maximum proje
tion value along the 
orresponding pose dire
tion asthe nose tip 
andidate. The (xi; yi; zi) 
oordinate of ea
h fa
e point pi (i = 1; : : : ; N ,where N is the total number of valid fa
e points) is rotated to the new position(x�ji ; y�ji ; z�ji ) a

ording to the pose angle �j, 
al
ulated as0BBBBBB� x�jiy�jiz�ji
1CCCCCCA = 0BBBBBB� 
os �j 0 sin �j0 1 0� sin �j 0 
os �j

1CCCCCCA
0BBBBBB� xiyizi

1CCCCCCA : (3.1)
The point pk for whi
h z�jk = max(z�ji ; i = 1; : : : ; N) is used as a nose tip 
andidatewith the 
orresponding pose angle �j. By repeating this for every �j, M 
andidatepairs (nose tip 
andidate p and asso
iated pose angle �) are obtained (see Fig. 3.7).The dire
tional maximum may o

ur for the same fa
e point p at multiple �js, M 6Npose. In su
h 
ase, the angle with the largest proje
tion value is sele
ted as the poseangle to be asso
iated with the point p. In the example of Fig. 3.7, M is 18. Todetermine the best 
andidate from M pairs, the nose pro�le will be utilized from thepose-
orre
ted fa
e s
an. 68



(a) (b)Figure 3.7: Example of dire
tional maximum. The markers in (a) are the positionsof the dire
tional maximum with the asso
iated pose dire
tion plotted in (b). Thepose angles of 
andidates 1 and 2 are 40 and �16 degrees, respe
tively.3. Pose 
orre
tion. For ea
h 
andidate pair (p; �), the 
oordinates (x; y; z) of allthe original fa
e points are transformed to (x0; y0; z0) so that point p is at the origin,and the fa
e points are rotated a

ording to the pose angle � as follows:0BBBBBB� x0y0z0
1CCCCCCA = 0BBBBBB� 
os � 0 sin �0 1 0� sin � 0 
os �

1CCCCCCA
0BBBBBB� x� pxy � pyz � pz

1CCCCCCA : (3.2)
The pose-
orre
ted s
ans based on 
andidates 1 and 2 in Fig. 3.7 are shown inFigs. 3.8(a) and (b), respe
tively.4. Nose pro�le extra
tion. From the pose-
orre
ted s
ans based on ea
h
andidate (p; �), extra
t the nose pro�le at p (the origin of the 
oordinate systemafter pose 
orre
tion), i.e., the interse
tion between the fa
ial surfa
e and the Y -Zplane. Let X 0(r; 
), Y 0(r; 
), and Z 0(r; 
) denote the point 
oordinate matri
es after69



(a) (b)Figure 3.8: Pose 
orre
ted s
ans based on (a) 
andidate 1 and (b) 
andidate 2 inFig. 3.7.pose 
orre
tion. For ea
h row ri, �nd the point 
losest to the Y -Z plane, i.e., (ri; 
i) =argmin
(jX 0(ri; 
)j), resulting in a sequen
e of point pairs (Y 0(ri; 
i); Z 0(ri; 
i)). Tomake all the pro�les 
omparable, ea
h pro�le is normalized by 
entering it at the nosetip 
andidate and resampling it with equal interval along Y -axis, resulting in a nosepro�le ve
tor. Linear interpolation is applied for resampling.5. Nose pro�le identi�
ation. To identify the nose tip from the 
andidate pairs(p; �), we apply the subspa
e analysis on the nose pro�le ve
tor spa
e. A number ofnose pro�les from an independent group of subje
ts are extra
ted with manuallylabeled nose tip and pose, aligned at the nose tip, and resampled in the same way asdes
ribed in Step 4, resulting in a training set fVig. These (training) nose pro�les areused to 
onstru
t the nose pro�le subspa
e based on PCA. A set of eigenve
tors f�igare 
omputed from the sample 
ovarian
e matrix S =PKi (Vi � V )(Vi � V )T , whereV = 1KPKi Vi and K is the number of training nose pro�les. The pro�le subspa
e� = [�1; : : : ;�d℄ is spanned by the d eigenve
tors with the largest eigenvalues. Inour experiments, d is sele
ted by keeping 95% varian
e 
ontained in S. Given a test70



Figure 3.9: Top: extra
ted nose pro�les; middle: normalized and resampled nosepro�le; bottom: extra
ted pro�les overlaid on the original s
an. The left (right)
olumn is based on 
andidate 1 (2) in Fig. 3.7.
pro�le ve
tor V , the distan
e-from-feature-spa
e (DFFS) [122℄ is used as the distan
emetri
, 
al
ulated by " = kV � �(�TV )k: (3.3)The nose tip 
andidates with the smallest DFFS is identi�ed as the nose tip and theasso
iated pose angle is determined as the pose estimation result. In the example ofFig. 3.7, 
andidate 1 has the smallest DFFS among all the 
andidates.71



3.1.1.3 Feature Lo
ation ModelA statisti
al model of the fa
ial features is used as a prior 
onstraint to redu
e thesear
h area for the feature points. The model 
ontains 
onstraints (in terms of inter-point distan
e and geometri
 relationship) between fa
ial feature points. E�e
tivelyredu
ing the sear
h region not only enhan
es the a

ura
y of the extra
tion results,but also improves the 
omputational eÆ
ien
y. Based on an independently 
olle
tedset of frontal fa
ial s
ans with manually labeled feature points, the statisti
al modelis 
onstru
ted as the average position of ea
h feature point asso
iated with a 3D ellip-soid; the length of the ellipsoid axis is spanned by 1:5 times the standard deviationsalong the respe
tive (x, y, and z) dire
tion.The s
ans provided by the 3D sensor 
ontain (x,y,z) 
oordinates in the world
oordinate system in units of mm. The statisti
al feature lo
ation model is built inthe physi
al world 
oordinate system, so that the s
ale fa
tor indu
ed by the world-to-image (pixel) mapping is removed from the model. In our experiments, 145 frontalfa
ial s
ans are used to 
onstru
t the model shown in Fig. 3.10.
3.1.1.3 Extra
ting Corners of the Eyes and the MouthGiven the estimated nose tip and the pose angle, the feature point lo
ation model
an be overlaid onto the given s
an, and the sear
h region for ea
h feature point is
onstrained. The eye and mouth 
orners are then determined by utilizing both rangeand intensity modalities of a fa
e s
an. 72



Figure 3.10: Feature lo
ation model overlaid on a 3D fa
e image with nose tip aligned.The red star denotes the average position and the purple ellipsoid spans (x,y,z) di-re
tions. Sin
e the nose tip is used to align all the s
ans, there is no variation at thenose tip.
Shape Index (range)
We derived the lo
al shape index [58℄ at ea
h point based on the range map. Theshape index S(p) at point p is de�ned using the maximum (k1) and minimum (k2)lo
al 
urvature values (see Eq. (3.4)). The shape index takes a value in the interval[0; 1℄. The 
orners of the eyes and the mouth are in a 
up-like shape with low shapeindex values. Figure 3.11 provides nine shapes with the 
orresponding shape indexvalues. S(p) = 12 � 1� ar
tan k1(p) + k2(p)k1(p)� k2(p) (3.4)
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Figure 3.11: Nine representative shapes on the shape index s
ale [58℄.Cornerness (intensity)In the intensity map, the 
orners of the eyes and the mouth show a strong 
orner-likepattern. We applied the Harris 
orner dete
tor [79℄, based on the fa
t that intensity
hanges in a lo
al neighborhood of a 
orner point along all the dire
tions shouldbe large. The Harris 
orner dete
tor was demonstrated to have good repeatabilityon images taken under varying 
onditions [147℄. Consider the Hessian matrix H ofthe image intensity fun
tion I in a lo
al neighborhood of point p(x; y). If the twoeigenvalues ofH are large, then a small motion in any dire
tion will 
ause a signi�
ant
hange of gray level. This indi
ates that the point p is a 
orner. A better variant ofthe 
orner response fun
tion is given in [126℄:C(p) = �2I�x2 �2I�y2 � � �2I�x�y�2�2I�x2 + �2I�y2 :The stronger the 
orner response C(p), the more likely the point p is a 
orner.74



FusionThe responses obtained from range and intensity maps are integrated. In order toapply the fusion rules, both S(p) and C(p) are normalized using min-max rule in thesear
h region for ea
h feature point. The normalized shape index response S 0(p) atpoint p is 
omputed as S 0(p) = S(p)�minfSigmaxfSig �minfSig ; (3.5)where fSig is the set of shape index values for ea
h feature point in the sear
h region.The same normalization s
heme is applied to 
ornerness response C.The �nal s
ore F (p) is 
omputed by integrating s
ores from the two modalitiesusing the sum rule [93℄ F (p) = (1� S 0(p)) + C 0(p): (3.6)The point with the highest F (p) in ea
h sear
h region is identi�ed as the 
orrespond-ing feature point. If the estimated pose angle indi
ates that the head pose is notnear-frontal, only the eye and mouth 
orners in the un-o

luded side of the fa
e are
onsidered as valid feature points. Figure 3.12 shows an example of the extra
tedfeature points.

Figure 3.12: Feature extra
tion results using fusion s
heme.75



3.1.2 Reje
t OptionIn our proposed s
heme, ea
h obtained feature point has a s
ore (or distan
e metri
),see Eqs. 3.3 and 3.6, whi
h 
an be 
onsidered as a 
on�den
e measure to robustlysele
t the most reliable points for registration and to design a reje
t option to make thesystem generate fewer in
orre
t mat
hes. For example, if the DFFS of an extra
tednose tip is higher than a threshold, implying insuÆ
ient 
on�den
e to identify thenose tip, then this fa
e s
an is reje
ted. A high level feature extra
tion diagram isgiven in Fig. 3.13.

Figure 3.13: A high level feature extra
tion diagram.
3.1.3 Automati
 3D Fa
e Re
ognitionGiven the extra
ted feature points, a fully automati
 3D fa
e re
ognition system hasbeen developed, whi
h mat
hes stored 3D fa
e models (or 2.5D fa
e s
ans) to 2.5Dtest s
ans in the presen
e of large head pose 
hanges. Using the nose tip position andthe 
orresponding pose angle along with extra
ted eye and mouth 
orners, the pose of76



the test fa
e s
an 
an be normalized up to a rigid transformation, i.e., translation androtation. An iterative 
losest point (ICP) s
heme [30℄ is applied to further improve thealignment results. See details of the surfa
e mat
hing algorithm in Chapter 4. Theperforman
e of ICP algorithm depends on the initial alignment. Sin
e the nose pro�lesubspa
e is built on a limited number of training samples, there is a possibility thatthe se
ond best nose tip 
andidate may provide better mat
hing results. Therefore, wekeep the top-K nose tip 
andidates. The minimum distan
e among all the obtainedK mat
hing distan
es generated by ICP is 
hosen as the �nal mat
hing distan
e.3.1.4 Experiments and Dis
ussionExperiments were 
ondu
ted on the MSU-I database (multiview) and the UNDdatabase (frontal only).Experiment on the MSU-I databaseThere are 100 subje
ts in the MSU-I database with 
orresponding 100 3D fa
e modelsstored in the gallery. Only 2.5D s
ans with the neutral expression were used fortesting to remove the expression fa
tor in evaluating the mat
hing performan
e usingautomati
ally extra
ted feature points. In total, the test database 
onsists of 300multiview s
ans, 200 of whi
h have the head poses of more than 45 degrees from thefrontal pose along the yaw dire
tion. Representative 3D models and test s
ans areshown in Figs. 1.12 and 1.13.Using the manually labeled position as the ground truth, the lo
alization displa
e-ment is 
omputed as the Eu
lidean distan
e between the position of the automati
ally77



extra
ted feature point and the ground truth position. For easy notation, we intro-du
e the following terms. NT: nose tip; LE: inner left eye 
orner; RE: inner right eye
orner; ORE: outside right eye 
orner; OLE: outside left eye 
orner; RM: right mouth
orner; LM: left mouth 
orner. Table 3.1 provides the statisti
s of the lo
alizationdispla
ement on the MSU-I database. Figure 3.14 provides examples of the featureextra
tion results. The large displa
ement of nose tip lo
alization is often due tofa
ial hair.Table 3.1: Statisti
s of the distan
e (in 3D) between the automati
ally extra
ted andmanually labeled feature points for the MSU-I database. (For the range image usedin the experiments, the pixel distan
es in x and y dire
tions are both s1mm.)Features NT LE RE ORE OLE RM LMMean (mm) 6.4 7.1 9.0 13.6 13.3 6.7 5.2Std (mm) 13.4 9.2 13.1 11.9 10.1 12.9 9.0Median (mm) 4.3 5.3 6.0 12.7 11.7 3.8 3.2

(a) (b) (
) (d)Figure 3.14: Feature extra
tion results whi
h lead to 
orre
t 3D fa
e mat
hes on theMSU database. The number in the top-left 
orner is the estimated pose angle. Theinner eye 
orner of (
) and the outside eye 
orner of (d) are not 
onsidered as validfeature points for mat
hing due to low feature s
ore F .Fig. 3.15 shows the identi�
ation results for mat
hing 300 multiview test s
ansto the 100 3D fa
e models. The identi�
ation results using manually labeled fea-ture points are also plotted for 
omparison. The fully automati
 system provides an78



identi�
ation a

ura
y 
lose to the system using manually labeled feature points bytaking two (or more) feature 
andidate sets into 
onsideration.

