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ABSTRACT
3D FACE RECOGNITION ACROSS POSE AND EXPRESSION
By

Xiaogquang Lu

Face analysis and recognition has a large number of applications, such as secu-
rity, communication, and entertainment. Current two-dimensional image based face
recognition systems encounter difficulties with large facial appearance variations due
to pose, illumination, and expression changes. We have developed a face recognition
system that utilizes three-dimensional shape information to make the system more
robust to large head pose changes. Two different modalities provided by a facial scan,
namely, shape and intensity, are utilized and integrated for face matching. While the
3D shape of a face does not change due to head pose (rigid) and lighting changes, it is
not invariant to non-rigid facial movement, such as expressions. Collecting and stor-
ing multiple templates to account for various expressions for each subject in a large
database is not practical. We have designed a hierarchical geodesic-based resam-
pling scheme to derive a facial surface representation for establishing correspondence
across expressions and subjects. Based on the developed representation, we extract

and model three-dimensional non-rigid facial deformations such as expression changes



for expression transfer and synthesis. For 3D face matching purposes, a user-specific
3D deformable model is built driven by facial expressions. An alternating optimiza-
tion scheme is applied to fit the deformable model to a test facial scan, resulting in a
matching distance. To make the matching system fully automatic, an automatic facial
feature point extractor was developed. The resulting 3D recognition system is able to
handle large head pose changes and expressions simultaneously. In summary, a fully
automatic system has been developed to address the problems of 3D face matching in
the presence of simultaneous large pose changes and expression variations, including
automatic feature extraction, integration of two modalities, and deformation analysis

to handle non-rigid facial movement (e.g., expressions).
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Chapter 1

Introduction

1.1 Face Recognition

Automatic human face recognition has received substantial attention from researchers
in biometrics, pattern recognition, and computer vision communities [46, 169, 184,
74, 99]. The machine learning and computer graphics communities are also increas-
ingly involved in face recognition. This common interest among researchers working
in diverse fields is motivated by our remarkable ability to recognize faces and the fact
that this human activity is a primary concern both in everyday life and in cyberspace.
In addition, there are a large number of commercial, security, and forensic applica-
tions that require the use of face recognition technologies. These applications include
automated crowd surveillance, access control, mugshot identification (e.g., for issu-
ing driver licenses), face reconstruction, design of human computer interface (HCI),
multimedia communication (e.g., generation of synthetic faces), and content-based

image database management. A number of commercial face recognition systems are



available, for example, 2D systems from Cognitec Systems GmbH [3], Eyematic [5]
(now Neven Vision [14]), Viisage [17] (now merged with Identix [11]), and Identix
and 3D systems from A4Vision [2], Geometrix [10], and Genex Technologies [8].

Biometrics deals with automatic recognition of people based on their distinctive
anatomical (e.g., face, fingerprint, iris, retina, hand geometry, vein, voice, etc.) and
behavioral (e.g., signature, gait) characteristics. Face is an effective biometric at-
tribute/indicator. Different biometric indicators are suited for different kinds of iden-
tification applications due to their performance with regard to intrusiveness, accu-
racy, cost, and easy of sensing [12] (see Fig. 1.1(a)). The face biometric provides
good non-intrusiveness with a relatively low accuracy. Among the six biometric in-
dicators considered in [83], facial features scored the highest compatibility, shown
in Fig. 1.1(b), in a machine readable travel documents (MRTD) system based on a
number of evaluation factors [83].

Global biometric revenues were $719 million in 2003. They are expected to reach
$4.6 billion by 2008 [12], driven by large-scale public sector biometric deployments,
the emergence of transactional revenue models, and the adoption of standardized
biometric infrastructures and data formats. Among emerging biometric technologies,
facial biometrics is projected to reach annual revenues of $802 million in 2008.

Face recognition scenarios can be classified into two types, (i) face verification (or
authentication) and (ii) face identification (or recognition). In the Face Recognition
Vendor Test (FRVT) 2002 [137], which was conducted by the National Institute of
Standards and Technology (NIST), another scenario was added, called the ‘watch

list’.
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[83].

e Face verification (“Am I who I say I am?”)

is a one-to-one match that

compares a query face image against a template face image whose identity
is being claimed. To evaluate the verification performance, the verification
rate (the rate at which legitimate users are granted access) vs. false accept
rate (the rate at which imposters are granted access) is plotted, called the
Receiver Operating Characteristic (ROC) curve. A good verification system

should balance these two rates based on operational needs.

Face identification (“Who am I7”) is a one-to-many matching process that
compares a query face image against all the template images in a face database
to determine the identity of the query face (see Fig. 1.2). The identification
of the test image is done by locating the image in the database that has the

highest similarity with the test image. The identification process is a “closed”



test, which means the sensor takes an observation of an individual that is known
to be in the database. The test subject’s (normalized) features are compared
to the other features in the system’s database and a similarity score is found
for each comparison. These similarity scores are then numerically ranked in a
descending order. The percentage of time the highest similarity score is the
correct match for all the individuals is referred to as the “top match score.”
If any one of the top-r (namely rank) similarity scores corresponds to the test
subject, it is considered as a correct match in terms of the cumulative match.
The percentage of time one of the top-r similarity scores is the correct match for
all individuals is referred to as the “Cumulative Match Score”. The “Cumulative
Match Score” curve is the rank-r versus percentage of correct identification,

where rank-r is the number of top-r similarity scores reported.

Training Test

\ who?

Figure 1.2: Face identification scenario.



e The watch list (“Are you looking for me?”) method is an open-universe test.
The test individual may or may not be in the system watch list. The query is
compared to the faces in the system’s database and a similarity score is reported
for each comparison. These similarity scores are then numerically ranked so that
the highest similarity score is presented first. If a similarity score is higher than
a preset threshold, an alarm is raised, indicating that the individual is present
in the system’s database. There are two main items of interest for watch list
applications. The first is the percentage of time the system raises the alarm and
it correctly identifies a person on the watchlist. This is called the “Detection
or Identification Rate”. The second item of interest is the percentage of time
the system raises the alarm for an individual that is not in the watchlist. This

is called the “False Alarm Rate.”

1.2 Challenges in Face Recognition

Although a great deal of effort has been devoted to 2D intensity image based face
recognition task, it still remains a challenging problem in a general setting. Successful
2D face recognition systems have been deployed only under constrained situations.
One major factor limiting the applications of 2D face recognition systems is that
human face image appearance has potentially very large intra-subject variations due

to

e 3D head pose

e Illumination (including indoor / outdoor)



Facial expression

Occlusion due to other objects or accessories (e.g., sunglasses, scarf, etc.)

Facial hair

Aging [97].

On the other hand, the inter-subject variations can be small due to the similarity of in-
dividual appearances. Figure 1.3 gives examples of intra-class appearance variations.
Figure 1.4 illustrates examples of appearance variations of different subjects. Adini
et al. demonstrated that the variations between the images of the same face due to
lighting and viewpoint changes could be larger than the images of different faces [23].
Currently, image-based face recognition techniques can be mainly categorized into two
groups based on the face representation that they use: (i) appearance-based, which
uses holistic texture features; (ii) model-based, which employs shape and texture of

the face, along with 3D depth information.

Figure 1.3: Facial appearance variations due to changes of pose, illumination, expres-
sion, and facial accessories (beard).

FRVT (Face Recognition Vendor Test) [7] is an independently administered tech-
nology evaluation of mature face recognition systems by NIST. In 2002, ten commer-

cial products were evaluated in FRVT 2002. The task designed for FRVT is very close



()

Figure 1.4: Inter-subject variations versus intra-subject variations. (a) and (b) are
images from different subjects, but their appearance variations represented in the
input space can be smaller than images from the same subject, (b), (c), and (d).
These images are taken from the Yale database [18].

to the real application scenarios. On March 2003, NIST issued the evaluation report

for FRVT 2002, which reports the then state-of-the-art in face recognition [138].

FRVT 2002 consisted of two tests: the High Computational Intensity (HCInt)
Test and the Medium Computational Intensity (MCInt) Test. Both tests required the
system to be fully automatic, and manual intervention was not allowed. Participants

could sign up to take either or both tests.

The High Computational Intensity (HCInt) Test was designed to test state-of-
the-art systems on extremely challenging real-world images. These were full-face still

frontal images. This test compared still database images against still images of an



unknown person. The HCInt required participants to process a set of approximately
121,000 images, and match all possible pairs of images from the 121,000-image set.
This required performing 15 billion matches in 242 hours. The results from the HCInt
measure the performance of face recognitions systems on large databases, examine the
effect of database size on performance, and estimate variability in system performance.

The Medium Computational Intensity (MClInt) Test consisted of two separate
parts: still and video. MCInt was designed to provide an understanding of an algo-
rithm’s capability to perform face recognition tasks with several different formats of
imagery (still and video) under varying conditions. The still portion of the MClnt
compared a database of still images against still images of unknown people, the im-
ages were captured under different scenarios that differed in time between enrollment
and test images, changes in illumination, and variations in pose. The video por-
tion of the test was designed to provide an initial assessment of whether or not video
(which can be viewed as a sequence of still images) helps in increasing face recognition
performance.

Figure 1.5 plots identification performance of the top three commercial face recog-
nition products, namely Cognitec, Eyematic, and Identix, on HCInt dataset. The
database consists of 37,437 individuals. Figure 1.6 demonstrates that the identifica-
tion rate significantly deteriorates due to the head pose changes.

FRVT 2002 results also demonstrate that identification performance is dependent
on the size of the database. For every doubling of the database size, performance
decreases by 2 — 3% points. As the size of the face database increases, not only the

accuracy, but also the search speed becomes an important issue. Indexing schemes can



utilize features of a human face at different levels. Feature points, such as eye corners
and nose tip, provide facial geometry metrics, based on which the anthropometric
statistics [64] can be applied; semantic features, such as gender and ethnicity, can be

used to reduce the search space.
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Figure 1.5: Identification results for the three best face recognition systems on HCInt
dataset [137].

Since FRVT 2002, a number of new face recognition technologies have been de-
veloped that have the promise of improving performance by an order of magnitude.
The Face Recognition Grand Challenge (FRGC) [6] was organized to help develop
new face recognition technologies. It is hoped that FRGC results will be an order of
magnitude, for example, achieving a GAR (genuine accept rate) of 98% at FAR (false
accept rate) of 0.1%, better than the results obtained in FRVT 2002. The technologies
being developed under FRGC include high resolution still images, three dimensional
face scans, and multi-sample still imagery. The FRGC is structured into two stages,

version 1 (verl.0) and version 2 (ver2.0). Verl.0 is designed to introduce participants
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Figure 1.6: Evaluation of non-frontal face identification tasks [137]. “Left/right” and
“up/down” show identification rates for the non-frontal images. Left/right (morphed)

and up/down (morphed) show identification rates for the morphed non-frontal images.
Performance is obtained on a database of 87 individuals.

to the FRGC challenge problem format and its supporting infrastructure. Ver2.0 is
designed to challenge researchers to meet the FRGC performance goal. The FRGC
Ver2.0 dataset contains about 50, 000 facial recordings from 625 subjects and six ex-
periments. In experiment 1, the gallery consists of a single controlled still image of a
person and each probe consists of a single controlled still image. Experiment 2 studies
the effect of using multiple still images of a person on performance, i.e., multiple still
queries vs. multiple still templates. Experiment 3 measures the performance of 3D
face recognition. In experiment 3, the gallery and probe set consist of 3D images of
a person. Experiment 4 measures recognition performance from uncontrolled images.
In experiment 4, the gallery consists of a single controlled still image, and the probe

set consists of a single uncontrolled still image. Experiments 5 and 6 examine match-
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ing 3D to 2D images. In both these experiments, the gallery consists of 3D images.
However, in experiment 5, the probe set consists of a single controlled still 2D im-
age. In experiment 6, the probe set consists of a single uncontrolled still 2D image.
See [135, 136] for details of FRGC Ver2.0 protocols and the results. FRVT 2006 will
determine if (i) the goals of FRGC are reached, (ii) progress in face recognition since

FRVT 2002, and (iii) effectiveness of newly developed face recognition technologies.

1.3 Landscape of 3D /2D Face Recognition

The human face is a 3D object, containing shape (3D surface) and texture (2D inten-
sity) information. Depending on which modality is used at enrollment and verification

stages, the face recognition scenarios can be categorized as shown in Fig. 1.7.

Figure 1.7: Face recognition application scenarios.

While most of the effort has been devoted to face recognition from two-dimensional
(2D) images [184], an increasing number of approaches are utilizing depth information

provided by 2.5D range images [42, 98, 75, 22, 156, 49, 31, 82, 131, 38, 105, 104].
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Current 2D face recognition systems can achieve good performance in constrained
environments; however, they still encounter difficulties in handling large amounts
of facial variations due to head pose, lighting conditions, and facial expressions [7].
Because the human face is a three-dimensional (3D) object whose 2D projection
(image or appearance) is sensitive to the above changes, utilizing 3D face information
can improve the face recognition performance [33, 7]. 3D facial surface does not
change due to head pose changes, providing a significant advantage over 2D intensity
images in case of (large) head pose changes. Range images captured explicitly by a
3D sensor (e.g., [4, 13, 10, 8, 2]) incorporate facial surface shape information, which
is related to the facial anatomical structure, unlike the appearance, which is affected
by the environment. It is also more difficult to fake a 3D face compared to a 2D face
image to circumvent the face recognition system. In FRGC and FRVT 2006 [6, 7], not
only the 2D intensity image, but also the 3D range map is included in the evaluation
protocols [135].

Besides the range and intensity maps, thermal and (near) infrared modalities have
been pursued for face recognition [171, 152]. The thermal imagery has the advantage
of handling illumination variations. However, these images depend on a subject’s
metabolic state and are not invariant to pose changes similar to the intensity image
based face recognition systems [152]. Li et al. [100] developed a high-accuracy face
recognition system based on the near-infrared modality using an active illumination
source. Although the system achieves a good performance under various lighting
conditions, the system is designed for cooperative users in applications such as access

control, and it is not clear if the proposed system can handle head pose changes.
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1.4 3D Face Recognition

In this thesis, we address the problem of using both 3D and 2D modalities for face
recognition. The gallery (template) contains 3D models or 2.5D facial scans and
the query/test set consists of multiview 2.5D face scans (a 2.5D range image and a
registered 2D intensity images), provided by a commercial 3D sensor.

In the databases collected at Michigan State University, all range images (down-
sampled to 320 x 240 with a depth resolution of ~ 0.1mm) were collected using a
Minolta Vivid 910 scanner [13]. The subject stands in front of the scanner at a dis-
tance of about 1.5m. This scanner uses structured laser light to construct the face
image in less than a second. Each point in a scan has a color (r, g, b) as well as
a location in 3D space (x,y, z). Each facial scan has around 18,000 effective points

(excluding the background). Figure 1.8 shows the data collection scenario and an

example of these scans.

(c)

Figure 1.8: An example of Minolta Vivid 910 facial scan. (a) data capture scenario;
(b) intensity (texture) image; (c¢) range image, showing points closer to the sensor in
red; (d) 3D visualization.

Each scan provided by the Minolta sensor is called a 2.5D scan, which is a sim-
plified 3D (x, y, z) surface representation that contains at most one depth value (z

direction) for every point in the (x, y) plane, associated with a registered color im-
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age, see Fig. 1.8 for an example. Each 2.5D scan can only provide a single view
point (partial view) of the object (see Figures 1.9 and 1.10), instead of the full 3D
view. However, during the training (enrollment) stage, a 3D face model can be con-
structed by taking several scans from different viewpoints. We address the scenario
that matches a 2.5D facial test scan to 3D models stored in a gallery (2.5D vs. 3D).
Currently, matching 2.5D scans to 3D models has a limited range of applications,
such as middle-to-high security access control, due to the relatively high cost of 3D
data capture. But, with continued progress in 3D imaging technology [19, 20], cost-
effective non-intrusive 3D data capture will become available in the very near future.
The 3D facial structure reconstruction from images has received substantial attention
[47, 182, 121, 33], not only to improve the visual quality, but also for improving the
metrical accuracy [57]. 3D model construction based on 2.5D scans is presented in
Chapter 4.

Although 3D face models provide a more complete representation than a 2.5D
face scan, a single 2.5D face scan can also be used as a template. In this thesis, the
proposed algorithms, including feature extraction, 3D face matching, and deformation
analysis, are also applicable to the scenarios of matching multiview 2.5D face scans
to 2.5D face scans (2.5D vs. 2.5D, which is used in FRGC and FRVT 2006). We

evaluate the proposed algorithms in both scenarios (2.5D vs. 3D; and 2.5D vs. 2.5D).

1.5 Database

Five databases are used in our experiments.
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Figure 1.9: A frontal 2.5D scan viewed from different viewpoints (a) and the full 3D
model (b).

1.5.1 Michigan State University Database I (MSU-I)

Currently, there is no publicly available multiview range (with registered texture)
face database, along with expression variations. We collected the multiview MSU-I
database that contained 100 subjects. Five scans with neutral expression for each
subject were captured to construct the 3D model (see Sec. 4.1 for details). For each
subject, another six scans were captured for testing, including 3 scans with neutral
expression and 3 with smiling expression. The scan protocol used for each subject is
demonstrated in Fig. 1.11. For a few subjects, we had fewer than 6 test scans. In total,
the test database consists of 598 independent scans (different from training scans) of
the same 100 subjects. All the scans varied in pose and facial expression (only smiling
expression was available at the time of collection). The test data distribution is listed
in Table 1.1. In this thesis, the ‘profile’ is used as the counterpart of the ‘frontal’
to describe the pose of the scan. In the MSU-I database, the ‘profile’ scans were

captured at more than 45 degrees from the frontal pose at each side. Representative
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Figure 1.10: (a) One profile range scan viewed at different viewpoints; (b) the full 3D
model.

3D models and test scans are shown in Figs. 1.12 and 1.13, respectively.

Table 1.1: Test data distribution in the MSU-I database.

Frontal | Profile | Subtotal
Neutral 99 213 312
Smiling 98 188 286
Subtotal 197 401 598

1.5.2 Michigan State University Database IT (MSU-II)

This database contains multiple expressions and multiple poses simultaneously. There
are 10 subjects in this database. Five scans with neutral expression for each subject
were captured to construct the 3D model. Test scans are captured at 3 different
poses (frontal, left 30 degrees, left 60 degrees) with 7 different expressions, which are
neutral, happy, angry, smile, surprise, deflated, inflated [38]. The collection protocol
for one subject is provided in Fig. 1.14. In total, there are 210 (3 x 7 x 10) scans and

10 3D gallery models.
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Figure 1.11: An example of data collection for each individual in the MSU-I database.
(a)-(e) are used for constructing the 3D model stored in the training database. (f)-
(k) are used for testing, which contains variations in pose, lighting, and expression
(smiling).

Figure 1.12: Some of the 3D face models in the MSU-I database.

1.5.3 University of South Florida database (USF)

The USF database [16] provided by University of South Florida contains 100 3D
full-view face models with neutral expression captured by a Cyberware scanner [4].
Figure 1.15 shows 3D model examples in the USF database. No 2.5D test scans are

available in the USF database.

1.5.4 University of Notre Dame database (UND)

The UND database is provided by University of Notre Dame ' [43]. Tt consists of 953
facial scans from 277 subjects. All scans are frontal, with neutral expression. Similar

to the MSU databases, this data was also collected using Minolta 3D scanner and

'The database can be accessed at http://www.nd.edu/~cvrl/UNDBiometricsDatabase.html.
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Figure 1.13: Representative 2.5D test scans in the MSU-I database. Range map (top)
and intensity map (bottom).

downsampled to 320 x 240 to reduce computational cost. Examples are provided in
Fig. 1.16. There is no 3D face model available in the UND database. This database

also covers the dataset used for 3D face matching in FRGC Verl.0.

1.5.5 FRGC Ver2.0 face scan database

The FRGC Ver2.0 face scan database contains only (near) frontal 2.5D facial scans
and no 3D models are available. There are 4007 2.5D face scans from 465 subjects,
captured during Fall 2003 and Spring 2004 by a Minolta Vivid 900/910 series scanner.
In addition to the neutral expression, there are a number of expressions included, such
as smiling (happiness), frown, astonishing (surprise), and puffy cheeks. See Fig. 1.17

for examples. All scans were downsampled to 320 x 240 to reduce computational cost.

