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Abstrat3D Fae Reognition aross Pose and ExpressionByXiaoguang Lu
Fae analysis and reognition has a large number of appliations, suh as seu-rity, ommuniation, and entertainment. Current two-dimensional image based faereognition systems enounter diÆulties with large faial appearane variations dueto pose, illumination, and expression hanges. We have developed a fae reognitionsystem that utilizes three-dimensional shape information to make the system morerobust to large head pose hanges. Two di�erent modalities provided by a faial san,namely, shape and intensity, are utilized and integrated for fae mathing. While the3D shape of a fae does not hange due to head pose (rigid) and lighting hanges, it isnot invariant to non-rigid faial movement, suh as expressions. Colleting and stor-ing multiple templates to aount for various expressions for eah subjet in a largedatabase is not pratial. We have designed a hierarhial geodesi-based resam-pling sheme to derive a faial surfae representation for establishing orrespondeneaross expressions and subjets. Based on the developed representation, we extratand model three-dimensional non-rigid faial deformations suh as expression hanges



for expression transfer and synthesis. For 3D fae mathing purposes, a user-spei�3D deformable model is built driven by faial expressions. An alternating optimiza-tion sheme is applied to �t the deformable model to a test faial san, resulting in amathing distane. To make the mathing system fully automati, an automati faialfeature point extrator was developed. The resulting 3D reognition system is able tohandle large head pose hanges and expressions simultaneously. In summary, a fullyautomati system has been developed to address the problems of 3D fae mathing inthe presene of simultaneous large pose hanges and expression variations, inludingautomati feature extration, integration of two modalities, and deformation analysisto handle non-rigid faial movement (e.g., expressions).
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Chapter 1
Introdution
1.1 Fae ReognitionAutomati human fae reognition has reeived substantial attention from researhersin biometris, pattern reognition, and omputer vision ommunities [46, 169, 184,74, 99℄. The mahine learning and omputer graphis ommunities are also inreas-ingly involved in fae reognition. This ommon interest among researhers workingin diverse �elds is motivated by our remarkable ability to reognize faes and the fatthat this human ativity is a primary onern both in everyday life and in yberspae.In addition, there are a large number of ommerial, seurity, and forensi applia-tions that require the use of fae reognition tehnologies. These appliations inludeautomated rowd surveillane, aess ontrol, mugshot identi�ation (e.g., for issu-ing driver lienses), fae reonstrution, design of human omputer interfae (HCI),multimedia ommuniation (e.g., generation of syntheti faes), and ontent-basedimage database management. A number of ommerial fae reognition systems are1



available, for example, 2D systems from Cognite Systems GmbH [3℄, Eyemati [5℄(now Neven Vision [14℄), Viisage [17℄ (now merged with Identix [11℄), and Identix;and 3D systems from A4Vision [2℄, Geometrix [10℄, and Genex Tehnologies [8℄.Biometris deals with automati reognition of people based on their distintiveanatomial (e.g., fae, �ngerprint, iris, retina, hand geometry, vein, voie, et.) andbehavioral (e.g., signature, gait) harateristis. Fae is an e�etive biometri at-tribute/indiator. Di�erent biometri indiators are suited for di�erent kinds of iden-ti�ation appliations due to their performane with regard to intrusiveness, au-ray, ost, and easy of sensing [12℄ (see Fig. 1.1(a)). The fae biometri providesgood non-intrusiveness with a relatively low auray. Among the six biometri in-diators onsidered in [83℄, faial features sored the highest ompatibility, shownin Fig. 1.1(b), in a mahine readable travel douments (MRTD) system based on anumber of evaluation fators [83℄.Global biometri revenues were $719 million in 2003. They are expeted to reah$4.6 billion by 2008 [12℄, driven by large-sale publi setor biometri deployments,the emergene of transational revenue models, and the adoption of standardizedbiometri infrastrutures and data formats. Among emerging biometri tehnologies,faial biometris is projeted to reah annual revenues of $802 million in 2008.Fae reognition senarios an be lassi�ed into two types, (i) fae veri�ation (orauthentiation) and (ii) fae identi�ation (or reognition). In the Fae ReognitionVendor Test (FRVT) 2002 [137℄, whih was onduted by the National Institute ofStandards and Tehnology (NIST), another senario was added, alled the `wathlist'. 2



(a) (b)Figure 1.1: Comparison of various biometri features: (a) based on zephyr analysis,opyright by International Biometri Group [12℄; (b) based on MRTD ompatibility[83℄.� Fae veri�ation (\Am I who I say I am?") is a one-to-one math thatompares a query fae image against a template fae image whose identityis being laimed. To evaluate the veri�ation performane, the veri�ationrate (the rate at whih legitimate users are granted aess) vs. false aeptrate (the rate at whih imposters are granted aess) is plotted, alled theReeiver Operating Charateristi (ROC) urve. A good veri�ation systemshould balane these two rates based on operational needs.� Fae identi�ation (\Who am I?") is a one-to-many mathing proess thatompares a query fae image against all the template images in a fae databaseto determine the identity of the query fae (see Fig. 1.2). The identi�ationof the test image is done by loating the image in the database that has thehighest similarity with the test image. The identi�ation proess is a \losed"3



test, whih means the sensor takes an observation of an individual that is knownto be in the database. The test subjet's (normalized) features are omparedto the other features in the system's database and a similarity sore is foundfor eah omparison. These similarity sores are then numerially ranked in adesending order. The perentage of time the highest similarity sore is theorret math for all the individuals is referred to as the \top math sore."If any one of the top-r (namely rank) similarity sores orresponds to the testsubjet, it is onsidered as a orret math in terms of the umulative math.The perentage of time one of the top-r similarity sores is the orret math forall individuals is referred to as the \Cumulative Math Sore". The \CumulativeMath Sore" urve is the rank-r versus perentage of orret identi�ation,where rank-r is the number of top-r similarity sores reported.

Figure 1.2: Fae identi�ation senario.4



� The wath list (\Are you looking for me?") method is an open-universe test.The test individual may or may not be in the system wath list. The query isompared to the faes in the system's database and a similarity sore is reportedfor eah omparison. These similarity sores are then numerially ranked so thatthe highest similarity sore is presented �rst. If a similarity sore is higher thana preset threshold, an alarm is raised, indiating that the individual is presentin the system's database. There are two main items of interest for wath listappliations. The �rst is the perentage of time the system raises the alarm andit orretly identi�es a person on the wathlist. This is alled the \Detetionor Identi�ation Rate". The seond item of interest is the perentage of timethe system raises the alarm for an individual that is not in the wathlist. Thisis alled the \False Alarm Rate."
1.2 Challenges in Fae ReognitionAlthough a great deal of e�ort has been devoted to 2D intensity image based faereognition task, it still remains a hallenging problem in a general setting. Suessful2D fae reognition systems have been deployed only under onstrained situations.One major fator limiting the appliations of 2D fae reognition systems is thathuman fae image appearane has potentially very large intra-subjet variations dueto � 3D head pose� Illumination (inluding indoor / outdoor)5



� Faial expression� Olusion due to other objets or aessories (e.g., sunglasses, sarf, et.)� Faial hair� Aging [97℄.On the other hand, the inter-subjet variations an be small due to the similarity of in-dividual appearanes. Figure 1.3 gives examples of intra-lass appearane variations.Figure 1.4 illustrates examples of appearane variations of di�erent subjets. Adiniet al. demonstrated that the variations between the images of the same fae due tolighting and viewpoint hanges ould be larger than the images of di�erent faes [23℄.Currently, image-based fae reognition tehniques an be mainly ategorized into twogroups based on the fae representation that they use: (i) appearane-based, whihuses holisti texture features; (ii) model-based, whih employs shape and texture ofthe fae, along with 3D depth information.
Figure 1.3: Faial appearane variations due to hanges of pose, illumination, expres-sion, and faial aessories (beard).FRVT (Fae Reognition Vendor Test) [7℄ is an independently administered teh-nology evaluation of mature fae reognition systems by NIST. In 2002, ten ommer-ial produts were evaluated in FRVT 2002. The task designed for FRVT is very lose6



Figure 1.4: Inter-subjet variations versus intra-subjet variations. (a) and (b) areimages from di�erent subjets, but their appearane variations represented in theinput spae an be smaller than images from the same subjet, (b), (), and (d).These images are taken from the Yale database [18℄.to the real appliation senarios. On Marh 2003, NIST issued the evaluation reportfor FRVT 2002, whih reports the then state-of-the-art in fae reognition [138℄.FRVT 2002 onsisted of two tests: the High Computational Intensity (HCInt)Test and the Medium Computational Intensity (MCInt) Test. Both tests required thesystem to be fully automati, and manual intervention was not allowed. Partiipantsould sign up to take either or both tests.The High Computational Intensity (HCInt) Test was designed to test state-of-the-art systems on extremely hallenging real-world images. These were full-fae stillfrontal images. This test ompared still database images against still images of an7



unknown person. The HCInt required partiipants to proess a set of approximately121,000 images, and math all possible pairs of images from the 121,000-image set.This required performing 15 billion mathes in 242 hours. The results from the HCIntmeasure the performane of fae reognitions systems on large databases, examine thee�et of database size on performane, and estimate variability in system performane.The Medium Computational Intensity (MCInt) Test onsisted of two separateparts: still and video. MCInt was designed to provide an understanding of an algo-rithm's apability to perform fae reognition tasks with several di�erent formats ofimagery (still and video) under varying onditions. The still portion of the MCIntompared a database of still images against still images of unknown people, the im-ages were aptured under di�erent senarios that di�ered in time between enrollmentand test images, hanges in illumination, and variations in pose. The video por-tion of the test was designed to provide an initial assessment of whether or not video(whih an be viewed as a sequene of still images) helps in inreasing fae reognitionperformane.Figure 1.5 plots identi�ation performane of the top three ommerial fae reog-nition produts, namely Cognite, Eyemati, and Identix, on HCInt dataset. Thedatabase onsists of 37,437 individuals. Figure 1.6 demonstrates that the identi�a-tion rate signi�antly deteriorates due to the head pose hanges.FRVT 2002 results also demonstrate that identi�ation performane is dependenton the size of the database. For every doubling of the database size, performanedereases by 2� 3% points. As the size of the fae database inreases, not only theauray, but also the searh speed beomes an important issue. Indexing shemes an8



utilize features of a human fae at di�erent levels. Feature points, suh as eye ornersand nose tip, provide faial geometry metris, based on whih the anthropometristatistis [64℄ an be applied; semanti features, suh as gender and ethniity, an beused to redue the searh spae.

Figure 1.5: Identi�ation results for the three best fae reognition systems on HCIntdataset [137℄.Sine FRVT 2002, a number of new fae reognition tehnologies have been de-veloped that have the promise of improving performane by an order of magnitude.The Fae Reognition Grand Challenge (FRGC) [6℄ was organized to help developnew fae reognition tehnologies. It is hoped that FRGC results will be an order ofmagnitude, for example, ahieving a GAR (genuine aept rate) of 98% at FAR (falseaept rate) of 0:1%, better than the results obtained in FRVT 2002. The tehnologiesbeing developed under FRGC inlude high resolution still images, three dimensionalfae sans, and multi-sample still imagery. The FRGC is strutured into two stages,version 1 (ver1.0) and version 2 (ver2.0). Ver1.0 is designed to introdue partiipants9



Figure 1.6: Evaluation of non-frontal fae identi�ation tasks [137℄. \Left/right" and\up/down" show identi�ation rates for the non-frontal images. Left/right (morphed)and up/down (morphed) show identi�ation rates for the morphed non-frontal images.Performane is obtained on a database of 87 individuals.to the FRGC hallenge problem format and its supporting infrastruture. Ver2.0 isdesigned to hallenge researhers to meet the FRGC performane goal. The FRGCVer2.0 dataset ontains about 50; 000 faial reordings from 625 subjets and six ex-periments. In experiment 1, the gallery onsists of a single ontrolled still image of aperson and eah probe onsists of a single ontrolled still image. Experiment 2 studiesthe e�et of using multiple still images of a person on performane, i.e., multiple stillqueries vs. multiple still templates. Experiment 3 measures the performane of 3Dfae reognition. In experiment 3, the gallery and probe set onsist of 3D images ofa person. Experiment 4 measures reognition performane from unontrolled images.In experiment 4, the gallery onsists of a single ontrolled still image, and the probeset onsists of a single unontrolled still image. Experiments 5 and 6 examine math-10



ing 3D to 2D images. In both these experiments, the gallery onsists of 3D images.However, in experiment 5, the probe set onsists of a single ontrolled still 2D im-age. In experiment 6, the probe set onsists of a single unontrolled still 2D image.See [135, 136℄ for details of FRGC Ver2.0 protools and the results. FRVT 2006 willdetermine if (i) the goals of FRGC are reahed, (ii) progress in fae reognition sineFRVT 2002, and (iii) e�etiveness of newly developed fae reognition tehnologies.
1.3 Landsape of 3D/2D Fae ReognitionThe human fae is a 3D objet, ontaining shape (3D surfae) and texture (2D inten-sity) information. Depending on whih modality is used at enrollment and veri�ationstages, the fae reognition senarios an be ategorized as shown in Fig. 1.7.