Figure 3.15: CMC 
urves of experiments on the MSU database. `Top-K' indi
atesthat K feature 
andidate sets were used for mat
hing.In the 
urrent Matlab-based implementation, the 
omputation time for featureextra
tion is approximately 2 se
onds on a Pentium 4 2.8GHz CPU.Experiment on the UND databaseThe UND database 
ontains 953 fa
ial s
ans from 277 subje
ts. Representative fa
ials
ans along with automati
ally extra
ted feature points are given in Fig.3.16. Ta-ble 3.2 provides the statisti
s of the lo
alization displa
ement on the UND database
ompared with the ground truth positions. If the head pose (near frontal) is provided,a more a

urate algorithm 
an be designed [112℄ and the 
orresponding performan
eis provided in Table 3.3 for referen
e. Following the FRGC proto
ols, ea
h pair of953 s
ans is mat
hed to 
ompute a 953� 953 (dis)similarity matrix and generate the79



ROC 
urves for evaluation. Fig. 3.17 
ompares the ROC 
urves with those obtainedby using manually labeled feature points. We also utilize the DFFS of the extra
tednose tip as a 
on�den
e measure for reje
t purposes. The reje
t rate depends on thepre-de�ned threshold. Fig. 3.17 shows the ROC 
urves when 1% of total test s
ansare reje
ted using the DFFS 
riteria.Table 3.2: Statisti
s of the distan
e (in 3D) between the automati
ally extra
ted andmanually labeled feature points for the UND database. (For the range image used inthe experiments, the pixel distan
es in x and y dire
tions are both s1mm.)Features NT LE RE ORE OLE RM LMMean (mm) 8.3 8.2 8.3 9.5 10.3 6.0 6.2Std (mm) 19.4 17.2 17.2 17.1 18.1 16.9 17.9Median (mm) 5.3 5.8 5.4 5.5 7.4 2.9 3.3
Table 3.3: Statisti
s of the distan
e (in 3D) between the automati
ally extra
tedfeature points and the manually labeled feature points for the UND database giventhe head pose as (near) frontal [112℄.NT LE RE ORE OLE RM LMMean (mm) 5.0 5.7 6.0 7.1 7.9 3.6 3.6Std (mm) 2.4 3.0 3.3 5.9 5.1 3.3 2.9Median (mm) 4.9 5.7 5.6 5.4 7.1 2.9 3.2

Figure 3.16: Examples of feature extra
tion results on the UND database.80



Figure 3.17: ROC 
urves of experiments on the UND database.3.1.5 SummaryWe have proposed an automati
 feature extra
tion s
heme to lo
ate the nose tipand estimate the head pose, along with other fa
ial feature points using a multimodals
heme to 
ombine both 3D (range) and 2D (intensity) information in multiview 2.5Dfa
ial s
ans. With the estimated pose, the system automati
ally reje
ts the featurepoints that are not valid due to self-o

lusion. The extra
ted features are used toalign the multiview fa
e s
ans with stored 3D fa
e models (or 2.5D fa
e s
ans) to
ondu
t surfa
e mat
hing. As a result, a fully automati
 3D fa
e re
ognition systemhas been developed, whi
h 
an re
ognize 2.5D fa
ial s
ans in the presen
e of large pose
hanges. Our automati
 fa
e re
ognition system a
hieves an identi�
ation a

ura
y
lose to the system with manually labeled feature points.The proposed algorithm is designed to estimate the nose tip and head pose 
hangeby angle spa
e quantization. The 
omputational 
ost to handle the entire 3D spa
e81



in
luding three dire
tions (i.e., yaw, pit
h, and roll) would be expensive using brutefor
e sear
h. Therefore, a more eÆ
ient sear
h s
heme is being pursued. In pra
ti
e,given prior knowledge on parti
ular appli
ations, the angle sampling spa
e 
an belimited to a 
ertain range, su
h as -15 to 15 degrees for (near) frontal deployment. Weare also exploring ways to utilize the feature s
ores (see Eqs. 3.3 and 3.6) as 
on�den
emeasures to robustly sele
t the most reliable points for registration or design a reje
toption to make the pra
ti
al system generate fewer in
orre
t de
isions.
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3.2 Semanti
 Feature Extra
tionIn addition to the landmark feature points, we also extra
t the semanti
 features fromthe range and intensity images of fa
es.
3.2.1 Ethni
ity and Gender Identi�
ationHuman fa
es provide demographi
 information, su
h as gender and ethni
ity. Con-versely, gender and ethni
ity also play an important role in fa
e re
ognition. Di�erentsensing modalities for a human fa
e provide di�erent 
ues for gender and ethni
ityidenti�
ation. We exploit the depth (range) image of human fa
es for ethni
ity identi-�
ation and 
ombine the registered range and intensity (texture) images of the humanfa
e to extra
t gender and ethni
ity information.The human fa
e 
ontains a variety of information for adaptive so
ial intera
tionswith people. Humans are able to pro
ess a fa
e in a variety of ways to 
ategorizeit by its identity, along with a number of other demographi
 
hara
teristi
s, su
h asgender, ethni
ity, and age. Over the past few de
ades, substantial e�ort has beendevoted in the biology, psy
hology, and 
ognitive s
ien
es areas, to dis
over how thehuman brain per
eives, represents, and remembers fa
es. Computational models havealso been developed to gain some insight into this problem, utilizing various fa
ial
ues, su
h as surfa
e shape and intensity (texture).The demographi
 features are useful to narrow the sear
h s
ope in fa
e retrievalappli
ations. The identi�
ation of ethni
ity and gender 
an help a fa
e re
ognitionsystem to limit the number of entries to be sear
hed in a large database, and hen
e83



improve the retrieval speed and eÆ
ien
y. Gender and ethni
ity are also involved inhuman fa
e identity re
ognition. Humans are better at re
ognizing fa
es of their ownethni
ity than fa
es of other ethni
 groups [118, 37℄. O'Toole et al. [129℄ have shownthat people 
ategorize the gender of the fa
es of their own ethni
 group more eÆ
ientlythan the fa
es of other ethni
 groups. Golby et al. showed that same-ra
e fa
es eli
itmore a
tivity in brain regions linked to fa
e re
ognition [72℄. They used fun
tionalmagneti
 resonan
e imaging (fMRI) to examine if the same-ra
e advantage for fa
eidenti�
ation involves the fusiform fa
e area (FFA), whi
h is known to be importantfor fa
e re
ognition [141℄. O'Toole et al. [128℄ investigated the di�eren
es in theway people per
eive their own-ra
e fa
es versus other-ra
e fa
es. They found that theper
eived typi
ality of own-ra
e fa
es was based on both global shape information andlo
al distin
tive feature markers, whereas the typi
ality of other-ra
e fa
es was relatedmore to the lo
al distin
tive features. Jain et al. demonstrated that utilizing gender,ethni
ity, and other traits 
an help to improve the identity re
ognition a

ura
y [88℄.Unlike gender, ethni
 
ategories are loosely de�ned. In this paper, we redu
e theethni
ity 
lassi�
ation into a simple two-
ategory 
lassi�
ation problem, Asian andnon-Asian. These two 
lasses have relatively distin
t anthropometri
 features.Anthropometri
al statisti
s show ethni
 morphometri
 di�eren
es in the 
raniofa-
ial 
omplex [64, 63℄. In [64℄, based on 
arefully de�ned fa
ial landmarks, 25 measure-ments on the human head and fa
e were taken to examine three ra
ial groups: NorthAmeri
an Cau
asian (103 subje
ts), Afri
an-Ameri
an (100 subje
ts), and Asiansrepresented by Singapore Chinese (60 subje
ts). This study showed di�eren
es inthese three groups in many aspe
ts. For example, the Asian group had the widest84



fa
e; the main 
hara
teristi
s of the orbits of the Asian group were the large inter
an-thal width; in Asian group, the soft nose was less protruding and wider. Enlow [63℄also 
ondu
ted resear
h on the stru
tural basis for ethni
 variations in fa
ial form.He demonstrated a 
lose relationship between the 3D shape of the human fa
e andethni
ity. O'Toole et al.'s study [130℄ showed that 3D fa
ial s
ans have the potentialto provide a better a

ura
y for gender 
lassi�
ation than 2D intensity image.Intensity, i.e., fa
ial image 
aptured by a regular CCD 
amera, is one of themost widely used modality for gender and ethni
ity 
lassi�
ation. Compared withethni
ity identi�
ation, the gender 
lassi�
ation has re
eived more attention [71, 78,123℄. Gutta et al. [78℄ proposed a hybrid 
lassi�er based on RBF networks andindu
tive de
ision trees for 
lassi�
ation of gender and ethni
 origin. Moghaddam andYang [123℄ applied support ve
tor ma
hines on fa
e images for gender identi�
ation.Shakhnarovi
h et al. [150℄ used a boosted 
lassi�er for extra
tion of demographi
information, in
luding gender and ethni
ity. In their work, two 
ategories of ethni
ityare de�ned, Asian and non-Asian. Lu and Jain [109℄ presented a multis
ale s
hemewith linear dis
riminant analysis to distinguish between Asian and non-Asian fa
es.Davis et al. [56℄ exploited the walking movement (gait) for gender identi�
ation. Onlya few studies have investigated multiple modalities, for example, intensity and rangeimages for gender and ethni
ity 
lassi�
ation. Walavalkar et al. [167℄ utilized audioand visual 
ues for gender identi�
ation.As mentioned earlier, 
ommer
ial 3D sensors (e.g., Minolta series [13℄) now providenot only the range data, but also the registered intensity information (see Fig. 1.8for an example of a fa
ial s
an). Unlike previous work on intensity-based ethni
ity85



identi�
ation, we explore the surfa
e shape (range) of the human fa
e for determiningethni
ity. 3D surfa
e 
aptures the 
raniofa
ial stru
ture, whi
h is 
losely relatedto ethni
ity. Furthermore, sin
e the identi�
ation from ea
h modality 
an provide
on�den
e of the assigned 
lass membership to ea
h test sample, the �nal de
isionmay be enhan
ed by integrating the 
on�den
e values from di�erent 
ues. Kittler [93℄provides a theoreti
al framework for the 
ombination at the de
ision level. Manypra
ti
al appli
ations of 
ombining multiple modalities have been developed. Brunelliand Falavigna [40℄ presented a person identi�
ation system by 
ombining outputs from
lassi�ers based on audio and visual 
ues. Hong and Jain [84℄ designed a de
isionfusion s
heme to 
ombine fa
e and �ngerprint for person identi�
ation.We address the problem of gender and ethni
ity identi�
ation using two di�erentfa
ial modalities, range and intensity. Be
ause the pre
ise fa
ial landmark lo
alizationis still an open problem due to the 
omplex fa
ial stru
ture in the real-world environ-ment, the anthropometri
al measurements based 
lassi�
ation s
heme is not applied.Instead, we explore the appearan
e-based s
heme [162, 27℄, whi
h has demonstratedits power in image-based fa
ial identity re
ognition. One of the important fa
torsa�e
ting the a

ura
y of the appearan
e-based re
ognition s
heme is the alignmentof samples [151℄. In our s
enario, di�erent s
ans are aligned in the three-dimensionalspa
e based on the range modality, whi
h provides some toleran
e to the head poseand lighting 
hanges. Sin
e the range and intensity images are registered by the 3Dsensor, the intensity images are also aligned as a 
onsequen
e of the range imagealignment. Support ve
tor ma
hine is applied for identi�
ation on ea
h individualmodality. The simple sum rule is used as the integration strategy to make the �-86



nal identi�
ation de
ision. The integration strategy is designed at the de
ision level,utilizing the mat
hing s
ores of the 
lassi�
ation results [175℄ (the output of ea
h
lassi�er is a subset of labels along with a 
on�den
e, 
alled the mat
hing s
ore).3.2.2 MethodologyThe system ar
hite
ture is illustrated in Fig. 3.18. Range images are normalized in 3Dspa
e, and intensity images are normalized 
onsequently. Data within a 
ertain regionare 
ropped from the normalized range and intensity images. Two SVMs 
lassify the
ropped range data and the intensity data, separately. The 
lassi�
ation results areintegrated to a
hieve the �nal de
ision.