1.6 Thesis Outline

This thesis is organized as follows: Chapter 2 presents a literature review of 2D

and 3D face recognition. Chapter 3 describes our automatic facial feature detection
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Figure 1.15: Some of the 3D face models in the USF database.

algorithm. In Chapter 4, we integrate both range and intensity modalities from facial
scans to enhance the face recognition across large pose changes. Chapter 5 proposes
deformation analysis for robust 3D facial surface matching. Chapter 6 summarizes

the proposed work and presents the future directions related to this work.

1.7 Thesis Contributions

Figure 1.18 illustrates the major framework of the proposed 3D face matching system.
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Figure 1.16: Example images in the UND database. Intensity images (top) and the
corresponding range images (bottom). From left to right, they are non-Asian female,
non-Asian male, Asian female, and Asian male.

Unlike previous work on 3D face recognition, which is mostly focused on match-
ing frontal test scans, our work is focused on matching test/query scans captured
at large viewpoint changes along with non-rigid deformations (e.g., expression varia-
tions). The deformation is directly analyzed in three-dimensional domain instead of

2D texture images. The major contributions of this thesis include:

1. 3D Matching in the presence of large pose changes. 3D facial shape is utilized

to enhance the recognition performance.

2. An automatic feature extraction scheme to locate feature points in 2.5D scans

with large pose changes, leading to a fully automatic 3D face matching system.

3. Integration of surface and appearance information to improve the recognition

performance.
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(a) (b) (c) () (e) (f)

Figure 1.17: Example images in the FRGC Ver2.0 database, from the same subject
but with different facial expressions. (a) Neutral, (b) smile, (c) sad, (d) puffy face,

(e) frown, (f) surprise. Intensity images (top) and the corresponding range images
(bottom).

4. A hierarchical facial surface resampling scheme to establish correspondence be-
tween facial scans (from different subjects or from the same subject but with

different expressions), which can be used for 3D face modeling.

5. A framework for robust 3D face surface matching in the presence of non-rigid

deformation (due to expression changes) across large pose changes.
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Figure 1.18: A schematic diagram of the proposed 3D face matching system.
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Chapter 2

Background

A great deal of progress has been made in improving the face recognition performance,
since the early work on image based face recognition systems in 1970s [73, 90]. Face
recognition has attracted the attention of researchers from many different areas, in-
cluding computer vision, pattern recognition, machine learning, computer graphics,

and cognitive science.

2.1 2D Image-Based Face Recognition

Based on two-dimensional intensity images, a number of face recognition algorithms

have been developed during the past three decades (see Fig. 2.1).

2.1.1 Appearance-Based Face Recognition

Many approaches to object recognition are based directly on images without the use
of 3D face models. Most of these techniques depend on a representation of face images
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Figure 2.1: Major image based face recognition methods.

that induces a vector space structure.

Appearance-based approaches represent an object in terms of several object views
(raw intensity images). An image is considered as a high-dimensional vector, i.e., a
point in a high-dimensional vector space. Many view-based approaches use statistical
techniques to analyze the distribution of the object image in the vector space, and
derive an efficient and effective representation (feature space) according to different
applications. Given a test image, the similarity between the stored prototypes and

the test view is then carried out in the feature space.

Image data can be represented as vectors, i.e., as points in a high dimensional
vector space. For example, a p X ¢ 2D image can be mapped to a vector © € RPY,
by lexicographic ordering of the pixel elements (such as by concatenating each row
or column of the image). Despite this high-dimensional embedding, the natural con-
straints of the physical world (and the imaging process) dictate that the data will,
in fact, lie in a lower-dimensional (though possibly disjoint) manifold. The primary

goal of the subspace analysis is to identify, represent, and parameterize this manifold
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in accordance with some optimality criteria.

Let X = (x1,29,...,%;,...,xy) represent the n x N data matrix, where each z; is
a face vector of dimension n, concatenated from a p X ¢ face image, where n = p x q.
Here n represents the total number of pixels in the face image and N is the number
of different face images in the training set. The mean vector of the training images

N . . . .
[t =+ ..., ¥; is subtracted from each image vector for normalization.

All the p x ¢ images (with 256 gray scale) construct the image space. Each image

256 possible instances

(vector) corresponds to a point in this space. Out of total (p X q)
in this image space, human face images only reside in a very small portion. The
manifold or the distribution of all faces accounts for variations in facial appearance.
To analyze this face manifold, both linear or nonlinear subspace analysis methods can
be applied. Although linear subspace analysis approaches have significantly advanced
facial recognition technology, due to high nonlinearity of the face manifolds [99], linear
subspace analysis does not have sufficient modeling capacity to preserve the variations
of the face manifold and distinguish between individuals to achieve highly accurate
face recognition. Recent developments in nonlinear manifold analysis provide more
flexibility and modeling power to analyze face manifolds. However, the generalization
capability of nonlinear methods is affected by the sample size in real applications,

i.e., small number of face sample images available for training compared to the large

variations of facial appearance in testing, leading to overfitting [142].
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Linear (subspace) Analysis

Three classical linear appearance-based classifiers, PCA [162], ICA [24] and LDA
[155, 27] are introduced here. Each classifier has its own representation (basis vectors)
of a high dimensional face vector space based on different statistical viewpoints. By
projecting the face vector to the basis vectors, the projection coefficients are used as
the feature representation of each face image. The matching score between the test
face image and the training prototype is calculated (e.g., as the cosine value of the
angle) between their coefficient vectors. The larger the matching score, the better
the match.

All the three representations can be considered as a linear transformation from

the original image vector to a projection feature vector, i.e.

Y =WTX, (2.1)

where Y is the d x N feature vector matrix, d is the dimension of the feature vector,

and W is the transformation matrix. Note that d << n.

(1) PCA

Principal Component Analysis (PCA) finds Y, which best accounts for the distri-
bution of face images within the entire image space [162]. These vectors define the
subspace of face images, and the subspace is called the face space. All faces in the
training set are projected onto the face space to find a set of weights that describes the

contribution of each vector in the face space. To identify a test image, one needs to
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project the test image onto the face space to obtain the corresponding set of weights.
By comparing the weights for the test image with the set of weights of the faces in

the training set, the face in the test image can be identified.

The key procedure in PCA is based on Karhunen-Loeve transformation [92]. If
the image elements are considered to be random variables, the image may be seen
as a sample of a stochastic process. The Principal Component Analysis basis vectors

are defined as the eigenvectors of the n x n total scatter matrix St,

Sr =3 (@i = )i = )" (2.2)

The transformation matrix Wpe 4 is composed of the eigenvectors corresponding to
the d largest eigenvalues. The eigenvectors (a.k.a. eigenface) corresponding to the 7
largest eigenvalues, derived from ORL face database [15], are shown in Fig. 2.4. The
corresponding average face is given in Fig. 2.3. ORL face samples are provided in
Fig. 2.2. After applying the projection, the input vector (face) in an n-dimensional
space is reduced to a feature vector in a d-dimensional subspace. Also the eigenvec-
tors corresponding to the 7 smallest eigenvalues are provided in Fig. 2.5. For most
applications, the eigenvectors corresponding to very small eigenvalues are considered
as noise, and not taken into account during identification. Several extensions of PCA,
such as modular eigenspaces [134], have been developed to deal with pose changes and
probabilistic subspaces [120] in order to derive a more meaningful similarity measure

under the probabilistic framework.
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Figure 2.2: Face samples from the ORL face database.

Figure 2.3: The average face (derived from the ORL face database [15]).

(2) ICA

Independent Component Analysis (ICA) [87] is similar to PCA except that the
distribution of the components are designed to be non-Gaussian. Maximizing non-

Gaussianity promotes statistical independence [87]. Unlike PCA, which utilizes the
second-order statistics, ICA explores higher order statistics.

Figure 2.4: FEigenvectors (eigenfaces) corresponding to the 7 largest eigenvalues,
shown as p X p images, where p x p = n (derived from the ORL face database

[15]).
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Figure 2.5: Eigenvectors corresponding to the 7 smallest eigenvalues, shown as p x p
images, where p X p = n (derived from the ORL face database [15]).

Bartlett et al. [24] provided two architectures based on Independent Component
Analysis, statistically independent basis images and a factorial code representation,
for the face recognition task. The ICA separates the high-order moments of the input
in addition to the second-order moments utilized in PCA. Both the architectures lead
to a similar performance. The basis vectors based on fast fixed-point algorithm [86]
for the ICA factorial code representation are illustrated in Fig. 2.6. There is no special

order imposed on the ICA basis vectors.

Figure 2.6: ICA basis vectors shown as p X p images; there is no special order for [CA
basis vectors (derived from the ORL face database [15], based on the second architech-
ture [25]). The software available at http://www.cis.hut.fi/projects/ica/fastica/ was
used to compute ICA.

(3). LDA

Both PCA and ICA are unsupervised methods that construct the face space with-
out using the face class (category) information. In linear discriminant analysis (LDA),
the goal is to find an “optimal” way to represent the face vector space to maximize

the discrimination between different face classes. Exploiting the class information can
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be helpful to the identification tasks [27].

The Fisherface algorithm [27] is derived from the Fisher Linear Discriminant
(FLD), which uses class specific information. By defining different classes with differ-
ent statistics, the images in the learning set are divided into the corresponding classes.
Then, techniques similar to those used in the Eigenface algorithm are applied. In gen-
eral, the Fisherface algorithm results in a higher accuracy rate in recognizing faces

compared to the Eigenface algorithm.

The Linear Discriminant Analysis finds a transform WLDA, such that

WTSpW
Wrpa = arg max B

— 2.
Xy TS (2:3)

where Sp is the between-class scatter matrix and Sy is the within-class scatter matrix,

defined as

Sp = ZNz’(%‘ — (i — )7, (2.4)

Sw=3"_ D (an—pi)an - )" (2.5)

In the above expression, N; is the number of training samples in class i, ¢ is the
number of distinct classes, p; is the mean vector of samples belonging to class 7 and
X, represents the set of samples belonging to class i. The LDA basis vectors are

demonstrated in Fig. 2.7.

Table 2.1 lists the major advantages and weakness of these three appearance-based
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Figure 2.7: First seven LDA basis vectors shown as p X p images (derived from the

ORL face database [15]).

approaches.

Table 2.1: Pros and cons of three linear appearance-based methods.

Advantages Disadvantages
PCA
e The most descriptive repre- e It is not the most discrimina-
sentation in terms of the least tive for class separation, since
square reconstruction errors it does not take any class la-
) bel information into account.
e Easy to implement. Usually
used as the baseline algorithm
ICA
e Utilizes higher-order statis- e No general closed-form solu-
tics, instead of only the tion. Iterative methods are
second-order  statistics in used to obtain the ICA rep-
PCA resentation
LDA
e Utilizes the class label infor- e Small sample size problem
mation in the derivation of arising from the small number
the representation for the face of available training samples
recognition task, a classifica- compared to the dimensional-
tion problem. ity of the sample space

Much progress has been recently made on linear subspace analysis for face recogni-

tion, such as multilinear analysis, two-dimensional PCA, and 2D Fisher discriminant

analysis. Vasilescu and Terzopoulos [164] proposed an approach based on multilin-

ear tensor decomposition of image ensembles, utilizing the higher-order tensors based
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multilinear algebra to resolve the confusion of multiple factors contained in the same
face recognition system, such as illumination and pose. The resulting representation
of facial images was called TensorFaces. Instead of representing the image as a vector,
Yang et al. [176] considered an image as a 2D matrix and developed a two-dimensional
PCA algorithm for face recognition. Using the 2D matrix representation of facial im-
ages, Kong et al. [95] generalized the conventional LDA into 2D Fisher discriminant

analysis and applied it to face recognition.

Non-linear (manifold) Analysis

The face manifold is more complicated than linear models. Linear subspace analysis
is an approximation of this non-linear manifold. Direct non-linear manifold modeling
schemes are explored to learn this non-linear manifold. The kernel principal compo-
nent analysis (KPCA) is introduced in the following along with several other manifold
learning algorithms.

The kernel PCA [149] applies a nonlinear mapping from the input space RM to
the feature space R”, denoted by ¥(z), where L is larger than M. This mapping is

made implicit by the use of kernel functions satisfying the Mercer’s condition [163]

k(wi, x5) = V(w;) - ¥(x;), (2.6)

where kernel functions k(z;, z;) in the input space correspond to inner-product in the
higher dimensional feature space. Because computing the covariance matrix is based

on inner-products, performing a PCA in the feature space can be formulated with
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kernels in the input space without the explicit computation of ¥(x). Suppose the

covariance matrix in the feature space is calculated as
Y = < U(x)WU(x)" > . (2.7)

The corresponding eigen-problem is A\V = X, V. It has been proved [149] that V' can
be expressed as V = SN w;¥(z;), where N is the total number of training samples.
The equivalent eigenvalue problem can be formulated in terms of kernels in the input
space

N w = Kw, (2.8)

where w is a N-dimensional vector, K is a N x N matrix with K;; = k(z;, z;).

The projection of a sample z onto the n'* eigenvector V" can be calculated by

pn = (V" U(x)) = Zw?k(xi, ;). (2.9)

Figure 2.8 gives a 2D example of KPCA to demonstrate the derived representation.

Similar to traditional PCA, the projection coefficients are used as features for face
classification. Yang [178] explored the use of KPCA for the face recognition prob-
lem. Unlike traditional PCA, KPCA representation (projection coefficient vector)
can have higher dimensionality than the input image. But a suitable kernel and the

corresponding parameters can only be determined empirically.

Manifold learning has attracted much attention in the machine learning com-

munity. ISOMAP [158] and LLE [143] have been proposed to learn the non-linear
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Figure 2.8: Contour plots of the first six principal component projections. Each
contour contains the same projection values onto the corresponding eigenvectors.
Data is generated by 3 Gaussian clusters. A RBF kernel is used. The corresponding
eigenvalues are given above each subplot. Notice that the first three components have
the potential to extract the individual clusters [149].

manifold, where the learned manifold has been shown for face images. Yang [177]
applied LDA to the face recognition problem using geodesic distance, which is the
basis of the ISOMAP. He et al. [80] proposed a ‘laplacianfaces’ approach based on
the locality preserving projections to represent the face subspace. These manifold
learning algorithms are interesting, but further exploration is needed to demonstrate

their performance in face recognition for real applications.

Current appearance-based face recognition systems encounter difficulties in prac-
tice due to the small number of available training face images and complex facial
variations encountered in the test images. Human face appearance has a number of
variations resulting from varying lighting conditions, different head pose, and facial

expressions. In real-world situations, only a small number of samples for each sub-
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ject are available for training. If a sufficient amount of representative data is not
available, Martinez and Kak [119] showed that the switch from nondiscriminant tech-
niques (e.g., PCA) to discriminant approaches (e.g., LDA) is not always warranted
and may sometimes lead to poor system design. Therefore, face synthesis, where
additional training samples can be generated from the available samples, is helpful to
enhance the performance of face recognition systems [165, 183, 106]. Further, tech-
niques such as classifier combination [116] and data resampling [111] can help enhance

the accuracy of the appearance-based face recognition system.

2.1.2 Model-based face recognition

The model-based face recognition scheme constructs a model of the human face, which
is able to capture the facial variations. The prior knowledge of a human face is utilized
in model construction. For example, feature-based matching derives distance and
relative position features between facial elements (e.g., eyes, nose ....). Kanade [90]
developed one of the earliest face recognition algorithms based on automatic feature
detection. By localizing the corners of the eyes, nostrils, etc. in frontal views, his
system computed parameters for each face, which were compared (using a Euclidean
metric) against the parameters of known faces. A more recent feature-based system,
based on elastic bunch graph matching, was developed by Wiskott et al. [173] as an
extension to their original graph matching system [96]. By integrating both shape
and texture, Cootes et al. [51, 61] developed a 2D morphable face model, through

which the face variations are learned. Blanz and Vetter explored a more advanced
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3D morphable face model to capture the true 3D structure of human face surface
along with facial appearance [33]. Both morphable model methods come under the
framework of ‘interpretation through synthesis’.

The model-based scheme usually contains three steps: 1) Constructing the model,
2) fitting the model to the given face image, and 3) using the parameters of the fitted
model as the feature vector to calculate the similarity between the query face and

prototype faces in the database to perform the recognition.

Feature-based Elastic Bunch Graph Matching

(1) Bunch Graph

All human faces share a similar topological structure. Wiskott et al. present
a general in-class recognition method for classifying members of a known class of
objects. Faces are represented as graphs, with nodes positioned at fiducial points
(such as the eyes, the tip of the nose, some contour points, etc.; see Fig. 2.9), and

edges labeled with 2-D distance vectors.

Figure 2.9: Multiview faces overlaid with labeled graphs [173].

Each node contains a set of 40 complex Gabor wavelet coefficients, including both
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phase and magnitude, known as a jet (shown in Fig. 2.10). Wavelet coefficients are
extracted using a family of Gabor kernels with 5 different spatial frequencies and 8

orientations; all kernels are normalized to be of zero mean.

cohvolution result
Gabor wavelets imaginary part maghitude jet

original image

Figure 2.10: A Gabor jet [96] contains the phase and magnitude of the coefficients
obtained from the convolution between Gabor filters and the orginal image.

Face recognition is based on labeled graphs. A labeled graph is a set of nodes con-
nected by edges; nodes are labeled with jets; edges are labeled with distances. Thus,
the geometry of an object is encoded by the edges while the gray value distribution
is patch-wise encoded by the nodes (jets). An example is shown in Fig. 2.11.

While individual faces can be represented by simple labeled graphs, a face class
requires a more comprehensive representation in order to account for all kinds of
variations within the class. The Face Bunch Graph has a stack-like structure that
combines graphs of individual sample faces, as demonstrated in Fig. 2.12. It is crucial
that the individual graphs all have the same structure and that the nodes refer to the
same fiducial points. All jets referring to the same fiducial point, e.g., all left-eye jets,

are bundled together in a bunch, from which one can select any jet as an alternative
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Figure 2.11: Labeled graph [96]. Each node is a set of jets. The edges connecting
nodes denote the distances, encoding the geometry of the (face) object.

description. The left-eye bunch might contain a male-like eye, a female-like eye, both
closed or open, etc. Each fiducial point is represented by a set of alternatives and
from each bunch any jet can be selected independently of the jets selected from the

other bunches. This provides full combinatorial power of this representation even if

it is constructed only from a few graphs.

(2) Elastic Graph Matching

To identify a new face, the face graph is positioned on the face image using elastic
bunch graph matching. The goal of Elastic graph matching is to find the fiducial

points on a query image and thus to extract from the image a graph which maximizes

the graph similarity function. This is performed automatically if the face bunch

graph (FBG) is appropriately initialized. A face bunch graph (FBG) consists of a

collection of individual face model graphs combined into a stack-like structure, in
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Figure 2.12: The left figure shows a sketch of a face bunch graph [173]. Each
of the nine nodes is labeled with a bunch of six jets. From each bunch, one
particular jet has been selected, indicated as gray. The actual selection depends
on the test image, e.g., the face onto which the face bunch graph is matched.
Though constructed from six sample faces only, this bunch graph can potentially
represent 6° = 10,077,696 different faces. The right figure shows the same con-
cept interpreted slightly differently by Tullio Pericoli (“Unfinished Portrait” 1985)
[http://www.cnl.salk.edu/~wiskott/Projects/BunchGraph.html].

which each node contains the jets of all previously initialized faces from the database.
To position the grid on a new face, the graph similarity between the image graph and
the existing FBG is maximized. Graph similarity is defined as the average of the best
possible match between the new image and any face stored within the FBG minus a
topographical term (see Eq. 2.11), which accounts for distortion between the image

grid and the FBG. Let Sy be the similarity between two jets, defined as

Zj aja;- COS(¢j — QS; — CZZ;])

Sy(J,J') =
o(JJ) SR
J J

(2.10)

where a; and ¢; are magnitude and phase of the Gabor coefficients in the ;% jet,

respectively; d is the displacement between locations of the two jets; l;j determines
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the wavelength and orientation of the Gabor wavelet kernels [96]. For an image graph
G withnodesn =1,..., N and edgese = 1,..., E and an FBG B with model graphs

m =1,..., M, the graph similarity is defined as

1 A = (AT - ATBY?
SB(GIJB) = N Zmaqug(JTI“ JnB ) - EZ (AfB)Z ) (211)

e e

where A determines the relative importance of jets and metric structure, .J,, is the jet
at node n, and A7, is the distance vector used as labels at edges e. After the grid
has been positioned on the new face, the face is identified by comparing the similarity
between that face and every face stored in the FBG. Graphs can be easily translated,
rotated, scaled, and elastically deformed, thus compensating for the variance in face

images, which is commonly encountered in a recognition process.