Figure 1.7: Fae reognition appliation senarios.While most of the e�ort has been devoted to fae reognition from two-dimensional(2D) images [184℄, an inreasing number of approahes are utilizing depth informationprovided by 2.5D range images [42, 98, 75, 22, 156, 49, 31, 82, 131, 38, 105, 104℄.11



Current 2D fae reognition systems an ahieve good performane in onstrainedenvironments; however, they still enounter diÆulties in handling large amountsof faial variations due to head pose, lighting onditions, and faial expressions [7℄.Beause the human fae is a three-dimensional (3D) objet whose 2D projetion(image or appearane) is sensitive to the above hanges, utilizing 3D fae informationan improve the fae reognition performane [33, 7℄. 3D faial surfae does nothange due to head pose hanges, providing a signi�ant advantage over 2D intensityimages in ase of (large) head pose hanges. Range images aptured expliitly by a3D sensor (e.g., [4, 13, 10, 8, 2℄) inorporate faial surfae shape information, whihis related to the faial anatomial struture, unlike the appearane, whih is a�etedby the environment. It is also more diÆult to fake a 3D fae ompared to a 2D faeimage to irumvent the fae reognition system. In FRGC and FRVT 2006 [6, 7℄, notonly the 2D intensity image, but also the 3D range map is inluded in the evaluationprotools [135℄.Besides the range and intensity maps, thermal and (near) infrared modalities havebeen pursued for fae reognition [171, 152℄. The thermal imagery has the advantageof handling illumination variations. However, these images depend on a subjet'smetaboli state and are not invariant to pose hanges similar to the intensity imagebased fae reognition systems [152℄. Li et al. [100℄ developed a high-auray faereognition system based on the near-infrared modality using an ative illuminationsoure. Although the system ahieves a good performane under various lightingonditions, the system is designed for ooperative users in appliations suh as aessontrol, and it is not lear if the proposed system an handle head pose hanges.12



1.4 3D Fae ReognitionIn this thesis, we address the problem of using both 3D and 2D modalities for faereognition. The gallery (template) ontains 3D models or 2.5D faial sans andthe query/test set onsists of multiview 2.5D fae sans (a 2.5D range image and aregistered 2D intensity images), provided by a ommerial 3D sensor.In the databases olleted at Mihigan State University, all range images (down-sampled to 320 � 240 with a depth resolution of s 0:1mm) were olleted using aMinolta Vivid 910 sanner [13℄. The subjet stands in front of the sanner at a dis-tane of about 1:5m. This sanner uses strutured laser light to onstrut the faeimage in less than a seond. Eah point in a san has a olor (r, g, b) as well asa loation in 3D spae (x; y; z). Eah faial san has around 18; 000 e�etive points(exluding the bakground). Figure 1.8 shows the data olletion senario and anexample of these sans.
(a) (b) () (d)Figure 1.8: An example of Minolta Vivid 910 faial san. (a) data apture senario;(b) intensity (texture) image; () range image, showing points loser to the sensor inred; (d) 3D visualization.Eah san provided by the Minolta sensor is alled a 2.5D san, whih is a sim-pli�ed 3D (x, y, z) surfae representation that ontains at most one depth value (zdiretion) for every point in the (x, y) plane, assoiated with a registered olor im-13



age, see Fig. 1.8 for an example. Eah 2.5D san an only provide a single viewpoint (partial view) of the objet (see Figures 1.9 and 1.10), instead of the full 3Dview. However, during the training (enrollment) stage, a 3D fae model an be on-struted by taking several sans from di�erent viewpoints. We address the senariothat mathes a 2.5D faial test san to 3D models stored in a gallery (2.5D vs. 3D).Currently, mathing 2.5D sans to 3D models has a limited range of appliations,suh as middle-to-high seurity aess ontrol, due to the relatively high ost of 3Ddata apture. But, with ontinued progress in 3D imaging tehnology [19, 20℄, ost-e�etive non-intrusive 3D data apture will beome available in the very near future.The 3D faial struture reonstrution from images has reeived substantial attention[47, 182, 121, 33℄, not only to improve the visual quality, but also for improving themetrial auray [57℄. 3D model onstrution based on 2.5D sans is presented inChapter 4.Although 3D fae models provide a more omplete representation than a 2.5Dfae san, a single 2.5D fae san an also be used as a template. In this thesis, theproposed algorithms, inluding feature extration, 3D fae mathing, and deformationanalysis, are also appliable to the senarios of mathing multiview 2.5D fae sansto 2.5D fae sans (2.5D vs. 2.5D, whih is used in FRGC and FRVT 2006). Weevaluate the proposed algorithms in both senarios (2.5D vs. 3D; and 2.5D vs. 2.5D).
1.5 DatabaseFive databases are used in our experiments.14



(a)
(b)Figure 1.9: A frontal 2.5D san viewed from di�erent viewpoints (a) and the full 3Dmodel (b).1.5.1 Mihigan State University Database I (MSU-I)Currently, there is no publily available multiview range (with registered texture)fae database, along with expression variations. We olleted the multiview MSU-Idatabase that ontained 100 subjets. Five sans with neutral expression for eahsubjet were aptured to onstrut the 3D model (see Se. 4.1 for details). For eahsubjet, another six sans were aptured for testing, inluding 3 sans with neutralexpression and 3 with smiling expression. The san protool used for eah subjet isdemonstrated in Fig. 1.11. For a few subjets, we had fewer than 6 test sans. In total,the test database onsists of 598 independent sans (di�erent from training sans) ofthe same 100 subjets. All the sans varied in pose and faial expression (only smilingexpression was available at the time of olletion). The test data distribution is listedin Table 1.1. In this thesis, the `pro�le' is used as the ounterpart of the `frontal'to desribe the pose of the san. In the MSU-I database, the `pro�le' sans wereaptured at more than 45 degrees from the frontal pose at eah side. Representative15



(a)
(b)Figure 1.10: (a) One pro�le range san viewed at di�erent viewpoints; (b) the full 3Dmodel.3D models and test sans are shown in Figs. 1.12 and 1.13, respetively.Table 1.1: Test data distribution in the MSU-I database.Frontal Pro�le SubtotalNeutral 99 213 312Smiling 98 188 286Subtotal 197 401 598

1.5.2 Mihigan State University Database II (MSU-II)This database ontains multiple expressions and multiple poses simultaneously. Thereare 10 subjets in this database. Five sans with neutral expression for eah subjetwere aptured to onstrut the 3D model. Test sans are aptured at 3 di�erentposes (frontal, left 30 degrees, left 60 degrees) with 7 di�erent expressions, whih areneutral, happy, angry, smile, surprise, deated, inated [38℄. The olletion protoolfor one subjet is provided in Fig. 1.14. In total, there are 210 (3� 7� 10) sans and10 3D gallery models. 16



(a) (b) () (d) (e)(f) (g) (h) (i) (j) (k)Figure 1.11: An example of data olletion for eah individual in the MSU-I database.(a)-(e) are used for onstruting the 3D model stored in the training database. (f)-(k) are used for testing, whih ontains variations in pose, lighting, and expression(smiling).
Figure 1.12: Some of the 3D fae models in the MSU-I database.1.5.3 University of South Florida database (USF)The USF database [16℄ provided by University of South Florida ontains 100 3Dfull-view fae models with neutral expression aptured by a Cyberware sanner [4℄.Figure 1.15 shows 3D model examples in the USF database. No 2.5D test sans areavailable in the USF database.1.5.4 University of Notre Dame database (UND)The UND database is provided by University of Notre Dame 1 [43℄. It onsists of 953faial sans from 277 subjets. All sans are frontal, with neutral expression. Similarto the MSU databases, this data was also olleted using Minolta 3D sanner and1The database an be aessed at http://www.nd.edu/�vrl/UNDBiometrisDatabase.html.17



Figure 1.13: Representative 2.5D test sans in the MSU-I database. Range map (top)and intensity map (bottom).downsampled to 320� 240 to redue omputational ost. Examples are provided inFig. 1.16. There is no 3D fae model available in the UND database. This databasealso overs the dataset used for 3D fae mathing in FRGC Ver1.0.1.5.5 FRGC Ver2.0 fae san databaseThe FRGC Ver2.0 fae san database ontains only (near) frontal 2.5D faial sansand no 3D models are available. There are 4007 2.5D fae sans from 465 subjets,aptured during Fall 2003 and Spring 2004 by a Minolta Vivid 900/910 series sanner.In addition to the neutral expression, there are a number of expressions inluded, suhas smiling (happiness), frown, astonishing (surprise), and pu�y heeks. See Fig. 1.17for examples. All sans were downsampled to 320�240 to redue omputational ost.
1.6 Thesis OutlineThis thesis is organized as follows: Chapter 2 presents a literature review of 2Dand 3D fae reognition. Chapter 3 desribes our automati faial feature detetion18



Figure 1.14: Data olletion for the MSU-II database (7 expressions at 3 poses).
Figure 1.15: Some of the 3D fae models in the USF database.algorithm. In Chapter 4, we integrate both range and intensity modalities from faialsans to enhane the fae reognition aross large pose hanges. Chapter 5 proposesdeformation analysis for robust 3D faial surfae mathing. Chapter 6 summarizesthe proposed work and presents the future diretions related to this work.

1.7 Thesis ContributionsFigure 1.18 illustrates the major framework of the proposed 3D fae mathing system.19



Figure 1.16: Example images in the UND database. Intensity images (top) and theorresponding range images (bottom). From left to right, they are non-Asian female,non-Asian male, Asian female, and Asian male.Unlike previous work on 3D fae reognition, whih is mostly foused on math-ing frontal test sans, our work is foused on mathing test/query sans apturedat large viewpoint hanges along with non-rigid deformations (e.g., expression varia-tions). The deformation is diretly analyzed in three-dimensional domain instead of2D texture images. The major ontributions of this thesis inlude:1. 3D Mathing in the presene of large pose hanges. 3D faial shape is utilizedto enhane the reognition performane.2. An automati feature extration sheme to loate feature points in 2.5D sanswith large pose hanges, leading to a fully automati 3D fae mathing system.3. Integration of surfae and appearane information to improve the reognitionperformane. 20



(a) (b) () (d) (e) (f)Figure 1.17: Example images in the FRGC Ver2.0 database, from the same subjetbut with di�erent faial expressions. (a) Neutral, (b) smile, () sad, (d) pu�y fae,(e) frown, (f) surprise. Intensity images (top) and the orresponding range images(bottom).4. A hierarhial faial surfae resampling sheme to establish orrespondene be-tween faial sans (from di�erent subjets or from the same subjet but withdi�erent expressions), whih an be used for 3D fae modeling.5. A framework for robust 3D fae surfae mathing in the presene of non-rigiddeformation (due to expression hanges) aross large pose hanges.