Figure 3.18: System Diagram for gender and ethni
ity identi�
ation.NormalizationTo apply the appearan
e-based s
heme, the raw s
ans are required to be aligned[151℄: the raw s
ans are translated, s
aled, and rotated so that the 
oordinates of thereferen
e points are aligned. 87



The s
ans obtained from the 3D sensor are a set of points S = f(x; y; z)g. For thepurpose of normalization and evaluating the proposed approa
h without introdu
ingfeature point lo
alization errors, we manually spe
ify 6 points in the s
an: the insideand the outside 
orners of the left eye, El;i and El;o, the inside and the outside 
ornersof the right eye, Er;i and Er;o, the nose tip N , and the 
hin point C. We use El;i;xand El;i;y to represent the x and y value of El;i, and Er;i;x and Er;i;y to represent the xand y value of Er;i. After rotation, translation, and s
aling, the points are normalizedso that the 
enters of the left and the right eyes (midpoints of the inside and outsideeye 
orners) are lo
ated respe
tively at (100; 0; 0) and (�100; 0; 0), and the plane thatpasses the 
enters of eyes and the 
hin point, is perpendi
ular to the z-axis. Thistransformation is de�ned as:
0� x0y0z0 1A = s �R �0� xyz 1A +0� t1t2t3 1A ; (3.7)where � t1 t2 t3 � = �(�!E l;i +�!E l;o +�!E r;i +�!E r;o)=4;s = 400=k�!E l;i +�!E l;o ��!E r;i ��!E r;ok;R = Mz �Mx �My;
Mz = 0� 
os 
 sin 
 0� sin 
 
os 
 00 0 1 1A ;88



Mx = 0� 1 0 00 
os� sin�0 � sin� 
os� 1A ;
My = 0� 
os � 0 � sin �0 1 0sin � 0 
os � 1A ;
� = � ar
tan(y0=qx20 + z20);� = ar
tan(x0=z0);
 = ar
tan(El;i;y �Er;i;yEl;i;x �Er;i;x );� x0 y0 z0 � = (�!El;i ��!C )� (�!Er;i ��!C ):Figure 3.19 shows the frontal and pro�le views of a fa
e s
an before and afternormalization.3D Feature Ve
tor Constru
tionTo avoid the e�e
t of hairstyle and other fa
ial a

essories, a 
lose fa
ial s
an 
roppings
heme is applied. Given a normalized 3D fa
e data set C, x and y 
oordinates of are
tangular area R to be 
ropped, and the numbers of rows and 
olumns of the gridin the re
tangle R, m and n, we 
rop the fa
e areas and 
onstru
t feature ve
tors asfollows:(1). Build a grid G. The grid G is in a plane parallel to the x-y plane. It has m89
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(d)Figure 3.19: S
an normalization. (a) Frontal view before normalization. (b) Pro�leview before normalization. (
) Frontal view after normalization. (d) Pro�le view afternormalization.rows and n 
olumns. The borders of G are set to be the re
tangle R. A grid G isshown in Fig. 3.20.(2). Build the m�n proje
tion matri
es XM , YM , ZM . The elements XM(i; j),YM(i; j) and ZM(i; j), i = 1; � � � ; m, j = 1; � � � ; n, 
orrespond to the grid nodeG(i; j). Denote the set of points inside G(i; j) as C 0, where C 0 = f(x; y; z)j(x; y; z) 2

Figure 3.20: Cropping fa
e areas for 
onstru
tion of feature ve
tors. A 10� 8 grid isoverlaid on the fa
ial s
an for demonstration.90



C; and x; y are inside G(i; j)g. If C 0 is empty, the 
orresponding element is labeledas a hole (see Fig. 3.21). Otherwise, the value of ea
h grid is 
omputed as follows:XM(i; j) = 1jC 0j Xfor all (x;y;z)2C0 x;YM(i; j) = 1jC 0j Xfor all (x;y;z)2C0 y;ZM(i; j) = 1jC 0j Xfor all (x;y;z)2C0 z;where jC 0j is the number of elements in C 0.
Figure 3.21: Examples of the holes (shown as white pat
hes) after 3D normalization.(3). Interpolation. After the 3D rotation, the o

luded points in the original s
an
ause holes in the normalized s
an. The holes in XM , YM , and ZM are re
overedby interpolating the nearest neighbors as shown in Fig. 3.22.

Figure 3.22: The holes are �lled by interpolation.(4). Ve
tor formation. There are two ways to 
onstru
t the feature ve
tor. One91



is utilizing all normalized X, Y , and Z 
oordinates, the other one is using only thenormalized Z (depth), be
ause after normalization most of the di�eren
es betweens
ans are 
ontained in Z. We adopt the Z only representation for a more 
ompa
trepresentation. The 
olumns in matri
es ZM are 
on
atenated to generate the ve
torV of length m� n, whi
h is used by the SVM 
lassi�ers for identi�
ation.Identi�
ation and FusionThe gender and ethni
ity identi�
ation using individual modalities are formulated asa two-
lass 
lassi�
ation problem. In the appearan
e-based s
heme, Support Ve
torMa
hines have provided high gender 
lassi�
ation a

ura
y [123℄. We also use SVMsin our experiments for both ethni
ity and gender 
lassi�
ations. Instead of mat
hings
ores, the posterior probabilities are extra
ted from the SVMs [140℄.The 
ombination of range and intensity 
an be 
ondu
ted at two levels, the featurelevel and the de
ision level. The latter has more generality, when 
lassi�ers havephysi
ally di�erent types of features. Kittler [93℄ provides a theoreti
al frameworkfor 
ombining various 
lassi�ers at the de
ision level. The strategy we used in ourexperiments is the sum rule.For gender 
lassi�
ation, the fusion pro
ess is formulated as:p(malejs) = (p(malejsrange) + p(malejsintensity))=2; (3.8)p(femalejs) = (p(femalejsrange) + p(femalejsintensity))=2; (3.9)where s is the subje
t to be 
lassi�ed, srange and sintensity are, respe
tively, the range92



and the intensity maps of the subje
t, p(malejsrange) and p(femalejsrange) are theposterior probabilities provided by the SVM that uses range data for gender 
lassi-�
ation, and p(malejsintensity) and p(femalejsintensity) are the posterior probabilitiesprovided by the SVM that uses intensity data for gender 
lassi�
ation. The �nalde
ision is made by 
omparing p(malejs) and p(femalejs). The same fusion s
hemeis applied to the ethni
ity identi�
ation.3.2.3 Experiments and Dis
ussionA mixture of two frontal 3D fa
e databases is used for evaluating the proposeds
hemes. One is the UND database, 
omposed of 944 s
ans from 276 subje
ts. The
orresponding demographi
 information is shown in Table 3.4. Representative fa
eimages are given in Fig. 1.16. To in
rease the size of the database (hen
e the 
om-plexity of the identi�
ation), the frontal images of the MSU-I database (denoted asMSU-I-F), 
ontaining 296 frontal s
ans of 100 subje
ts, is added to the UND database.Table 3.5 gives the demographi
 information of the MSU-I-F database. All the ex-periments are 
ondu
ted on the 
ombined database of UND and MSU-I-F databases,whose demographi
 information is summarized in Table 3.6.Table 3.4: Number of subje
ts and s
ans (given in parenthesis) in the UND databasein ea
h 
ategory. Non-Asian Asian SubtotalFemale 86 (295) 27 (92) 113 (387)Male 124 (411) 39 (146) 163 (557)Subtotal 210 (706) 66 (238) 276 (944)For ethni
ity identi�
ation, a 10-fold 
ross-validation is 
ondu
ted. Ea
h time we93



Table 3.5: Number of subje
ts and s
ans (given in parenthesis) in the MSU-I-Fdatabase in ea
h 
ategory. Non-Asian Asian SubtotalFemale 20 (60) 6 (18) 26 (78)Male 52 (152) 22 (66) 74 (218)Subtotal 72 (212) 28 (84) 100 (296)Table 3.6: Number of subje
ts and s
ans (given in parenthesis) in the 
ombined UNDand MSU-I-F database in ea
h 
ategory.Non-Asian Asian SubtotalFemale 106 (255) 33 (110) 139 (465)Male 176 (563) 61 (212) 237 (775)Subtotal 282 (918) 94 (322) 376 (1240)use 9 folds as the training set and the remaining fold as the test set. S
ans from thesame subje
t are grouped into the same set to ensure that the ethni
ity 
lassi�
ationresults are not a�e
ted by the similarity between the testing and the training datain terms of the identity. The mean and the standard deviation of the mat
hing errorrates from these 10 experiments are reported. The same s
heme is applied for genderidenti�
ation.The ethni
ity and gender identi�
ation performan
e is provided in Tables 3.7 and3.8.Table 3.7: Ethni
ity identi�
ation performan
e. The average and standard deviationof the error rates using 10-fold 
ross-validation are reported.Non-Asian Asian OverallRange 2:7%� 0:028 6:7%� 0:052 3:8%� 0:024Intensity 2:1%� 0:027 5:9%� 0:051 3:2%� 0:029Range + Intensity 0:7%� 0:010 5:5%� 0:039 2:0%� 0:016
Figures 3.23 and 3.24 show the examples of the ethni
ity 
lassi�
ation results and94



Table 3.8: Gender identi�
ation performan
e. The average and standard deviationof the error rates using 10-fold 
ross-validation are reported.Female Male OverallRange 24:5%� 0:101 9:0%� 0:030 14:6%� 0:044Intensity 19:2%� 0:123 11:3%� 0:066 14:0%� 0:047Range + Intensity 17:0%� 0:093 4:4%� 0:032 9:0%� 0:030
(a) (b) (
) (d)Figure 3.23: Results of ethni
ity 
lassi�
ation. (a) and (b) are 
orre
tly 
lassi�edbefore and after fusion. (
) is not 
orre
tly 
lassi�ed using range information, but
orre
tly 
lassi�ed after fusion. (d) is not 
orre
tly 
lassi�ed using intensity informa-tion, but 
orre
tly 
lassi�ed after fusion.the gender 
lassi�
ation results, respe
tively.For both ethni
ity and gender identi�
ations, the experimental results show that3D (range) information provides 
ompetitive results to the 2D (intensity) modal-ity. It is demonstrated that the integration of range and intensity outperforms ea
hindividual modality.3D sensors in the 
urrent market are not as mature as 2D sensors. Typi
al prob-
(a) (b) (
) (d)Figure 3.24: Results of gender 
lassi�
ation. (a) and (b) are 
orre
tly 
lassi�ed beforeand after fusion. (
) is not 
orre
tly 
lassi�ed using range information, but 
orre
tly
lassi�ed after fusion. (d) is not 
orre
tly 
lassi�ed using intensity information, but
orre
tly 
lassi�ed after fusion. 95



lems with range images in
lude missing data near dark regions (e.g., eye regions),spikes at the region with high re
e
tivity, and so on. The interpolation and smooth-ing results are the approximations. These fa
tors may explain the lower gender andethni
ity identi�
ation performan
e using range images.
3.3 SummaryWe have proposed a multimodal algorithm to automati
ally segment fa
es and extra
tfeature points from frontal fa
ial s
ans, whi
h 
an be used for s
an normalization andregistration in 3D fa
e mat
hing systems (see Chapter 4). Besides the landmarkfeature points, we utilize both range and intensity modalities to identify gender andethni
ity from a fa
ial s
an, whi
h is formulated as a 
lassi�
ation problem underthe appearan
e-based analysis framework. Gender and ethni
ity 
an be utilized toimprove the fa
e re
ognition a

ura
y [88℄.
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Chapter 4
3D Fa
e Mat
hing
A number of approa
hes have been proposed for fa
e re
ognition based on range(depth) images, but most of them have fo
used on only frontal view re
ognition.Further, most of these methods only use the shape (geometry) information presentin the fa
e. However, the intensity/texture/appearan
e image of the fa
e also playsan important role in fa
e re
ognition pro
ess, espe
ially when the shapes of two fa
esin the database are similar. Fa
ial appearan
e in 2D images is the proje
tion of a3D fa
e, 
ontaining the texture information of the fa
e. Table 4.1 lists a number offa
tors that 
an 
hange the fa
ial geometry and appearan
e. Although the 3D fa
ialshape will not 
hange due to pose and lighting variations, it is a�e
ted by expression
hanges and the aging fa
tor. Therefore, using 3D shape information alone 
an notfully handle all the variations that a fa
e re
ognition system en
ounters.We have designed a fa
e re
ognition system [115℄, whi
h integrates surfa
e (shape)mat
hing and 
onstrained appearan
e-based methods for multi-view fa
e mat
hing(see Fig. 4.1) and 
an tolerate some expression variations. The surfa
e mat
hing97



Table 4.1: Relationship between fa
e variation fa
tors and fa
ial properties (shapeand appearan
e).Fa
tors Shape (3D) Appearan
e (2D)Pose No YesLighting No YesExpression Yes YesAging Yes YesMakeup No YesFa
ial a

essories Yes Yes
utilizes the 3D shape information, while the appearan
e-based methods explore theintensity 
lues. Integrating these two di�erent modalities (shape and intensity) mayprovide a more robust fa
e re
ognition system to over
ome the limitations en
ounteredin the traditional 2D image-based fa
e re
ognition system under pose and lighting
hanges. The appearan
e-based stage is 
onstrained to a small 
andidate list fromthe database generated by the surfa
e mat
hing stage, whi
h redu
es the 
lassi�
ation
omplexity. In the 
onventional appearan
e-based algorithms, all the subje
ts in thetraining database are used for subspa
e analysis and 
onstru
tion. When the numberof subje
ts in the database is large, this leads to a problem due to potentially largeinter-
lass similarity. In our s
heme, a 3D fa
e model is utilized to synthesize trainingsamples with fa
ial appearan
e variations, whi
h are used for dis
riminant subspa
eanalysis. The mat
hing distan
es obtained by the two mat
hing 
omponents are
ombined to make the �nal de
ision. Further, a hierar
hi
al mat
hing stru
ture isdesigned to improve the system performan
e in terms of both a

ura
y and eÆ
ien
y.In se
tion 4.1, we will present our 3D fa
e model 
onstru
tion pro
edure. Se
-tion 4.2 des
ribes the surfa
e mat
hing s
heme. The 
onstrained appearan
e-based98



Figure 4.1: Mat
hing s
heme.mat
hing 
omponent is proposed in se
tion 4.3. The integration s
heme is presentedin se
tion 4.4. Se
tion 4.5 provides our experimental pro
edure for testing the systemand the mat
hing results.
4.1 3D Model Constru
tionSin
e ea
h 2.5D s
an obtained by the Minolta Vivid910 s
anner used in our experi-ments 
an only 
over a partial view of the full 3D fa
e, the 3D fa
e model for ea
hsubje
t is 
onstru
ted by stit
hing several 2.5D s
ans obtained from di�erent viewpoints that 
over the full fa
ial area. In our 
urrent setup, 5 s
ans are used 1, i.e.,frontal, left 30 degrees, left 60 degrees, right 30 degrees, and right 60 degrees. The2.5D s
ans are �rst registered. Sin
e the s
ans have some overlapped portions, theyare then merged in order to 
reate a single surfa
e model. Basi
 
lean-up pro
e-1It is possible to use fewer s
ans to 
onstru
t the model as long as they 
over the full view andenough details of the fa
e obje
t and 
ontain overlaps between neighboring s
ans for registration.99



dures are applied to �ll holes, smooth the surfa
e, and remove noisy points asso
iatedwith hair and 
lothing. The end result is a smooth full view texture mapped meshmodel of the fa
e for ea
h of our subje
ts. All the te
hniques used in the model 
on-stru
tion pro
edures are well studied in the 
omputer graphi
s and vision resear
h
ommunities [161, 59, 102, 157℄. For easy manipulation, a 
ommer
ial software 
alledGeomagi
 Studio [9℄ is used for our model 
onstru
tion. Figure 4.2 demonstrates the3D fa
e model 
onstru
tion pro
edure. The resulting model is highly dense, 
ontain-ing s27,000 verti
es and s50,000 polygons. The data representation for the 3D fa
emodel is shown in Fig. 4.3. It 
an be used to render new realisti
 fa
ial appearan
ewith pose and illumination variations, see Fig. 4.4 for examples.