AAM - A 2D Morphable Model

An Active Appearance Model (AAM) is an integrated statistical model that combines
a model of shape variation with a model of the appearance variations in a shape-
normalized frame. An AAM contains a statistical model of the shape and gray-level
appearance of the object of interest, a model that can generalize to almost any valid
example. Matching to an image involves finding model parameters that minimize the
difference between the image and a synthesized model example, which is projected
onto the image. The potentially large number of parameters makes this a difficult

problem.

(1) AAM Construction
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The AAM is constructed based on a training set of labeled images, where landmark
points are marked on each example face at key positions to outline the main features
(shown in Fig. 2.13). To ensure the precise location of landmarks, manual labeling is

needed in the current model construction scheme [53, 99].

Figure 2.13: The training image is split into shape and shape-normalized texture [52].

The shape of a face is represented by a vector consisting of the positions of the
landmarks, S = (21,1, .., %n, Yn)" , where (x;,y;) denotes the 2D image coordinate
of the j" landmark point. All shape vectors of faces are normalized into a common
coordinate system. The principal component analysis is applied to this set of shape
vectors to construct the face shape model, denoted as: S = S + PgBg, where S is a
shape vector, S is the mean shape, Pg is a set of orthogonal modes of shape variation,
and Bg is a set of shape parameters.

In order to construct the appearance model, the example image is warped to
make the control points match the mean shape. Then the warped image region
covered by the mean shape is sampled to extract the gray level intensity (texture)
information. Similar to the shape model construction, a vector representation is
generated, G = (Iy,..., I,,)", where I; denotes the intensity of the sampled pixel in

the warped image. PCA is also applied to construct a linear model G' = G + P B¢ ,
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where G is the mean appearance vector, Py is a set of orthogonal modes of gray-level
variation, and B¢ is a set of gray-level model parameters.
Thus, the shape and texture of any example face can be summarized by the vectors
Bs and Bg. The combined model is the concatenated version of Bg and B¢, denoted
as follows:
WsBg WsPL(S - 9)
B = = , (2.12)
Bg PL(G - G)
where Wy is a diagonal matrix of weights for each shape parameter, as a normalization
factor, allowing for the difference in units between the shape and gray scale models.
PCA is applied to vector B also, B = QC', where C is the vector of parameters for
the combined model.
The model was built based on 400 face images, each with 122 landmark points
[61]. A shape model with 23 parameters, a shape-normalized texture model with
113 parameters, and a combined appearance model with 80 parameters (containing

98% variations of the observation) are generated. The model used about 10,000 pixel

values to make up the face.

(2) AAM Fitting

Given a test image and the face model, the metric used to measure the match
quality between the model and image is A = |§1|?, where §7 is the vector of intensity
differences between the given image and the synthesized image generated by the
model tuned by the model parameters, called the residual. The AAM fitting seeks

the optimal set of model parameters that best describes the given image. Cootes
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[51] observed that displacing each model parameter from the correct value induces a
particular pattern in the residuals. In the training phase, AAM learns a linear model
that captures the relationship between parameter displacements and the induced
residuals. During the model fitting, it measures the residuals and uses this model to
correct the values of current parameters, leading to a better fit. Figure 2.14 shows

two examples of the iterative AAM fitting process.

Initial [teration #3 Iteration #8 Iteration #11 Converged Original

Figure 2.14: Examples of the AAM fitting iterations [52].

(3) Face Recognition by AAM

For all the training images, the corresponding model parameter vectors are used as
the feature vectors. Linear discriminant analysis is utilized to construct the discrim-
inant subspace for face identity recognition. Given a query image, the AAM fitting
is applied to extract the corresponding feature vector. The recognition is achieved
by finding the best match between the query feature vector and the stored prototype

feature vectors, both of which are projected onto the discriminant subspace.
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3D Morphable Model

The human face is a surface that lies intrinsically in the 3D space. Therefore, in
principle, the 3D model is better for representing faces, especially to handle facial
variations, such as pose and illumination. Blanz et al. [32, 34] proposed a method
based on a 3D morphable face model that encodes shape and texture in terms of model
parameters and an algorithm that recovers these parameters from a single image of a
face. For face identification, they used the shape and texture parameters of the model
that are separated from imaging parameters, such as pose and illumination. Fig. 2.15
illustrates the scheme. To handle the extreme image variations induced by these pa-
rameters, one common approach taken by various research groups is to use generative
image models. For image analysis, the general strategy of all these techniques is to
fit the generative model to a test image, thereby parameterizing it in terms of the
model. In order to make identification independent of imaging conditions, the goal
is to separate intrinsic model parameters of the face from extrinsic imaging param-
eters. The separation of intrinsic and extrinsic parameters is achieved explicitly by

simulating the process of image formation using techniques from computer graphics.

(1) Model Construction

Generalizing the morphing process between pairs of three-dimensional objects,
the morphable face model is based on a vector space representation of faces [165].
The database used in the study by Blanz and Vetter [33] contains scans of 100 males

and 100 females recorded with a Cyberware™™ 3030PS scanner. Scans are stored in
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Figure 2.15: The three-dimensional morphable face model, derived from a database
of laser scans, is used to encode gallery and probe images. For identification, the
model coefficients of the probe image are compared with the coefficients of all gallery
images [34].

cylindrical coordinates relative to a vertical axis. The coordinate and texture values
of all the n vertices of the reference face (n = 75,972) are concatenated to form shape
and texture vectors

SO = (ajlaylazla'"7xnaynazn)T; (213)

To = (Ry,G1, By, ..., Ry, Gy, By)". (2.14)

Vectors S; and T; of the subjects ¢ = 1... N in the database are formed in a common

coordinate system. Convex combinations of the examples produce novel shape and
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texture vectors S and T. Previous results [32] indicate that the shape and texture

information can be combined independently:

N
=1 ]

Two vectors S and 7" can also be represented as:

N-1 N 1 N 1 N

i=1 =1 =1 =1

where S is the mean shape and 7T is the mean texture.
(2) Model Fitting

Image synthesis renders the new projected positions of vertices of the 3D model
along with illumination and color. During the process of fitting the model to a test
image, not only the shape and texture coefficients a; and [; are optimized, but also
the following rendering parameters, which are concatenated into a vector p: the head
orientation angles ¢, # and v, the head position (P, P,) in the image plane, size s,
color and intensity of the light sources L, as well as color constant, and gain and

offset of colors, shown in Fig. 2.16.

The primary goal in analyzing a face is to minimize the sum of square differ-
ences over all color channels and all pixels in the input image and the symmetric

reconstruction,

EI = Z ||Iinput(1'a y) - Imodel(xa y)||2 (2.17)
T,y

45



+ By

4+ Ol @4‘ Oy = @Jr 4 ' -
Imodel lip pul
Figure 2.16: The goal of the fitting process is to find shape and texture coefficients a

and 3 such that rendering R, produces an image I,,,q¢ that is as similar as possible
to Iinput [34]

Ro(
X"

Under a probabilistic framework, the overall cost function to be minimized is derived

as [34]:

1 CYZ 2 i_7i2
D Ir ) PE s O (218)
N S i ' i '

A modification of stochastic gradient descent algorithm is used to optimize the cost
function, resulting in a set of corresponding parameters et and Bgiopar- The face
model is divided into four regions — eyes, nose, mouth and the surrounding face
segment. The optimization is also applied separately for each region to obtain the
parameters for each local segment, i.e., a1, 81, ..., a4 and (4. The fitting process
is demonstrated in Fig. 2.17. Up to seven feature points need to be manually labeled

to conduct the fitting process [33] (see Fig. 2.18 for examples).

(3) Recognition

The similarity between two face images is defined as:

s= Y (‘ )y (> d)y ) (2.19)

siobal oirorapa Ml ledlar - lodffa
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Figure 2.17: Examples of model fitting [34]. Top row: synthesis using initial parame-
ters; middle row: results of fitting, rendered on top of the input images; bottom row:
input images. The fifth column is an example of a poor fit.

where

. 95
(3.5) =3 52

The query image will be assigned the identity in which the similarity between the

query and the corresponding prototype is maximized.
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Figure 2.18: Up to seven feature points were manually labeled in front and side views,
up to eight were labeled in profile views [33].

2.1.3 Other Schemes

Besides the above-mentioned techniques, a number of other interesting approaches
have been explored from different perspectives, such as local feature analysis [133],
statistical model based, and component-based face recognition methods. Examples
of the statistical model based scheme are 1D Hidden Markov Model (HMM) [146],
pseudo-2D HMM [125], and Gaussian Mixture Model [41, 117]. Instead of consider-
ing face image from global view, component-based schemes [81] analyze each facial

component separately.

2.1.4 Summary

Image-based face recognition is still a very challenging topic after almost three decades
of exploration. Popular algorithms being categorized into appearance-based and
model-based schemes have been briefly reviewed here. Table 2.2 provides the pros
and cons of these two types of face recognition methods.

Pose and lighting changes are two major factors that degrade the performance of

the current image-based face recognition systems [137, 77]. Georghiades et al. [69]
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extensively explored the illumination change and synthesis for facial analysis using
appearance-based approaches to achieve an illumination-invariant face recognition
system. Basri and Jacobs [26] proved that the set of all reflectance functions (the
mapping from surface normals to intensities) produced by Lambertian objects under
distant, isotropic lighting lies close to a nine-dimensional linear subspace. Their
analysis was based on using spherical harmonics to represent lighting functions. The
proposed algorithm was utilized and extended by Zhang and Samaras [180] for image-
based face recognition under illumination changes. Although a good deal of effort has
recently been devoted to handling the pose and/or illumination changes in 2D facial
images for face recognition, sensitivity to variations in pose and lighting conditions

(especially the pose changes) is still a challenging problem for image-based methods.

2.2 3D Image Acquisition

Range imaging systems collect three-dimensional coordinate data from visible object
surface in a scene. Dense surface acquisition is one of the most challenging tasks in
computer vision. Research over the last two decades has led to a number of high
speed and high precision 3D sensors.

The triangulation based sensors observe the object from at least two different
angles. In order to obtain three-dimensional measurements, point correspondences
have to be established, allowing a 3-D shape to be reconstructed in a way that is
analogous to the way the human eye works.

The family of triangulating sensors can be further subdivided into active and pas-
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sive triangulation systems. Active triangulation systems illuminate the scene rather

than relying on natural or uncontrolled lighting.

A stereo camera is the prime example of passive optical triangulation. For stereo
vision, two or more cameras are used to view a scene. Determining the correspon-
dences between left and right view for a binocular stereo system by means of image
matching, however, is a difficult and slow process. For faithful 3-D reconstruction of

objects, passive stereo vision techniques depend on texture information on surfaces.

One of the most common forms of active range sensing is optical triangulation.
The fundamental principle is illustrated in Fig. 2.20(a) taken from [55]. A focused
beam of light illuminates a tiny spot on the surface of an object. For a matte surface,
this light is scattered in many directions, and a camera records an image of the spot.
We can compute the center pixel of this spot and trace a line of sight through that
pixel until it intersects the illumination beam at a point on the surface of the object.
The triangulation geometry [29] is shown in Fig. 2.19. The camera center of the lens
lies at (0,0,0). The point (z,y, 2z) is projected onto the image plane at pixel (u,v),
such that 2 = f and % = f, where f is the focal length of the camera. Let 6 be the

projection angle. The (z,y, z) coordinates of the surface point can be computed as:

b

T = (Feotf—u) -, (2.20)
b

Y= (Feotb—u) (2:21)
b
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Figure 2.19: Active triangulation geometry [29].

To scan the entire surface instead of one point, the beam can be fanned into a
plane of laser light, as shown in Fig. 2.20(b). This light will cast a stripe onto the
surface of the object, which is then imaged by a conventional video camera. We
can treat each camera scanline separately, find the center of the imaged light, and
intersect the line of sight with the laser plane. Thus, each image gives us a range
profile (one point per scanline), and by sweeping the light over the surface of the
object, we can capture its shape. Figures 2.20(c) and (d) show a light stripe cast
onto an object and the reflection observed by the camera.

To overcome the need for well-behaved surfaces and to speed up the evaluation
steps, active triangulation systems project specific light patterns onto the object.
The light patterns are distorted by the object surface. These distorted patterns are
observed by at least one camera and then used to reconstruct the objects surface. Par-
ticularly useful is a set of techniques, known as coded light techniques, that project

a sequence of well-defined binary patterns. Within this sequence, time-encoded cor-
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Figure 2.20: Optical triangulation. (a) 2D triangulation. A laser beam is used to
illuminate the surface. (b) 3D scenario. (c¢) Red laser line projected onto a real 3D
object. (d) Reflected light captured by the CCD camera [55].

respondence information is included.
Two typical laser-based commercial active ranging sensing systems are Minolta

Vivid series [13] and Cyberware 3D scanner [4]. Other 3D sensors are also available,

such as 3DMD [1], Geometrix [10], A4Vision [2], and Genex [8].

2.3 Literature Review on 3D Face Recognition

Although early work on range image based face recognition started in late 80’s, liter-
ature on 3D face recognition is not as rich compared to the 2D intensity image based
face recognition.

Cartoux et al. [42] developed an iterative algorithm, which evaluated the similarity
of the Gaussian curvature values of the facial surface, to extract the quasi-symmetric
plane in the facial scan, to obtain the profile shown in Fig. 2.21. They used facial

profiles to fit two faces in the least square sense for matching.
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Figure 2.21: Quasi-symmetric plane and profile curve obtained from a given range
image [42].

Lee and Milios [98] segmented the range image to obtain the convex regions, based
on the sign of the mean and Gaussian curvatures at each point. These convex regions
correspond to distinct facial features. Extended Gaussian Image (EGI) [85] is used
to represent each convex region. A similarity metric between two regions is defined

to match the features in the two face images.

Gordon [75] explored feature extraction for recognition based on depth and curva-
ture features. First, she extracted high-level features that marked the salient features
on the face surface in terms of points, lines, and regions. For example, the nose
bridge, nose base, and eye corner cavities, were extracted to demarcate the eye and
nose. Then she defined and computed the geometric measurements such as eye width,
etc. In addition, a set of curvature-based measurements were obtained, e.g., Gaussian
curvature at the nose base. These descriptor values formed a feature vector to rep-
resent a face for matching purposes. The matching was conducted using the nearest

neighbor rule in the feature space. While these features were discriminative in distin-
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guishing the subjects, in the presence of expression changes not all the features were
found to be useful in matching. For example, the variation in the Gaussian curvature
at the nose base due to expression changes may be greater than the typical intra-class
variation within a subject.

Nagamine et al. [124] analyzed the range data by cross-sections. They used hor-
izontal, vertical, and circular cross-sections to obtain the intersection curves on the
facial surface, shown in Fig. 2.22. The range values along the intersection curve
formed the feature vector. The Euclidean distance between the feature vectors of
the two facial surfaces to be matched was used to make the matching decision. It
was observed that the vertical intersection curve crossing the central area of the face

(including nose and mouth) has good discriminating power.

Figure 2.22: Facial cross-sections [124].

Achermann et al. [22] extended the eigenface and Hidden Markov Model tech-
niques from the gray scale intensity image to the range image based recognition.

Tanaka et al. [156] posed face recognition as a 3D shape recognition problem of
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free-form curved surfaces. They analyzed the maximum and minimum principal cur-
vatures and directions, based on which two types of 3D directional facial features were
extracted, namely, ridge and valley. The face surfaces were represented using EGIs
of ridge and valley vectors. The spherical correlation coefficient [65] was computed
to measure the similarity between a test face and a model face.

Achermann et al. [21] used partial Hausdorff distance to measure the dissimilarity
between two facial surfaces. The partial Hausdorff distance is somewhat robust to the
outliers, and can handle cases where the test data and the model are only partially
overlapped. In order to compute the Hausdorff distance, two facial surfaces to be
matched need to be registered. Achermann et al. first moved the center of gravity
of the 3D point set to the origin of the coordinate system. A plane was fitted to the
point set and rotated to be parallel to the focal plane of the camera. To speedup the
Hausdorff distance computation, a distance map in 3D space was calculated. Pan et
al. [131] utilized the partial directed Hausdorff distance to align and match two range
images for verification.

Hesher et al. [82] applied the Principal Component Analysis (PCA) and Inde-
pendent Component Analysis (ICA) to the range image in a way similar to the 2D
intensity image, and estimated probability models for the coefficients. They used the
nose and nose ridge to align the two scans.

Chua et al. [49] extended the use of Point Signature [50] to recognize frontal face
scans with different expressions, which was treated as a 3D recognition problem of
non-rigid surfaces. The point signature was used to identify and register the rigid

regions that were insensitive to the expression changes, such as nose and eye socket.
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Only the rigid regions were used to register two facial surfaces for matching (see

Fig. 2.23).

Figure 2.23: Extracted rigid regions in facial scans with expression changes [49].

Beumier and Acheroy [31] developed a structured light based system to capture
the 3D image of the face. Figure 2.24 provides an example. The 3D surface matching
was carried out at both central and lateral profiles, as shown in Fig. 2.25. They also
observed that the nose seemed to be a robust geometrical feature. They extracted
the profiles (curves) both from depth and gray scale image for face verification. The
major difficulty reported in this work, which limited the matching accuracy, was the

sensor noise.

Wang et al. [168] utilized both 3D range images and 2D intensity images for face
recognition. The range image and the corresponding intensity image were already
registered by the 3D sensor used in their study. Considering the tradeoff between
face representation efficacy and computation requirements, they extracted four 3D
feature points and ten 2D feature points (Figure 2.26). The point signature [50] and
the stacked Gabor filter responses [173] were used as the 3D and 2D features for
each point in the image, respectively. Each extracted feature point (namely, fiducial

point) was associated with a feature vector containing values of 3D and 2D features.
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Figure 2.24: 3D face image capturing system [31]. (a) Structured light projected onto
a face object. (b) 3D reconstructions from (a).

Given a training set with the feature points manually labeled, the PCA was applied
to construct the feature subspace, which was used to identify the feature point in a
test image. Two classifiers, one based on similarity function and the other based on

support vector machine, were applied for face recognition.

Bronstein et al. [38] proposed an algorithm based on geometric invariants [62], in
an attempt to deal with facial expression variations for face recognition. But, their
algorithm was designed and tested for only frontal 3D scans, and it is not straight-
forward to apply it to scans with large pose changes. The canonical representation
derived from the frontal scans is not comparable to the representation to the test scan

due to missing data.

Tsalakanidou et al. [160] applied the PCA to derive depth and color eigenfaces.
The product rule was applied to the Euclidean distances calculated by each modality

individually to combine depth and color.
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Figure 2.25: Central and lateral profiles after intrinsic normalization [31].

Figure 2.26: Feature point definition. Four 3D feature points (cross marks) and ten
2D feature points (dot marks) [168].

Work by Chang et al. [43] demonstrated that face recognition systems based on
either two-dimensional texture information or 2.5D range information have similar
performance characteristics. However, they showed that significant improvements
can be made if a face recognition system uses a combination of texture and shape

information. They applied PCA to both 2D and 3D face data.

Boehnen and Russ [35] explored the 2D color information as well as the 3D range
image to identify eyes, nose, and mouth. By analyzing Y C,C'. color space, the skin

tone was extracted to segment the face, and locate the eye and mouth regions. The
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3D information contained in the range image was then utilized to locate the positions
of eyes, mouth, and nose tip. Some heuristics based on human face models were

applied to reduce the searching space.