Figure 1.18: A shemati diagram of the proposed 3D fae mathing system.21



Chapter 2
Bakground
A great deal of progress has been made in improving the fae reognition performane,sine the early work on image based fae reognition systems in 1970s [73, 90℄. Faereognition has attrated the attention of researhers from many di�erent areas, in-luding omputer vision, pattern reognition, mahine learning, omputer graphis,and ognitive siene.
2.1 2D Image-Based Fae ReognitionBased on two-dimensional intensity images, a number of fae reognition algorithmshave been developed during the past three deades (see Fig. 2.1).2.1.1 Appearane-Based Fae ReognitionMany approahes to objet reognition are based diretly on images without the useof 3D fae models. Most of these tehniques depend on a representation of fae images22



Figure 2.1: Major image based fae reognition methods.that indues a vetor spae struture.Appearane-based approahes represent an objet in terms of several objet views(raw intensity images). An image is onsidered as a high-dimensional vetor, i.e., apoint in a high-dimensional vetor spae. Many view-based approahes use statistialtehniques to analyze the distribution of the objet image in the vetor spae, andderive an eÆient and e�etive representation (feature spae) aording to di�erentappliations. Given a test image, the similarity between the stored prototypes andthe test view is then arried out in the feature spae.Image data an be represented as vetors, i.e., as points in a high dimensionalvetor spae. For example, a p � q 2D image an be mapped to a vetor x 2 Rpq,by lexiographi ordering of the pixel elements (suh as by onatenating eah rowor olumn of the image). Despite this high-dimensional embedding, the natural on-straints of the physial world (and the imaging proess) ditate that the data will,in fat, lie in a lower-dimensional (though possibly disjoint) manifold. The primarygoal of the subspae analysis is to identify, represent, and parameterize this manifold23



in aordane with some optimality riteria.
Let X = (x1; x2; : : : ; xi; : : : ; xN) represent the n�N data matrix, where eah xi isa fae vetor of dimension n, onatenated from a p� q fae image, where n = p� q.Here n represents the total number of pixels in the fae image and N is the numberof di�erent fae images in the training set. The mean vetor of the training images� = 1N PNi=1 xi is subtrated from eah image vetor for normalization.
All the p� q images (with 256 gray sale) onstrut the image spae. Eah image(vetor) orresponds to a point in this spae. Out of total (p�q)256 possible instanesin this image spae, human fae images only reside in a very small portion. Themanifold or the distribution of all faes aounts for variations in faial appearane.To analyze this fae manifold, both linear or nonlinear subspae analysis methods anbe applied. Although linear subspae analysis approahes have signi�antly advanedfaial reognition tehnology, due to high nonlinearity of the fae manifolds [99℄, linearsubspae analysis does not have suÆient modeling apaity to preserve the variationsof the fae manifold and distinguish between individuals to ahieve highly auratefae reognition. Reent developments in nonlinear manifold analysis provide moreexibility and modeling power to analyze fae manifolds. However, the generalizationapability of nonlinear methods is a�eted by the sample size in real appliations,i.e., small number of fae sample images available for training ompared to the largevariations of faial appearane in testing, leading to over�tting [142℄.24



Linear (subspae) AnalysisThree lassial linear appearane-based lassi�ers, PCA [162℄, ICA [24℄ and LDA[155, 27℄ are introdued here. Eah lassi�er has its own representation (basis vetors)of a high dimensional fae vetor spae based on di�erent statistial viewpoints. Byprojeting the fae vetor to the basis vetors, the projetion oeÆients are used asthe feature representation of eah fae image. The mathing sore between the testfae image and the training prototype is alulated (e.g., as the osine value of theangle) between their oeÆient vetors. The larger the mathing sore, the betterthe math.All the three representations an be onsidered as a linear transformation fromthe original image vetor to a projetion feature vetor, i.e.Y =W TX; (2.1)where Y is the d�N feature vetor matrix, d is the dimension of the feature vetor,and W is the transformation matrix. Note that d << n.(1) PCAPrinipal Component Analysis (PCA) �nds Y , whih best aounts for the distri-bution of fae images within the entire image spae [162℄. These vetors de�ne thesubspae of fae images, and the subspae is alled the fae spae. All faes in thetraining set are projeted onto the fae spae to �nd a set of weights that desribes theontribution of eah vetor in the fae spae. To identify a test image, one needs to25



projet the test image onto the fae spae to obtain the orresponding set of weights.By omparing the weights for the test image with the set of weights of the faes inthe training set, the fae in the test image an be identi�ed.
The key proedure in PCA is based on Karhunen-Loeve transformation [92℄. Ifthe image elements are onsidered to be random variables, the image may be seenas a sample of a stohasti proess. The Prinipal Component Analysis basis vetorsare de�ned as the eigenvetors of the n� n total satter matrix ST ,ST = NXi=1 (xi � �)(xi � �)T : (2.2)The transformation matrix WPCA is omposed of the eigenvetors orresponding tothe d largest eigenvalues. The eigenvetors (a.k.a. eigenfae) orresponding to the 7largest eigenvalues, derived from ORL fae database [15℄, are shown in Fig. 2.4. Theorresponding average fae is given in Fig. 2.3. ORL fae samples are provided inFig. 2.2. After applying the projetion, the input vetor (fae) in an n-dimensionalspae is redued to a feature vetor in a d-dimensional subspae. Also the eigenve-tors orresponding to the 7 smallest eigenvalues are provided in Fig. 2.5. For mostappliations, the eigenvetors orresponding to very small eigenvalues are onsideredas noise, and not taken into aount during identi�ation. Several extensions of PCA,suh as modular eigenspaes [134℄, have been developed to deal with pose hanges andprobabilisti subspaes [120℄ in order to derive a more meaningful similarity measureunder the probabilisti framework. 26



Figure 2.2: Fae samples from the ORL fae database.
Figure 2.3: The average fae (derived from the ORL fae database [15℄).(2) ICAIndependent Component Analysis (ICA) [87℄ is similar to PCA exept that thedistribution of the omponents are designed to be non-Gaussian. Maximizing non-Gaussianity promotes statistial independene [87℄. Unlike PCA, whih utilizes theseond-order statistis, ICA explores higher order statistis.

Figure 2.4: Eigenvetors (eigenfaes) orresponding to the 7 largest eigenvalues,shown as p � p images, where p � p = n (derived from the ORL fae database[15℄). 27



Figure 2.5: Eigenvetors orresponding to the 7 smallest eigenvalues, shown as p� pimages, where p� p = n (derived from the ORL fae database [15℄).Bartlett et al. [24℄ provided two arhitetures based on Independent ComponentAnalysis, statistially independent basis images and a fatorial ode representation,for the fae reognition task. The ICA separates the high-order moments of the inputin addition to the seond-order moments utilized in PCA. Both the arhitetures leadto a similar performane. The basis vetors based on fast �xed-point algorithm [86℄for the ICA fatorial ode representation are illustrated in Fig. 2.6. There is no speialorder imposed on the ICA basis vetors.
Figure 2.6: ICA basis vetors shown as p�p images; there is no speial order for ICAbasis vetors (derived from the ORL fae database [15℄, based on the seond arhiteh-ture [25℄). The software available at http://www.is.hut.�/projets/ia/fastia/ wasused to ompute ICA.(3). LDABoth PCA and ICA are unsupervised methods that onstrut the fae spae with-out using the fae lass (ategory) information. In linear disriminant analysis (LDA),the goal is to �nd an \optimal" way to represent the fae vetor spae to maximizethe disrimination between di�erent fae lasses. Exploiting the lass information an28



be helpful to the identi�ation tasks [27℄.The Fisherfae algorithm [27℄ is derived from the Fisher Linear Disriminant(FLD), whih uses lass spei� information. By de�ning di�erent lasses with di�er-ent statistis, the images in the learning set are divided into the orresponding lasses.Then, tehniques similar to those used in the Eigenfae algorithm are applied. In gen-eral, the Fisherfae algorithm results in a higher auray rate in reognizing faesompared to the Eigenfae algorithm.The Linear Disriminant Analysis �nds a transform WLDA, suh thatWLDA = argmaxW W TSBWW TSWW ; (2.3)where SB is the between-lass satter matrix and SW is the within-lass satter matrix,de�ned as SB = Xi=1 Ni(xi � �)(xi � �)T ; (2.4)
SW =Xi=1Xxk2Xi (xk � �i)(xk � �i)T : (2.5)In the above expression, Ni is the number of training samples in lass i,  is thenumber of distint lasses, �i is the mean vetor of samples belonging to lass i andXi represents the set of samples belonging to lass i. The LDA basis vetors aredemonstrated in Fig. 2.7.Table 2.1 lists the major advantages and weakness of these three appearane-based29



Figure 2.7: First seven LDA basis vetors shown as p � p images (derived from theORL fae database [15℄).approahes.Table 2.1: Pros and ons of three linear appearane-based methods.Advantages DisadvantagesPCA � The most desriptive repre-sentation in terms of the leastsquare reonstrution errors� Easy to implement. Usuallyused as the baseline algorithm
� It is not the most disrimina-tive for lass separation, sineit does not take any lass la-bel information into aount.ICA � Utilizes higher-order statis-tis, instead of only theseond-order statistis inPCA � No general losed-form solu-tion. Iterative methods areused to obtain the ICA rep-resentationLDA � Utilizes the lass label infor-mation in the derivation ofthe representation for the faereognition task, a lassi�a-tion problem. � Small sample size problemarising from the small numberof available training samplesompared to the dimensional-ity of the sample spaeMuh progress has been reently made on linear subspae analysis for fae reogni-tion, suh as multilinear analysis, two-dimensional PCA, and 2D Fisher disriminantanalysis. Vasilesu and Terzopoulos [164℄ proposed an approah based on multilin-ear tensor deomposition of image ensembles, utilizing the higher-order tensors based30



multilinear algebra to resolve the onfusion of multiple fators ontained in the samefae reognition system, suh as illumination and pose. The resulting representationof faial images was alled TensorFaes. Instead of representing the image as a vetor,Yang et al. [176℄ onsidered an image as a 2D matrix and developed a two-dimensionalPCA algorithm for fae reognition. Using the 2D matrix representation of faial im-ages, Kong et al. [95℄ generalized the onventional LDA into 2D Fisher disriminantanalysis and applied it to fae reognition.Non-linear (manifold) AnalysisThe fae manifold is more ompliated than linear models. Linear subspae analysisis an approximation of this non-linear manifold. Diret non-linear manifold modelingshemes are explored to learn this non-linear manifold. The kernel prinipal ompo-nent analysis (KPCA) is introdued in the following along with several other manifoldlearning algorithms.The kernel PCA [149℄ applies a nonlinear mapping from the input spae RM tothe feature spae RL, denoted by 	(x), where L is larger than M . This mapping ismade impliit by the use of kernel funtions satisfying the Merer's ondition [163℄k(xi; xj) = 	(xi) �	(xj); (2.6)where kernel funtions k(xi; xj) in the input spae orrespond to inner-produt in thehigher dimensional feature spae. Beause omputing the ovariane matrix is basedon inner-produts, performing a PCA in the feature spae an be formulated with31



kernels in the input spae without the expliit omputation of 	(x). Suppose theovariane matrix in the feature spae is alulated as�K = < 	(xi)	(xi)T > : (2.7)The orresponding eigen-problem is �V = �KV . It has been proved [149℄ that V anbe expressed as V =PNi=1wi	(xi), where N is the total number of training samples.The equivalent eigenvalue problem an be formulated in terms of kernels in the inputspae N�w = Kw; (2.8)where w is a N -dimensional vetor, K is a N �N matrix with Kij = k(xi; xj).The projetion of a sample x onto the nth eigenvetor V n an be alulated bypn = (V n �	(x)) = NXi=1 wni k(xi; xj): (2.9)Figure 2.8 gives a 2D example of KPCA to demonstrate the derived representation.Similar to traditional PCA, the projetion oeÆients are used as features for faelassi�ation. Yang [178℄ explored the use of KPCA for the fae reognition prob-lem. Unlike traditional PCA, KPCA representation (projetion oeÆient vetor)an have higher dimensionality than the input image. But a suitable kernel and theorresponding parameters an only be determined empirially.Manifold learning has attrated muh attention in the mahine learning om-munity. ISOMAP [158℄ and LLE [143℄ have been proposed to learn the non-linear32