Figure 4.2: 3D model 
onstru
tion.
4.2 Surfa
e Mat
hingIn order to mat
h two fa
ial surfa
es (a test s
an and a 3D model), we follow the
oarse-to-�ne strategy shown in Fig. 4.5.100



Figure 4.3: Data representation for 3D fa
e models.
Figure 4.4: Appearan
e synthesis of a 3D model with pose and lighting variations.4.2.1 Coarse AlignmentWe applied a feature point based alignment for 
oarse registration due to its simpli
-ity and eÆ
ien
y. A minimum of three 
orresponding points is needed in order to
al
ulate the rigid transformation between two sets of 3D points. On
e the three 
or-responding points (feature points) are extra
ted (see Chapter 3), the transformationis made using a 
ombination of rigid transformation matri
es following the guidelinesdes
ribed in [170℄. This is done by a least squares �tting between the triangles formedfrom the two sets of three feature points. The �rst set of three feature points ~a istransformed into the same lo
ation as the se
ond set of feature points ~p (see Fig. 4.6).101



(a) (b) (
) (d)Figure 4.5: Surfa
e mat
hing streamline. The alignment results are shown by the 3Dmodel overlaid on the wire-frame of the test s
an.The rigid transformation is 
omposed of a series of simple transformations:TT = TCP �RtP �� �RA � TC�a ; (4.1)whereTT : Total Transformation from set ~a to set ~p.TC�a: Translate the 
enter to the origin.RA: Rotate into the xy-plane.�: Optimum rotation to align two sets of verti
es within the xy-plane.RtP : Rotate out of the xy-plane into the 
oordinate system of ~p.TCP : Translate to have the same 
entroid as ~p.A 
ombination of the eye 
orners and the nose tip is sele
ted as our three featurepoints. See Fig. 4.7 for examples. These points are sele
ted be
ause they are relativelyeasy to lo
ate in the range image and they do not 
hange between di�erent s
ans of102



Figure 4.6: Rigid transformation between two sets of three 
orresponding points.(a) The original set of points (the red triangle is 
onstru
ted from the ~a points, theblue triangle is 
onstru
ted from the ~p points); (b) the set of points after the rigidtransformation of points ~a onto points ~p.di�erent people a
ross di�erent poses. See Fig. 4.5(
) for an example of a 2.5D fa
es
an 
oarsely aligned to a 3D fa
e mesh model.
Figure 4.7: Feature points used for 
oarse alignment at di�erent poses: left-pro�le,frontal, and right-pro�le.
4.2.2 Fine AlignmentThe 
oarse alignment 
an only provide an approximation to the true registration. Butfor the purpose of surfa
e mat
hing, the two sets of 3D points (one from 2.5D s
an andone from 3D model) should be further tuned for �ne registration. Be
ause both thes
an and model 
ontain highly dense data, it is possible to �nd a good approximationof the 
losest points in ea
h dataset, whi
h is the basis of the Iterative Closest Point103



(ICP) framework [30, 48, 181℄. The basi
 Iterative Closest Point s
heme is as follows:1. Sele
t 
ontrol points in one point set2. Find the 
losest points in the other point set (
orresponden
e)3. Cal
ulate the optimal transformation between the two sets based on the 
urrent
orresponden
e4. Transform the points; repeat step 2, until 
onvergen
e.Starting with an initial estimate of the rigid transformation derived in the 
oarsealignment stage, ICP iteratively updates the transformation parameters by alternately
hoosing 
orresponding (
ontrol) points in the 3D model and the 2.5D s
an and�nding the best translation and rotation that minimizes an error fun
tion based onthe distan
e between them.Besl and M
Kay [30℄ used point-to-point distan
e for whi
h a 
losed-form solution
an be obtained when 
al
ulating the transformation matrix during ea
h iteration.The point-to-plane distan
e used in [48℄ makes the ICP algorithm less sus
eptibleto the outliers (su
h as the spikes 
aused by the 3D sensor) and lo
al minima thanthe point-to-point metri
 [68℄. It also needs a fewer number of iterations to 
onverge.But point-to-plane distan
e based ICP has to solve a non-linear optimization problemusing numeri
al algorithms. Sin
e both the 2.5D s
an and 3D model are representedas a dense mesh, the normal for ea
h vertex 
an be 
al
ulated, whi
h makes the
omputation of point-to-plane distan
e feasible. We integrate Besl's and Chen's ICPalgorithms [30, 48℄ in a zigzag running style, and 
all it the hybrid ICP algorithm.104



Ea
h iteration of surfa
e registration 
onsists of two steps, (i) using Besl's s
heme to
ompute an estimation of the alignment, and (ii) using Chen's s
heme for a re�nement.Based on the extra
ted feature points, the sampling re
tangles of the 
ontrolpoints 
an be determined as shown in Fig. 4.8. A single re
tangle is determined forfrontal 
ases where both outside 
orners of the eyes are available. If one of the outside
orners of the eyes is o

luded due to large pose 
hanges, the inside 
orner is usedinstead. Four small re
tangles are then determined; these 
over the eyes, nose, andpart of the 
heek to sample the 
ontrol points. In order to minimize the number ofoutliers, regions were sele
ted within the fa
e s
ans that do not vary greatly betweenthe s
ans. Examples are given in Fig. 4.9. Regions around the eyes and nose weresele
ted be
ause these regions are less malleable to expression 
hanges than otherparts of the fa
e (su
h as the region around the mouth, whi
h 
hanges greatly withfa
ial expression). The number of 
ontrol points is determined as a tradeo� betweenthe a

ura
y and 
omputational 
ost. The �ne alignment results are demonstratedin Fig. 4.5(d). Other non-uniform 
ontrol point sele
tion s
hemes, su
h as 
urvature-based sampling s
hemes, 
an also be applied.
4.2.3 Surfa
e Mat
hing Distan
eThe root mean square distan
e minimized by the ICP algorithm is used as the primarymat
hing distan
e between a fa
e s
an and the 3D model. We use the point-to-planedistan
e metri
 MDICP de�ned in [48℄. 105



(a)

(b)Figure 4.8: Automati
 
ontrol point sele
tion s
heme based on three feature points forfrontal (a) and pro�le (b) s
ans. The numbers (m� n) in ea
h bounding box denotethe resolution of the sampling grid. For example, there are 25 = 5� 5 
ontrol pointssampled in the upper-left bounding box in (b). In (b), the value of Y is determined bythe farthest valid points from the nose in the 
orresponding horizontal dire
tion. Thevalid points are indi
ated in the mask image provided by the sensor (see Fig. 3.4(
)for an example). In total, 96 
ontrol points are sele
ted in ea
h frontal s
an, and 98in ea
h pro�le s
an. 106



Figure 4.9: Examples of automati
 
ontrol point sele
tion for a left pro�le, frontal,and right pro�le s
ans. MDICP =vuut 1N
 N
Xi=1 d2(	(pi); Si); (4.2)where d(�; �) is the point-to-plane metri
; 	(�) is the rigid transformation applied toea
h 
ontrol point pi in the 2.5D test s
an; Si is the 
orresponding tangent plane inthe 3D model w.r.t. pi; N
 is the number of 
ontrol points. The smaller the value ofMDICP , the better the surfa
e mat
hing.
4.3 Constrained Appearan
e-based Mat
hingIn addition to the 3D shape, texture 
ontained in the 
o-registered 2D intensity imageis also an important 
ue for fa
e re
ognition. There are a number of appearan
e-basedalgorithms for image-based fa
e re
ognition [162, 27, 24℄. A typi
al appearan
e-basedmethod analyzes the intensity 
orrelation between all the pixels in the image, whi
his a global 
hara
teristi
s of the fa
e image. The alignment of the training andtest images is important to the mat
hing a

ura
y of the appearan
e-based algo-rithms [151, 138℄. The ICP registration pro
edure aligns the 2.5D test s
an andthe 3D model, so the pose is already normalized. By synthesizing new appearan
e(image variation) from the 
onstru
ted 3D model, additional training samples of the107



subje
ts 
an be obtained. This allows us to use the linear dis
riminant analysis(LDA) for appearan
e-based mat
hing [27, 119℄. Instead of using all the subje
ts inthe database, the LDA is applied only to a small list of 
andidates, whi
h is gener-ated dynami
ally by the surfa
e mat
hing stage for ea
h test s
an. We 
all this asthe 
onstrained appearan
e-based mat
hing in our framework.
4.3.1 Appearan
e SynthesisEa
h subje
t is represented by a 3D fa
e model with neutral expression in thedatabase. In order to apply the subspa
e analysis based on the fa
ial appearan
e,a large number of training samples, whi
h are aligned with the test sample, areneeded [27, 119℄. After the surfa
e registration (pose normalization), the 3D modelgets aligned with the test s
an. Sin
e the dense 3D model is available, it is easy tosynthesize new appearan
e with lighting variations. As the alignment may not beperfe
t, small pose variations are also synthesized in our framework.Synthesis of pose variations is straightforward by simply rotating and shiftingthe 3D model. Lighting is simulated by adding a virtual light sour
e around there
onstru
ted fa
e surfa
e as illustrated in Fig. 4.10. The position of the light sour
eis 
ontrolled by the distan
e R between the light sour
e and the origin of the model
oordinate system and by the azimuth and elevation angles. Di�erent illuminationvariations are generated by 
hanging the position of the light sour
e. Phong shadingte
hnique is employed to render lighting e�e
ts on the fa
e surfa
e [66℄.Based on the feature points (eye 
orners and the nose tip) and registration results,108



Figure 4.10: Lighting simulation. The light bulb denotes the simulated light sour
e.
the 
riti
al area in the fa
e is determined, whi
h is used to automati
ally 
rop thesynthesized images. Examples of the 
ropped synthesized images for one subje
t areshown in Fig. 4.11. These images are used in the following dis
riminant subspa
eanalysis.We applied linear dis
riminant analysis (see Se
. 2.1.1 for details) for appearan
e-based mat
hing. The proje
tion 
oeÆ
ients in LDA (Y ) are used as the featurerepresentation of ea
h fa
e image. Given two proje
tion 
oeÆ
ient ve
tors Y1 andY2, the mat
hing s
ore between them is 
al
ulated as the 
osine value of the anglebetween their 
oeÆ
ient ve
tors, i.e.,MSLDA = hY1; Y2ikY1k � kY2k ; (4.3)109



Figure 4.11: Cropped synthesized training samples for dis
riminant subspa
e analysis.(a) test (s
an) image; (b) image rendered by the 3D model after pose normalization(alignment); (
-f) images synthesized by the 3D model with shift displa
ement inhorizontal and verti
al dire
tions; (g-j) images synthesized by the 3D model withlighting 
hanges. Only gray s
ale is used for appearan
e-based analysis. Be
ause thepose is normalized and feature points are known, the 
ropping is done automati
ally.where h�i denotes the dot-produ
t.4.3.2 Dynami
 Candidate Sele
tionIn the 
onventional LDA, all the subje
ts in the database (gallery) are used for sub-spa
e 
onstru
tion. As the number of subje
ts in the database in
reases, the 
om-plexity of the re
ognition problem in
reases due to large intra-
lass variations andlarge inter-
lass similarities, resulting in a low re
ognition a

ura
y. However, if the110



number of subje
ts in the gallery is small, the appearan
e-based method 
an providea relatively good performan
e. For ea
h individual test s
an, the gallery used forsubspa
e analysis and mat
hing is dynami
ally generated based on the output of thesurfa
e mat
hing. Only a small number of subje
ts in the database are sele
ted forthe appearan
e-based mat
hing, redu
ing the number of mat
hes for the test s
an. Inour experiments, the top M (M = 30) 
andidates in the sorted mat
hing list basedon surfa
e mat
hing are sele
ted (rank-based sele
tion) for 
onstrained appearan
ebased mat
hing.
4.4 Integration of Range and Intensity4.4.1 Weighted Sum RuleSurfa
e mat
hing and appearan
e-based mat
hing provide two s
ores based on di�er-ent 
ues. Sin
e these two mat
hers explore di�erent properties of the fa
e, namely,shape and texture, they are not highly 
orrelated. A 
ombination of these two mat
h-ers has the potential to outperform ea
h individual mat
her [93℄. We applied theweighted sum rule to integrate the surfa
e mat
hing and appearan
e-based mat
hingdistan
es as follows: MD
omb =MDICP + � �MDLDA; (4.4)where MDLDA = (1�MSLDA)=2, and MSLDA is the mat
hing s
ore generated by theappearan
e-based mat
hing 
omponent (we 
onvert the mat
hing s
ore (similarity)111



to mat
hing distan
e (dissimilarity)). The weighting parameter � balan
es the twomat
hing 
omponents, whi
h 
an be set beforehand or learned from an independentvalidation dataset.
4.4.2 Feature Ve
tor Con
atenationThe sum rule based fusion is performed at the de
ision level. At the feature level,feature ve
tors from di�erent modalities (range and intensity) 
an be 
on
atenatedinto a 
ombined feature ve
tor. Dis
riminant analysis is then 
ondu
ted on the new
ombined feature ve
tor for 
lassi�
ation.
4.4.3 Hierar
hi
al Mat
hingThe surfa
e mat
hing in Se
tion 4.2 fo
used on the region of the fa
e (near eyes andnose) that is more robust to deformation due to expression 
hanges. We 
all it the`lo
al' mat
hing s
heme. But to solve the ambiguity between shapes, a larger fa-
ial area may provide more eviden
e, espe
ially for the fa
es with the same neutralexpression as that of the 3D models stored in our database. Therefore, a hierar
hi-
al mat
hing framework is designed, where a `global' surfa
e mat
hing 
omponentis introdu
ed, whi
h also uses the same ICP algorithm but di�erent 
ontrol pointsele
tion s
hemes. Figure 4.12 illustrates our hierar
hi
al system and Fig. 4.13 showsthe global 
ontrol point sampling s
heme. Only those test s
ans for whi
h the sur-fa
e mat
hing 
omponent does not have suÆ
ient eviden
e to make the de
ision, arefed to the 
ombination stage. This 
as
ading framework also provides the potential112



to redu
e the total 
omputation 
ost. In our 
urrent implementation, if the shapemat
hing distan
e (MDICP in Eq. (4.2)) is below a pre-de�ned threshold Æ, then it is
onsidered as a good surfa
e mat
hing. Sin
e the surfa
e mat
hing distan
e is mea-sured by the root mean square distan
e among the 
ontrol points, it has a physi
almeaning. We 
hoose Æ equal to one millimeter. The value of Æ depends on the noiselevel in the s
ans and the performan
e of the automati
 an
hor point lo
ator for the
oarse surfa
e mat
hing. The experimental results demonstrated that this hierar
hi-
al mat
hing framework improves the system performan
e in terms of both a

ura
yand eÆ
ien
y [108℄.