2.4 Summary

2D intensity image based face recognition systems can achieve reasonable performance
when the test image is taken under the conditions similar to the training stage. How-
ever, a number of factors, especially the head pose and illumination, can significantly
deteriorate the recognition accuracy. 3D surface information of the face object is
insensitive to the head pose and lighting changes. The face recognition community is
exploring the use of 3D range data to make face recognition systems more robust to
the changes. With advances in the 3D sensing technology, sensors are becoming more
affordable and compact. Most of the existing work on 3D face recognition is focused
on frontal facial scan matching. Issues such as matching test scans in the presence of
large pose changes and handling non-rigid deformations (such as deformations caused
by expression) simultaneously need to be addressed to utilize the advantage of 3D

data over 2D images and facilitate the deployment of the 3D face recognition system.
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Table 2.2: Pros and cons of appearance-based and model-based face recognition meth-

ods.
Appearance-based Model-based
Pros
1. Face recognition problem is 1. The model has an intrinsic
transformed to a face space physical relationship with real
analysis problem, where a faces.
number of well known statisti- o _
cal classification methods can 2. An. explicit modeling of face
be utilized. variations due to pose, illumi-
nation, and expression, gives
2. Applicable to low resolution the possibility to handle these
or poor quality images. changes in practice.
3. Ability to Integrate prior hu-
man knowledge.
Cons

1. Sufficient representative data
is needed to sample the un-
derlying distribution in face
space successfully.

2. Does not utilize the prior
(expert) knowledge of human
faces.

3. Subject to the limitations in
facial variations, such as 3D
pose, illumination, and ex-
pression.

4. Correspondence (between
training images) needs to
be established in advance,
although the tangent distance
may be used to tolerate small
correspondence displace-
ments.

1. Model construction is compli-
cated and laborious.

2. Facial feature points (land-
marks) are difficult to extract
automatically with sufficient
robustness.

3. Model fitting is a search pro-
cess, prone to be trapped into
local minimum; recognition
results highly depend on the
fitting results.

4. A tradeoff between accuracy
and computational cost is
made in the fitting process.

5. Relatively high resolution and
good quality face images are
needed.

6. Appropriate initialization of
the model is needed.
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Chapter 3

Facial Feature Extraction

Facial features contained in a 2.5D scan can be extracted at different levels: low level,
high level, and semantic level. Low-level features are the basic representation derived
from the scans at every point in the image, such as the curvature, shape index, etc.
The high-level features are related to the human perception of a face, such as eye
corners and the nose tip. Semantic features are at the abstract level, such as gender
and ethnicity. Features at different levels provide different types of information to
analyze the facial scan. We use the low-level features to extract the high-level feature
points, which are then used in the matching stage. The semantic features are used
for improving the performance of face matching and for speeding up face retrieval
from a database. Current sensor technology can provide both depth and intensity
information of the human face object; we utilize both modalities to extract the facial
features.
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3.1 Automatic Feature Extraction

In both 2D and 3D face recognition systems, alignment (registration) between the
query and the template is necessary [151, 7]. In general, face recognition systems in-
clude face detection, alignment, and recognition. Registration based on feature point
correspondence is one of the most popular methods [99]. To make the face recognition

system fully automatic, robust facial feature extraction is one of the crucial steps.

Facial features can be of different types: region [145, 54|, landmark [173, 159],
and contour [52, 174]. Generally, landmarks provide more accurate and consistent
representation for alignment purposes than region-based features and have lower com-
plexity and computational burden than contour feature extraction. We select a sub-
set of the craniofacial landmarks (or the fiducial points), as defined in anthropome-
try [94, 64] (see Fig. 3.1, including nose tip, inner eye corners, outside eye corners,
and mouth corners. The selected feature points define a basic facial configuration. In
addition to face alignment, they can be used for tracking, screening (face retrieval),
animation, etc. These feature points can also be used to initialize the active ap-
pearance models [52, 174] for higher-level feature extraction, such as extracting the
contours of the eyes. In the presence of large head pose variations, heuristics used for
frontal scans may not hold, e.g., the nose tip is not the closest point to the sensor as
in frontal scans. With the head pose unknown, the configuration models of the facial
feature points, such as EGM [173] and AAM [52], are difficult to apply without a good

initialization. Therefore, head pose is also considered as a feature to be extracted.

Registration in 3D space achieves better alignment results to handle head pose
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Figure 3.1: Facial fiducial landmarks in anthropometry [94]. (a) frontal; (b) profile.

changes than in 2D space. In 2D face recognition systems, the two eye centers are
commonly used for alignment [184]. However, the eye center regions, especially with
brown and black eyes, cannot be reliably captured by the 3D laser-based scanner due
to the low reflectivity in the dark region [35]. We extract more reliable feature points,

such as eye corners to achieve the alignment in three-dimensional space.

Intensity images captured by 2D cameras are closer to the input of the human
visual system for interpreting facial images. But robust facial feature extraction from
intensity images only is still a challenging problem. Properties derived from the inten-
sity, such as edge and corner responses, are not robust to lighting and pose changes.
The range modality is relatively insensitive to lighting and pose changes, but is sub-
ject to sensor noise. Due to the large intra-class variability, a single modality may not
provide consistent feature point localization across a large population. Accumulat-

ing evidence derived from different modalities has the potential to make the feature
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extraction system more robust.

A number of approaches have been proposed for feature extraction from (near)
frontal facial scans [168, 35]. Wang et al. [168] used the point signature [50] and the
stacked Gabor filter responses [173] to identify 3D and 2D features. Boehnen and
Russ [35] explored 2D color information to extract skin tone regions and identify the
eyes and the mouth. The 3D information contained in the range image was utilized
to compute the geometry constraint. However, few of these studies address feature
extraction in the presence of large pose changes.

We have focused on automatically extracting feature points and estimating the
head pose in the presence of large pose variations. A feature extractor based on the
directional maximum is proposed to estimate the nose tip location and the pose angle
simultaneously. A nose profile model represented by subspaces is used to select the
best candidates for the nose tip. Assisted by a statistical feature location model, a
multimodal scheme is presented to extract eye and mouth corners. The extracted fea-
tures are used for face alignment in three-dimensional space. Utilizing the automatic
feature extraction module, a fully automatic 3D face recognition system is developed

and evaluated.

3.1.1 Feature Extraction

The overall feature extraction process is shown in Fig. 3.2. Each 2.5D scan provides

4 matrices (raw data), X(r,c), Y(r,c), Z(r,c), and M(r,c) *, where X, Y, and Z

'y and ¢ are the row and column indices, respectively.
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are the spatial and depth coordinates in the units of millimeters and M is the mask,
indicating which point is valid; M(r, ¢) is 1 if the point p(r, ¢) is valid and 0 otherwise.
(The origin of the mask image is the top-left corner.) The coordinate system directions
are illustrated in Fig. 3.3.
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scan

( [ Other feature |
| segmentation | | and pose estimation / | point extraction |

$ r 4
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Figure 3.2: Automatic feature extraction for 3D face matching.

Y-Axis

K-Axis

Z-Axis

Figure 3.3: Coordinate system directions of a 2.5D scan. The positive direction of
7 is perpendicular to the image plane and toward the viewer. The scan example is
from Fig. 3.2.

3.1.1.1 Face Segmentation

The first step in a face recognition system is to extract the facial area from the
background. A number of face detection algorithms have been developed to extract

faces in 2D intensity images [179], from frontal faces [154, 144, 166] to multiview

65



faces [101, 148]. However, utilizing the mask M provided in raw data by the 3D
scanner, we explore a simple but effective method to extract a face area from the
background. Given a facial scan, the invalid points in X, Y, and Z are filtered out by
matrix M. The facial area is segmented by thresholding the horizontal and vertical

integral projection curves of M.

The face segmentation result of the facial scan in Fig. 3.2 is provided in Fig. 3.4.
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Figure 3.4: Segmentation of facial scan. (a) Mask image; (b) horizontal integral
projection of M; (c) vertical integral projection of M; (d) face segmentation result.

3.1.1.2 Nose Tip and Pose Estimation

The nose tip is a distinctive point of the human face, especially in the range map. It is
also insensitive to the facial expression changes. The pose of a face scan is represented

by the angle of rotation with respect to the frontal pose (zero degree). For a frontal
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facial scan, the nose tip usually has the largest z value. But, in the presence of large
pose changes, e.g., rotation along the yaw ? direction, this heuristic does not hold.
However, if the original coordinate system is rotated with the same pose change as
the non-frontal scan, the nose tip will have the largest value along the rotated Z-axis.
See Fig. 3.5. In other words, the nose tip still has the largest depth value if projected
onto the corrected pose direction. We call it the directional mazimum. Since the nose

tip and the pose angle are coupled, we estimate them simultaneously.

2066

Figure 3.5: Directional maximum of the nose tip. The nose tip will have the largest
value along the rotated Z-axis.

We illustrate the proposed algorithm based on an example with yaw angle changes.
After the raw face scan is centered at its centroid, the nose tip extraction and pose
estimation algorithm consists of five steps: pose quantization, directional maximum,
pose correction, nose profile extraction, and nose profile identification.

1. Pose quantization. The yaw angle change ranges from —90 degrees (full
right profile) to 90 degrees (full left profile) in the X-Z plane. This 180 degree range
(Ryose) is quantized into Ny, angles with equal angular interval (Af). (A6 and Nppse
values are 2 degrees and 91, respectively, in our experiments.) See Fig. 3.6.

2. Directional maximum. At each pose angle 6; (j = 1,..., Npos), find the

2The rotation with respect to the Y-axis.
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Figure 3.6: Pose angle quantization.

point with the maximum projection value along the corresponding pose direction as
the nose tip candidate. The (z;, y;, 2;) coordinate of each face point p; (i =1,..., N,

where N is the total number of valid face points) is rotated to the new position

0; . 0;

(x,”,y; ,zigj) according to the pose angle 6;, calculated as

zl cosf; 0 sinb; T
g = 0 1 0 vi |- (3.1)
0; .
2 —sinf); 0 cosb; 2
The point p, for which zzj = max(zfj,i =1,...,N) is used as a nose tip candidate

with the corresponding pose angle ;. By repeating this for every 6;, M candidate
pairs (nose tip candidate p and associated pose angle ) are obtained (see Fig. 3.7).
The directional maximum may occur for the same face point p at multiple 6;s, M <

N,

pose- 1N such case, the angle with the largest projection value is selected as the pose

angle to be associated with the point p. In the example of Fig. 3.7, M is 18. To
determine the best candidate from M pairs, the nose profile will be utilized from the

pose-corrected face scan.
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Figure 3.7: Example of directional maximum. The markers in (a) are the positions
of the directional maximum with the associated pose direction plotted in (b). The
pose angles of candidates 1 and 2 are 40 and —16 degrees, respectively.

3. Pose correction. For each candidate pair (p, #), the coordinates (z,y, 2) of all
the original face points are transformed to (2,1, 2’') so that point p is at the origin,

and the face points are rotated according to the pose angle 6 as follows:

x! cosf) 0 sinf T — Dy
y | = 0 1 0 Y — Py (3.2)
2! —sinf 0 cosf Z— P,

The pose-corrected scans based on candidates 1 and 2 in Fig. 3.7 are shown in
Figs. 3.8(a) and (b), respectively.

4. Nose profile extraction. From the pose-corrected scans based on each
candidate (p,#), extract the nose profile at p (the origin of the coordinate system
after pose correction), i.e., the intersection between the facial surface and the Y-Z

plane. Let X'(r,¢), Y'(r,c), and Z'(r,c) denote the point coordinate matrices after
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(a)

Figure 3.8: Pose corrected scans based on (a) candidate 1 and (b) candidate 2 in
Fig. 3.7.

pose correction. For each row r;, find the point closest to the Y-Z plane, i.e., (r;, ¢') =
argmin.(|X'(r;, c)|), resulting in a sequence of point pairs (Y'(r;,c'), Z'(r;, c¢")). To
make all the profiles comparable, each profile is normalized by centering it at the nose
tip candidate and resampling it with equal interval along Y-axis, resulting in a nose

profile vector. Linear interpolation is applied for resampling.

5. Nose profile identification. To identify the nose tip from the candidate pairs
(p,8), we apply the subspace analysis on the nose profile vector space. A number of
nose profiles from an independent group of subjects are extracted with manually
labeled nose tip and pose, aligned at the nose tip, and resampled in the same way as
described in Step 4, resulting in a training set {V;}. These (training) nose profiles are
used to construct the nose profile subspace based on PCA. A set of eigenvectors {®;}
are computed from the sample covariance matrix S = 325 (V; — V))(V; — V)7, where
V = % ZZK V; and K is the number of training nose profiles. The profile subspace

® = [Dy,..., Dy is spanned by the d eigenvectors with the largest eigenvalues. In

our experiments, d is selected by keeping 95% variance contained in S. Given a test
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Figure 3.9: Top: extracted nose profiles; middle: normalized and resampled nose

profile; bottom: extracted profiles overlaid on the original scan. The left (right)
column is based on candidate 1 (2) in Fig. 3.7.

profile vector V', the distance-from-feature-space (DF F'S) [122] is used as the distance

metric, calculated by

e= ||V - a(@TV)]. (3.3)

The nose tip candidates with the smallest DFF'S is identified as the nose tip and the
associated pose angle is determined as the pose estimation result. In the example of

Fig. 3.7, candidate 1 has the smallest DF'F'S among all the candidates.
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3.1.1.3 Feature Location Model

A statistical model of the facial features is used as a prior constraint to reduce the
search area for the feature points. The model contains constraints (in terms of inter-
point distance and geometric relationship) between facial feature points. Effectively
reducing the search region not only enhances the accuracy of the extraction results,
but also improves the computational efficiency. Based on an independently collected
set, of frontal facial scans with manually labeled feature points, the statistical model
is constructed as the average position of each feature point associated with a 3D ellip-
soid; the length of the ellipsoid axis is spanned by 1.5 times the standard deviations

along the respective (x, y, and z) direction.

The scans provided by the 3D sensor contain (x,y,z) coordinates in the world
coordinate system in units of mm. The statistical feature location model is built in
the physical world coordinate system, so that the scale factor induced by the world-
to-image (pixel) mapping is removed from the model. In our experiments, 145 frontal

facial scans are used to construct the model shown in Fig. 3.10.

3.1.1.3 Extracting Corners of the Eyes and the Mouth

Given the estimated nose tip and the pose angle, the feature point location model
can be overlaid onto the given scan, and the search region for each feature point is
constrained. The eye and mouth corners are then determined by utilizing both range

and intensity modalities of a face scan.
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Figure 3.10: Feature location model overlaid on a 3D face image with nose tip aligned.
The red star denotes the average position and the purple ellipsoid spans (x,y,z) di-
rections. Since the nose tip is used to align all the scans, there is no variation at the
nose tip.

Shape Index (range)

We derived the local shape index [58] at each point based on the range map. The
shape index S(p) at point p is defined using the maximum (k1) and minimum (k;)
local curvature values (see Eq. (3.4)). The shape index takes a value in the interval
[0,1]. The corners of the eyes and the mouth are in a cup-like shape with low shape
index values. Figure 3.11 provides nine shapes with the corresponding shape index

values.

(3.4)
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Figure 3.11: Nine representative shapes on the shape index scale [58].

Cornerness (intensity)

In the intensity map, the corners of the eyes and the mouth show a strong corner-like
pattern. We applied the Harris corner detector [79], based on the fact that intensity
changes in a local neighborhood of a corner point along all the directions should
be large. The Harris corner detector was demonstrated to have good repeatability
on images taken under varying conditions [147]. Consider the Hessian matrix H of
the image intensity function I in a local neighborhood of point p(z,y). If the two
eigenvalues of H are large, then a small motion in any direction will cause a significant
change of gray level. This indicates that the point p is a corner. A better variant of

the corner response function is given in [126]:

2

P °T _ ( 0%
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The stronger the corner response C(p), the more likely the point p is a corner.
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Fusion

The responses obtained from range and intensity maps are integrated. In order to
apply the fusion rules, both S(p) and C(p) are normalized using min-max rule in the
search region for each feature point. The normalized shape index response S'(p) at

point p is computed as

S(p) — min{S;}
max{S;} — min{S;}’

S'(p) = (3.5)

where {S;} is the set of shape index values for each feature point in the search region.
The same normalization scheme is applied to cornerness response C'.
The final score F'(p) is computed by integrating scores from the two modalities

using the sum rule [93]

F(p) = (1= S"(p)) +C'(p). (3.6)

The point with the highest F'(p) in each search region is identified as the correspond-
ing feature point. If the estimated pose angle indicates that the head pose is not
near-frontal, only the eye and mouth corners in the un-occluded side of the face are
considered as valid feature points. Figure 3.12 shows an example of the extracted

feature points.

Figure 3.12: Feature extraction results using fusion scheme.
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3.1.2 Reject Option

In our proposed scheme, each obtained feature point has a score (or distance metric),
see Eqgs. 3.3 and 3.6, which can be considered as a confidence measure to robustly
select the most reliable points for registration and to design a reject option to make the
system generate fewer incorrect matches. For example, if the DFFS of an extracted
nose tip is higher than a threshold, implying insufficient confidence to identify the
nose tip, then this face scan is rejected. A high level feature extraction diagram is

given in Fig. 3.13.

/ 2.5D face scan /

‘ Quality analysis ‘

Good quality?
Yes

‘ Feature extraction ‘

Selected features

Figure 3.13: A high level feature extraction diagram.

3.1.3 Automatic 3D Face Recognition

Given the extracted feature points, a fully automatic 3D face recognition system has
been developed, which matches stored 3D face models (or 2.5D face scans) to 2.5D
test scans in the presence of large head pose changes. Using the nose tip position and

the corresponding pose angle along with extracted eye and mouth corners, the pose of
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the test face scan can be normalized up to a rigid transformation, i.e., translation and
rotation. An iterative closest point (ICP) scheme [30] is applied to further improve the
alignment results. See details of the surface matching algorithm in Chapter 4. The
performance of ICP algorithm depends on the initial alignment. Since the nose profile
subspace is built on a limited number of training samples, there is a possibility that
the second best nose tip candidate may provide better matching results. Therefore, we
keep the top-K nose tip candidates. The minimum distance among all the obtained

K matching distances generated by ICP is chosen as the final matching distance.

3.1.4 Experiments and Discussion

Experiments were conducted on the MSU-I database (multiview) and the UND

database (frontal only).

Experiment on the MSU-I database

There are 100 subjects in the MSU-I database with corresponding 100 3D face models
stored in the gallery. Only 2.5D scans with the neutral expression were used for
testing to remove the expression factor in evaluating the matching performance using
automatically extracted feature points. In total, the test database consists of 300
multiview scans, 200 of which have the head poses of more than 45 degrees from the
frontal pose along the yaw direction. Representative 3D models and test scans are
shown in Figs. 1.12 and 1.13.

Using the manually labeled position as the ground truth, the localization displace-

ment is computed as the Euclidean distance between the position of the automatically
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extracted feature point and the ground truth position. For easy notation, we intro-
duce the following terms. N'T: nose tip; LE: inner left eye corner; RE: inner right eye
corner; ORE: outside right eye corner; OLE: outside left eye corner; RM: right mouth
corner; LM: left mouth corner. Table 3.1 provides the statistics of the localization
displacement on the MSU-I database. Figure 3.14 provides examples of the feature
extraction results. The large displacement of nose tip localization is often due to

facial hair.

Table 3.1: Statistics of the distance (in 3D) between the automatically extracted and
manually labeled feature points for the MSU-I database. (For the range image used
in the experiments, the pixel distances in x and y directions are both ~1mm.)

[ Features [NT LE RE ORE OLE RM LM |
Mean (mm) 64 7.1 90 136 133 6.7 5.2
Std (mm) 134 92 131 119 10.1 129 9.0
Median (mm) | 43 53 6.0 127 117 38 32

Figure 3.14: Feature extraction results which lead to correct 3D face matches on the
MSU database. The number in the top-left corner is the estimated pose angle. The
inner eye corner of (c¢) and the outside eye corner of (d) are not considered as valid
feature points for matching due to low feature score F.