Figure 2.8: Contour plots of the �rst six prinipal omponent projetions. Eahontour ontains the same projetion values onto the orresponding eigenvetors.Data is generated by 3 Gaussian lusters. A RBF kernel is used. The orrespondingeigenvalues are given above eah subplot. Notie that the �rst three omponents havethe potential to extrat the individual lusters [149℄.manifold, where the learned manifold has been shown for fae images. Yang [177℄applied LDA to the fae reognition problem using geodesi distane, whih is thebasis of the ISOMAP. He et al. [80℄ proposed a `laplaianfaes' approah based onthe loality preserving projetions to represent the fae subspae. These manifoldlearning algorithms are interesting, but further exploration is needed to demonstratetheir performane in fae reognition for real appliations.Current appearane-based fae reognition systems enounter diÆulties in pra-tie due to the small number of available training fae images and omplex faialvariations enountered in the test images. Human fae appearane has a number ofvariations resulting from varying lighting onditions, di�erent head pose, and faialexpressions. In real-world situations, only a small number of samples for eah sub-33



jet are available for training. If a suÆient amount of representative data is notavailable, Martinez and Kak [119℄ showed that the swith from nondisriminant teh-niques (e.g., PCA) to disriminant approahes (e.g., LDA) is not always warrantedand may sometimes lead to poor system design. Therefore, fae synthesis, whereadditional training samples an be generated from the available samples, is helpful toenhane the performane of fae reognition systems [165, 183, 106℄. Further, teh-niques suh as lassi�er ombination [116℄ and data resampling [111℄ an help enhanethe auray of the appearane-based fae reognition system.
2.1.2 Model-based fae reognitionThe model-based fae reognition sheme onstruts a model of the human fae, whihis able to apture the faial variations. The prior knowledge of a human fae is utilizedin model onstrution. For example, feature-based mathing derives distane andrelative position features between faial elements (e.g., eyes, nose ....). Kanade [90℄developed one of the earliest fae reognition algorithms based on automati featuredetetion. By loalizing the orners of the eyes, nostrils, et. in frontal views, hissystem omputed parameters for eah fae, whih were ompared (using a Eulideanmetri) against the parameters of known faes. A more reent feature-based system,based on elasti bunh graph mathing, was developed by Wiskott et al. [173℄ as anextension to their original graph mathing system [96℄. By integrating both shapeand texture, Cootes et al. [51, 61℄ developed a 2D morphable fae model, throughwhih the fae variations are learned. Blanz and Vetter explored a more advaned34



3D morphable fae model to apture the true 3D struture of human fae surfaealong with faial appearane [33℄. Both morphable model methods ome under theframework of `interpretation through synthesis'.The model-based sheme usually ontains three steps: 1) Construting the model,2) �tting the model to the given fae image, and 3) using the parameters of the �ttedmodel as the feature vetor to alulate the similarity between the query fae andprototype faes in the database to perform the reognition.Feature-based Elasti Bunh Graph Mathing(1) Bunh GraphAll human faes share a similar topologial struture. Wiskott et al. presenta general in-lass reognition method for lassifying members of a known lass ofobjets. Faes are represented as graphs, with nodes positioned at �duial points(suh as the eyes, the tip of the nose, some ontour points, et.; see Fig. 2.9), andedges labeled with 2-D distane vetors.

Figure 2.9: Multiview faes overlaid with labeled graphs [173℄.Eah node ontains a set of 40 omplex Gabor wavelet oeÆients, inluding both35



phase and magnitude, known as a jet (shown in Fig. 2.10). Wavelet oeÆients areextrated using a family of Gabor kernels with 5 di�erent spatial frequenies and 8orientations; all kernels are normalized to be of zero mean.

Figure 2.10: A Gabor jet [96℄ ontains the phase and magnitude of the oeÆientsobtained from the onvolution between Gabor �lters and the orginal image.Fae reognition is based on labeled graphs. A labeled graph is a set of nodes on-neted by edges; nodes are labeled with jets; edges are labeled with distanes. Thus,the geometry of an objet is enoded by the edges while the gray value distributionis path-wise enoded by the nodes (jets). An example is shown in Fig. 2.11.While individual faes an be represented by simple labeled graphs, a fae lassrequires a more omprehensive representation in order to aount for all kinds ofvariations within the lass. The Fae Bunh Graph has a stak-like struture thatombines graphs of individual sample faes, as demonstrated in Fig. 2.12. It is ruialthat the individual graphs all have the same struture and that the nodes refer to thesame �duial points. All jets referring to the same �duial point, e.g., all left-eye jets,are bundled together in a bunh, from whih one an selet any jet as an alternative36



Figure 2.11: Labeled graph [96℄. Eah node is a set of jets. The edges onnetingnodes denote the distanes, enoding the geometry of the (fae) objet.desription. The left-eye bunh might ontain a male-like eye, a female-like eye, bothlosed or open, et. Eah �duial point is represented by a set of alternatives andfrom eah bunh any jet an be seleted independently of the jets seleted from theother bunhes. This provides full ombinatorial power of this representation even ifit is onstruted only from a few graphs.(2) Elasti Graph MathingTo identify a new fae, the fae graph is positioned on the fae image using elastibunh graph mathing. The goal of Elasti graph mathing is to �nd the �duialpoints on a query image and thus to extrat from the image a graph whih maximizesthe graph similarity funtion. This is performed automatially if the fae bunhgraph (FBG) is appropriately initialized. A fae bunh graph (FBG) onsists of aolletion of individual fae model graphs ombined into a stak-like struture, in37



Figure 2.12: The left �gure shows a sketh of a fae bunh graph [173℄. Eahof the nine nodes is labeled with a bunh of six jets. From eah bunh, onepartiular jet has been seleted, indiated as gray. The atual seletion dependson the test image, e.g., the fae onto whih the fae bunh graph is mathed.Though onstruted from six sample faes only, this bunh graph an potentiallyrepresent 69 = 10; 077; 696 di�erent faes. The right �gure shows the same on-ept interpreted slightly di�erently by Tullio Perioli (\Un�nished Portrait" 1985)[http://www.nl.salk.edu/�wiskott/Projets/BunhGraph.html℄.whih eah node ontains the jets of all previously initialized faes from the database.To position the grid on a new fae, the graph similarity between the image graph andthe existing FBG is maximized. Graph similarity is de�ned as the average of the bestpossible math between the new image and any fae stored within the FBG minus atopographial term (see Eq. 2.11), whih aounts for distortion between the imagegrid and the FBG. Let S� be the similarity between two jets, de�ned asS�(J; J 0) = Pj aja0j os(�j � �0j � ~d~kj)qPj a2jPj a02j ; (2.10)where aj and �j are magnitude and phase of the Gabor oeÆients in the jth jet,respetively; ~d is the displaement between loations of the two jets; ~kj determines38



the wavelength and orientation of the Gabor wavelet kernels [96℄. For an image graphGI with nodes n = 1; : : : ; N and edges e = 1; : : : ; E and an FBG B with model graphsm = 1; : : : ;M , the graph similarity is de�ned asSB(GI ; B) = 1NXn maxS�(JIn; JBmn )� �EXe (�~xIe ��~xBe )2(�~xBe )2 ; (2.11)where � determines the relative importane of jets and metri struture, Jn is the jetat node n, and �~xe is the distane vetor used as labels at edges e. After the gridhas been positioned on the new fae, the fae is identi�ed by omparing the similaritybetween that fae and every fae stored in the FBG. Graphs an be easily translated,rotated, saled, and elastially deformed, thus ompensating for the variane in faeimages, whih is ommonly enountered in a reognition proess.AAM - A 2D Morphable ModelAn Ative Appearane Model (AAM) is an integrated statistial model that ombinesa model of shape variation with a model of the appearane variations in a shape-normalized frame. An AAM ontains a statistial model of the shape and gray-levelappearane of the objet of interest, a model that an generalize to almost any validexample. Mathing to an image involves �nding model parameters that minimize thedi�erene between the image and a synthesized model example, whih is projetedonto the image. The potentially large number of parameters makes this a diÆultproblem.(1) AAM Constrution 39



The AAM is onstruted based on a training set of labeled images, where landmarkpoints are marked on eah example fae at key positions to outline the main features(shown in Fig. 2.13). To ensure the preise loation of landmarks, manual labeling isneeded in the urrent model onstrution sheme [53, 99℄.

Figure 2.13: The training image is split into shape and shape-normalized texture [52℄.The shape of a fae is represented by a vetor onsisting of the positions of thelandmarks, S = (x1; y1; : : : ; xn; yn)T , where (xj; yj) denotes the 2D image oordinateof the jth landmark point. All shape vetors of faes are normalized into a ommonoordinate system. The prinipal omponent analysis is applied to this set of shapevetors to onstrut the fae shape model, denoted as: S = �S + PSBS, where S is ashape vetor, �S is the mean shape, PS is a set of orthogonal modes of shape variation,and BS is a set of shape parameters.In order to onstrut the appearane model, the example image is warped tomake the ontrol points math the mean shape. Then the warped image regionovered by the mean shape is sampled to extrat the gray level intensity (texture)information. Similar to the shape model onstrution, a vetor representation isgenerated, G = (I1; : : : ; Im)T , where Ij denotes the intensity of the sampled pixel inthe warped image. PCA is also applied to onstrut a linear model G = �G+ PGBG ,40



where �G is the mean appearane vetor, PG is a set of orthogonal modes of gray-levelvariation, and BG is a set of gray-level model parameters.Thus, the shape and texture of any example fae an be summarized by the vetorsBS and BG. The ombined model is the onatenated version of BS and BG, denotedas follows: B = 0BB� WSBSBG 1CCA = 0BB� WSP TS (S � �S)P TG (G� �G) 1CCA ; (2.12)whereWS is a diagonal matrix of weights for eah shape parameter, as a normalizationfator, allowing for the di�erene in units between the shape and gray sale models.PCA is applied to vetor B also, B = QC, where C is the vetor of parameters forthe ombined model.The model was built based on 400 fae images, eah with 122 landmark points[61℄. A shape model with 23 parameters, a shape-normalized texture model with113 parameters, and a ombined appearane model with 80 parameters (ontaining98% variations of the observation) are generated. The model used about 10,000 pixelvalues to make up the fae.(2) AAM FittingGiven a test image and the fae model, the metri used to measure the mathquality between the model and image is � = jÆIj2, where ÆI is the vetor of intensitydi�erenes between the given image and the synthesized image generated by themodel tuned by the model parameters, alled the residual. The AAM �tting seeksthe optimal set of model parameters that best desribes the given image. Cootes41



[51℄ observed that displaing eah model parameter from the orret value indues apartiular pattern in the residuals. In the training phase, AAM learns a linear modelthat aptures the relationship between parameter displaements and the induedresiduals. During the model �tting, it measures the residuals and uses this model toorret the values of urrent parameters, leading to a better �t. Figure 2.14 showstwo examples of the iterative AAM �tting proess.

Initial Iteration #3 Iteration #8 Iteration #11 Converged OriginalFigure 2.14: Examples of the AAM �tting iterations [52℄.(3) Fae Reognition by AAMFor all the training images, the orresponding model parameter vetors are used asthe feature vetors. Linear disriminant analysis is utilized to onstrut the disrim-inant subspae for fae identity reognition. Given a query image, the AAM �ttingis applied to extrat the orresponding feature vetor. The reognition is ahievedby �nding the best math between the query feature vetor and the stored prototypefeature vetors, both of whih are projeted onto the disriminant subspae.42



3D Morphable ModelThe human fae is a surfae that lies intrinsially in the 3D spae. Therefore, inpriniple, the 3D model is better for representing faes, espeially to handle faialvariations, suh as pose and illumination. Blanz et al. [32, 34℄ proposed a methodbased on a 3D morphable fae model that enodes shape and texture in terms of modelparameters and an algorithm that reovers these parameters from a single image of afae. For fae identi�ation, they used the shape and texture parameters of the modelthat are separated from imaging parameters, suh as pose and illumination. Fig. 2.15illustrates the sheme. To handle the extreme image variations indued by these pa-rameters, one ommon approah taken by various researh groups is to use generativeimage models. For image analysis, the general strategy of all these tehniques is to�t the generative model to a test image, thereby parameterizing it in terms of themodel. In order to make identi�ation independent of imaging onditions, the goalis to separate intrinsi model parameters of the fae from extrinsi imaging param-eters. The separation of intrinsi and extrinsi parameters is ahieved expliitly bysimulating the proess of image formation using tehniques from omputer graphis.(1) Model ConstrutionGeneralizing the morphing proess between pairs of three-dimensional objets,the morphable fae model is based on a vetor spae representation of faes [165℄.The database used in the study by Blanz and Vetter [33℄ ontains sans of 100 malesand 100 females reorded with a CyberwareTM 3030PS sanner. Sans are stored in43