Figure 4.12: Hierar
hi
al mat
hing design. The full system using surfa
e mat
h-ing only is 
omposed of (I), (II), and (III). The full system 
ombining surfa
e andappearan
e-based mat
hings 
onsists of (I), (II), and (IV).
113



Figure 4.13: Global 
ontrol point sampling based on three an
hor points, for leftpro�le, frontal, and right pro�le s
ans. A 8� 12 sampling grid is used, resulting in atotal of 96 
ontrol points for ea
h s
an.4.5 Experiments and Dis
ussion
4.5.1 Data
Currently, there is no publi
ly available multi-view fa
e s
an database, along withexpression variations. We use the MSU-I database in the experiments. The USFdatabase is 
ombined with the MSU-I database to in
rease the number of 3D gallerymodels. In total, there are 598 2.5D test s
ans, whose distribution is provided inTable 1.1, and 3D fa
e models of 200 di�erent subje
ts in the gallery. Representativetest s
ans were shown in Fig. 1.13. Examples of 3D models were provided in Figs. 1.12and 1.15.We applied the three ICP algorithms, Besl's [30℄, Chen's [48℄, and our hybrid ICP,on the entire database. The total number of surfa
e mat
hing errors among the 598test s
ans were 98 (Besl's), 88 (Chen's), and 85 (hybrid). Based on these results, wede
ided to use the hybrid ICP algorithm in the following experiments.114



4.5.2 Mat
hing Performan
eBased on the three feature points, 
ontrol points are automati
ally sampled for theICP registration. Figure 4.9 showed the 
ontrol point sampling s
heme. Examples ofthe registration results were given in Figs. 4.5(
) and 4.5(d). The surfa
e mat
hingwas a
hieved using the distan
e s
ore produ
ed by the ICP registration. Our mat
hingpro
ess was 
ondu
ted in the identi�
ation mode. Ea
h s
an was mat
hed to all the3D models stored in the gallery.Conventional appearan
e-based algorithms su�er from large pose 
hanges [184, 7℄,and their performan
e depends on the quality of the alignment. In our mat
h-ing s
heme, after the surfa
e mat
hing, the test s
an and 3D models are alreadyaligned, whi
h permits the use of appearan
e-based algorithms. In the 
onstrainedappearan
e-based mat
hing stage, although the number of synthesized samples, whi
hare used as the training samples for the appearan
e-based methods, 
an be arbitrarylarge in prin
iple, in pra
ti
e, we only generate a small number of samples be
ausethis synthesis pro
ess and the subsequent LDA need to be 
ondu
ted online. In ourexperiments, 4 images with di�erent shift displa
ements and 4 images with di�erentlighting 
onditions were synthesized. Hen
e, 9 images for ea
h model are used for theLDA 
al
ulation (8 synthesized versions plus the original one, see Figs. 4.11(b)-(j) foran example).The LDA is only applied to the �rst 30 mat
hed 
andidates based on the surfa
emat
hing distan
e. By applying surfa
e mat
hing and 
onstrained appearan
e-baseds
heme separately to the dataset, we found that the sets of mis
lassi�ed test s
ans115



are signi�
antly di�erent for these two mat
hing s
hemes, implying that these twos
hemes are not highly 
orrelated. Therefore, a suitable fusion of these two s
hemeshas the potential to lead to an improvement in the mat
hing a

ura
y.We �rst study the mat
hing 
omponent using manually lo
ated feature pointsto eliminate feature extra
tion errors. The mat
hing results are summarized in Ta-ble 4.2. Experimental results of the fully automati
 system using the automati
feature extra
tor des
ribed in Chapter 3 are provided separately in Se
. 4.5.4.1. Frontal s
ans with neutral expression.In this 
ategory, all the test s
ans are frontal, with neutral expression, whi
his similar to the expression 
ontained in the 3D models. The surfa
e mat
hinga
hieves 98% a

ura
y on these test s
ans. The 
onstrained appearan
e-basedmethod also a
hieves the highest a

ura
y (86%) among all the 
ategories listedin Table 4.2, due to the good alignment results and very little 
hange in theexpression. A 
ombination of surfa
e mat
hing and appearan
e-based mat
hinggives an a

ura
y of 99%.2. Pro�le S
ans with Neutral Expression.Although both surfa
e mat
hing and appearan
e-based mat
hing 
omponentsperform a little bit worse than the frontal 
ase, we still attain an a

ura
y of96% for the surfa
e mat
hing and 98% for the 
ombination s
heme. The lowerperforman
e here 
ompared to the frontal 
ases is due to the smaller overlapbetween the 2.5D test s
an and 3D models.3. S
ans with Smiling Expression. 116



Regardless of pose variations, expression 
hanges, whi
h alter the fa
ial geomet-ri
 shape, de
rease the surfa
e mat
hing a

ura
y drasti
ally. This is mainlybe
ause our ICP based surfa
e mat
hing is fo
used on extra
ting the rigid trans-formation parameters, while the fa
ial expression 
hange is a typi
al non-rigidtransformation. Although the appearan
e-based method 
an handle the fa
ialexpression 
hanges to some extent, its performan
e depends on the quality ofthe alignment (pose normalization), whi
h is provided by the surfa
e mat
hing
omponent. Still, surfa
e mat
hing and appearan
e-based mat
hing augmentea
h other and their 
ombination leads to 81% a

ura
y.The expression 
hange a�e
ts both sides of the fa
e. A

ording to our 
urrent
ontrol point sampling s
heme, the frontal 
ase has a larger fa
ial area whoseshape is 
hanged more by the expression than the pro�le views. This 
ould beone reason for a lower surfa
e mat
hing a

ura
y in the frontal smiling 
ategory
ompared to the pro�le smiling test s
ans.Table 4.2: Rank-one mat
hing a

ura
y for di�erent 
ategories of test s
ans. Thetotal number of test s
ans in ea
h 
ategory is listed in Table 1.1. The number oferrors is provided in the parenthesis. The weights for the surfa
e mat
hing and the
onstrained appearan
e mat
hing 
omponents are set to be equal (i.e., � = 1 inEq. 4.4).Test s
an 
ategory Surfa
e mat
hing Constrained LDA Surfa
e mat
hing +
onstrained LDAFrontal & Neutral 98% (2) 86% (14) 99% (1)Pro�le & Neutral 96% (7) 84% (35) 98% (5)Frontal & Smiling 68% (31) 71% (28) 77% (23)Pro�le & Smiling 76% (45) 69% (59) 84% (31)In all the three 
ategories of the test s
ans, the 
ombination of surfa
e mat
hing117



and appearan
e-based mat
hing outperforms ea
h individual mat
hing 
omponent.4.5.3 Overall Performan
eA summary of the experimental results for the entire dataset 
onsisting of 598 tests
ans is given in Table 4.3, running in the identi�
ation mode. Out of the 60 errorsover the entire test database (
orresponding to 90% a

ura
y), 54 test s
ans 
ontainsmiling expression. As mentioned earlier, the expression 
hange leads to non-linearsurfa
e deformation that is not adequately handled by the rigid transform basedICP algorithm. The surfa
e mat
hing distan
e distributions for genuine users andimpostors are provided in Fig. 4.14. Figure 4.15 shows 4 
orre
tly mat
hed examplesusing the 
ombined s
heme.

Figure 4.14: Surfa
e mat
hing distan
e distributions.The 
umulative mat
h s
ore 
urves for the three di�erent mat
hing s
hemes areprovided in Fig. 4.16. The 
ombination of surfa
e mat
hing (ICP only) and 
on-strained appearan
e-based mat
hing (LDA only) 
onsistently outperforms ea
h indi-118



Table 4.3: Mat
hing a

ura
y with equal weights for ICP and LDA 
omponents (i.e.,� = 1 in Eq. 4.4). The total number of test s
ans is 598.S
heme Rank-one mat
h a

ura
ySurfa
e mat
hing 86%Constrained LDA 77%Surfa
e mat
hing + Constrained LDA 90%

Figure 4.15: Test s
ans (top row), and the 
orresponding 3D models 
orre
tlymat
hed. The 3D model is shown in a pose similar to the 
orresponding test s
an.vidual s
heme.The performan
e reported in Table 4.3 is based on setting equal weights to surfa
emat
hing and appearan
e-based mat
hing distan
es, i.e., the value of � in Eq. (4.4)is set to 1. However, there may exist an optimal value of �, whi
h minimizes thenumber of errors. The performan
e 
hange with respe
t to � is shown in Fig. 4.17.In pra
ti
e, the value of � 
an be learned from the validation data.Using the mat
hing distan
es 
omputed from mat
hing 598 test s
ans to 200 3Dfa
e models, the ROC 
urves are generated, whi
h are provided in Fig. 4.18. The
urves are 
al
ulated by setting the same threshold for all the users. A user-spe
i�
threshold 
ould be 
omputed for ea
h user to yield better performan
e [89℄. Note that119



Figure 4.16: Cumulative mat
hing performan
e with equal weights for the surfa
emat
hing (ICP) and the 
onstrained appearan
e mat
hing (LDA) 
omponents (i.e.,� = 1). The LDA 
omponent is 
onstrained by the surfa
e mat
hing (ICP) 
ompo-nent. The LDA is only applied to the top 30 
andidate models sele
ted in the surfa
emat
hing stage.the appearan
e-based mat
hing (LDA) in Fig. 4.18 relies on the 3D pose alignmenta
hieved by ICP-based registration.Based on the 
on
atenation-based fusion s
heme in Se
. 4.4.2, the rank-1 re
og-nition rate is 78%, less than 90% obtained by the sum rule on the mat
hing s
oresfrom ea
h modality.In our 
urrent implementation, on an average, mat
hing one test s
an to a 3D fa
emodel takes about 16 se
onds using the hybrid ICP algorithm for surfa
e mat
hingand 2 se
onds using the a

elerated Besl's ICP algorithm for surfa
e mat
hing, on aPentium 4 2.8GHz CPU. The speed bottlene
k is the nearest neighbor sear
h in ICP,be
ause the 
omputation required for sequential (exhaustive) sear
h for one 
ontrolpoint is proportional to N , where N is the number of verti
es in the model. We have120



Figure 4.17: Identi�
ation a

ura
y based on the 
ombination strategy with respe
tto �, the parameter used to balan
e the surfa
e mat
hing and appearan
e mat
hing.A higher a

ura
y is a
hieved at � = 2 than the 90% a

ura
y at � = 1.integrated the KD-tree stru
ture 2 [28, 67℄ with the Besl's ICP algorithm [30℄. Theexpe
ted 
omputation to perform the nearest neighbor sear
h for ea
h 
ontrol pointis then proportional to logN . If we use only Besl's ICP algorithm in the surfa
emat
hing stage instead of the proposed hybrid ICP algorithm, the entire mat
hingpro
ess 
an be a
hieved in approximately 2 se
onds with about 2% de
rease in theidenti�
ation a

ura
y. Unlike the point-to-point (Eu
lidean) distan
e based Besl'sICP algorithm, the point-to-plane distan
e based Chen's ICP algorithm 
annot beintegrated with the KD-tree stru
ture. The nearest neighbor sear
h in ICP 
an beimplemented in parallel for ea
h 
ontrol point, so parallel 
omputation and hardwarea

elerators 
an also be utilized. With the 
urrent 
omputation power, the proposeds
heme would be more suitable for identi�
ation on a small database or veri�
a-tion appli
ations. For identi�
ation in a large database, fast s
reening or indexingapproa
hes would need to be integrated.2The KD-tree software pa
kage is provided by Guy She
hter.121



Figure 4.18: ROC 
urves. ICP (all): surfa
e mat
hing on the entire test database;ICP (neutral): surfa
e mat
hing on the test s
ans with neutral expression. LDA isapplied only after pose normalization by ICP rigid registration. Equal weights (i.e.,� = 1) were applied to the surfa
e mat
hing (ICP) and the 
onstrained appearan
e-based mat
hing (LDA) 
omponents.4.5.4 Automati
 Fa
e Re
ognitionWith automati
 feature point extra
tion (des
ribed in Chapter 3) integrated, a fullyautomati
 multimodal fa
e re
ognition system is developed. The feature points areused for both alignment in three-dimensional spa
e for surfa
e mat
hing and for fa
ialarea 
ropping for the appearan
e-based mat
hing. The same database (see Se
. 4.5.1)and the evaluation proto
ol are used. Due to 
omputational 
ost, only Besl's ICPalgorithm [30℄ is used for surfa
e mat
hing.The fa
e re
ognition system automati
ally mat
hes the 598 test s
ans to the 2003D fa
e models in the identi�
ation mode. The identi�
ation results are given inFig. 4.19. The identi�
ation results using manually labeled feature points are also122



plotted for 
omparison. The plots show that the fully automati
 system providesidenti�
ation a

ura
ies 
lose to those of the system using (three) manually labeledfeature points. In the 
urrent implementation, the total 
omputational 
ost of thefully automati
 system is about 4 se
onds for integrating both range and intensity,and 3 se
onds for surfa
e mat
hing only (2 se
onds for feature extra
tion).