Fig. 3.15 shows the identification results for matching 300 multiview test scans
to the 100 3D face models. The identification results using manually labeled fea-

ture points are also plotted for comparison. The fully automatic system provides an
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identification accuracy close to the system using manually labeled feature points by

taking two (or more) feature candidate sets into consideration.
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Figure 3.15: CMC curves of experiments on the MSU database. ‘Top-K’ indicates
that K feature candidate sets were used for matching.
In the current Matlab-based implementation, the computation time for feature

extraction is approximately 2 seconds on a Pentium 4 2.8GHz CPU.

Experiment on the UND database

The UND database contains 953 facial scans from 277 subjects. Representative facial
scans along with automatically extracted feature points are given in Fig.3.16. Ta-
ble 3.2 provides the statistics of the localization displacement on the UND database
compared with the ground truth positions. If the head pose (near frontal) is provided,
a more accurate algorithm can be designed [112] and the corresponding performance
is provided in Table 3.3 for reference. Following the FRGC protocols, each pair of

953 scans is matched to compute a 953 x 953 (dis)similarity matrix and generate the

79



ROC curves for evaluation. Fig. 3.17 compares the ROC curves with those obtained
by using manually labeled feature points. We also utilize the DFFS of the extracted
nose tip as a confidence measure for reject purposes. The reject rate depends on the
pre-defined threshold. Fig. 3.17 shows the ROC curves when 1% of total test scans

are rejected using the DFF'S criteria.

Table 3.2: Statistics of the distance (in 3D) between the automatically extracted and
manually labeled feature points for the UND database. (For the range image used in
the experiments, the pixel distances in x and y directions are both ~1mm.)

| Features |NT LE RE ORE OLE RM LM |
Mean (mm) 83 82 83 95 103 6.0 6.2
Std (mm) 194 172 172 171 181 16.9 17.9
Median (mm) | 53 58 54 55 74 29 33

Table 3.3: Statistics of the distance (in 3D) between the automatically extracted
feature points and the manually labeled feature points for the UND database given
the head pose as (near) frontal [112].

NT | LE | RE | ORE | OLE | RM | LM
Mean (mm) | 5.0 | 5.7 | 6.0 | 7.1 | 7.9 | 3.6 | 3.6

Std (mm) | 2.4 30|33 59 | 51 | 3.3 | 2.0
Median (mm) | 4.9 | 5.7 | 56 | 54 | 7.1 | 2.9 | 3.2

Figure 3.16: Examples of feature extraction results on the UND database.
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Figure 3.17: ROC curves of experiments on the UND database.

3.1.5 Summary

We have proposed an automatic feature extraction scheme to locate the nose tip
and estimate the head pose, along with other facial feature points using a multimodal
scheme to combine both 3D (range) and 2D (intensity) information in multiview 2.5D
facial scans. With the estimated pose, the system automatically rejects the feature
points that are not valid due to self-occlusion. The extracted features are used to
align the multiview face scans with stored 3D face models (or 2.5D face scans) to
conduct surface matching. As a result, a fully automatic 3D face recognition system
has been developed, which can recognize 2.5D facial scans in the presence of large pose
changes. Our automatic face recognition system achieves an identification accuracy

close to the system with manually labeled feature points.

The proposed algorithm is designed to estimate the nose tip and head pose change

by angle space quantization. The computational cost to handle the entire 3D space
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including three directions (i.e., yaw, pitch, and roll) would be expensive using brute
force search. Therefore, a more efficient search scheme is being pursued. In practice,
given prior knowledge on particular applications, the angle sampling space can be
limited to a certain range, such as -15 to 15 degrees for (near) frontal deployment. We
are also exploring ways to utilize the feature scores (see Egs. 3.3 and 3.6) as confidence
measures to robustly select the most reliable points for registration or design a reject

option to make the practical system generate fewer incorrect decisions.
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3.2 Semantic Feature Extraction

In addition to the landmark feature points, we also extract the semantic features from

the range and intensity images of faces.

3.2.1 Ethnicity and Gender Identification

Human faces provide demographic information, such as gender and ethnicity. Con-
versely, gender and ethnicity also play an important role in face recognition. Different
sensing modalities for a human face provide different cues for gender and ethnicity
identification. We exploit the depth (range) image of human faces for ethnicity identi-
fication and combine the registered range and intensity (texture) images of the human
face to extract gender and ethnicity information.

The human face contains a variety of information for adaptive social interactions
with people. Humans are able to process a face in a variety of ways to categorize
it by its identity, along with a number of other demographic characteristics, such as
gender, ethnicity, and age. Over the past few decades, substantial effort has been
devoted in the biology, psychology, and cognitive sciences areas, to discover how the
human brain perceives, represents, and remembers faces. Computational models have
also been developed to gain some insight into this problem, utilizing various facial
cues, such as surface shape and intensity (texture).

The demographic features are useful to narrow the search scope in face retrieval
applications. The identification of ethnicity and gender can help a face recognition

system to limit the number of entries to be searched in a large database, and hence
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improve the retrieval speed and efficiency. Gender and ethnicity are also involved in
human face identity recognition. Humans are better at recognizing faces of their own
ethnicity than faces of other ethnic groups [118, 37]. O’Toole et al. [129] have shown
that people categorize the gender of the faces of their own ethnic group more efficiently
than the faces of other ethnic groups. Golby et al. showed that same-race faces elicit
more activity in brain regions linked to face recognition [72]. They used functional
magnetic resonance imaging (fMRI) to examine if the same-race advantage for face
identification involves the fusiform face area (FFA), which is known to be important
for face recognition [141]. O’Toole et al. [128] investigated the differences in the
way people perceive their own-race faces versus other-race faces. They found that the
perceived typicality of own-race faces was based on both global shape information and
local distinctive feature markers, whereas the typicality of other-race faces was related
more to the local distinctive features. Jain et al. demonstrated that utilizing gender,
ethnicity, and other traits can help to improve the identity recognition accuracy [88].
Unlike gender, ethnic categories are loosely defined. In this paper, we reduce the
ethnicity classification into a simple two-category classification problem, Asian and
non-Asian. These two classes have relatively distinct anthropometric features.
Anthropometrical statistics show ethnic morphometric differences in the craniofa-
cial complex [64, 63]. In [64], based on carefully defined facial landmarks, 25 measure-
ments on the human head and face were taken to examine three racial groups: North
American Caucasian (103 subjects), African-American (100 subjects), and Asians
represented by Singapore Chinese (60 subjects). This study showed differences in

these three groups in many aspects. For example, the Asian group had the widest

84



face; the main characteristics of the orbits of the Asian group were the large intercan-
thal width; in Asian group, the soft nose was less protruding and wider. Enlow [63]
also conducted research on the structural basis for ethnic variations in facial form.
He demonstrated a close relationship between the 3D shape of the human face and
ethnicity. O’Toole et al.’s study [130] showed that 3D facial scans have the potential
to provide a better accuracy for gender classification than 2D intensity image.

Intensity, i.e., facial image captured by a regular CCD camera, is one of the
most widely used modality for gender and ethnicity classification. Compared with
ethnicity identification, the gender classification has received more attention [71, 78,
123]. Gutta et al. [78] proposed a hybrid classifier based on RBF networks and
inductive decision trees for classification of gender and ethnic origin. Moghaddam and
Yang [123] applied support vector machines on face images for gender identification.
Shakhnarovich et al. [150] used a boosted classifier for extraction of demographic
information, including gender and ethnicity. In their work, two categories of ethnicity
are defined, Asian and non-Asian. Lu and Jain [109] presented a multiscale scheme
with linear discriminant analysis to distinguish between Asian and non-Asian faces.
Davis et al. [56] exploited the walking movement (gait) for gender identification. Only
a few studies have investigated multiple modalities, for example, intensity and range
images for gender and ethnicity classification. Walavalkar et al. [167] utilized audio
and visual cues for gender identification.

As mentioned earlier, commercial 3D sensors (e.g., Minolta series [13]) now provide
not only the range data, but also the registered intensity information (see Fig. 1.8

for an example of a facial scan). Unlike previous work on intensity-based ethnicity
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identification, we explore the surface shape (range) of the human face for determining
ethnicity. 3D surface captures the craniofacial structure, which is closely related
to ethnicity. Furthermore, since the identification from each modality can provide
confidence of the assigned class membership to each test sample, the final decision
may be enhanced by integrating the confidence values from different cues. Kittler [93]
provides a theoretical framework for the combination at the decision level. Many
practical applications of combining multiple modalities have been developed. Brunelli
and Falavigna [40] presented a person identification system by combining outputs from
classifiers based on audio and visual cues. Hong and Jain [84] designed a decision
fusion scheme to combine face and fingerprint for person identification.

We address the problem of gender and ethnicity identification using two different
facial modalities, range and intensity. Because the precise facial landmark localization
is still an open problem due to the complex facial structure in the real-world environ-
ment, the anthropometrical measurements based classification scheme is not applied.
Instead, we explore the appearance-based scheme [162, 27], which has demonstrated
its power in image-based facial identity recognition. One of the important factors
affecting the accuracy of the appearance-based recognition scheme is the alignment
of samples [151]. In our scenario, different scans are aligned in the three-dimensional
space based on the range modality, which provides some tolerance to the head pose
and lighting changes. Since the range and intensity images are registered by the 3D
sensor, the intensity images are also aligned as a consequence of the range image
alignment. Support vector machine is applied for identification on each individual

modality. The simple sum rule is used as the integration strategy to make the fi-
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nal identification decision. The integration strategy is designed at the decision level,
utilizing the matching scores of the classification results [175] (the output of each

classifier is a subset of labels along with a confidence, called the matching score).

3.2.2 Methodology

The system architecture is illustrated in Fig. 3.18. Range images are normalized in 3D
space, and intensity images are normalized consequently. Data within a certain region
are cropped from the normalized range and intensity images. Two SVMs classify the
cropped range data and the intensity data, separately. The classification results are

integrated to achieve the final decision.

Raw scan |

Y

( Integration )

(3D normalization ) | Final decision |

Figure 3.18: System Diagram for gender and ethnicity identification.

Normalization

To apply the appearance-based scheme, the raw scans are required to be aligned
[151]: the raw scans are translated, scaled, and rotated so that the coordinates of the

reference points are aligned.
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The scans obtained from the 3D sensor are a set of points S = {(x,y, 2)}. For the
purpose of normalization and evaluating the proposed approach without introducing
feature point localization errors, we manually specify 6 points in the scan: the inside
and the outside corners of the left eye, £ ; and £ ,, the inside and the outside corners
of the right eye, E,; and E,,, the nose tip N, and the chin point C. We use Ej;,
and Fj; , to represent the x and y value of E;, and F,; , and E, ;, to represent the z
and y value of E} ;. After rotation, translation, and scaling, the points are normalized
so that the centers of the left and the right eyes (midpoints of the inside and outside
eye corners) are located respectively at (100, 0,0) and (—100,0,0), and the plane that
passes the centers of eyes and the chin point, is perpendicular to the z-axis. This

transformation is defined as:

x T ty
y | =s-R y |+ t2 |, (3.7)
z z t3

where

cosy siny 0
M, = —siny cosy 0 |,
0 0 1
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Figure 3.19 shows the frontal and profile views of a face scan before and after

normalization.

3D Feature Vector Construction

To avoid the effect of hairstyle and other facial accessories, a close facial scan cropping
scheme is applied. Given a normalized 3D face data set C', x and y coordinates of a
rectangular area R to be cropped, and the numbers of rows and columns of the grid
in the rectangle R, m and n, we crop the face areas and construct feature vectors as
follows:

(1). Build a grid G. The grid G is in a plane parallel to the x-y plane. It has m
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Figure 3.19: Scan normalization. (a) Frontal view before normalization. (b) Profile
view before normalization. (c) Frontal view after normalization. (d) Profile view after
normalization.

rows and n columns. The borders of G are set to be the rectangle R. A grid G is

shown in Fig. 3.20.

(2). Build the m xn projection matrices XM, Y M, ZM. The elements X M (i, j),
YM(i,j) and ZM(i,5), i = 1,---,m, j = 1,---,n, correspond to the grid node

G(7,7). Denote the set of points inside G(i,j) as C', where C' = {(z,y, 2)|(z,y, 2) €

ps "

Figure 3.20: Cropping face areas for construction of feature vectors. A 10 x 8 grid is
overlaid on the facial scan for demonstration.
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C, and z,y are inside G(i,7)}. If C’" is empty, the corresponding element is labeled

as a hole (see Fig. 3.21). Otherwise, the value of each grid is computed as follows:

. 1
XM(i,j) = W Z Z,

for all (z,y,2)eC’

. 1
YM(Z,]) e |Cl| Z y’

for all (z,y,z)eC’

o 1
ZM(Z,j) = |O’| Z Z,

for all (z,y,z)eC’

where |C'] is the number of elements in C".

/
ot

Figure 3.21: Examples of the holes (shown as white patches) after 3D normalization.

(3). Interpolation. After the 3D rotation, the occluded points in the original scan

cause holes in the normalized scan. The holes in XM, Y M, and ZM are recovered

by interpolating the nearest neighbors as shown in Fig. 3.22.

y
ol

Figure 3.22: The holes are filled by interpolation.

(4). Vector formation. There are two ways to construct the feature vector. One
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is utilizing all normalized X, Y, and Z coordinates, the other one is using only the
normalized Z (depth), because after normalization most of the differences between
scans are contained in Z. We adopt the Z only representation for a more compact
representation. The columns in matrices ZM are concatenated to generate the vector

V' of length m x n, which is used by the SVM classifiers for identification.

Identification and Fusion

The gender and ethnicity identification using individual modalities are formulated as
a two-class classification problem. In the appearance-based scheme, Support Vector
Machines have provided high gender classification accuracy [123]. We also use SVMs
in our experiments for both ethnicity and gender classifications. Instead of matching
scores, the posterior probabilities are extracted from the SVMs [140].

The combination of range and intensity can be conducted at two levels, the feature
level and the decision level. The latter has more generality, when classifiers have
physically different types of features. Kittler [93] provides a theoretical framework
for combining various classifiers at the decision level. The strategy we used in our
experiments is the sum rule.

For gender classification, the fusion process is formulated as:

p(malels) = (p(male|srange) + p(malelsintensity)) /2, (3.8)

p(femalels) = (p(female|srange) + p(femalelsintensity))/2, (3.9)

where s is the subject to be classified, s,4n4e and Siniensity are, respectively, the range
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and the intensity maps of the subject, p(male|s;ange) and p(female|s,qnge) are the
posterior probabilities provided by the SVM that uses range data for gender classi-
fication, and p(male|Sintensity) and p(female|Siniensity) are the posterior probabilities
provided by the SVM that uses intensity data for gender classification. The final
decision is made by comparing p(male|s) and p(female|s). The same fusion scheme

is applied to the ethnicity identification.

3.2.3 Experiments and Discussion

A mixture of two frontal 3D face databases is used for evaluating the proposed
schemes. One is the UND database, composed of 944 scans from 276 subjects. The
corresponding demographic information is shown in Table 3.4. Representative face
images are given in Fig. 1.16. To increase the size of the database (hence the com-
plexity of the identification), the frontal images of the MSU-I database (denoted as
MSU-I-F), containing 296 frontal scans of 100 subjects, is added to the UND database.
Table 3.5 gives the demographic information of the MSU-I-F database. All the ex-
periments are conducted on the combined database of UND and MSU-I-F databases,
whose demographic information is summarized in Table 3.6.

Table 3.4: Number of subjects and scans (given in parenthesis) in the UND database
in each category.

Non-Asian | Asian Subtotal
Female 86 (295) 27 (92) | 113 (387)

Male 124 (411) | 39 (146) | 163 (557)
Subtotal | 210 (706) | 66 (238) | 276 (944)

For ethnicity identification, a 10-fold cross-validation is conducted. Each time we
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Table 3.5: Number of subjects and scans (given in parenthesis) in the MSU-I-F
database in each category.

Non-Asian | Asian | Subtotal
Female 20 (60) 6 (18) 26 (78)
Male | 52 (152) | 22 (66) | 74 (218)

Subtotal | 72 (212) | 28 (84) | 100 (296)

Table 3.6: Number of subjects and scans (given in parenthesis) in the combined UND
and MSU-I-F database in each category.

Non-Asian | Asian Subtotal
Female | 106 (255) | 33 (110) | 139 (465)

Male 176 (563) | 61 (212) | 237 (775)
Subtotal | 282 (918) | 94 (322) | 376 (1240)

use 9 folds as the training set and the remaining fold as the test set. Scans from the
same subject are grouped into the same set to ensure that the ethnicity classification
results are not affected by the similarity between the testing and the training data
in terms of the identity. The mean and the standard deviation of the matching error
rates from these 10 experiments are reported. The same scheme is applied for gender
identification.

The ethnicity and gender identification performance is provided in Tables 3.7 and
3.8.

Table 3.7: Ethnicity identification performance. The average and standard deviation
of the error rates using 10-fold cross-validation are reported.

Non-Asian Asian Overall
Range 2.7% £ 0.028 | 6.7% £ 0.052 | 3.8% £+ 0.024
Intensity 2.1% 4+ 0.027 | 5.9% £0.051 | 3.2% £ 0.029
Range + Intensity | 0.7% 4 0.010 | 5.5% 4 0.039 | 2.0% =+ 0.016

Figures 3.23 and 3.24 show the examples of the ethnicity classification results and
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Table 3.8: Gender identification performance. The average and standard deviation
of the error rates using 10-fold cross-validation are reported.

Female Male Overall
Range 24.5% +0.101 | 9.0% 4+ 0.030 | 14.6% + 0.044
Intensity 19.2% +£0.123 | 11.3% £ 0.066 | 14.0% + 0.047
Range + Intensity | 17.0% 4+ 0.093 | 4.4% +0.032 | 9.0% + 0.030
[ / ‘ .

(a) (b) (c) ()

Figure 3.23: Results of ethnicity classification. (a) and (b) are correctly classified
before and after fusion. (c) is not correctly classified using range information, but
correctly classified after fusion. (d) is not correctly classified using intensity informa-
tion, but correctly classified after fusion.

the gender classification results, respectively.

For both ethnicity and gender identifications, the experimental results show that
3D (range) information provides competitive results to the 2D (intensity) modal-
ity. It is demonstrated that the integration of range and intensity outperforms each

individual modality.

3D sensors in the current market are not as mature as 2D sensors. Typical prob-

(a) (b)

(c) ()

Figure 3.24: Results of gender classification. (a) and (b) are correctly classified before
and after fusion. (c¢) is not correctly classified using range information, but correctly
classified after fusion. (d) is not correctly classified using intensity information, but
correctly classified after fusion.
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lems with range images include missing data near dark regions (e.g., eye regions),
spikes at the region with high reflectivity, and so on. The interpolation and smooth-
ing results are the approximations. These factors may explain the lower gender and

ethnicity identification performance using range images.

3.3 Summary

We have proposed a multimodal algorithm to automatically segment faces and extract
feature points from frontal facial scans, which can be used for scan normalization and
registration in 3D face matching systems (see Chapter 4). Besides the landmark
feature points, we utilize both range and intensity modalities to identify gender and
ethnicity from a facial scan, which is formulated as a classification problem under
the appearance-based analysis framework. Gender and ethnicity can be utilized to

improve the face recognition accuracy [88].
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Chapter 4

3D Face Matching

A number of approaches have been proposed for face recognition based on range
(depth) images, but most of them have focused on only frontal view recognition.
Further, most of these methods only use the shape (geometry) information present
in the face. However, the intensity/texture/appearance image of the face also plays
an important role in face recognition process, especially when the shapes of two faces
in the database are similar. Facial appearance in 2D images is the projection of a
3D face, containing the texture information of the face. Table 4.1 lists a number of
factors that can change the facial geometry and appearance. Although the 3D facial
shape will not change due to pose and lighting variations, it is affected by expression
changes and the aging factor. Therefore, using 3D shape information alone can not
fully handle all the variations that a face recognition system encounters.