Figure 2.15: The three-dimensional morphable fae model, derived from a databaseof laser sans, is used to enode gallery and probe images. For identi�ation, themodel oeÆients of the probe image are ompared with the oeÆients of all galleryimages [34℄.
ylindrial oordinates relative to a vertial axis. The oordinate and texture valuesof all the n verties of the referene fae (n = 75; 972) are onatenated to form shapeand texture vetors S0 = (x1; y1; z1; : : : ; xn; yn; zn)T ; (2.13)T0 = (R1; G1; B1; : : : ; Rn; Gn; Bn)T : (2.14)Vetors Si and Ti of the subjets i = 1 : : : N in the database are formed in a ommonoordinate system. Convex ombinations of the examples produe novel shape and44



texture vetors S and T . Previous results [32℄ indiate that the shape and textureinformation an be ombined independently:S = NXi=1 aiSi; T = NXi=1 biTi: (2.15)Two vetors S and T an also be represented as:S = �S + N�1Xi=1 �iSi; T = �T + NXi=1 �iTi; �S = 1N NXi=1 Si; �T = 1N NXi=1 Ti; (2.16)where �S is the mean shape and �T is the mean texture.(2) Model FittingImage synthesis renders the new projeted positions of verties of the 3D modelalong with illumination and olor. During the proess of �tting the model to a testimage, not only the shape and texture oeÆients �i and �i are optimized, but alsothe following rendering parameters, whih are onatenated into a vetor �: the headorientation angles �, � and , the head position (Px; Py) in the image plane, size s,olor and intensity of the light soures L, as well as olor onstant, and gain ando�set of olors, shown in Fig. 2.16.The primary goal in analyzing a fae is to minimize the sum of square di�er-enes over all olor hannels and all pixels in the input image and the symmetrireonstrution, EI =Xx;y kIinput(x; y)� Imodel(x; y)k2: (2.17)45



Figure 2.16: The goal of the �tting proess is to �nd shape and texture oeÆients �and � suh that rendering R� produes an image Imodel that is as similar as possibleto Iinput [34℄.Under a probabilisti framework, the overall ost funtion to be minimized is derivedas [34℄: E = 1�2NEI +Xi �2i�2S;i +Xi �2i�2T;i +Xi (�i � ��i)2�2R;i : (2.18)A modi�ation of stohasti gradient desent algorithm is used to optimize the ostfuntion, resulting in a set of orresponding parameters �global and �global. The faemodel is divided into four regions { eyes, nose, mouth and the surrounding faesegment. The optimization is also applied separately for eah region to obtain theparameters for eah loal segment, i.e., �r1; �r1; : : : ; �r4 and �r4. The �tting proessis demonstrated in Fig. 2.17. Up to seven feature points need to be manually labeledto ondut the �tting proess [33℄ (see Fig. 2.18 for examples).(3) ReognitionThe similarity between two fae images is de�ned as:S = Xglobal;r1;r2;r3;r4� h�; �0iMk�kM � k�0kM + h�; �0iMk�kM � k�0kM�; (2.19)46



Figure 2.17: Examples of model �tting [34℄. Top row: synthesis using initial parame-ters; middle row: results of �tting, rendered on top of the input images; bottom row:input images. The �fth olumn is an example of a poor �t.
where h�; �0i =Xi � � �0�2S;i ;h�; � 0i =Xi � � � 0�2T;i ;k�k2M = h�; �iMThe query image will be assigned the identity in whih the similarity between thequery and the orresponding prototype is maximized.47



Figure 2.18: Up to seven feature points were manually labeled in front and side views,up to eight were labeled in pro�le views [33℄.2.1.3 Other ShemesBesides the above-mentioned tehniques, a number of other interesting approaheshave been explored from di�erent perspetives, suh as loal feature analysis [133℄,statistial model based, and omponent-based fae reognition methods. Examplesof the statistial model based sheme are 1D Hidden Markov Model (HMM) [146℄,pseudo-2D HMM [125℄, and Gaussian Mixture Model [41, 117℄. Instead of onsider-ing fae image from global view, omponent-based shemes [81℄ analyze eah faialomponent separately.
2.1.4 SummaryImage-based fae reognition is still a very hallenging topi after almost three deadesof exploration. Popular algorithms being ategorized into appearane-based andmodel-based shemes have been briey reviewed here. Table 2.2 provides the prosand ons of these two types of fae reognition methods.Pose and lighting hanges are two major fators that degrade the performane ofthe urrent image-based fae reognition systems [137, 77℄. Georghiades et al. [69℄48



extensively explored the illumination hange and synthesis for faial analysis usingappearane-based approahes to ahieve an illumination-invariant fae reognitionsystem. Basri and Jaobs [26℄ proved that the set of all reetane funtions (themapping from surfae normals to intensities) produed by Lambertian objets underdistant, isotropi lighting lies lose to a nine-dimensional linear subspae. Theiranalysis was based on using spherial harmonis to represent lighting funtions. Theproposed algorithm was utilized and extended by Zhang and Samaras [180℄ for image-based fae reognition under illumination hanges. Although a good deal of e�ort hasreently been devoted to handling the pose and/or illumination hanges in 2D faialimages for fae reognition, sensitivity to variations in pose and lighting onditions(espeially the pose hanges) is still a hallenging problem for image-based methods.
2.2 3D Image AquisitionRange imaging systems ollet three-dimensional oordinate data from visible objetsurfae in a sene. Dense surfae aquisition is one of the most hallenging tasks inomputer vision. Researh over the last two deades has led to a number of highspeed and high preision 3D sensors.The triangulation based sensors observe the objet from at least two di�erentangles. In order to obtain three-dimensional measurements, point orrespondeneshave to be established, allowing a 3-D shape to be reonstruted in a way that isanalogous to the way the human eye works.The family of triangulating sensors an be further subdivided into ative and pas-49



sive triangulation systems. Ative triangulation systems illuminate the sene ratherthan relying on natural or unontrolled lighting.A stereo amera is the prime example of passive optial triangulation. For stereovision, two or more ameras are used to view a sene. Determining the orrespon-denes between left and right view for a binoular stereo system by means of imagemathing, however, is a diÆult and slow proess. For faithful 3-D reonstrution ofobjets, passive stereo vision tehniques depend on texture information on surfaes.One of the most ommon forms of ative range sensing is optial triangulation.The fundamental priniple is illustrated in Fig. 2.20(a) taken from [55℄. A fousedbeam of light illuminates a tiny spot on the surfae of an objet. For a matte surfae,this light is sattered in many diretions, and a amera reords an image of the spot.We an ompute the enter pixel of this spot and trae a line of sight through thatpixel until it intersets the illumination beam at a point on the surfae of the objet.The triangulation geometry [29℄ is shown in Fig. 2.19. The amera enter of the lenslies at (0; 0; 0). The point (x; y; z) is projeted onto the image plane at pixel (u; v),suh that ux = fz and vy = fz , where f is the foal length of the amera. Let � be theprojetion angle. The (x; y; z) oordinates of the surfae point an be omputed as:
x = b(f ot � � u) � u; (2.20)y = b(f ot � � u) � v; (2.21)z = b(f ot � � u) � f: (2.22)50



Figure 2.19: Ative triangulation geometry [29℄.To san the entire surfae instead of one point, the beam an be fanned into aplane of laser light, as shown in Fig. 2.20(b). This light will ast a stripe onto thesurfae of the objet, whih is then imaged by a onventional video amera. Wean treat eah amera sanline separately, �nd the enter of the imaged light, andinterset the line of sight with the laser plane. Thus, eah image gives us a rangepro�le (one point per sanline), and by sweeping the light over the surfae of theobjet, we an apture its shape. Figures 2.20() and (d) show a light stripe astonto an objet and the reetion observed by the amera.To overome the need for well-behaved surfaes and to speed up the evaluationsteps, ative triangulation systems projet spei� light patterns onto the objet.The light patterns are distorted by the objet surfae. These distorted patterns areobserved by at least one amera and then used to reonstrut the objets surfae. Par-tiularly useful is a set of tehniques, known as oded light tehniques, that projeta sequene of well-de�ned binary patterns. Within this sequene, time-enoded or-51



Figure 2.20: Optial triangulation. (a) 2D triangulation. A laser beam is used toilluminate the surfae. (b) 3D senario. () Red laser line projeted onto a real 3Dobjet. (d) Reeted light aptured by the CCD amera [55℄.respondene information is inluded.Two typial laser-based ommerial ative ranging sensing systems are MinoltaVivid series [13℄ and Cyberware 3D sanner [4℄. Other 3D sensors are also available,suh as 3DMD [1℄, Geometrix [10℄, A4Vision [2℄, and Genex [8℄.
2.3 Literature Review on 3D Fae ReognitionAlthough early work on range image based fae reognition started in late 80's, liter-ature on 3D fae reognition is not as rih ompared to the 2D intensity image basedfae reognition.Cartoux et al. [42℄ developed an iterative algorithm, whih evaluated the similarityof the Gaussian urvature values of the faial surfae, to extrat the quasi-symmetriplane in the faial san, to obtain the pro�le shown in Fig. 2.21. They used faialpro�les to �t two faes in the least square sense for mathing.52



Figure 2.21: Quasi-symmetri plane and pro�le urve obtained from a given rangeimage [42℄.Lee and Milios [98℄ segmented the range image to obtain the onvex regions, basedon the sign of the mean and Gaussian urvatures at eah point. These onvex regionsorrespond to distint faial features. Extended Gaussian Image (EGI) [85℄ is usedto represent eah onvex region. A similarity metri between two regions is de�nedto math the features in the two fae images.Gordon [75℄ explored feature extration for reognition based on depth and urva-ture features. First, she extrated high-level features that marked the salient featureson the fae surfae in terms of points, lines, and regions. For example, the nosebridge, nose base, and eye orner avities, were extrated to demarate the eye andnose. Then she de�ned and omputed the geometri measurements suh as eye width,et. In addition, a set of urvature-based measurements were obtained, e.g., Gaussianurvature at the nose base. These desriptor values formed a feature vetor to rep-resent a fae for mathing purposes. The mathing was onduted using the nearestneighbor rule in the feature spae. While these features were disriminative in distin-53



guishing the subjets, in the presene of expression hanges not all the features werefound to be useful in mathing. For example, the variation in the Gaussian urvatureat the nose base due to expression hanges may be greater than the typial intra-lassvariation within a subjet.Nagamine et al. [124℄ analyzed the range data by ross-setions. They used hor-izontal, vertial, and irular ross-setions to obtain the intersetion urves on thefaial surfae, shown in Fig. 2.22. The range values along the intersetion urveformed the feature vetor. The Eulidean distane between the feature vetors ofthe two faial surfaes to be mathed was used to make the mathing deision. Itwas observed that the vertial intersetion urve rossing the entral area of the fae(inluding nose and mouth) has good disriminating power.

Figure 2.22: Faial ross-setions [124℄.Ahermann et al. [22℄ extended the eigenfae and Hidden Markov Model teh-niques from the gray sale intensity image to the range image based reognition.Tanaka et al. [156℄ posed fae reognition as a 3D shape reognition problem of54



free-form urved surfaes. They analyzed the maximum and minimum prinipal ur-vatures and diretions, based on whih two types of 3D diretional faial features wereextrated, namely, ridge and valley. The fae surfaes were represented using EGIsof ridge and valley vetors. The spherial orrelation oeÆient [65℄ was omputedto measure the similarity between a test fae and a model fae.Ahermann et al. [21℄ used partial Hausdor� distane to measure the dissimilaritybetween two faial surfaes. The partial Hausdor� distane is somewhat robust to theoutliers, and an handle ases where the test data and the model are only partiallyoverlapped. In order to ompute the Hausdor� distane, two faial surfaes to bemathed need to be registered. Ahermann et al. �rst moved the enter of gravityof the 3D point set to the origin of the oordinate system. A plane was �tted to thepoint set and rotated to be parallel to the foal plane of the amera. To speedup theHausdor� distane omputation, a distane map in 3D spae was alulated. Pan etal. [131℄ utilized the partial direted Hausdor� distane to align and math two rangeimages for veri�ation.Hesher et al. [82℄ applied the Prinipal Component Analysis (PCA) and Inde-pendent Component Analysis (ICA) to the range image in a way similar to the 2Dintensity image, and estimated probability models for the oeÆients. They used thenose and nose ridge to align the two sans.Chua et al. [49℄ extended the use of Point Signature [50℄ to reognize frontal faesans with di�erent expressions, whih was treated as a 3D reognition problem ofnon-rigid surfaes. The point signature was used to identify and register the rigidregions that were insensitive to the expression hanges, suh as nose and eye soket.55



Only the rigid regions were used to register two faial surfaes for mathing (seeFig. 2.23).
Figure 2.23: Extrated rigid regions in faial sans with expression hanges [49℄.Beumier and Aheroy [31℄ developed a strutured light based system to apturethe 3D image of the fae. Figure 2.24 provides an example. The 3D surfae mathingwas arried out at both entral and lateral pro�les, as shown in Fig. 2.25. They alsoobserved that the nose seemed to be a robust geometrial feature. They extratedthe pro�les (urves) both from depth and gray sale image for fae veri�ation. Themajor diÆulty reported in this work, whih limited the mathing auray, was thesensor noise.Wang et al. [168℄ utilized both 3D range images and 2D intensity images for faereognition. The range image and the orresponding intensity image were alreadyregistered by the 3D sensor used in their study. Considering the tradeo� betweenfae representation eÆay and omputation requirements, they extrated four 3Dfeature points and ten 2D feature points (Figure 2.26). The point signature [50℄ andthe staked Gabor �lter responses [173℄ were used as the 3D and 2D features foreah point in the image, respetively. Eah extrated feature point (namely, �duialpoint) was assoiated with a feature vetor ontaining values of 3D and 2D features.56



(a) (b)Figure 2.24: 3D fae image apturing system [31℄. (a) Strutured light projeted ontoa fae objet. (b) 3D reonstrutions from (a).Given a training set with the feature points manually labeled, the PCA was appliedto onstrut the feature subspae, whih was used to identify the feature point in atest image. Two lassi�ers, one based on similarity funtion and the other based onsupport vetor mahine, were applied for fae reognition.Bronstein et al. [38℄ proposed an algorithm based on geometri invariants [62℄, inan attempt to deal with faial expression variations for fae reognition. But, theiralgorithm was designed and tested for only frontal 3D sans, and it is not straight-forward to apply it to sans with large pose hanges. The anonial representationderived from the frontal sans is not omparable to the representation to the test sandue to missing data.Tsalakanidou et al. [160℄ applied the PCA to derive depth and olor eigenfaes.The produt rule was applied to the Eulidean distanes alulated by eah modalityindividually to ombine depth and olor. 57



Figure 2.25: Central and lateral pro�les after intrinsi normalization [31℄.