Figure 4.19: CMC 
urves of the fully automati
 systems in 
omparison with thesystems with three manually labeled feature points.
4.6 SummaryWe have designed and implemented a fa
e re
ognition system that mat
hes 2.5Ds
ans of fa
es with di�erent pose and expression variations to a database of 3D fa
emodels. Both shape and intensity information 
ontained in 3D models are employed.123



We propose a 
ombination s
heme, whi
h integrates surfa
e (shape) mat
hing anda 
onstrained appearan
e-based method for fa
e mat
hing, that 
omplement ea
hother. The surfa
e mat
hing is a
hieved by a hybrid ICP s
heme. The subsequentappearan
e-based identi�
ation 
omponent is 
onstrained to a small 
andidate listgenerated by the surfa
e mat
hing 
omponent, whi
h redu
es the 
lassi�
ation 
om-plexity. The 3D template registered (after pose normalization a
hieved in the surfa
emat
hing stage) to the test s
an is utilized to synthesize training samples with fa-
ial appearan
e variations, whi
h are used for dis
riminant subspa
e analysis. Themat
hing distan
es obtained by the two mat
hing 
omponents are 
ombined usingthe weighted sum rule to make the �nal de
ision. A hierar
hi
al mat
hing frameworkis designed to further improve the system performan
e in terms of both a

ura
y andeÆ
ien
y.The 
urrent surfa
e mat
hing s
heme is still based on rigid transformation, result-ing in relatively poor mat
hing performan
e on fa
e s
ans in the presen
e of non-rigiddeformations, su
h as expression 
hanges. We will explore 3D templates that 
an bedeformed by integrating prior knowledge of non-rigid variations to deal with fa
ialexpression 
hanges for mat
hing. Details are presented in the next Chapter.
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Chapter 5
3D Fa
e Deformation Analysis
Fa
e re
ognition based on range images has been investigated by a number of re-sear
hers [98, 75, 156, 31, 131, 43℄, but only a few of them have addressed the defor-mation (expression) issue, whi
h is a major 
hallenge in 3D fa
e re
ognition [45, 115℄.Chua et al. [49℄ extended the use of Point Signature to re
ognize frontal fa
e s
answith di�erent expressions, whi
h was treated as a 3D re
ognition problem of non-rigidsurfa
es. A database of 6 subje
ts with 4 expressions was used in the experiments.Chang et al. [44℄ presented a method to independently mat
h multiple regions aroundthe nose, and integrate individual mat
hing results to make the �nal mat
hing de-
ision. Their method was evaluated on a database of about 4000 fa
ial s
ans from449 subje
ts. However, the nose region does not 
ontain suÆ
ient dis
riminant powerto distinguish fa
es a
ross a large population. Bronstein et al. [38, 39℄ proposed analgorithm based on an isometri
 model of fa
ial surfa
es, in an attempt to derive anexpression-invariant fa
ial surfa
e representation for 3D fa
e re
ognition. However,they 
onsidered only frontal fa
e s
ans and the proposed model assumed the mouth125



was 
losed in all fa
ial expressions. Their experiments were 
ondu
ted on a database
ontaining 27 human subje
ts with 8 expressions. Passalis et al. [132℄ �tted an an-notated fa
e model to a given fa
ial s
an and applied wavelet analysis to derive anew representation, i.e., deformation image, whi
h is used for mat
hing. The FRGCVer2.0 database [135℄ was used to evaluated the algorithms. A number of 3D fa
ialexpression analysis approa
hes are listed in Table 5.1.
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Table 5.1: Fa
ial expression analysis approa
hes using 3D data.
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We address the problem of mat
hingmultiview 2.5D fa
ial s
ans (range images) to3D neutral fa
e models (or 2.5D fa
ial s
ans) in the presen
e of expression variations.A 3D deformation modeling s
heme is proposed to handle the non-rigid deformations,e.g., expressions. To a

ount for the large intra-subje
t di�eren
e in 3D fa
ial shape
aused by expression 
hanges, we propose to expli
itly model the 3D deformation.Gross et al. [76℄ showed that user-spe
i�
 deformable models are more robust thanthe generi
 deformable model (a
ross subje
ts). However, to build a user-spe
i�
deformable model, a large number of training samples for a user are needed; 
olle
tingand storing 3D data of ea
h subje
t in a large gallery with multiple expressionsis not pra
ti
al. Further, it is diÆ
ult to 
olle
t fa
e s
ans to 
over all possiblevariations even for the same type of expression, be
ause the expression deformationis a 
ontinuous fa
ial movement. See Figure 5.1.

Figure 5.1: Deformation variations for one subje
t with the same type of expression.We 
olle
t data on 3D fa
ial deformations from only a small group of subje
ts,
alled the 
ontrol group. Ea
h subje
t in the 
ontrol group provides a s
an withneutral expression and several s
ans with non-neutral expressions. The deformations(between neutral s
an and non-neutral s
ans) learned from the 
ontrol group aretransferred to and synthesized for all the 3D neutral fa
e models in the gallery, yielding128



deformed templates with synthesized expressions. Multiple deformed templates forthe same subje
t based on members in the 
ontrol group are 
ombined to builddeformable models for ea
h subje
t in the gallery.Our deformation transfer and synthesis falls under the performan
e-driven frame-work [172, 139, 127, 153℄. Unlike previous methods designed for realisti
 animation,we simplify the deformation transfer problem that is suitable for 3D mat
hing. In or-der to learn deformation from the 
ontrol group, we need a set of �du
ial landmarks.Besides the �du
ial fa
ial landmarks, su
h as eye and mouth 
orners, landmarks inthe fa
ial area with little texture, e.g., 
heeks, are extra
ted in order to model the3D surfa
e movement due to expression 
hanges. We have designed a hierar
hi
algeodesi
-based resampling s
heme 
onstrained by �du
ial landmarks to derive a newlandmark-based surfa
e representation for establishing 
orresponden
e a
ross expres-sions and subje
ts. Thin-plate-spline (TPS) is used to transfer the landmark-baseddeformation. The deformation transfer is a
hieved by minimizing a global bendingenergy fun
tion [36℄, while preserving the fa
ial topology.During mat
hing, the user-spe
i�
 deformable model is �tted to a test s
an bysolving an optimization problem to yield a mat
hing distan
e. To handle the headpose 
hanges, the rotation and translation parameters are integrated into the 
ostfun
tion for �tting, whi
h is solved using an alternating optimization s
heme. Theproposed s
heme is designed to handle both expression and pose 
hanges simultane-ously.The proposed s
heme of deformation modeling for 3D fa
e mat
hing is presentedin Fig. 5.2. 129



Figure 5.2: Deformation modeling for 3D fa
e mat
hing. To mat
h a 2.5D test s
anto a 3D neutral fa
e model in the gallery database, the deformation learned fromthe 
ontrol group is transferred to the 3D neutral model. Ea
h subje
t in the 
ontrolgroup provides its own deformation transform. The 3D models with the 
orrespondingdeformation are synthesized. The M synthesized models are 
ombined to 
onstru
ta user-spe
i�
 deformable model, whi
h is �tted to the given test s
an.5.1 Hierar
hi
al Fa
ial Surfa
e SamplingHuman fa
es share a 
ommon geometri
 topology, whi
h 
an be represented by the
raniofa
ial (�du
ial) landmarks de�ned in Anthropometry [64℄. To model the ex-pressions a
ross the population, we use a �du
ial set of 9 landmarks (i.e., two innereye 
orners, two outside eye 
orners, two mouth 
orners, nasion, nose tip, and sub-nasal) as 
onstraints and the �rst layer in the hierar
hi
al s
heme, see Fig. 5.3(a).To learn the 3D surfa
e deformation, the 
orresponden
es between the landmarksneed to be established [139, 127℄. For those fa
ial regions that have little texture butare important for expression modeling, su
h as the 
heeks, we extra
t landmarks bysampling the fa
ial surfa
e hierar
hi
ally based on geodesi
s, whi
h have been demon-130



strated to be insensitive a
ross fa
ial expressions [38℄. The se
ond layer of landmarksis established based on the �rst layer. The geodesi
 distan
e and the 
orrespondingpath between two �du
ial landmarks (e.g., from one eye 
orner to one mouth 
orner)on the fa
ial surfa
e are 
omputed based on the fast mar
hing algorithm [91℄. Thederived paths en
ode the fa
ial surfa
e movement of di�erent expressions as shownin Fig. 5.4. We divide ea
h path into L segments with equal geodesi
 length. Thesepoints are then used as the newly extra
ted landmarks. Fig. 5.3(b) gives an example.

(a) (b) (
) (d)Figure 5.3: Hierar
hi
al surfa
e sampling. (a) First layer (�du
ial set); (b) se
ondlayer; (
) third layer; (d) �nal landmark set.

(a) (b) (
) (d)Figure 5.4: Geodesi
 paths (yellow) a
ross di�erent expressions. (a,b) A neutral s
anshown in two di�erent views. (
,d) A s
an of a happy expression from the samesubje
t in the same two views. 131



The third layer of landmarks is 
onstru
ted based on the extra
ted landmarksobtained in the se
ond layer by 
omputing the geodesi
 paths between landmarks inthe se
ond layer and sampling the paths with equal geodesi
 length; see Fig. 5.3(
).This hierar
hi
al sampling s
heme 
an be further 
ondu
ted automati
ally to obtainhigher resolution representations, based on whi
h the 
orresponden
e a
ross bothsubje
ts and expressions 
an be established. Our experiments show that three layersprovide a reasonable approximation for expression modeling.The resulting landmark set in
ludes �du
ial landmarks (9 points), �rst layer land-marks (34 points), se
ond layer landmarks (40 points), along with the 
hin point(1 point) and mouth 
ontour (10 points). The 
hin point and mouth 
ontour are
urrently manually identi�ed; they are not involved in the geodesi
-based samplings
heme but important for expression modeling. In total, there are 94 landmarks asshown in Fig. 5.3(d).
5.2 Deformation Transfer and SynthesisThe deformation is learned from a 
ontrol group of M subje
ts, who provide bothneutral and non-neutral expression s
ans. The learned deformation is transferred toa 3D neutral model in the gallery for synthesis, a

ording to the following pro
edure,whi
h is illustrated in Fig. 5.5.(1) Register the non-neutral s
an with the neutral s
an to estimate the displa
e-ment ve
tor of landmarks due to the expression 
hange.(2) Establish a mapping � from the landmark set (LSne) of the neutral s
an to132



that (LMne) of the 3D neutral model;(3) Use the mapping � to transfer the landmarks (LSsm) in the non-neutral s
anto the 3D neutral model as LS 0sm.(4) Establish a mapping  from the landmarks (LMne) of the 3D neutral modelto LS 0sm.(5) Apply  to other verti
es in the 3D neutral model to move them to the newpositions 
aused by the expression.