We have designed a face recognition system [115], which integrates surface (shape)
matching and constrained appearance-based methods for multi-view face matching
(see Fig. 4.1) and can tolerate some expression variations. The surface matching

97



Table 4.1: Relationship between face variation factors and facial properties (shape
and appearance).

| Factors | Shape (3D) | Appearance (2D) |
Pose No Yes
Lighting No Yes
Expression Yes Yes
Aging Yes Yes
Makeup No Yes
Facial accessories Yes Yes

utilizes the 3D shape information, while the appearance-based methods explore the
intensity clues. Integrating these two different modalities (shape and intensity) may
provide a more robust face recognition system to overcome the limitations encountered
in the traditional 2D image-based face recognition system under pose and lighting
changes. The appearance-based stage is constrained to a small candidate list from
the database generated by the surface matching stage, which reduces the classification
complexity. In the conventional appearance-based algorithms, all the subjects in the
training database are used for subspace analysis and construction. When the number
of subjects in the database is large, this leads to a problem due to potentially large
inter-class similarity. In our scheme, a 3D face model is utilized to synthesize training
samples with facial appearance variations, which are used for discriminant subspace
analysis. The matching distances obtained by the two matching components are
combined to make the final decision. Further, a hierarchical matching structure is

designed to improve the system performance in terms of both accuracy and efficiency.

In section 4.1, we will present our 3D face model construction procedure. Sec-

tion 4.2 describes the surface matching scheme. The constrained appearance-based
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Figure 4.1: Matching scheme.

matching component is proposed in section 4.3. The integration scheme is presented
in section 4.4. Section 4.5 provides our experimental procedure for testing the system

and the matching results.

4.1 3D Model Construction

Since each 2.5D scan obtained by the Minolta Vivid910 scanner used in our experi-
ments can only cover a partial view of the full 3D face, the 3D face model for each
subject is constructed by stitching several 2.5D scans obtained from different view
points that cover the full facial area. In our current setup, 5 scans are used !, i.e.,
frontal, left 30 degrees, left 60 degrees, right 30 degrees, and right 60 degrees. The
2.5D scans are first registered. Since the scans have some overlapped portions, they

are then merged in order to create a single surface model. Basic clean-up proce-

Tt is possible to use fewer scans to construct the model as long as they cover the full view and
enough details of the face object and contain overlaps between neighboring scans for registration.
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dures are applied to fill holes, smooth the surface, and remove noisy points associated
with hair and clothing. The end result is a smooth full view texture mapped mesh
model of the face for each of our subjects. All the techniques used in the model con-
struction procedures are well studied in the computer graphics and vision research
communities [161, 59, 102, 157]. For easy manipulation, a commercial software called
Geomagic Studio [9] is used for our model construction. Figure 4.2 demonstrates the
3D face model construction procedure. The resulting model is highly dense, contain-
ing ~27,000 vertices and ~50,000 polygons. The data representation for the 3D face

model is shown in Fig. 4.3. Tt can be used to render new realistic facial appearance

with pose and illumination variations, see Fig. 4.4 for examples.

Five 2.5D scans —""( Registration )—l'-( Merge ) —

Figure 4.2: 3D model construction.

4.2 Surface Matching

In order to match two facial surfaces (a test scan and a 3D model), we follow the

coarse-to-fine strategy shown in Fig. 4.5.
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Associated Mesh

Figure 4.4: Appearance synthesis of a 3D model with pose and lighting variations.

4.2.1 Coarse Alignment

We applied a feature point based alignment for coarse registration due to its simplic-
ity and efficiency. A minimum of three corresponding points is needed in order to
calculate the rigid transformation between two sets of 3D points. Once the three cor-
responding points (feature points) are extracted (see Chapter 3), the transformation
is made using a combination of rigid transformation matrices following the guidelines
described in [170]. This is done by a least squares fitting between the triangles formed
from the two sets of three feature points. The first set of three feature points @ is

transformed into the same location as the second set of feature points p’ (see Fig. 4.6).
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Figure 4.5: Surface matching streamline. The alignment results are shown by the 3D
model overlaid on the wire-frame of the test scan.

The rigid transformation is composed of a series of simple transformations:

where

TT:

TC .

P

o

TT =Te, -Rh-©-Ry-Te,, (4.1)

Total Transformation from set @ to set p.

Translate the center to the origin.

Rotate into the xy-plane.

Optimum rotation to align two sets of vertices within the xy-plane.
Rotate out of the xy-plane into the coordinate system of p.

Translate to have the same centroid as p.

A combination of the eye corners and the nose tip is selected as our three feature

points. See Fig. 4.7 for examples. These points are selected because they are relatively

easy to locate in the range image and they do not change between different scans of
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Figure 4.6: Rigid transformation between two sets of three corresponding points.
(a) The original set of points (the red triangle is constructed from the @ points, the
blue triangle is constructed from the p’ points); (b) the set of points after the rigid
transformation of points @ onto points p.

different people across different poses. See Fig. 4.5(c) for an example of a 2.5D face

scan coarsely aligned to a 3D face mesh model.

Figure 4.7: Feature points used for coarse alignment at different poses: left-profile,
frontal, and right-profile.

4.2.2 Fine Alignment

The coarse alignment can only provide an approximation to the true registration. But
for the purpose of surface matching, the two sets of 3D points (one from 2.5D scan and
one from 3D model) should be further tuned for fine registration. Because both the
scan and model contain highly dense data, it is possible to find a good approximation

of the closest points in each dataset, which is the basis of the Iterative Closest Point
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(ICP) framework [30, 48, 181]. The basic Iterative Closest Point scheme is as follows:

1. Select control points in one point set

2. Find the closest points in the other point set (correspondence)

3. Calculate the optimal transformation between the two sets based on the current

correspondence

4. Transform the points; repeat step 2, until convergence.

Starting with an initial estimate of the rigid transformation derived in the coarse
alignment stage, ICP iteratively updates the transformation parameters by alternately
choosing corresponding (control) points in the 3D model and the 2.5D scan and
finding the best translation and rotation that minimizes an error function based on
the distance between them.

Besl and McKay [30] used point-to-point distance for which a closed-form solution
can be obtained when calculating the transformation matrix during each iteration.
The point-to-plane distance used in [48] makes the ICP algorithm less susceptible
to the outliers (such as the spikes caused by the 3D sensor) and local minima than
the point-to-point metric [68]. It also needs a fewer number of iterations to converge.
But point-to-plane distance based ICP has to solve a non-linear optimization problem
using numerical algorithms. Since both the 2.5D scan and 3D model are represented
as a dense mesh, the normal for each vertex can be calculated, which makes the
computation of point-to-plane distance feasible. We integrate Besl’s and Chen’s ICP

algorithms [30, 48] in a zigzag running style, and call it the hybrid ICP algorithm.
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Each iteration of surface registration consists of two steps, (i) using Besl’s scheme to

compute an estimation of the alignment, and (ii) using Chen’s scheme for a refinement.

Based on the extracted feature points, the sampling rectangles of the control
points can be determined as shown in Fig. 4.8. A single rectangle is determined for
frontal cases where both outside corners of the eyes are available. If one of the outside
corners of the eyes is occluded due to large pose changes, the inside corner is used
instead. Four small rectangles are then determined; these cover the eyes, nose, and
part of the cheek to sample the control points. In order to minimize the number of
outliers, regions were selected within the face scans that do not vary greatly between
the scans. Examples are given in Fig. 4.9. Regions around the eyes and nose were
selected because these regions are less malleable to expression changes than other
parts of the face (such as the region around the mouth, which changes greatly with
facial expression). The number of control points is determined as a tradeoff between
the accuracy and computational cost. The fine alignment results are demonstrated
in Fig. 4.5(d). Other non-uniform control point selection schemes, such as curvature-

based sampling schemes, can also be applied.

4.2.3 Surface Matching Distance

The root mean square distance minimized by the ICP algorithm is used as the primary
matching distance between a face scan and the 3D model. We use the point-to-plane

distance metric M D;cp defined in [48].
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Figure 4.8: Automatic control point selection scheme based on three feature points for
frontal (a) and profile (b) scans. The numbers (m x n) in each bounding box denote
the resolution of the sampling grid. For example, there are 25 = 5 x 5 control points
sampled in the upper-left bounding box in (b). In (b), the value of Y is determined by
the farthest valid points from the nose in the corresponding horizontal direction. The
valid points are indicated in the mask image provided by the sensor (see Fig. 3.4(c)
for an example). In total, 96 control points are selected in each frontal scan, and 98
in each profile scan.
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Figure 4.9: Examples of automatic control point selection for a left profile, frontal,
and right profile scans.

MDjop = % S (9 (), ), (4.2)

where d(,-) is the point-to-plane metric; ¥(-) is the rigid transformation applied to
each control point p; in the 2.5D test scan; S; is the corresponding tangent plane in
the 3D model w.r.t. p;; N, is the number of control points. The smaller the value of

M Dicp, the better the surface matching.

4.3 Constrained Appearance-based Matching

In addition to the 3D shape, texture contained in the co-registered 2D intensity image
is also an important cue for face recognition. There are a number of appearance-based
algorithms for image-based face recognition [162, 27, 24]. A typical appearance-based
method analyzes the intensity correlation between all the pixels in the image, which
is a global characteristics of the face image. The alignment of the training and
test images is important to the matching accuracy of the appearance-based algo-
rithms [151, 138]. The ICP registration procedure aligns the 2.5D test scan and
the 3D model, so the pose is already normalized. By synthesizing new appearance

(image variation) from the constructed 3D model, additional training samples of the
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subjects can be obtained. This allows us to use the linear discriminant analysis
(LDA) for appearance-based matching [27, 119]. Instead of using all the subjects in
the database, the LDA is applied only to a small list of candidates, which is gener-
ated dynamically by the surface matching stage for each test scan. We call this as

the constrained appearance-based matching in our framework.

4.3.1 Appearance Synthesis

Each subject is represented by a 3D face model with neutral expression in the
database. In order to apply the subspace analysis based on the facial appearance,
a large number of training samples, which are aligned with the test sample, are
needed [27, 119]. After the surface registration (pose normalization), the 3D model
gets aligned with the test scan. Since the dense 3D model is available, it is easy to
synthesize new appearance with lighting variations. As the alignment may not be

perfect, small pose variations are also synthesized in our framework.

Synthesis of pose variations is straightforward by simply rotating and shifting
the 3D model. Lighting is simulated by adding a virtual light source around the
reconstructed face surface as illustrated in Fig. 4.10. The position of the light source
is controlled by the distance R between the light source and the origin of the model
coordinate system and by the azimuth and elevation angles. Different illumination
variations are generated by changing the position of the light source. Phong shading

technique is employed to render lighting effects on the face surface [66].

Based on the feature points (eye corners and the nose tip) and registration results,
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Figure 4.10: Lighting simulation. The light bulb denotes the simulated light source.

the critical area in the face is determined, which is used to automatically crop the
synthesized images. Examples of the cropped synthesized images for one subject are
shown in Fig. 4.11. These images are used in the following discriminant subspace

analysis.

We applied linear discriminant analysis (see Sec. 2.1.1 for details) for appearance-
based matching. The projection coefficients in LDA (Y') are used as the feature
representation of each face image. Given two projection coefficient vectors Y; and
Y;, the matching score between them is calculated as the cosine value of the angle
between their coefficient vectors, i.e.,

(Y1, Y5)

MSppa = —220
EPAT - Yl
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(9)

Figure 4.11: Cropped synthesized training samples for discriminant subspace analysis.
(a) test (scan) image; (b) image rendered by the 3D model after pose normalization
(alignment); (c-f) images synthesized by the 3D model with shift displacement in
horizontal and vertical directions; (g-j) images synthesized by the 3D model with
lighting changes. Only gray scale is used for appearance-based analysis. Because the
pose is normalized and feature points are known, the cropping is done automatically.

where (-) denotes the dot-product.

4.3.2 Dynamic Candidate Selection

In the conventional LDA, all the subjects in the database (gallery) are used for sub-
space construction. As the number of subjects in the database increases, the com-
plexity of the recognition problem increases due to large intra-class variations and

large inter-class similarities, resulting in a low recognition accuracy. However, if the
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number of subjects in the gallery is small, the appearance-based method can provide
a relatively good performance. For each individual test scan, the gallery used for
subspace analysis and matching is dynamically generated based on the output of the
surface matching. Only a small number of subjects in the database are selected for
the appearance-based matching, reducing the number of matches for the test scan. In
our experiments, the top M (M = 30) candidates in the sorted matching list based
on surface matching are selected (rank-based selection) for constrained appearance

based matching.

4.4 Integration of Range and Intensity

4.4.1 Weighted Sum Rule

Surface matching and appearance-based matching provide two scores based on differ-
ent cues. Since these two matchers explore different properties of the face, namely,
shape and texture, they are not highly correlated. A combination of these two match-
ers has the potential to outperform each individual matcher [93]. We applied the
weighted sum rule to integrate the surface matching and appearance-based matching

distances as follows:

MD.comp = MDiop+a-MDipa, (4.4)

where MDrpa = (1 — MSrpa)/2, and MSrpa is the matching score generated by the

appearance-based matching component (we convert the matching score (similarity)
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to matching distance (dissimilarity)). The weighting parameter « balances the two
matching components, which can be set beforehand or learned from an independent

validation dataset.

4.4.2 Feature Vector Concatenation

The sum rule based fusion is performed at the decision level. At the feature level,
feature vectors from different modalities (range and intensity) can be concatenated
into a combined feature vector. Discriminant analysis is then conducted on the new

combined feature vector for classification.

4.4.3 Hierarchical Matching

The surface matching in Section 4.2 focused on the region of the face (near eyes and
nose) that is more robust to deformation due to expression changes. We call it the
‘local’” matching scheme. But to solve the ambiguity between shapes, a larger fa-
cial area may provide more evidence, especially for the faces with the same neutral
expression as that of the 3D models stored in our database. Therefore, a hierarchi-
cal matching framework is designed, where a ‘global’ surface matching component
is introduced, which also uses the same ICP algorithm but different control point
selection schemes. Figure 4.12 illustrates our hierarchical system and Fig. 4.13 shows
the global control point sampling scheme. Only those test scans for which the sur-
face matching component does not have sufficient evidence to make the decision, are

fed to the combination stage. This cascading framework also provides the potential
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to reduce the total computation cost. In our current implementation, if the shape
matching distance (M D;cp in Eq. (4.2)) is below a pre-defined threshold ¢, then it is
considered as a good surface matching. Since the surface matching distance is mea-
sured by the root mean square distance among the control points, it has a physical
meaning. We choose ¢ equal to one millimeter. The value of § depends on the noise
level in the scans and the performance of the automatic anchor point locator for the
coarse surface matching. The experimental results demonstrated that this hierarchi-
cal matching framework improves the system performance in terms of both accuracy

and efficiency [108].

Best Match with
min global MD
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min(Global MD)
<1
N
: Best Match with
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urface Matching + Best Match with
Constrained LDA in combined MD.
Figure 4.12: Hierarchical matching design. The full system using surface match-

ing only is composed of (I), (IT), and (III). The full system combining surface and
appearance-based matchings consists of (I), (II), and (IV).
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(V)
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Figure 4.13: Global control point sampling based on three anchor points, for left
profile, frontal, and right profile scans. A 8 x 12 sampling grid is used, resulting in a
total of 96 control points for each scan.

4.5 Experiments and Discussion

4.5.1 Data

Currently, there is no publicly available multi-view face scan database, along with
expression variations. We use the MSU-I database in the experiments. The USF
database is combined with the MSU-I database to increase the number of 3D gallery
models. In total, there are 598 2.5D test scans, whose distribution is provided in
Table 1.1, and 3D face models of 200 different subjects in the gallery. Representative
test scans were shown in Fig. 1.13. Examples of 3D models were provided in Figs. 1.12

and 1.15.

We applied the three ICP algorithms, Besl’s [30], Chen’s [48], and our hybrid ICP,
on the entire database. The total number of surface matching errors among the 598
test scans were 98 (Besl’s), 88 (Chen’s), and 85 (hybrid). Based on these results, we

decided to use the hybrid ICP algorithm in the following experiments.
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4.5.2 Matching Performance

Based on the three feature points, control points are automatically sampled for the
ICP registration. Figure 4.9 showed the control point sampling scheme. Examples of
the registration results were given in Figs. 4.5(c) and 4.5(d). The surface matching
was achieved using the distance score produced by the ICP registration. Our matching
process was conducted in the identification mode. Each scan was matched to all the

3D models stored in the gallery.

Conventional appearance-based algorithms suffer from large pose changes [184, 7],
and their performance depends on the quality of the alignment. In our match-
ing scheme, after the surface matching, the test scan and 3D models are already
aligned, which permits the use of appearance-based algorithms. In the constrained
appearance-based matching stage, although the number of synthesized samples, which
are used as the training samples for the appearance-based methods, can be arbitrary
large in principle, in practice, we only generate a small number of samples because
this synthesis process and the subsequent LDA need to be conducted online. In our
experiments, 4 images with different shift displacements and 4 images with different
lighting conditions were synthesized. Hence, 9 images for each model are used for the
LDA calculation (8 synthesized versions plus the original one, see Figs. 4.11(b)-(j) for

an example).

The LDA is only applied to the first 30 matched candidates based on the surface
matching distance. By applying surface matching and constrained appearance-based

scheme separately to the dataset, we found that the sets of misclassified test scans
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are significantly different for these two matching schemes, implying that these two
schemes are not highly correlated. Therefore, a suitable fusion of these two schemes
has the potential to lead to an improvement in the matching accuracy.

We first study the matching component using manually located feature points
to eliminate feature extraction errors. The matching results are summarized in Ta-
ble 4.2. Experimental results of the fully automatic system using the automatic

feature extractor described in Chapter 3 are provided separately in Sec. 4.5.4.
1. Frontal scans with neutral expression.

In this category, all the test scans are frontal, with neutral expression, which
is similar to the expression contained in the 3D models. The surface matching
achieves 98% accuracy on these test scans. The constrained appearance-based
method also achieves the highest accuracy (86%) among all the categories listed
in Table 4.2, due to the good alignment results and very little change in the
expression. A combination of surface matching and appearance-based matching

gives an accuracy of 99%.

2. Profile Scans with Neutral Expression.

Although both surface matching and appearance-based matching components
perform a little bit worse than the frontal case, we still attain an accuracy of
96% for the surface matching and 98% for the combination scheme. The lower
performance here compared to the frontal cases is due to the smaller overlap

between the 2.5D test scan and 3D models.

3. Scans with Smiling Expression.
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Regardless of pose variations, expression changes, which alter the facial geomet-
ric shape, decrease the surface matching accuracy drastically. This is mainly
because our ICP based surface matching is focused on extracting the rigid trans-
formation parameters, while the facial expression change is a typical non-rigid
transformation. Although the appearance-based method can handle the facial
expression changes to some extent, its performance depends on the quality of
the alignment (pose normalization), which is provided by the surface matching
component. Still, surface matching and appearance-based matching augment

each other and their combination leads to 81% accuracy.

The expression change affects both sides of the face. According to our current
control point sampling scheme, the frontal case has a larger facial area whose
shape is changed more by the expression than the profile views. This could be
one reason for a lower surface matching accuracy in the frontal smiling category

compared to the profile smiling test scans.

Table 4.2: Rank-one matching accuracy for different categories of test scans. The
total number of test scans in each category is listed in Table 1.1. The number of
errors is provided in the parenthesis. The weights for the surface matching and the

constrained appearance matching components are set to be equal (i.e., @ = 1 in
Eq. 4.4).
Test scan category | Surface matching | Constrained LDA | Surface matching +
constrained LDA
Frontal & Neutral 98% (2) 86% (14) 99% (1)
Profile & Neutral 96% (7) 84% (35) 98% (5)
Frontal & Smiling 68% (31) 71% (28) 7% (23)
Profile & Smiling 76% (45) 69% (59) 84% (31)

In all the three categories of the test scans, the combination of surface matching
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and appearance-based matching outperforms each individual matching component.