Figure 2.26: Feature point de�nition. Four 3D feature points (ross marks) and ten2D feature points (dot marks) [168℄.Work by Chang et al. [43℄ demonstrated that fae reognition systems based oneither two-dimensional texture information or 2.5D range information have similarperformane harateristis. However, they showed that signi�ant improvementsan be made if a fae reognition system uses a ombination of texture and shapeinformation. They applied PCA to both 2D and 3D fae data.Boehnen and Russ [35℄ explored the 2D olor information as well as the 3D rangeimage to identify eyes, nose, and mouth. By analyzing Y CbCr olor spae, the skintone was extrated to segment the fae, and loate the eye and mouth regions. The58



3D information ontained in the range image was then utilized to loate the positionsof eyes, mouth, and nose tip. Some heuristis based on human fae models wereapplied to redue the searhing spae.
2.4 Summary2D intensity image based fae reognition systems an ahieve reasonable performanewhen the test image is taken under the onditions similar to the training stage. How-ever, a number of fators, espeially the head pose and illumination, an signi�antlydeteriorate the reognition auray. 3D surfae information of the fae objet isinsensitive to the head pose and lighting hanges. The fae reognition ommunity isexploring the use of 3D range data to make fae reognition systems more robust tothe hanges. With advanes in the 3D sensing tehnology, sensors are beoming morea�ordable and ompat. Most of the existing work on 3D fae reognition is fousedon frontal faial san mathing. Issues suh as mathing test sans in the presene oflarge pose hanges and handling non-rigid deformations (suh as deformations ausedby expression) simultaneously need to be addressed to utilize the advantage of 3Ddata over 2D images and failitate the deployment of the 3D fae reognition system.
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Table 2.2: Pros and ons of appearane-based and model-based fae reognition meth-ods. Appearane-based Model-basedPros 1. Fae reognition problem istransformed to a fae spaeanalysis problem, where anumber of well known statisti-al lassi�ation methods anbe utilized.2. Appliable to low resolutionor poor quality images.
1. The model has an intrinsiphysial relationship with realfaes.2. An expliit modeling of faevariations due to pose, illumi-nation, and expression, givesthe possibility to handle thesehanges in pratie.3. Ability to Integrate prior hu-man knowledge.Cons 1. SuÆient representative datais needed to sample the un-derlying distribution in faespae suessfully.2. Does not utilize the prior(expert) knowledge of humanfaes.3. Subjet to the limitations infaial variations, suh as 3Dpose, illumination, and ex-pression.4. Correspondene (betweentraining images) needs tobe established in advane,although the tangent distanemay be used to tolerate smallorrespondene displae-ments.

1. Model onstrution is ompli-ated and laborious.2. Faial feature points (land-marks) are diÆult to extratautomatially with suÆientrobustness.3. Model �tting is a searh pro-ess, prone to be trapped intoloal minimum; reognitionresults highly depend on the�tting results.4. A tradeo� between aurayand omputational ost ismade in the �tting proess.5. Relatively high resolution andgood quality fae images areneeded.6. Appropriate initialization ofthe model is needed.
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Chapter 3
Faial Feature Extration
Faial features ontained in a 2.5D san an be extrated at di�erent levels: low level,high level, and semanti level. Low-level features are the basi representation derivedfrom the sans at every point in the image, suh as the urvature, shape index, et.The high-level features are related to the human pereption of a fae, suh as eyeorners and the nose tip. Semanti features are at the abstrat level, suh as genderand ethniity. Features at di�erent levels provide di�erent types of information toanalyze the faial san. We use the low-level features to extrat the high-level featurepoints, whih are then used in the mathing stage. The semanti features are usedfor improving the performane of fae mathing and for speeding up fae retrievalfrom a database. Current sensor tehnology an provide both depth and intensityinformation of the human fae objet; we utilize both modalities to extrat the faialfeatures. 61



3.1 Automati Feature ExtrationIn both 2D and 3D fae reognition systems, alignment (registration) between thequery and the template is neessary [151, 7℄. In general, fae reognition systems in-lude fae detetion, alignment, and reognition. Registration based on feature pointorrespondene is one of the most popular methods [99℄. To make the fae reognitionsystem fully automati, robust faial feature extration is one of the ruial steps.Faial features an be of di�erent types: region [145, 54℄, landmark [173, 159℄,and ontour [52, 174℄. Generally, landmarks provide more aurate and onsistentrepresentation for alignment purposes than region-based features and have lower om-plexity and omputational burden than ontour feature extration. We selet a sub-set of the raniofaial landmarks (or the �duial points), as de�ned in anthropome-try [94, 64℄ (see Fig. 3.1, inluding nose tip, inner eye orners, outside eye orners,and mouth orners. The seleted feature points de�ne a basi faial on�guration. Inaddition to fae alignment, they an be used for traking, sreening (fae retrieval),animation, et. These feature points an also be used to initialize the ative ap-pearane models [52, 174℄ for higher-level feature extration, suh as extrating theontours of the eyes. In the presene of large head pose variations, heuristis used forfrontal sans may not hold, e.g., the nose tip is not the losest point to the sensor asin frontal sans. With the head pose unknown, the on�guration models of the faialfeature points, suh as EGM [173℄ and AAM [52℄, are diÆult to apply without a goodinitialization. Therefore, head pose is also onsidered as a feature to be extrated.Registration in 3D spae ahieves better alignment results to handle head pose62



(a) (b)Figure 3.1: Faial �duial landmarks in anthropometry [94℄. (a) frontal; (b) pro�le.hanges than in 2D spae. In 2D fae reognition systems, the two eye enters areommonly used for alignment [184℄. However, the eye enter regions, espeially withbrown and blak eyes, annot be reliably aptured by the 3D laser-based sanner dueto the low reetivity in the dark region [35℄. We extrat more reliable feature points,suh as eye orners to ahieve the alignment in three-dimensional spae.Intensity images aptured by 2D ameras are loser to the input of the humanvisual system for interpreting faial images. But robust faial feature extration fromintensity images only is still a hallenging problem. Properties derived from the inten-sity, suh as edge and orner responses, are not robust to lighting and pose hanges.The range modality is relatively insensitive to lighting and pose hanges, but is sub-jet to sensor noise. Due to the large intra-lass variability, a single modality may notprovide onsistent feature point loalization aross a large population. Aumulat-ing evidene derived from di�erent modalities has the potential to make the feature63



extration system more robust.A number of approahes have been proposed for feature extration from (near)frontal faial sans [168, 35℄. Wang et al. [168℄ used the point signature [50℄ and thestaked Gabor �lter responses [173℄ to identify 3D and 2D features. Boehnen andRuss [35℄ explored 2D olor information to extrat skin tone regions and identify theeyes and the mouth. The 3D information ontained in the range image was utilizedto ompute the geometry onstraint. However, few of these studies address featureextration in the presene of large pose hanges.We have foused on automatially extrating feature points and estimating thehead pose in the presene of large pose variations. A feature extrator based on thediretional maximum is proposed to estimate the nose tip loation and the pose anglesimultaneously. A nose pro�le model represented by subspaes is used to selet thebest andidates for the nose tip. Assisted by a statistial feature loation model, amultimodal sheme is presented to extrat eye and mouth orners. The extrated fea-tures are used for fae alignment in three-dimensional spae. Utilizing the automatifeature extration module, a fully automati 3D fae reognition system is developedand evaluated.
3.1.1 Feature ExtrationThe overall feature extration proess is shown in Fig. 3.2. Eah 2.5D san provides4 matries (raw data), X(r; ), Y (r; ), Z(r; ), and M(r; ) 1, where X, Y , and Z1r and  are the row and olumn indies, respetively.64



are the spatial and depth oordinates in the units of millimeters and M is the mask,indiating whih point is valid;M(r; ) is 1 if the point p(r; ) is valid and 0 otherwise.(The origin of the mask image is the top-left orner.) The oordinate system diretionsare illustrated in Fig. 3.3.

Figure 3.2: Automati feature extration for 3D fae mathing.

Figure 3.3: Coordinate system diretions of a 2.5D san. The positive diretion ofZ is perpendiular to the image plane and toward the viewer. The san example isfrom Fig. 3.2.
3.1.1.1 Fae SegmentationThe �rst step in a fae reognition system is to extrat the faial area from thebakground. A number of fae detetion algorithms have been developed to extratfaes in 2D intensity images [179℄, from frontal faes [154, 144, 166℄ to multiview65



faes [101, 148℄. However, utilizing the mask M provided in raw data by the 3Dsanner, we explore a simple but e�etive method to extrat a fae area from thebakground. Given a faial san, the invalid points in X, Y , and Z are �ltered out bymatrix M . The faial area is segmented by thresholding the horizontal and vertialintegral projetion urves of M .The fae segmentation result of the faial san in Fig. 3.2 is provided in Fig. 3.4.

Figure 3.4: Segmentation of faial san. (a) Mask image; (b) horizontal integralprojetion of M ; () vertial integral projetion of M ; (d) fae segmentation result.
3.1.1.2 Nose Tip and Pose EstimationThe nose tip is a distintive point of the human fae, espeially in the range map. It isalso insensitive to the faial expression hanges. The pose of a fae san is representedby the angle of rotation with respet to the frontal pose (zero degree). For a frontal66



faial san, the nose tip usually has the largest z value. But, in the presene of largepose hanges, e.g., rotation along the yaw 2 diretion, this heuristi does not hold.However, if the original oordinate system is rotated with the same pose hange asthe non-frontal san, the nose tip will have the largest value along the rotated Z-axis.See Fig. 3.5. In other words, the nose tip still has the largest depth value if projetedonto the orreted pose diretion. We all it the diretional maximum. Sine the nosetip and the pose angle are oupled, we estimate them simultaneously.
Figure 3.5: Diretional maximum of the nose tip. The nose tip will have the largestvalue along the rotated Z-axis.We illustrate the proposed algorithm based on an example with yaw angle hanges.After the raw fae san is entered at its entroid, the nose tip extration and poseestimation algorithm onsists of �ve steps: pose quantization, diretional maximum,pose orretion, nose pro�le extration, and nose pro�le identi�ation.1. Pose quantization. The yaw angle hange ranges from �90 degrees (fullright pro�le) to 90 degrees (full left pro�le) in the X-Z plane. This 180 degree range(Rpose) is quantized into Npose angles with equal angular interval (��). (�� and Nposevalues are 2 degrees and 91, respetively, in our experiments.) See Fig. 3.6.2. Diretional maximum. At eah pose angle �j (j = 1; : : : ; Npose), �nd the2The rotation with respet to the Y -axis. 67