Figure 5.5: Deformation transfer and synthesis. (a) Landmark set (LSne) of theneutral s
an in the 
ontrol group. (b) Landmark set (LSsm) of the s
an with non-neutral expression in the 
ontrol group. (
) Rigid alignment between (a) and (b)using the nose region that is invariant to expression 
hanges; and the deformation�eld of the landmarks from (a) to (b) after rigid alignment. (d) Landmark set (LMne)of the 3D neutral model (f) in the gallery. (e) Landmark set (LS 0sm) after deformationtransfer. (g) 3D non-neutral model after applying deformation transfer and synthesison (f). (h) and (i) show pro�le views of the model in (f) and (g), respe
tively.We use TPS as the mapping and interpolation tool for deformation transfer and133



synthesis.5.2.1 Thin-Plate-SplineTPS [36, 60℄ represents a natural parametri
 generalization from rigid to mild non-rigid deformations and is used to estimate the deformation F for two sets of points(U; V ). The thin plate spline algorithm spe
i�es the mapping of points for a referen
eset to the 
orresponding points in a target set. Let g0 and g1 denote two surfa
es. Awarping of g0 to g1 is de�ned as the fun
tion F su
h thatF (g0) = g1: (5.1)The fun
tion F is 
alled the warping fun
tion, whi
h takes g0 to g1. Given a pairof point patterns with known 
orresponden
es (landmarks) on two surfa
es, U =(u1; u2; � � � ; um)T and V = (v1; v2; � � � ; vm)T , where U � g0 and V � g1, we need toestablish 
orresponden
es between other surfa
e points; uk and vk denote the (x; y; z)
oordinates of the k-th 
orresponding pair andm is the total number of 
orrespondingpoints. A warping fun
tion, F , that warps U to V subje
t to perfe
t alignment isgiven by the 
onditions F (uj) = vj; (5.2)for j = 1; 2; � � � ; m. The interpolation deformation model is given in terms of thewarping fun
tion F (u), withF (u) = 
+ A � u+W Ts(u); (5.3)134



where u 2 g0; 
, A andW are TPS parameters; s(u) = (�(u�u1); �(u�u2); � � � ; �(u�um))T and �(r) = jrj. An analyti
al solution of F 
an be obtained for 3D points [36,60℄. In our appli
ation, the set U and V 
orrespond to 94 landmarks on a neutrals
an and a non-neutral s
an or a 3D neutral model, respe
tively.
5.2.2 Deformation TransferThe deformation transfer problem is de�ned as follows: given a pair of sour
e surfa
esrepresented by meshes (in the 
ontrol group), S and S 0, and a target mesh T (in thegallery), generate a new mesh T 0 su
h that the relationship between T and T 0 issimilar to the relationship between S and S 0. Our deformation transfer is based onthe extra
ted landmarks. Figure 5.5(a) shows the landmark set on the pair of fa
es
ans in the 
ontrol group. The same set of landmarks are extra
ted on the 3D neutralmodel for deformation transfer (see Fig. 5.5(d)).In order to separate non-rigid fa
ial expressions from rigid head motion, a rigidtransformation (translation and rotation), is applied to align the neutral s
an andthe non-neutral s
an in the 
ontrol group based on those landmarks that are insen-sitive to expression 
hanges, su
h as eye 
orners and nose tip. This normalizes thefa
ial (geometry) position (see Fig. 5.5(
)). After the rigid alignment of neutral andnon-neutral s
ans, the estimated displa
ement ve
tors need to be transferred to the3D neutral model in the gallery. Sin
e fa
ial geometry and aspe
t ratios are di�er-ent between the s
ans in the 
ontrol group and the 3D models in the gallery, sour
edispla
ements 
annot be simply transferred without adjusting the dire
tion and mag-135



nitude of ea
h motion ve
tor. We establish a TPS mapping from the landmark set ofthe neutral s
an in the 
ontrol group to that in the 3D neutral model in the gallery.Sin
e the TPS mapping 
ontains the aÆne 
omponent and the distortion 
omponent,both the s
ale and orientation of the motion ve
tors are also adjusted. The land-marks for the non-neutral s
ans are mapped onto the 
orresponding positions in the
oordinate system of the 3D neutral model by applying the estimated TPS mapping.5.2.3 Deformation Synthesis

(a) (b) (
)Figure 5.6: Deformation synthesis. (a) 3D neutral model with landmarks. The dotsare the landmarks in 
orresponden
e to those in the 
ontrol group (see Fig. 5.5(a)).The star points are used for boundary 
onstraints. (b) Synthesis result without �xed-point boundary 
onstraint. (
) Synthesis result with �xed-point boundary 
onstraints.Deformation transfer establishes the new positions of the landmarks in the 3Dneutral model. A TPS mapping is 
omputed from the landmarks in the 3D neutralmodel to their deformed positions. The resulting mapping is used to interpolate thepositions of surfa
e points in-between the landmarks. For the verti
es in-between the
onvex hull spanned by the landmarks, the interpolation 
an be done by TPS map-ping. However, for those verti
es that lie outside this 
onvex hull, an extrapolation136



has to be performed, leading to distortions, su
h as shown in Fig. 5.6(
). Therefore,we add a few additional landmarks (shown as `*' in Fig. 5.6(a)), whi
h spe
ify theboundary 
onstraints. These landmarks are mapped to themselves. By 
omputing theTPS mapping based on this augmented landmark set (dots plus stars in Fig. 5.6(a)),the interpolation 
an generate a better synthesis result as shown in Fig. 5.6(
).
5.2.4 Synthesizing Open MouthA number of fa
ial expressions involve open mouth, but the templates (3D modelor 2.5D s
an) with neutral expression usually do not 
ontain any data inside themouth. In order to model the open mouth a

ording to expression 
hanges, we add�ve landmarks to partition the mouth (labeled as `+' in Fig. 5.7), so that the upperand lower lips 
an move independently.

(a) (b) (
) (d)Figure 5.7: Expression transfer and synthesis with mouth open. (a) Landmark setfor the neutral s
an in the 
ontrol group. (b) Landmark set for the s
an with non-neutral expression in the 
ontrol group. (
) Landmark set for a 3D neutral model inthe gallery; points marked as `+' are in
luded to partition the mouth so that the upperand lower lips 
an move independently. (d) 3D non-neutral model with synthesizedexpression transferred from the pair (a,b) to (
).137



5.3 Deformable Model Constru
tionWhile a 
hange in fa
ial expression is a 
ontinuous pro
ess, a synthesized template(non-neutral model) 
aptures only a spe
i�
 instan
e of the expression. Further, sin
eea
h single synthesized non-neutral model is obtained by transferring the deformationfrom one member in the 
ontrol group to the neutral gallery model, it is not likelyto be the true expression of the gallery model. Therefore, we learn the expressiondeformation from all the M members in the 
ontrol group. This leads to a user-spe
i�
 deformable model that is a linear 
ombination of non-neutral models, ea
hobtained as a result of deformation transfer from one member of the 
ontrol group tothe neutral model.Let S represent a fa
e surfa
e model: S = (x1; y1; z1; � � � ; xn; yn; zn)T , where(xk; yk; zk) is the lo
ation of the kth surfa
e vertex, k = 1; 2; � � � ; n, and n is thetotal number of verti
es. For ea
h subje
t, let Sne denote the neutral model and Si(i = 1; 2; � � � ;M) denote the deformed model generated by the ith member in the
ontrol group. We assume that all Si's 
orrespond to the same type of expressionsynthesized from Sne. Noti
e that sin
e all Si's are synthesized from Sne, the 
or-responden
e between them is automati
ally established. By 
ombining all the Msynthesized models, we 
onstru
t the deformable model for this subje
t asS = Sne + MXi=1 �i � (Si � Sne); (5.4)whereM is the total number of synthesized templates from Sne and �i's are the mixing138



weights. The deformable model 
onsists of two 
omponents; the �rst 
omponent is thesubje
t's neutral model Sne and the se
ond is the variation 
omponent representingthe 
hange in fa
ial surfa
e due to expression. In other words, while Sne 
ontrols thesubje
t's identity, the variation 
omponent does deformation adaptation by adjustingthe weights �i. As the number of subje
ts, M , in the 
ontrol group in
reases, thenumber of weights (�i) also in
reases, leading to a more 
omplex �tting problem in ahigh dimensional parameter spa
e. The prin
ipal 
omponent analysis 
an be appliedto reformulate the deformable model and redu
e the 
omplexity by keeping only theprin
ipal modes [33℄.
5.3.1 Expression-spe
i�
 vs. Expression-generi
 ModelsFor ea
h subje
t, we 
onstru
t one deformable model for ea
h type of expression ofinterest. So, if the 
ontrol group 
ontains P di�erent non-neutral expressions, welearn P expression-spe
i�
 deformable models. These expression-spe
i�
 models 
analso be integrated into a single expression-generi
 deformable model by adding newlinear variation 
omponents in Eq. 5.4. But this approa
h substantially in
reasesthe 
omplexity of the model as the number of expression types in
reases, leadingto diÆ
ulties in the subsequent model �tting. Experimental results show that theexpression-generi
 deformable model based s
heme gives lower mat
hing a

ura
ythan the expression-spe
i�
 model based s
heme (see Se
tion 5.5 for details).139



5.4 Deformable Model FittingTwo types of transformations are applied to a 3D deformable model, when it ismat
hed to a given test s
an with a 
laimed identity. The �rst one is the rigidtransformation due to the head pose 
hanges, whi
h 
an be represented by a rotationmatrix and a translation ve
tor. The se
ond one is the non-rigid deformation, whi
h
an be modeled by the weights �i in Eq. 5.4. Fitting the deformable model to a giventest s
an is formulated as an optimization problem to minimize the 
ost fun
tionE(�i; � � � ; �M ;R; T ) = kS � �(StjR; T )k2= kSne + MXi=1 �i � (Si � Sne)� �(StjR; T )k2; (5.5)
where R and T are the rotation matrix and translation ve
tor, respe
tively; S is the3D deformable model, St denotes the test s
an, and �(StjR; T ) represents applying thetransformations of (R,T ) to St. To redu
e the 
omputation 
ost in the optimizationpro
ess, we subsample the test s
an surfa
e into a number of 
ontrol points that areused for the alignment and 
ost fun
tion evaluation [115℄, see below.We fa
torize the rigid and nonrigid 
omponents and use an alternating optimiza-tion s
heme to solve for them:1. Initialize the deformable model parameters to generate a 3D model; estimatea 
oarse alignment between the model and the test s
an using three an
hor points.See Chapter 3 for an automati
 an
hor point extra
tion algorithm.2. The iterative 
losest point (ICP) algorithm is utilized to solve for the rotationand translation parameters (R,T ) [30℄ to a
hieve pose normalization, while �xing �i's.140



3. Given R and T obtained in step 2, minimize the 
ost fun
tion E by solving for�i's.4. Use the �i's 
omputed in step 3 to generate a new instan
e of the 3D model;repeat steps 2 to 4 until the 
onvergen
e is rea
hed.In step 3, the optimization 
an be a
hieved by a gradient-based iterative approa
h,su
h as the BFGS quasi-Newton method [70℄. But, be
ause the 
ost fun
tion isevaluated based on the 
ontrol points in the test s
an and their 
losest 
ounterpartsin the deformable model, and the 
losest 
ounterparts may 
hange due to adjustmentof �is, the optimization problem is highly non-linear. Multiple iterations of 
ostfun
tion evaluation are 
omputationally expensive due to the large number of 
losestpoint sear
hes. However, as an approximation, by �xing the 
orresponden
e, the �is
an be obtained in a non-iterative way by solving a linear least square problem as�opt = ( ~ST ~S)�1( ~ST (St � Sne)); (5.6)where ~S is the matrix [(S1 � Sne); (S2 � Sne); :::; (SM � Sne)℄. Experimental resultsshow that this simpli�
ation signi�
antly redu
es the 
omputational 
ost while pro-viding 
ompetitive a

ura
y 
ompared to the iterative BFGS optimization algorithm.Moreover, this linear non-iterative optimization is mu
h more eÆ
ient than iterativegradient-based algorithms as the number of parameters (�is) in
reases. After the �t-ting pro
ess, the root-mean-square distan
e 
al
ulated by the ICP algorithm is usedas the mat
hing distan
e. A model �tting example is provided in Fig. 5.8. In theexpression-spe
i�
 model based s
heme, for ea
h subje
t, we mat
h all its deformable141



models, one per expression, to a given test s
an. The minimum of all the obtainedmat
hing distan
es is used as the �nal mat
hing distan
e.

Figure 5.8: Deformable model �tting. (a) Test s
an. (b) 3D neutral model. (
)Deformed model after �tting to (a). Registration results of (a) to models (b) and (
)are given in (d), (e), respe
tively (the test s
an (yellow wire-frame) is overlaid on the3D model); the mat
hing distan
es are 2:7 and 1:3, respe
tively.
5.5 Experiments and Dis
ussionWe evaluate the proposed s
heme on three databases (MSU-II, MSU-I, and FRGCVer2.0 database) in the identi�
ation mode, i.e., by mat
hing a test s
an to all thegallery models. The proposed deformable model s
heme is 
ompared with rigid-only (ICP [29℄) based mat
hing s
heme. The ICP-based baseline algorithm has beendemonstrated to perform better than the PCA-based baseline method [44℄ for 3Dfa
ial surfa
e mat
hing. Both expression-spe
i�
 and expression-generi
 deformable142



Table 5.2: Identi�
ation a

ura
y of 10-fold 
ross-validation in experiment I.Mean StdWithout deformation modeling 91% 3%With deformation modeling; expression spe
i�
 96% 2%With deformation modeling; expression generi
 95% 3%
model based s
hemes are evaluated. The expression-generi
 deformable model is
onstru
ted by in
luding all 7 expressions 
olle
ted in the MSU-II database, whi
hare smile, happy, surprise, angry, in
ated, de
ated, and neutral (see Fig. 1.14 forexamples).
5.5.1 Experiment IExperiment I uses the MSU-II database, whi
h 
ontains range images of 10 subje
tsat 3 di�erent poses (see Se
tion 1.5.2 for details). Five subje
ts are randomly 
hosenas the 
ontrol group and the remaining 5 subje
ts are used as the gallery. There are105 (5� 7� 3) test s
ans in total. For the subje
ts in the 
ontrol group, only frontals
ans are used for deformation modeling. To eliminate an
hor point extra
tion errorswhen evaluating the deformation modeling s
heme, we use three manually labeledan
hor points (two eye 
orners and the nose tip) from a given test s
an for initial
oarse alignment in the model �tting pro
ess (see Step 1 in Se
. 5.4). The re
ognitiona

ura
y based on 10-fold 
ross validation is provided in Table 5.5.1.143



5.5.2 Experiment IIThe 
ontrol group is 
omposed of the 10 subje
ts in the MSU-II database (only frontals
ans are used). Another 90 subje
ts in the MSU-I database that are not in the MSU-II database formed the gallery. There are a total of 90 3D models stored in the galleryand 533 independent 2.5D s
ans for testing. The representative test s
ans are shownin Fig. 5.9. To initialize a 
oarse alignment between a test s
an and a gallery template(see Step 1 in Se
. 5.4), three an
hor points (two eye 
orners and the nose tip) areautomati
ally extra
ted from a test s
an (see Chapter 3). The mat
hing pro
ess isfully automati
.