4.5.3 Overall Performance

A summary of the experimental results for the entire dataset consisting of 598 test
scans is given in Table 4.3, running in the identification mode. Out of the 60 errors
over the entire test database (corresponding to 90% accuracy), 54 test scans contain
smiling expression. As mentioned earlier, the expression change leads to non-linear
surface deformation that is not adequately handled by the rigid transform based
ICP algorithm. The surface matching distance distributions for genuine users and
impostors are provided in Fig. 4.14. Figure 4.15 shows 4 correctly matched examples

using the combined scheme.
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Figure 4.14: Surface matching distance distributions.

The cumulative match score curves for the three different matching schemes are
provided in Fig. 4.16. The combination of surface matching (ICP only) and con-

strained appearance-based matching (LDA only) consistently outperforms each indi-
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Table 4.3: Matching accuracy with equal weights for ICP and LDA components (i.e.,
a =11in Eq. 4.4). The total number of test scans is 598.

‘ Scheme ‘ Rank-one match accuracy ‘
Surface matching 86%
Constrained LDA 7%

Surface matching + Constrained LDA 90%

Figure 4.15: Test scans (top row), and the corresponding 3D models correctly
matched. The 3D model is shown in a pose similar to the corresponding test scan.

vidual scheme.

The performance reported in Table 4.3 is based on setting equal weights to surface
matching and appearance-based matching distances, i.e., the value of « in Eq. (4.4)
is set to 1. However, there may exist an optimal value of «, which minimizes the
number of errors. The performance change with respect to « is shown in Fig. 4.17.
In practice, the value of o can be learned from the validation data.

Using the matching distances computed from matching 598 test scans to 200 3D
face models, the ROC curves are generated, which are provided in Fig. 4.18. The
curves are calculated by setting the same threshold for all the users. A user-specific

threshold could be computed for each user to yield better performance [89]. Note that
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Figure 4.16: Cumulative matching performance with equal weights for the surface
matching (ICP) and the constrained appearance matching (LDA) components (i.e.,
«a = 1). The LDA component is constrained by the surface matching (ICP) compo-
nent. The LDA is only applied to the top 30 candidate models selected in the surface
matching stage.

the appearance-based matching (LDA) in Fig. 4.18 relies on the 3D pose alignment

achieved by ICP-based registration.

Based on the concatenation-based fusion scheme in Sec. 4.4.2, the rank-1 recog-
nition rate is 78%, less than 90% obtained by the sum rule on the matching scores

from each modality.

In our current implementation, on an average, matching one test scan to a 3D face
model takes about 16 seconds using the hybrid ICP algorithm for surface matching
and 2 seconds using the accelerated Besl’'s ICP algorithm for surface matching, on a
Pentium 4 2.8GHz CPU. The speed bottleneck is the nearest neighbor search in ICP,
because the computation required for sequential (exhaustive) search for one control

point is proportional to N, where N is the number of vertices in the model. We have
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Figure 4.17: Identification accuracy based on the combination strategy with respect
to «, the parameter used to balance the surface matching and appearance matching.
A higher accuracy is achieved at oz = 2 than the 90% accuracy at o = 1.

integrated the KD-tree structure ? [28, 67] with the Besl’s ICP algorithm [30]. The
expected computation to perform the nearest neighbor search for each control point
is then proportional to log N. If we use only Besl’s ICP algorithm in the surface
matching stage instead of the proposed hybrid ICP algorithm, the entire matching
process can be achieved in approximately 2 seconds with about 2% decrease in the
identification accuracy. Unlike the point-to-point (Euclidean) distance based Besl’s
ICP algorithm, the point-to-plane distance based Chen’s ICP algorithm cannot be
integrated with the KD-tree structure. The nearest neighbor search in ICP can be
implemented in parallel for each control point, so parallel computation and hardware
accelerators can also be utilized. With the current computation power, the proposed
scheme would be more suitable for identification on a small database or verifica-
tion applications. For identification in a large database, fast screening or indexing

approaches would need to be integrated.

2The KD-tree software package is provided by Guy Shechter.
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Figure 4.18: ROC curves. ICP (all): surface matching on the entire test database;
ICP (neutral): surface matching on the test scans with neutral expression. LDA is
applied only after pose normalization by ICP rigid registration. Equal weights (i.e.,

« = 1) were applied to the surface matching (ICP) and the constrained appearance-
based matching (LDA) components.

4.5.4 Automatic Face Recognition

With automatic feature point extraction (described in Chapter 3) integrated, a fully
automatic multimodal face recognition system is developed. The feature points are
used for both alignment in three-dimensional space for surface matching and for facial
area cropping for the appearance-based matching. The same database (see Sec. 4.5.1)
and the evaluation protocol are used. Due to computational cost, only Besl’s ICP

algorithm [30] is used for surface matching.

The face recognition system automatically matches the 598 test scans to the 200
3D face models in the identification mode. The identification results are given in

Fig. 4.19. The identification results using manually labeled feature points are also
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plotted for comparison. The plots show that the fully automatic system provides
identification accuracies close to those of the system using (three) manually labeled
feature points. In the current implementation, the total computational cost of the
fully automatic system is about 4 seconds for integrating both range and intensity,

and 3 seconds for surface matching only (2 seconds for feature extraction).
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Figure 4.19: CMC curves of the fully automatic systems in comparison with the
systems with three manually labeled feature points.

4.6 Summary

We have designed and implemented a face recognition system that matches 2.5D
scans of faces with different pose and expression variations to a database of 3D face

models. Both shape and intensity information contained in 3D models are employed.
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We propose a combination scheme, which integrates surface (shape) matching and
a constrained appearance-based method for face matching, that complement each
other. The surface matching is achieved by a hybrid ICP scheme. The subsequent
appearance-based identification component is constrained to a small candidate list
generated by the surface matching component, which reduces the classification com-
plexity. The 3D template registered (after pose normalization achieved in the surface
matching stage) to the test scan is utilized to synthesize training samples with fa-
cial appearance variations, which are used for discriminant subspace analysis. The
matching distances obtained by the two matching components are combined using
the weighted sum rule to make the final decision. A hierarchical matching framework
is designed to further improve the system performance in terms of both accuracy and
efficiency.

The current surface matching scheme is still based on rigid transformation, result-
ing in relatively poor matching performance on face scans in the presence of non-rigid
deformations, such as expression changes. We will explore 3D templates that can be
deformed by integrating prior knowledge of non-rigid variations to deal with facial

expression changes for matching. Details are presented in the next Chapter.
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Chapter 5

3D Face Deformation Analysis

Face recognition based on range images has been investigated by a number of re-
searchers [98, 75, 156, 31, 131, 43], but only a few of them have addressed the defor-
mation (expression) issue, which is a major challenge in 3D face recognition [45, 115].
Chua et al. [49] extended the use of Point Signature to recognize frontal face scans
with different expressions, which was treated as a 3D recognition problem of non-rigid
surfaces. A database of 6 subjects with 4 expressions was used in the experiments.
Chang et al. [44] presented a method to independently match multiple regions around
the nose, and integrate individual matching results to make the final matching de-
cision. Their method was evaluated on a database of about 4000 facial scans from
449 subjects. However, the nose region does not contain sufficient discriminant power
to distinguish faces across a large population. Bronstein et al. [38, 39] proposed an
algorithm based on an isometric model of facial surfaces, in an attempt to derive an
expression-invariant facial surface representation for 3D face recognition. However,
they considered only frontal face scans and the proposed model assumed the mouth
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was closed in all facial expressions. Their experiments were conducted on a database
containing 27 human subjects with 8 expressions. Passalis et al. [132] fitted an an-
notated face model to a given facial scan and applied wavelet analysis to derive a
new representation, i.e., deformation image, which is used for matching. The FRGC
Ver2.0 database [135] was used to evaluated the algorithms. A number of 3D facial

expression analysis approaches are listed in Table 5.1.
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Table 5.1: Facial expression analysis approaches using 3D data.

Mlethod Modality | Purpose Idea Advantage Limitation Experiments
{1). The basic assumption is the
isometric model of facial surfaces across
expressions, but the isometric model is
(1) Use the geodesic only an approximation of natural
distance between two expressions; (2) facial topology changes
vertices onthe facial  |Mot designed for any |such as open mouth violates the basic
surface as an particular expression |assumption (isometric model) while a
expression-invariant  |but assumes that the [number of natural facial expressions
feature; (2). facial facial topology does  |involves open mouth; (3). Designed only  [(1). Database consists of 27 hurman
surfaces are not change due to for the case where the training and test | subjects; expression variations include
embedded (warped) |expression (eq., scans are captured at the similar pose,  ['smile’, ‘anger', 'deflated’, 'inflated’,
Bronstein et Face onto a low-dimesional |closed mouth in all e.g., frontal face scans used in their ‘neutral’, 'sadness’, 'disgust’, 'surprise’;
al [IJCW'05] |30 recognition  [space facial expressions)  |experiments {2). Multiple templates for some subjects
{1). Expressions include 'happy',
‘surprised’, 'sad’, 'disgusted’, 'angry', and
Local region (nose) Lsing nose regian ‘nuffy cheek', (2). 355 gallery subjects,
based matching; outperforms using 1425 probes; (3). Rank-one accuracy
Chang et al. Face matcher is either PCA- |larger face area for using ICF is 77% (auto) and 81%
[SPIE'DS] 3D recognition  |based or ICF ICP-based matching |Performance is around 0% {manually selected landmarks)
Foint signature [Chua-
[JCW-97] feature; use
only rigid regions
Chua et al. Face {Upper part of the face) B subjects, 4 expressions, 24 scans in
[FG'00] 3D recognition  |for matching; total
Tatsuso et al. Expression
[lCPR'96] 3D+2D  |synthesis
(1), Five expressions {angry, disgust,
happiness, sadness, and surprise); 93
range images from 23 subjects; (2).
(1. PCA-based; (2). Classification accuracy 63% (range onlyl,
Yabui et al. Expression  |Weighted sum rule for B7% (intensity only), the best fusion result
[ICIP'03] 3D+2D |classification |fusion is71%.




We address the problem of matching multiview 2.5D facial scans (range images) to
3D neutral face models (or 2.5D facial scans) in the presence of expression variations.
A 3D deformation modeling scheme is proposed to handle the non-rigid deformations,
e.g., expressions. To account for the large intra-subject difference in 3D facial shape
caused by expression changes, we propose to explicitly model the 3D deformation.
Gross et al. [76] showed that user-specific deformable models are more robust than
the generic deformable model (across subjects). However, to build a user-specific
deformable model, a large number of training samples for a user are needed; collecting
and storing 3D data of each subject in a large gallery with multiple expressions
is not practical. Further, it is difficult to collect face scans to cover all possible
variations even for the same type of expression, because the expression deformation

is a continuous facial movement. See Figure 5.1.

Figure 5.1: Deformation variations for one subject with the same type of expression.

We collect data on 3D facial deformations from only a small group of subjects,
called the control group. Each subject in the control group provides a scan with
neutral expression and several scans with non-neutral expressions. The deformations
(between neutral scan and non-neutral scans) learned from the control group are

transferred to and synthesized for all the 3D neutral face models in the gallery, yielding
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deformed templates with synthesized expressions. Multiple deformed templates for
the same subject based on members in the control group are combined to build
deformable models for each subject in the gallery.

Our deformation transfer and synthesis falls under the performance-driven frame-
work [172, 139, 127, 153]. Unlike previous methods designed for realistic animation,
we simplify the deformation transfer problem that is suitable for 3D matching. In or-
der to learn deformation from the control group, we need a set of fiducial landmarks.
Besides the fiducial facial landmarks, such as eye and mouth corners, landmarks in
the facial area with little texture, e.g., cheeks, are extracted in order to model the
3D surface movement due to expression changes. We have designed a hierarchical
geodesic-based resampling scheme constrained by fiducial landmarks to derive a new
landmark-based surface representation for establishing correspondence across expres-
sions and subjects. Thin-plate-spline (TPS) is used to transfer the landmark-based
deformation. The deformation transfer is achieved by minimizing a global bending
energy function [36], while preserving the facial topology.

During matching, the user-specific deformable model is fitted to a test scan by
solving an optimization problem to yield a matching distance. To handle the head
pose changes, the rotation and translation parameters are integrated into the cost
function for fitting, which is solved using an alternating optimization scheme. The
proposed scheme is designed to handle both expression and pose changes simultane-
ously.

The proposed scheme of deformation modeling for 3D face matching is presented

in Fig. 5.2.
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Figure 5.2: Deformation modeling for 3D face matching. To match a 2.5D test scan
to a 3D neutral face model in the gallery database, the deformation learned from
the control group is transferred to the 3D neutral model. Each subject in the control
group provides its own deformation transform. The 3D models with the corresponding

deformation are synthesized. The M synthesized models are combined to construct
a user-specific deformable model, which is fitted to the given test scan.

5.1 Hierarchical Facial Surface Sampling

Human faces share a common geometric topology, which can be represented by the
craniofacial (fiducial) landmarks defined in Anthropometry [64]. To model the ex-
pressions across the population, we use a fiducial set of 9 landmarks (i.e., two inner
eye corners, two outside eye corners, two mouth corners, nasion, nose tip, and sub-
nasal) as constraints and the first layer in the hierarchical scheme, see Fig. 5.3(a).
To learn the 3D surface deformation, the correspondences between the landmarks
need to be established [139, 127]. For those facial regions that have little texture but
are important for expression modeling, such as the cheeks, we extract landmarks by

sampling the facial surface hierarchically based on geodesics, which have been demon-
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strated to be insensitive across facial expressions [38]. The second layer of landmarks
is established based on the first layer. The geodesic distance and the corresponding
path between two fiducial landmarks (e.g., from one eye corner to one mouth corner)
on the facial surface are computed based on the fast marching algorithm [91]. The
derived paths encode the facial surface movement of different expressions as shown
in Fig. 5.4. We divide each path into L segments with equal geodesic length. These

points are then used as the newly extracted landmarks. Fig. 5.3(b) gives an example.

Figure 5.3: Hierarchical surface sampling. (a) First layer (fiducial set); (b) second
layer; (c) third layer; (d) final landmark set.

Figure 5.4: Geodesic paths (yellow) across different expressions. (a,b) A neutral scan
shown in two different views. (c,d) A scan of a happy expression from the same
subject in the same two views.
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The third layer of landmarks is constructed based on the extracted landmarks
obtained in the second layer by computing the geodesic paths between landmarks in
the second layer and sampling the paths with equal geodesic length; see Fig. 5.3(c).
This hierarchical sampling scheme can be further conducted automatically to obtain
higher resolution representations, based on which the correspondence across both
subjects and expressions can be established. Our experiments show that three layers
provide a reasonable approximation for expression modeling.

The resulting landmark set includes fiducial landmarks (9 points), first layer land-
marks (34 points), second layer landmarks (40 points), along with the chin point
(1 point) and mouth contour (10 points). The chin point and mouth contour are
currently manually identified; they are not involved in the geodesic-based sampling
scheme but important for expression modeling. In total, there are 94 landmarks as

shown in Fig. 5.3(d).

5.2 Deformation Transfer and Synthesis

The deformation is learned from a control group of M subjects, who provide both
neutral and non-neutral expression scans. The learned deformation is transferred to
a 3D neutral model in the gallery for synthesis, according to the following procedure,
which is illustrated in Fig. 5.5.

(1) Register the non-neutral scan with the neutral scan to estimate the displace-
ment vector of landmarks due to the expression change.

(2) Establish a mapping ¢ from the landmark set (LS,.) of the neutral scan to
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that (LM,.) of the 3D neutral model;

(3) Use the mapping ¢ to transfer the landmarks (LSs,,) in the non-neutral scan
to the 3D neutral model as LS’ .

(4) Establish a mapping ¢ from the landmarks (LM,,) of the 3D neutral model
to LS",..

(5) Apply ¢ to other vertices in the 3D neutral model to move them to the new

positions caused by the expression.

LSy,

(b) ©)
L *S.rm L'Ssm

Figure 5.5: Deformation transfer and synthesis. (a) Landmark set (LS,.) of the
neutral scan in the control group. (b) Landmark set (LSs;,) of the scan with non-
neutral expression in the control group. (c) Rigid alignment between (a) and (b)
using the nose region that is invariant to expression changes; and the deformation
field of the landmarks from (a) to (b) after rigid alignment. (d) Landmark set (LM,,)
of the 3D neutral model (f) in the gallery. (e) Landmark set (LS%,,) after deformation
transfer. (g) 3D non-neutral model after applying deformation transfer and synthesis
on (f). (h) and (i) show profile views of the model in (f) and (g), respectively.

We use TPS as the mapping and interpolation tool for deformation transfer and
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synthesis.

5.2.1 Thin-Plate-Spline

TPS [36, 60] represents a natural parametric generalization from rigid to mild non-
rigid deformations and is used to estimate the deformation F' for two sets of points
(U, V). The thin plate spline algorithm specifies the mapping of points for a reference
set to the corresponding points in a target set. Let gy and ¢g; denote two surfaces. A

warping of gy to ¢; is defined as the function F' such that

F(g0) = g1 (5.1)

The function F' is called the warping function, which takes gy to ¢g;. Given a pair
of point patterns with known correspondences (landmarks) on two surfaces, U =
(ug,ug, -+, um)T and V = (vi, v, ,vm)T, where U C gy and V C g1, we need to
establish correspondences between other surface points; uy and vy denote the (x,y, 2)
coordinates of the k-th corresponding pair and m is the total number of corresponding

points. A warping function, F', that warps U to V subject to perfect alignment is

given by the conditions

F(uj) = vj, (5.2)
for j = 1,2,--- ,;m. The interpolation deformation model is given in terms of the
warping function F'(u), with

Fu)=c+ A u+Whs(u), (5.3)
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where u € go; ¢, A and W are TPS parameters; s(u) = (o(u—uy),0(u—us),- - ,0(u—
)T and o(r) = |r|. An analytical solution of F' can be obtained for 3D points [36,
60]. In our application, the set U and V' correspond to 94 landmarks on a neutral

scan and a non-neutral scan or a 3D neutral model, respectively.

5.2.2 Deformation Transfer

The deformation transfer problem is defined as follows: given a pair of source surfaces
represented by meshes (in the control group), S and S’, and a target mesh 7" (in the
gallery), generate a new mesh 7" such that the relationship between T and T is
similar to the relationship between S and S’. Our deformation transfer is based on
the extracted landmarks. Figure 5.5(a) shows the landmark set on the pair of face
scans in the control group. The same set of landmarks are extracted on the 3D neutral

model for deformation transfer (see Fig. 5.5(d)).

In order to separate non-rigid facial expressions from rigid head motion, a rigid
transformation (translation and rotation), is applied to align the neutral scan and
the non-neutral scan in the control group based on those landmarks that are insen-
sitive to expression changes, such as eye corners and nose tip. This normalizes the
facial (geometry) position (see Fig. 5.5(c)). After the rigid alignment of neutral and
non-neutral scans, the estimated displacement vectors need to be transferred to the
3D neutral model in the gallery. Since facial geometry and aspect ratios are differ-
ent between the scans in the control group and the 3D models in the gallery, source

displacements cannot be simply transferred without adjusting the direction and mag-
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nitude of each motion vector. We establish a TPS mapping from the landmark set of
the neutral scan in the control group to that in the 3D neutral model in the gallery.
Since the TPS mapping contains the affine component and the distortion component,
both the scale and orientation of the motion vectors are also adjusted. The land-
marks for the non-neutral scans are mapped onto the corresponding positions in the

coordinate system of the 3D neutral model by applying the estimated TPS mapping.

5.2.3 Deformation Synthesis

(a) (b) (c)

Figure 5.6: Deformation synthesis. (a) 3D neutral model with landmarks. The dots
are the landmarks in correspondence to those in the control group (see Fig. 5.5(a)).
The star points are used for boundary constraints. (b) Synthesis result without fixed-
point boundary constraint. (¢) Synthesis result with fixed-point boundary constraints.