Figure 3.6: Pose angle quantization.point with the maximum projetion value along the orresponding pose diretion asthe nose tip andidate. The (xi; yi; zi) oordinate of eah fae point pi (i = 1; : : : ; N ,where N is the total number of valid fae points) is rotated to the new position(x�ji ; y�ji ; z�ji ) aording to the pose angle �j, alulated as0BBBBBB� x�jiy�jiz�ji
1CCCCCCA = 0BBBBBB� os �j 0 sin �j0 1 0� sin �j 0 os �j

1CCCCCCA
0BBBBBB� xiyizi

1CCCCCCA : (3.1)
The point pk for whih z�jk = max(z�ji ; i = 1; : : : ; N) is used as a nose tip andidatewith the orresponding pose angle �j. By repeating this for every �j, M andidatepairs (nose tip andidate p and assoiated pose angle �) are obtained (see Fig. 3.7).The diretional maximum may our for the same fae point p at multiple �js, M 6Npose. In suh ase, the angle with the largest projetion value is seleted as the poseangle to be assoiated with the point p. In the example of Fig. 3.7, M is 18. Todetermine the best andidate from M pairs, the nose pro�le will be utilized from thepose-orreted fae san. 68



(a) (b)Figure 3.7: Example of diretional maximum. The markers in (a) are the positionsof the diretional maximum with the assoiated pose diretion plotted in (b). Thepose angles of andidates 1 and 2 are 40 and �16 degrees, respetively.3. Pose orretion. For eah andidate pair (p; �), the oordinates (x; y; z) of allthe original fae points are transformed to (x0; y0; z0) so that point p is at the origin,and the fae points are rotated aording to the pose angle � as follows:0BBBBBB� x0y0z0
1CCCCCCA = 0BBBBBB� os � 0 sin �0 1 0� sin � 0 os �

1CCCCCCA
0BBBBBB� x� pxy � pyz � pz

1CCCCCCA : (3.2)
The pose-orreted sans based on andidates 1 and 2 in Fig. 3.7 are shown inFigs. 3.8(a) and (b), respetively.4. Nose pro�le extration. From the pose-orreted sans based on eahandidate (p; �), extrat the nose pro�le at p (the origin of the oordinate systemafter pose orretion), i.e., the intersetion between the faial surfae and the Y -Zplane. Let X 0(r; ), Y 0(r; ), and Z 0(r; ) denote the point oordinate matries after69



(a) (b)Figure 3.8: Pose orreted sans based on (a) andidate 1 and (b) andidate 2 inFig. 3.7.pose orretion. For eah row ri, �nd the point losest to the Y -Z plane, i.e., (ri; i) =argmin(jX 0(ri; )j), resulting in a sequene of point pairs (Y 0(ri; i); Z 0(ri; i)). Tomake all the pro�les omparable, eah pro�le is normalized by entering it at the nosetip andidate and resampling it with equal interval along Y -axis, resulting in a nosepro�le vetor. Linear interpolation is applied for resampling.5. Nose pro�le identi�ation. To identify the nose tip from the andidate pairs(p; �), we apply the subspae analysis on the nose pro�le vetor spae. A number ofnose pro�les from an independent group of subjets are extrated with manuallylabeled nose tip and pose, aligned at the nose tip, and resampled in the same way asdesribed in Step 4, resulting in a training set fVig. These (training) nose pro�les areused to onstrut the nose pro�le subspae based on PCA. A set of eigenvetors f�igare omputed from the sample ovariane matrix S =PKi (Vi � V )(Vi � V )T , whereV = 1KPKi Vi and K is the number of training nose pro�les. The pro�le subspae� = [�1; : : : ;�d℄ is spanned by the d eigenvetors with the largest eigenvalues. Inour experiments, d is seleted by keeping 95% variane ontained in S. Given a test70



Figure 3.9: Top: extrated nose pro�les; middle: normalized and resampled nosepro�le; bottom: extrated pro�les overlaid on the original san. The left (right)olumn is based on andidate 1 (2) in Fig. 3.7.
pro�le vetor V , the distane-from-feature-spae (DFFS) [122℄ is used as the distanemetri, alulated by " = kV � �(�TV )k: (3.3)The nose tip andidates with the smallest DFFS is identi�ed as the nose tip and theassoiated pose angle is determined as the pose estimation result. In the example ofFig. 3.7, andidate 1 has the smallest DFFS among all the andidates.71



3.1.1.3 Feature Loation ModelA statistial model of the faial features is used as a prior onstraint to redue thesearh area for the feature points. The model ontains onstraints (in terms of inter-point distane and geometri relationship) between faial feature points. E�etivelyreduing the searh region not only enhanes the auray of the extration results,but also improves the omputational eÆieny. Based on an independently olletedset of frontal faial sans with manually labeled feature points, the statistial modelis onstruted as the average position of eah feature point assoiated with a 3D ellip-soid; the length of the ellipsoid axis is spanned by 1:5 times the standard deviationsalong the respetive (x, y, and z) diretion.The sans provided by the 3D sensor ontain (x,y,z) oordinates in the worldoordinate system in units of mm. The statistial feature loation model is built inthe physial world oordinate system, so that the sale fator indued by the world-to-image (pixel) mapping is removed from the model. In our experiments, 145 frontalfaial sans are used to onstrut the model shown in Fig. 3.10.
3.1.1.3 Extrating Corners of the Eyes and the MouthGiven the estimated nose tip and the pose angle, the feature point loation modelan be overlaid onto the given san, and the searh region for eah feature point isonstrained. The eye and mouth orners are then determined by utilizing both rangeand intensity modalities of a fae san. 72



Figure 3.10: Feature loation model overlaid on a 3D fae image with nose tip aligned.The red star denotes the average position and the purple ellipsoid spans (x,y,z) di-retions. Sine the nose tip is used to align all the sans, there is no variation at thenose tip.
Shape Index (range)
We derived the loal shape index [58℄ at eah point based on the range map. Theshape index S(p) at point p is de�ned using the maximum (k1) and minimum (k2)loal urvature values (see Eq. (3.4)). The shape index takes a value in the interval[0; 1℄. The orners of the eyes and the mouth are in a up-like shape with low shapeindex values. Figure 3.11 provides nine shapes with the orresponding shape indexvalues. S(p) = 12 � 1� artan k1(p) + k2(p)k1(p)� k2(p) (3.4)
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Figure 3.11: Nine representative shapes on the shape index sale [58℄.Cornerness (intensity)In the intensity map, the orners of the eyes and the mouth show a strong orner-likepattern. We applied the Harris orner detetor [79℄, based on the fat that intensityhanges in a loal neighborhood of a orner point along all the diretions shouldbe large. The Harris orner detetor was demonstrated to have good repeatabilityon images taken under varying onditions [147℄. Consider the Hessian matrix H ofthe image intensity funtion I in a loal neighborhood of point p(x; y). If the twoeigenvalues ofH are large, then a small motion in any diretion will ause a signi�anthange of gray level. This indiates that the point p is a orner. A better variant ofthe orner response funtion is given in [126℄:C(p) = �2I�x2 �2I�y2 � � �2I�x�y�2�2I�x2 + �2I�y2 :The stronger the orner response C(p), the more likely the point p is a orner.74



FusionThe responses obtained from range and intensity maps are integrated. In order toapply the fusion rules, both S(p) and C(p) are normalized using min-max rule in thesearh region for eah feature point. The normalized shape index response S 0(p) atpoint p is omputed as S 0(p) = S(p)�minfSigmaxfSig �minfSig ; (3.5)where fSig is the set of shape index values for eah feature point in the searh region.The same normalization sheme is applied to ornerness response C.The �nal sore F (p) is omputed by integrating sores from the two modalitiesusing the sum rule [93℄ F (p) = (1� S 0(p)) + C 0(p): (3.6)The point with the highest F (p) in eah searh region is identi�ed as the orrespond-ing feature point. If the estimated pose angle indiates that the head pose is notnear-frontal, only the eye and mouth orners in the un-oluded side of the fae areonsidered as valid feature points. Figure 3.12 shows an example of the extratedfeature points.

Figure 3.12: Feature extration results using fusion sheme.75



3.1.2 Rejet OptionIn our proposed sheme, eah obtained feature point has a sore (or distane metri),see Eqs. 3.3 and 3.6, whih an be onsidered as a on�dene measure to robustlyselet the most reliable points for registration and to design a rejet option to make thesystem generate fewer inorret mathes. For example, if the DFFS of an extratednose tip is higher than a threshold, implying insuÆient on�dene to identify thenose tip, then this fae san is rejeted. A high level feature extration diagram isgiven in Fig. 3.13.

Figure 3.13: A high level feature extration diagram.
3.1.3 Automati 3D Fae ReognitionGiven the extrated feature points, a fully automati 3D fae reognition system hasbeen developed, whih mathes stored 3D fae models (or 2.5D fae sans) to 2.5Dtest sans in the presene of large head pose hanges. Using the nose tip position andthe orresponding pose angle along with extrated eye and mouth orners, the pose of76



the test fae san an be normalized up to a rigid transformation, i.e., translation androtation. An iterative losest point (ICP) sheme [30℄ is applied to further improve thealignment results. See details of the surfae mathing algorithm in Chapter 4. Theperformane of ICP algorithm depends on the initial alignment. Sine the nose pro�lesubspae is built on a limited number of training samples, there is a possibility thatthe seond best nose tip andidate may provide better mathing results. Therefore, wekeep the top-K nose tip andidates. The minimum distane among all the obtainedK mathing distanes generated by ICP is hosen as the �nal mathing distane.3.1.4 Experiments and DisussionExperiments were onduted on the MSU-I database (multiview) and the UNDdatabase (frontal only).Experiment on the MSU-I databaseThere are 100 subjets in the MSU-I database with orresponding 100 3D fae modelsstored in the gallery. Only 2.5D sans with the neutral expression were used fortesting to remove the expression fator in evaluating the mathing performane usingautomatially extrated feature points. In total, the test database onsists of 300multiview sans, 200 of whih have the head poses of more than 45 degrees from thefrontal pose along the yaw diretion. Representative 3D models and test sans areshown in Figs. 1.12 and 1.13.Using the manually labeled position as the ground truth, the loalization displae-ment is omputed as the Eulidean distane between the position of the automatially77



extrated feature point and the ground truth position. For easy notation, we intro-due the following terms. NT: nose tip; LE: inner left eye orner; RE: inner right eyeorner; ORE: outside right eye orner; OLE: outside left eye orner; RM: right mouthorner; LM: left mouth orner. Table 3.1 provides the statistis of the loalizationdisplaement on the MSU-I database. Figure 3.14 provides examples of the featureextration results. The large displaement of nose tip loalization is often due tofaial hair.Table 3.1: Statistis of the distane (in 3D) between the automatially extrated andmanually labeled feature points for the MSU-I database. (For the range image usedin the experiments, the pixel distanes in x and y diretions are both s1mm.)Features NT LE RE ORE OLE RM LMMean (mm) 6.4 7.1 9.0 13.6 13.3 6.7 5.2Std (mm) 13.4 9.2 13.1 11.9 10.1 12.9 9.0Median (mm) 4.3 5.3 6.0 12.7 11.7 3.8 3.2

(a) (b) () (d)Figure 3.14: Feature extration results whih lead to orret 3D fae mathes on theMSU database. The number in the top-left orner is the estimated pose angle. Theinner eye orner of () and the outside eye orner of (d) are not onsidered as validfeature points for mathing due to low feature sore F .Fig. 3.15 shows the identi�ation results for mathing 300 multiview test sansto the 100 3D fae models. The identi�ation results using manually labeled fea-ture points are also plotted for omparison. The fully automati system provides an78



identi�ation auray lose to the system using manually labeled feature points bytaking two (or more) feature andidate sets into onsideration.