Figure 5.9: Test s
an examples in experiment II.
The CMC 
urves are provided in Fig. 5.10. Based on all the 
omputed mat
hingdistan
es, the ROC 
urves are generated, whi
h are given in Fig. 5.11.144



Figure 5.10: CMC 
urves of experiment II.5.5.3 Experiment IIIFRGC Ver2.0 [135℄ is a large publi
 domain fa
e database, whi
h 
ontains (near)frontal 2.5D fa
ial s
ans. Although no 3D models are available for subje
ts in thisdatabase, the proposed deformation modeling and mat
hing s
heme is still appli
ableby repla
ing a 3D full-view model in the gallery with a 2.5D frontal neutral s
an. Inaddition to the neutral expression, subje
ts provided s
ans with several non-neutralexpressions, su
h as smiling (happiness), frown, astonishing (surprise), disgust, sad,and pu�y 
heeks. In our experiments, all the s
ans are downsampled to 320 � 240.Due to the 
omputational 
ost of model �tting, the �rst 100 subje
ts are sele
tedfrom the FRGC Ver2.0 database. For ea
h subje
t, the s
an with neutral expressionand the earliest time stamp is used as the template to 
onstru
t the gallery. Theremaining s
ans with various expressions are 
hosen as test s
ans. In total, thereare 100 2.5D gallery templates and 877 independent 2.5D s
ans for testing. Repre-145



Figure 5.11: ROC 
urves of experiment II.sentative s
ans are provided in Fig. 1.17. The 10 subje
ts in the MSU-II databaseformed the 
ontrol group (only frontal s
ans are used). The expression deformationsare learned and transferred from the 
ontrol group to 
onstru
t a deformable model(a 2.5D deformable frontal template) for ea
h subje
t in the gallery. To initialize a
oarse alignment between a test s
an and a gallery template (see Step 1 in Se
. 5.4),three an
hor points (two eye 
orners and the nose tip) are automati
ally extra
tedfrom a test s
an (see Chapter 3). The mat
hing pro
ess is fully automati
.The CMC 
urves from our mat
hing algorithm are provided in Fig. 5.12. Based onall the 
omputed mat
hing distan
es, the ROC 
urves are generated, whi
h are givenin Fig. 5.13. Fig. 5.14 shows some of the test s
ans that are in
orre
tly mat
hed usingrigid transformation (ICP) but 
orre
tly mat
hed by using the proposed deformationmodeling s
heme. 146



Figure 5.12: CMC 
urves of experiment III.5.5.4 Dis
ussion
These experimental results demonstrate that the proposed deformation modelings
heme improves the mat
hing a

ura
y in the presen
e of expression variations alongwith large pose 
hanges. Fig. 5.15 shows examples where the proposed s
heme failsto �nd the 
orre
t mat
hes in experiment III on the FRGC database. One of thereasons for the mat
hing errors is that the 
urrent �tting (optimization) pro
ess isstill subje
t to lo
al minimum. In addition, sin
e our 
ontrol group 
ontains only 10subje
ts, we are not able to fully learn the deformation that is generalizable a
ross alarge population.The average CPU time (Pentium4 2.8GHz) of model �tting for a pair of test s
anand a model is 5 se
onds implemented in Matlabr.147



Figure 5.13: ROC 
urves of experiment III.5.6 SummaryWe have proposed a fully automati
 framework for robust 3D fa
e mat
hing in thepresen
e of nonrigid deformation (due to expression 
hanges) and large pose 
hangessimultaneously in the test s
an. A hierar
hi
al surfa
e resampling s
heme with 
on-straints of �du
ial landmarks is developed to obtain a representation for analyzing 3Dfa
ial surfa
es a
ross expression and pose. This hierar
hi
al representation providesthe 
exibility to 
ontrol the resolution of the derived model. Landmarks in fa
ialsurfa
es in regions with little texture are automati
ally extra
ted using the geodesi
-based approa
h. 3D deformation learned from a small 
ontrol group is transferredto the 3D models with neutral expression in the gallery. The 
orresponding defor-mation is synthesized in the 3D neutral model to generate a deformed template. Auser-spe
i�
 deformable model is built by 
ombining the deformed templates from148



Figure 5.14: Examples of test s
ans (top row) in experiment III on the FRGC databasethat are in
orre
tly identi�ed with rigid transformation (ICP) but 
orre
tly identi�edwith deformation modeling. Middle row: 
orresponding genuine 2.5D neutral tem-plates; bottom row: 
orresponding genuine deformed templates after model �tting.ea
h member in the 
ontrol group. Two types of deformable models have been built,expression-spe
i�
 and expression generi
. The mat
hing is performed by �tting thedeformable model to a given test s
an, whi
h is formulated as a minimization of a 
ostfun
tion. Experimental results demonstrate the 
apabilities of the proposed s
hemeto learn and synthesize the deformation on new fa
e models and to make the 3D fa
esurfa
e mat
hing system more robust a
ross expression and pose.Landmark labeling is needed in deformation modeling. Currently, �du
ial land-mark labeling is done manually. Although this is 
ondu
ted in the o�ine training149



Figure 5.15: Examples of in
orre
t mat
hes in experiment III on the FRGC database.Top row: test s
ans; middle row: 
orresponding best mat
hed templates after model�tting; bottom row: 
orresponding genuine templates after modeling �tting.stage, it would be more 
onvenient to make it a fully automati
 pro
ess in manyappli
ations. Redu
ing the 
omputational 
ost is also being pursued.The proposed deformation modeling s
heme integrates the priors of the deforma-tion (expression 
hanges) into the 3D model. The 
apability of handling deformationsis enhan
ed for ea
h gallery model. We also explored another dire
tion, analyzingthe deformation from the 
lassi�
ation perspe
tive, espe
ially for the fa
e (identity)mat
hing purpose. In general, there are two sour
es of deformation. One is the de-formation 
aused by the expression of the same subje
t. The other is the surfa
e150



shape di�eren
e between di�erent subje
ts. To resolve the ambiguity in fa
e (iden-tity) mat
hing introdu
ed by measuring 3D shape di�eren
e (deformation) alone, wepropose to expli
itly estimate and dis
riminate the shape deformation into two 
lassesfor the identity mat
hing purpose, namely, intra-subje
t deformation and inter-subje
tdeformation.The proposed mat
hing framework 
aptures both rigid and non-rigid deformation,and expli
itly 
lassi�es the non-rigid deformation into intra-subje
t or inter-subje
t
ategory. The ICP is applied to a
hieve the rigid registration. The non-rigid registra-tion is performed by the thin plate spline model, whi
h generates the displa
ementve
tor �eld as the deformation representation. The displa
ement ve
tor �eld is usedas the feature representation, whi
h is fed into the deformation 
lassi�er. The de-formation 
lassi�
ation results are integrated with the mat
hing distan
es obtainedfrom rigid and non-rigid registration for the �nal mat
h. Preliminary results showthat this s
heme improves the mat
hing a

ura
y [107℄.
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Chapter 6
Con
lusions and Future Dire
tions
Fig. 6.1 illustrates the thesis stru
ture asso
iated with the major 
omponents of theproposed 3D fa
e mat
hing system. Related publi
ations are Chapter 3 [113, 112, 109,103, 88℄, Chapter 4 [105, 104, 108, 115, 106, 116, 111℄, and Chapter 5 [110, 107, 114℄.

Figure 6.1: Thesis stru
ture and the proposed 3D fa
e mat
hing system.
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6.1 Con
lusionsThe performan
e of fa
e re
ognition systems that use two-dimensional (2D) imagesis dependent on 
onsistent 
onditions su
h as pose, lighting, and fa
ial expression. Afully automati
 multi-view fa
e re
ognition system has been developed to be morerobust to those variations, espe
ially large pose and expression variations. Major
ontributions in
lude feature extra
tion, multimodal integration, and deformationanalysis.6.1.1 Feature Extra
tion� An automati
 feature extra
tion s
heme has been developed to lo
ate fa
ialfeature points from fa
ial s
ans 
aptured under large viewpoint 
hanges., leadingto a fully automati
 3D fa
e mat
hing system.� A simple but e�e
tive approa
h has been presented to extra
t fa
ial area fromthe ba
kground in a fa
e s
an.� A feature extra
tor based on the dire
tional maximum is proposed to estimatethe nose tip lo
ation and the head pose angle simultaneously. A nose pro�lemodel represented by subspa
es is used to sele
t the best 
andidates for thenose tip.� Assisted by a statisti
al feature lo
ation model, a multimodal s
heme 
ombiningboth 3D (range) and 2D (intensity) information in multiview fa
ial s
ans hasbeen presented to extra
t eye and mouth 
orners.153



� With the estimated pose, the system automati
ally reje
ts the feature pointsthat are not valid due to self-o

lusion.� Evaluated on both self-
olle
ted and publi
ly available databases, our fa
e re
og-nition system based on automati
 feature extra
tor a
hieves an identi�
ationa

ura
y 
lose to the system with manually labeled feature points.6.1.2 Multimodal IntegrationWe have designed a 3D fa
e mat
hing s
heme that mat
hes 2.5D s
ans of fa
es withdi�erent pose and expression variations to a database of 3D/2.5D fa
e templates.Both shape and intensity information of fa
ial s
ans are employed. We have developeda 
ombination s
heme, whi
h integrates surfa
e (shape) mat
hing and a 
onstrainedappearan
e-based method for fa
e mat
hing, that 
omplement ea
h other.� The surfa
e mat
hing is a
hieved by a hybrid ICP s
heme.� The subsequent appearan
e-based identi�
ation 
omponent is 
onstrained toa small 
andidate list generated by the surfa
e mat
hing 
omponent, whi
hredu
es the 
lassi�
ation 
omplexity. The registered 3D template (after posenormalization is a
hieved in the surfa
e mat
hing stage) to the test s
an isutilized to synthesize training samples with fa
ial appearan
e variations, whi
hare used for dis
riminant subspa
e analysis.� The mat
hing distan
es obtained by the two mat
hing 
omponents are 
ombinedusing the weighted sum rule to make the �nal de
ision.154



� A hierar
hi
al mat
hing framework has been designed to further improve thesystem performan
e in both a

ura
y and eÆ
ien
y.6.1.3 Deformation AnalysisOne major diÆ
ulty en
ountered in 
urrent 3D fa
e mat
hing systems is the presen
eof the non-rigid deformation in the test s
ans, whi
h is mainly 
aused by expressions.Fa
ial expressions 
hange 
ontinuously and do not have a well-de�ned des
riptionusing a quantitative representation for 
ategorization. We have proposed a deforma-tion modeling s
heme that is able to handle expressions and large head pose 
hangessimultaneously.� We designed a hierar
hi
al geodesi
-based resampling s
heme 
onstrained by�du
ial landmarks to derive a fa
ial surfa
e representation for establishing 
or-responden
e a
ross expressions and subje
ts.� Based on the developed representation, we extra
ted and modeled three-dimensional non-rigid fa
ial deformations su
h as expression 
hanges for ex-pression transfer and synthesis using thin-plate-spline models as the mappingand interpolation tool.� For 3D fa
e mat
hing purposes, we built a user-spe
i�
 3D deformable modeldriven by fa
ial expressions. An alternating optimization s
heme was applied to�t the deformable model to a test fa
ial s
an, resulting in a mat
hing distan
e.� Computational 
ost is saved by redu
ing a highly non-linear optimization prob-155



lem into a linear one that 
an be solved with a non-iterative approa
h insteadof traditional gradient-based iterative methods.� Experimental results demonstrate the proposed expression modeling s
hemeimproves the 3D fa
e mat
hing a

ura
y.� For fa
e mat
hing purposes, the non-rigid deformations from two di�erentsour
es are dis
riminated, namely, intra-subje
t deformation vs. inter-subje
tdeformation. The deformation 
lassi�
ation results are integrated with the reg-istration distan
es for making the �nal mat
hing de
ision.
6.2 Future Dire
tions� Robust and eÆ
ient feature extra
tion. The proposed feature extra
tionalgorithm is designed to estimate the nose tip and head pose 
hange by anglespa
e quantization. The 
omputational 
ost to handle the entire 3D spa
e isexpensive using exhaustive sear
h. Therefore, a more eÆ
ient sear
h s
hemeis being pursued. Moreover, a more a

urate feature point lo
ator should bedeveloped to redu
e the lo
alization errors, espe
ially in the presen
e of largepose and expression variations.� Feature sele
tion and reje
t option. In pra
ti
al appli
ations, a reje
toption is useful for making the system generate fewer in
orre
t de
isions. Forexample, feature s
ores asso
iated with ea
h extra
ted feature point 
an be usedas 
on�den
e measures to robustly sele
t the most reliable points for registration156



or design a reje
t option if an insuÆ
ient number of feature points are extra
ted.� Automati
 landmark labeling. Landmark labeling is needed in deformationmodeling. Currently, �du
ial landmark labeling is done manually. Although thisis 
ondu
ted in the o�ine training stage, it would be more desirable to makeit a fully automati
 pro
ess in many appli
ations. Redu
ing the 
omputational
ost is also a major resear
h topi
.� Expression invariant representation. Finding an intrinsi
 representationthat is invariant to the expression 
hanges is desirable. The fa
ial skin elasti
itymakes more diÆ
ult to �nd su
h invarian
e. In prin
iple, this s
heme shouldbe able to handle any deformation present in human fa
es.With advan
es in 3D imaging te
hnologies, 3D fa
e re
ognition holds promise tomake fa
ial re
ognition systems more robust in pra
ti
e. 3D fa
e re
ognition is anex
iting and 
hallenging resear
h topi
.
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