Deformation transfer establishes the new positions of the landmarks in the 3D
neutral model. A TPS mapping is computed from the landmarks in the 3D neutral
model to their deformed positions. The resulting mapping is used to interpolate the
positions of surface points in-between the landmarks. For the vertices in-between the
convex hull spanned by the landmarks, the interpolation can be done by TPS map-

ping. However, for those vertices that lie outside this convex hull, an extrapolation
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has to be performed, leading to distortions, such as shown in Fig. 5.6(c). Therefore,
we add a few additional landmarks (shown as “*’ in Fig. 5.6(a)), which specify the
boundary constraints. These landmarks are mapped to themselves. By computing the
TPS mapping based on this augmented landmark set (dots plus stars in Fig. 5.6(a)),

the interpolation can generate a better synthesis result as shown in Fig. 5.6(c).

5.2.4 Synthesizing Open Mouth

A number of facial expressions involve open mouth, but the templates (3D model
or 2.5D scan) with neutral expression usually do not contain any data inside the
mouth. In order to model the open mouth according to expression changes, we add

five landmarks to partition the mouth (labeled as ‘+’ in Fig. 5.7), so that the upper

and lower lips can move independently.

Figure 5.7: Expression transfer and synthesis with mouth open. (a) Landmark set
for the neutral scan in the control group. (b) Landmark set for the scan with non-
neutral expression in the control group. (c¢) Landmark set for a 3D neutral model in
the gallery; points marked as ‘+’ are included to partition the mouth so that the upper
and lower lips can move independently. (d) 3D non-neutral model with synthesized
expression transferred from the pair (a,b) to (c).
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5.3 Deformable Model Construction

While a change in facial expression is a continuous process, a synthesized template
(non-neutral model) captures only a specific instance of the expression. Further, since
each single synthesized non-neutral model is obtained by transferring the deformation
from one member in the control group to the neutral gallery model, it is not likely
to be the true expression of the gallery model. Therefore, we learn the expression
deformation from all the M members in the control group. This leads to a user-
specific deformable model that is a linear combination of non-neutral models, each
obtained as a result of deformation transfer from one member of the control group to

the neutral model.

Let S represent a face surface model: S = (z1,y1,21, " »Tn, Yn, 2n)’, where
(Tk, Yk, 21) is the location of the k' surface vertex, k = 1,2,---,n, and n is the
total number of vertices. For each subject, let S,. denote the neutral model and S;
(i = 1,2,---, M) denote the deformed model generated by the i'® member in the
control group. We assume that all S;’s correspond to the same type of expression
synthesized from S,.. Notice that since all S;’s are synthesized from S,., the cor-
respondence between them is automatically established. By combining all the M

synthesized models, we construct the deformable model for this subject as

M
S=Sne+ > i+ (Si— Sne), (5.4)

i=1
where M is the total number of synthesized templates from S,,. and «;’s are the mixing
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weights. The deformable model consists of two components; the first component is the
subject’s neutral model S, and the second is the variation component representing
the change in facial surface due to expression. In other words, while S,,. controls the
subject’s identity, the variation component does deformation adaptation by adjusting
the weights «;. As the number of subjects, M, in the control group increases, the
number of weights (q;) also increases, leading to a more complex fitting problem in a
high dimensional parameter space. The principal component analysis can be applied
to reformulate the deformable model and reduce the complexity by keeping only the

principal modes [33].

5.3.1 Expression-specific vs. Expression-generic Models

For each subject, we construct one deformable model for each type of expression of
interest. So, if the control group contains P different non-neutral expressions, we
learn P expression-specific deformable models. These expression-specific models can
also be integrated into a single expression-generic deformable model by adding new
linear variation components in Eq. 5.4. But this approach substantially increases
the complexity of the model as the number of expression types increases, leading
to difficulties in the subsequent model fitting. Experimental results show that the
expression-generic deformable model based scheme gives lower matching accuracy

than the expression-specific model based scheme (see Section 5.5 for details).
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5.4 Deformable Model Fitting

Two types of transformations are applied to a 3D deformable model, when it is
matched to a given test scan with a claimed identity. The first one is the rigid
transformation due to the head pose changes, which can be represented by a rotation
matrix and a translation vector. The second one is the non-rigid deformation, which
can be modeled by the weights «; in Eq. 5.4. Fitting the deformable model to a given

test scan is formulated as an optimization problem to minimize the cost function

E(aia s, Qg Ra T) = ||S - g(St|R7 1—1)”2
v (5.5)
= ||She + Z%‘ + (S — Sne) — £(SR, T)||2,

=1

where R and T are the rotation matrix and translation vector, respectively; S is the
3D deformable model, S; denotes the test scan, and £(S;| R, T) represents applying the
transformations of (R,T) to S;. To reduce the computation cost in the optimization
process, we subsample the test scan surface into a number of control points that are
used for the alignment and cost function evaluation [115], see below.

We factorize the rigid and nonrigid components and use an alternating optimiza-
tion scheme to solve for them:

1. Initialize the deformable model parameters to generate a 3D model; estimate
a coarse alignment between the model and the test scan using three anchor points.
See Chapter 3 for an automatic anchor point extraction algorithm.

2. The iterative closest point (ICP) algorithm is utilized to solve for the rotation

and translation parameters (R,T") [30] to achieve pose normalization, while fixing «;’s.
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3. Given R and T obtained in step 2, minimize the cost function E by solving for

O[Z"S.

4. Use the «;’s computed in step 3 to generate a new instance of the 3D model,;

repeat steps 2 to 4 until the convergence is reached.

In step 3, the optimization can be achieved by a gradient-based iterative approach,
such as the BFGS quasi-Newton method [70]. But, because the cost function is
evaluated based on the control points in the test scan and their closest counterparts
in the deformable model, and the closest counterparts may change due to adjustment
of «ys, the optimization problem is highly non-linear. Multiple iterations of cost
function evaluation are computationally expensive due to the large number of closest
point searches. However, as an approximation, by fixing the correspondence, the a;s

can be obtained in a non-iterative way by solving a linear least square problem as

aopt = (STS)_I(ST(St - Sne))a (56)

where S is the matrix [(S; — Sne), (S2 — Sne)s -y (Spr — Sne)]. Experimental results
show that this simplification significantly reduces the computational cost while pro-
viding competitive accuracy compared to the iterative BFGS optimization algorithm.
Moreover, this linear non-iterative optimization is much more efficient than iterative
gradient-based algorithms as the number of parameters («;s) increases. After the fit-
ting process, the root-mean-square distance calculated by the ICP algorithm is used
as the matching distance. A model fitting example is provided in Fig. 5.8. In the

expression-specific model based scheme, for each subject, we match all its deformable
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models, one per expression, to a given test scan. The minimum of all the obtained

matching distances is used as the final matching distance.

Figure 5.8: Deformable model fitting. (a) Test scan. (b) 3D neutral model. (c)
Deformed model after fitting to (a). Registration results of (a) to models (b) and (c)
are given in (d), (e), respectively (the test scan (yellow wire-frame) is overlaid on the
3D model); the matching distances are 2.7 and 1.3, respectively.

5.5 Experiments and Discussion

We evaluate the proposed scheme on three databases (MSU-II, MSU-I, and FRGC
Ver2.0 database) in the identification mode, i.e., by matching a test scan to all the
gallery models. The proposed deformable model scheme is compared with rigid-
only (ICP [29]) based matching scheme. The ICP-based baseline algorithm has been
demonstrated to perform better than the PCA-based baseline method [44] for 3D

facial surface matching. Both expression-specific and expression-generic deformable
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Table 5.2: Identification accuracy of 10-fold cross-validation in experiment I.

‘ ‘ Mean ‘ Std ‘

Without deformation modeling 91% | 3%
With deformation modeling; expression specific | 96% | 2%
With deformation modeling; expression generic | 95% | 3%

model based schemes are evaluated. The expression-generic deformable model is
constructed by including all 7 expressions collected in the MSU-II database, which
are smile, happy, surprise, angry, inflated, deflated, and neutral (see Fig. 1.14 for

examples).

5.5.1 Experiment I

Experiment I uses the MSU-II database, which contains range images of 10 subjects
at 3 different poses (see Section 1.5.2 for details). Five subjects are randomly chosen
as the control group and the remaining 5 subjects are used as the gallery. There are
105 (5 x 7 x 3) test scans in total. For the subjects in the control group, only frontal
scans are used for deformation modeling. To eliminate anchor point extraction errors
when evaluating the deformation modeling scheme, we use three manually labeled
anchor points (two eye corners and the nose tip) from a given test scan for initial
coarse alignment in the model fitting process (see Step 1 in Sec. 5.4). The recognition

accuracy based on 10-fold cross validation is provided in Table 5.5.1.
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5.5.2 Experiment II

The control group is composed of the 10 subjects in the MSU-II database (only frontal
scans are used). Another 90 subjects in the MSU-I database that are not in the MSU-
IT database formed the gallery. There are a total of 90 3D models stored in the gallery
and 533 independent 2.5D scans for testing. The representative test scans are shown
in Fig. 5.9. To initialize a coarse alignment between a test scan and a gallery template
(see Step 1 in Sec. 5.4), three anchor points (two eye corners and the nose tip) are
automatically extracted from a test scan (see Chapter 3). The matching process is

fully automatic.

Figure 5.9: Test scan examples in experiment II.

The CMC curves are provided in Fig. 5.10. Based on all the computed matching

distances, the ROC curves are generated, which are given in Fig. 5.11.

144



0.98
© 0.96

co

0.92

S
o
w
o | 5

o
w
%)

mulative match
O
[{n]

-3 i . ; ; : : : : i

O 0.86-/ - Without deformation modeling (ICP only)
0.84 4|0 With deformation modeling; expression-generic
-0~ With deformation modeling; expression-specific

0.82

1 2 3 4 5 6 7 8 9 10
Rank

Figure 5.10: CMC curves of experiment II.

5.5.3 Experiment III

FRGC Ver2.0 [135] is a large public domain face database, which contains (near)
frontal 2.5D facial scans. Although no 3D models are available for subjects in this
database, the proposed deformation modeling and matching scheme is still applicable
by replacing a 3D full-view model in the gallery with a 2.5D frontal neutral scan. In
addition to the neutral expression, subjects provided scans with several non-neutral
expressions, such as smiling (happiness), frown, astonishing (surprise), disgust, sad,
and puffy cheeks. In our experiments, all the scans are downsampled to 320 x 240.
Due to the computational cost of model fitting, the first 100 subjects are selected
from the FRGC Ver2.0 database. For each subject, the scan with neutral expression
and the earliest time stamp is used as the template to construct the gallery. The
remaining scans with various expressions are chosen as test scans. In total, there

are 100 2.5D gallery templates and 877 independent 2.5D scans for testing. Repre-
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Figure 5.11: ROC curves of experiment II.

sentative scans are provided in Fig. 1.17. The 10 subjects in the MSU-II database
formed the control group (only frontal scans are used). The expression deformations
are learned and transferred from the control group to construct a deformable model
(a 2.5D deformable frontal template) for each subject in the gallery. To initialize a
coarse alignment between a test scan and a gallery template (see Step 1 in Sec. 5.4),
three anchor points (two eye corners and the nose tip) are automatically extracted

from a test scan (see Chapter 3). The matching process is fully automatic.

The CMC curves from our matching algorithm are provided in Fig. 5.12. Based on
all the computed matching distances, the ROC curves are generated, which are given
in Fig. 5.13. Fig. 5.14 shows some of the test scans that are incorrectly matched using
rigid transformation (ICP) but correctly matched by using the proposed deformation

modeling scheme.
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Figure 5.12: CMC curves of experiment III.

5.5.4 Discussion

These experimental results demonstrate that the proposed deformation modeling
scheme improves the matching accuracy in the presence of expression variations along
with large pose changes. Fig. 5.15 shows examples where the proposed scheme fails
to find the correct matches in experiment III on the FRGC database. One of the
reasons for the matching errors is that the current fitting (optimization) process is
still subject to local minimum. In addition, since our control group contains only 10
subjects, we are not able to fully learn the deformation that is generalizable across a

large population.

The average CPU time (Pentium4 2.8GHz) of model fitting for a pair of test scan

and a model is 5 seconds implemented in Matlab®.
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Figure 5.13: ROC curves of experiment III.

5.6 Summary

We have proposed a fully automatic framework for robust 3D face matching in the
presence of nonrigid deformation (due to expression changes) and large pose changes
simultaneously in the test scan. A hierarchical surface resampling scheme with con-
straints of fiducial landmarks is developed to obtain a representation for analyzing 3D
facial surfaces across expression and pose. This hierarchical representation provides
the flexibility to control the resolution of the derived model. Landmarks in facial
surfaces in regions with little texture are automatically extracted using the geodesic-
based approach. 3D deformation learned from a small control group is transferred
to the 3D models with neutral expression in the gallery. The corresponding defor-
mation is synthesized in the 3D neutral model to generate a deformed template. A

user-specific deformable model is built by combining the deformed templates from
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Figure 5.14: Examples of test scans (top row) in experiment I1T on the FRGC database
that are incorrectly identified with rigid transformation (ICP) but correctly identified
with deformation modeling. Middle row: corresponding genuine 2.5D neutral tem-
plates; bottom row: corresponding genuine deformed templates after model fitting.

each member in the control group. Two types of deformable models have been built,
expression-specific and expression generic. The matching is performed by fitting the
deformable model to a given test scan, which is formulated as a minimization of a cost
function. Experimental results demonstrate the capabilities of the proposed scheme
to learn and synthesize the deformation on new face models and to make the 3D face
surface matching system more robust across expression and pose.

Landmark labeling is needed in deformation modeling. Currently, fiducial land-

mark labeling is done manually. Although this is conducted in the offline training
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Figure 5.15: Examples of incorrect matches in experiment III on the FRGC database.
Top row: test scans; middle row: corresponding best matched templates after model
fitting; bottom row: corresponding genuine templates after modeling fitting.

stage, it would be more convenient to make it a fully automatic process in many
applications. Reducing the computational cost is also being pursued.

The proposed deformation modeling scheme integrates the priors of the deforma-
tion (expression changes) into the 3D model. The capability of handling deformations
is enhanced for each gallery model. We also explored another direction, analyzing
the deformation from the classification perspective, especially for the face (identity)
matching purpose. In general, there are two sources of deformation. One is the de-

formation caused by the expression of the same subject. The other is the surface
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shape difference between different subjects. To resolve the ambiguity in face (iden-
tity) matching introduced by measuring 3D shape difference (deformation) alone, we
propose to explicitly estimate and discriminate the shape deformation into two classes
for the identity matching purpose, namely, intra-subject deformation and inter-subject
deformation.

The proposed matching framework captures both rigid and non-rigid deformation,
and explicitly classifies the non-rigid deformation into intra-subject or inter-subject
category. The ICP is applied to achieve the rigid registration. The non-rigid registra-
tion is performed by the thin plate spline model, which generates the displacement
vector field as the deformation representation. The displacement vector field is used
as the feature representation, which is fed into the deformation classifier. The de-
formation classification results are integrated with the matching distances obtained
from rigid and non-rigid registration for the final match. Preliminary results show

that this scheme improves the matching accuracy [107].
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Chapter 6

Conclusions and Future Directions

Fig. 6.1 illustrates the thesis structure associated with the major components of the
proposed 3D face matching system. Related publications are Chapter 3 [113, 112, 109,

103, 88], Chapter 4 [105, 104, 108, 115, 106, 116, 111], and Chapter 5 [110, 107, 114].

Chapter 3
Chapter 4
Chapter 5

— ( Surface Matching ) <+
+ 3D Model Database

T

—=/ Appearance-based |-
Matching

Figure 6.1: Thesis structure and the proposed 3D face matching system.

Test Scan

3D Model
Construction
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6.1 Conclusions

The performance of face recognition systems that use two-dimensional (2D) images
is dependent on consistent conditions such as pose, lighting, and facial expression. A
fully automatic multi-view face recognition system has been developed to be more
robust to those variations, especially large pose and expression variations. Major
contributions include feature extraction, multimodal integration, and deformation

analysis.

6.1.1 Feature Extraction

e An automatic feature extraction scheme has been developed to locate facial
feature points from facial scans captured under large viewpoint changes., leading

to a fully automatic 3D face matching system.

e A simple but effective approach has been presented to extract facial area from

the background in a face scan.

e A feature extractor based on the directional maximum is proposed to estimate
the nose tip location and the head pose angle simultaneously. A nose profile
model represented by subspaces is used to select the best candidates for the

nose tip.

e Assisted by a statistical feature location model, a multimodal scheme combining
both 3D (range) and 2D (intensity) information in multiview facial scans has

been presented to extract eye and mouth corners.
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e With the estimated pose, the system automatically rejects the feature points

that are not valid due to self-occlusion.

e Evaluated on both self-collected and publicly available databases, our face recog-
nition system based on automatic feature extractor achieves an identification

accuracy close to the system with manually labeled feature points.

6.1.2 Multimodal Integration

We have designed a 3D face matching scheme that matches 2.5D scans of faces with
different pose and expression variations to a database of 3D/2.5D face templates.
Both shape and intensity information of facial scans are employed. We have developed
a combination scheme, which integrates surface (shape) matching and a constrained

appearance-based method for face matching, that complement each other.

e The surface matching is achieved by a hybrid ICP scheme.

e The subsequent appearance-based identification component is constrained to
a small candidate list generated by the surface matching component, which
reduces the classification complexity. The registered 3D template (after pose
normalization is achieved in the surface matching stage) to the test scan is
utilized to synthesize training samples with facial appearance variations, which

are used for discriminant subspace analysis.

e The matching distances obtained by the two matching components are combined

using the weighted sum rule to make the final decision.
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e A hierarchical matching framework has been designed to further improve the

system performance in both accuracy and efficiency.

6.1.3 Deformation Analysis

One major difficulty encountered in current 3D face matching systems is the presence
of the non-rigid deformation in the test scans, which is mainly caused by expressions.
Facial expressions change continuously and do not have a well-defined description
using a quantitative representation for categorization. We have proposed a deforma-
tion modeling scheme that is able to handle expressions and large head pose changes

simultaneously.

e We designed a hierarchical geodesic-based resampling scheme constrained by
fiducial landmarks to derive a facial surface representation for establishing cor-

respondence across expressions and subjects.

e Based on the developed representation, we extracted and modeled three-
dimensional non-rigid facial deformations such as expression changes for ex-
pression transfer and synthesis using thin-plate-spline models as the mapping

and interpolation tool.

e For 3D face matching purposes, we built a user-specific 3D deformable model
driven by facial expressions. An alternating optimization scheme was applied to
fit the deformable model to a test facial scan, resulting in a matching distance.

e Computational cost is saved by reducing a highly non-linear optimization prob-
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lem into a linear one that can be solved with a non-iterative approach instead

of traditional gradient-based iterative methods.

e Experimental results demonstrate the proposed expression modeling scheme

improves the 3D face matching accuracy.

e For face matching purposes, the non-rigid deformations from two different
sources are discriminated, namely, intra-subject deformation vs. inter-subject
deformation. The deformation classification results are integrated with the reg-

istration distances for making the final matching decision.

6.2 Future Directions

e Robust and efficient feature extraction. The proposed feature extraction
algorithm is designed to estimate the nose tip and head pose change by angle
space quantization. The computational cost to handle the entire 3D space is
expensive using exhaustive search. Therefore, a more efficient search scheme
is being pursued. Moreover, a more accurate feature point locator should be
developed to reduce the localization errors, especially in the presence of large

pose and expression variations.

e Feature selection and reject option. In practical applications, a reject
option is useful for making the system generate fewer incorrect decisions. For
example, feature scores associated with each extracted feature point can be used

as confidence measures to robustly select the most reliable points for registration
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or design a reject option if an insufficient number of feature points are extracted.

e Automatic landmark labeling. Landmark labeling is needed in deformation
modeling. Currently, fiducial landmark labeling is done manually. Although this
is conducted in the offline training stage, it would be more desirable to make
it a fully automatic process in many applications. Reducing the computational

cost is also a major research topic.

e Expression invariant representation. Finding an intrinsic representation
that is invariant to the expression changes is desirable. The facial skin elasticity
makes more difficult to find such invariance. In principle, this scheme should

be able to handle any deformation present in human faces.

With advances in 3D imaging technologies, 3D face recognition holds promise to
make facial recognition systems more robust in practice. 3D face recognition is an

exciting and challenging research topic.
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