Figure 3.15: CMC urves of experiments on the MSU database. `Top-K' indiatesthat K feature andidate sets were used for mathing.In the urrent Matlab-based implementation, the omputation time for featureextration is approximately 2 seonds on a Pentium 4 2.8GHz CPU.Experiment on the UND databaseThe UND database ontains 953 faial sans from 277 subjets. Representative faialsans along with automatially extrated feature points are given in Fig.3.16. Ta-ble 3.2 provides the statistis of the loalization displaement on the UND databaseompared with the ground truth positions. If the head pose (near frontal) is provided,a more aurate algorithm an be designed [112℄ and the orresponding performaneis provided in Table 3.3 for referene. Following the FRGC protools, eah pair of953 sans is mathed to ompute a 953� 953 (dis)similarity matrix and generate the79



ROC urves for evaluation. Fig. 3.17 ompares the ROC urves with those obtainedby using manually labeled feature points. We also utilize the DFFS of the extratednose tip as a on�dene measure for rejet purposes. The rejet rate depends on thepre-de�ned threshold. Fig. 3.17 shows the ROC urves when 1% of total test sansare rejeted using the DFFS riteria.Table 3.2: Statistis of the distane (in 3D) between the automatially extrated andmanually labeled feature points for the UND database. (For the range image used inthe experiments, the pixel distanes in x and y diretions are both s1mm.)Features NT LE RE ORE OLE RM LMMean (mm) 8.3 8.2 8.3 9.5 10.3 6.0 6.2Std (mm) 19.4 17.2 17.2 17.1 18.1 16.9 17.9Median (mm) 5.3 5.8 5.4 5.5 7.4 2.9 3.3
Table 3.3: Statistis of the distane (in 3D) between the automatially extratedfeature points and the manually labeled feature points for the UND database giventhe head pose as (near) frontal [112℄.NT LE RE ORE OLE RM LMMean (mm) 5.0 5.7 6.0 7.1 7.9 3.6 3.6Std (mm) 2.4 3.0 3.3 5.9 5.1 3.3 2.9Median (mm) 4.9 5.7 5.6 5.4 7.1 2.9 3.2

Figure 3.16: Examples of feature extration results on the UND database.80



Figure 3.17: ROC urves of experiments on the UND database.3.1.5 SummaryWe have proposed an automati feature extration sheme to loate the nose tipand estimate the head pose, along with other faial feature points using a multimodalsheme to ombine both 3D (range) and 2D (intensity) information in multiview 2.5Dfaial sans. With the estimated pose, the system automatially rejets the featurepoints that are not valid due to self-olusion. The extrated features are used toalign the multiview fae sans with stored 3D fae models (or 2.5D fae sans) toondut surfae mathing. As a result, a fully automati 3D fae reognition systemhas been developed, whih an reognize 2.5D faial sans in the presene of large posehanges. Our automati fae reognition system ahieves an identi�ation auraylose to the system with manually labeled feature points.The proposed algorithm is designed to estimate the nose tip and head pose hangeby angle spae quantization. The omputational ost to handle the entire 3D spae81



inluding three diretions (i.e., yaw, pith, and roll) would be expensive using brutefore searh. Therefore, a more eÆient searh sheme is being pursued. In pratie,given prior knowledge on partiular appliations, the angle sampling spae an belimited to a ertain range, suh as -15 to 15 degrees for (near) frontal deployment. Weare also exploring ways to utilize the feature sores (see Eqs. 3.3 and 3.6) as on�denemeasures to robustly selet the most reliable points for registration or design a rejetoption to make the pratial system generate fewer inorret deisions.
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3.2 Semanti Feature ExtrationIn addition to the landmark feature points, we also extrat the semanti features fromthe range and intensity images of faes.
3.2.1 Ethniity and Gender Identi�ationHuman faes provide demographi information, suh as gender and ethniity. Con-versely, gender and ethniity also play an important role in fae reognition. Di�erentsensing modalities for a human fae provide di�erent ues for gender and ethniityidenti�ation. We exploit the depth (range) image of human faes for ethniity identi-�ation and ombine the registered range and intensity (texture) images of the humanfae to extrat gender and ethniity information.The human fae ontains a variety of information for adaptive soial interationswith people. Humans are able to proess a fae in a variety of ways to ategorizeit by its identity, along with a number of other demographi harateristis, suh asgender, ethniity, and age. Over the past few deades, substantial e�ort has beendevoted in the biology, psyhology, and ognitive sienes areas, to disover how thehuman brain pereives, represents, and remembers faes. Computational models havealso been developed to gain some insight into this problem, utilizing various faialues, suh as surfae shape and intensity (texture).The demographi features are useful to narrow the searh sope in fae retrievalappliations. The identi�ation of ethniity and gender an help a fae reognitionsystem to limit the number of entries to be searhed in a large database, and hene83



improve the retrieval speed and eÆieny. Gender and ethniity are also involved inhuman fae identity reognition. Humans are better at reognizing faes of their ownethniity than faes of other ethni groups [118, 37℄. O'Toole et al. [129℄ have shownthat people ategorize the gender of the faes of their own ethni group more eÆientlythan the faes of other ethni groups. Golby et al. showed that same-rae faes eliitmore ativity in brain regions linked to fae reognition [72℄. They used funtionalmagneti resonane imaging (fMRI) to examine if the same-rae advantage for faeidenti�ation involves the fusiform fae area (FFA), whih is known to be importantfor fae reognition [141℄. O'Toole et al. [128℄ investigated the di�erenes in theway people pereive their own-rae faes versus other-rae faes. They found that thepereived typiality of own-rae faes was based on both global shape information andloal distintive feature markers, whereas the typiality of other-rae faes was relatedmore to the loal distintive features. Jain et al. demonstrated that utilizing gender,ethniity, and other traits an help to improve the identity reognition auray [88℄.Unlike gender, ethni ategories are loosely de�ned. In this paper, we redue theethniity lassi�ation into a simple two-ategory lassi�ation problem, Asian andnon-Asian. These two lasses have relatively distint anthropometri features.Anthropometrial statistis show ethni morphometri di�erenes in the raniofa-ial omplex [64, 63℄. In [64℄, based on arefully de�ned faial landmarks, 25 measure-ments on the human head and fae were taken to examine three raial groups: NorthAmerian Cauasian (103 subjets), Afrian-Amerian (100 subjets), and Asiansrepresented by Singapore Chinese (60 subjets). This study showed di�erenes inthese three groups in many aspets. For example, the Asian group had the widest84



fae; the main harateristis of the orbits of the Asian group were the large interan-thal width; in Asian group, the soft nose was less protruding and wider. Enlow [63℄also onduted researh on the strutural basis for ethni variations in faial form.He demonstrated a lose relationship between the 3D shape of the human fae andethniity. O'Toole et al.'s study [130℄ showed that 3D faial sans have the potentialto provide a better auray for gender lassi�ation than 2D intensity image.Intensity, i.e., faial image aptured by a regular CCD amera, is one of themost widely used modality for gender and ethniity lassi�ation. Compared withethniity identi�ation, the gender lassi�ation has reeived more attention [71, 78,123℄. Gutta et al. [78℄ proposed a hybrid lassi�er based on RBF networks andindutive deision trees for lassi�ation of gender and ethni origin. Moghaddam andYang [123℄ applied support vetor mahines on fae images for gender identi�ation.Shakhnarovih et al. [150℄ used a boosted lassi�er for extration of demographiinformation, inluding gender and ethniity. In their work, two ategories of ethniityare de�ned, Asian and non-Asian. Lu and Jain [109℄ presented a multisale shemewith linear disriminant analysis to distinguish between Asian and non-Asian faes.Davis et al. [56℄ exploited the walking movement (gait) for gender identi�ation. Onlya few studies have investigated multiple modalities, for example, intensity and rangeimages for gender and ethniity lassi�ation. Walavalkar et al. [167℄ utilized audioand visual ues for gender identi�ation.As mentioned earlier, ommerial 3D sensors (e.g., Minolta series [13℄) now providenot only the range data, but also the registered intensity information (see Fig. 1.8for an example of a faial san). Unlike previous work on intensity-based ethniity85



identi�ation, we explore the surfae shape (range) of the human fae for determiningethniity. 3D surfae aptures the raniofaial struture, whih is losely relatedto ethniity. Furthermore, sine the identi�ation from eah modality an provideon�dene of the assigned lass membership to eah test sample, the �nal deisionmay be enhaned by integrating the on�dene values from di�erent ues. Kittler [93℄provides a theoretial framework for the ombination at the deision level. Manypratial appliations of ombining multiple modalities have been developed. Brunelliand Falavigna [40℄ presented a person identi�ation system by ombining outputs fromlassi�ers based on audio and visual ues. Hong and Jain [84℄ designed a deisionfusion sheme to ombine fae and �ngerprint for person identi�ation.We address the problem of gender and ethniity identi�ation using two di�erentfaial modalities, range and intensity. Beause the preise faial landmark loalizationis still an open problem due to the omplex faial struture in the real-world environ-ment, the anthropometrial measurements based lassi�ation sheme is not applied.Instead, we explore the appearane-based sheme [162, 27℄, whih has demonstratedits power in image-based faial identity reognition. One of the important fatorsa�eting the auray of the appearane-based reognition sheme is the alignmentof samples [151℄. In our senario, di�erent sans are aligned in the three-dimensionalspae based on the range modality, whih provides some tolerane to the head poseand lighting hanges. Sine the range and intensity images are registered by the 3Dsensor, the intensity images are also aligned as a onsequene of the range imagealignment. Support vetor mahine is applied for identi�ation on eah individualmodality. The simple sum rule is used as the integration strategy to make the �-86



nal identi�ation deision. The integration strategy is designed at the deision level,utilizing the mathing sores of the lassi�ation results [175℄ (the output of eahlassi�er is a subset of labels along with a on�dene, alled the mathing sore).3.2.2 MethodologyThe system arhiteture is illustrated in Fig. 3.18. Range images are normalized in 3Dspae, and intensity images are normalized onsequently. Data within a ertain regionare ropped from the normalized range and intensity images. Two SVMs lassify theropped range data and the intensity data, separately. The lassi�ation results areintegrated to ahieve the �nal deision.

Figure 3.18: System Diagram for gender and ethniity identi�ation.NormalizationTo apply the appearane-based sheme, the raw sans are required to be aligned[151℄: the raw sans are translated, saled, and rotated so that the oordinates of thereferene points are aligned. 87



The sans obtained from the 3D sensor are a set of points S = f(x; y; z)g. For thepurpose of normalization and evaluating the proposed approah without introduingfeature point loalization errors, we manually speify 6 points in the san: the insideand the outside orners of the left eye, El;i and El;o, the inside and the outside ornersof the right eye, Er;i and Er;o, the nose tip N , and the hin point C. We use El;i;xand El;i;y to represent the x and y value of El;i, and Er;i;x and Er;i;y to represent the xand y value of Er;i. After rotation, translation, and saling, the points are normalizedso that the enters of the left and the right eyes (midpoints of the inside and outsideeye orners) are loated respetively at (100; 0; 0) and (�100; 0; 0), and the plane thatpasses the enters of eyes and the hin point, is perpendiular to the z-axis. Thistransformation is de�ned as:
0� x0y0z0 1A = s �R �0� xyz 1A +0� t1t2t3 1A ; (3.7)where � t1 t2 t3 � = �(�!E l;i +�!E l;o +�!E r;i +�!E r;o)=4;s = 400=k�!E l;i +�!E l;o ��!E r;i ��!E r;ok;R = Mz �Mx �My;
Mz = 0� os  sin  0� sin  os  00 0 1 1A ;88



Mx = 0� 1 0 00 os� sin�0 � sin� os� 1A ;
My = 0� os � 0 � sin �0 1 0sin � 0 os � 1A ;
� = � artan(y0=qx20 + z20);� = artan(x0=z0); = artan(El;i;y �Er;i;yEl;i;x �Er;i;x );� x0 y0 z0 � = (�!El;i ��!C )� (�!Er;i ��!C ):Figure 3.19 shows the frontal and pro�le views of a fae san before and afternormalization.3D Feature Vetor ConstrutionTo avoid the e�et of hairstyle and other faial aessories, a lose faial san roppingsheme is applied. Given a normalized 3D fae data set C, x and y oordinates of aretangular area R to be ropped, and the numbers of rows and olumns of the gridin the retangle R, m and n, we rop the fae areas and onstrut feature vetors asfollows:(1). Build a grid G. The grid G is in a plane parallel to the x-y plane. It has m89
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(d)Figure 3.19: San normalization. (a) Frontal view before normalization. (b) Pro�leview before normalization. () Frontal view after normalization. (d) Pro�le view afternormalization.rows and n olumns. The borders of G are set to be the retangle R. A grid G isshown in Fig. 3.20.(2). Build the m�n projetion matries XM , YM , ZM . The elements XM(i; j),YM(i; j) and ZM(i; j), i = 1; � � � ; m, j = 1; � � � ; n, orrespond to the grid nodeG(i; j). Denote the set of points inside G(i; j) as C 0, where C 0 = f(x; y; z)j(x; y; z) 2

Figure 3.20: Cropping fae areas for onstrution of feature vetors. A 10� 8 grid isoverlaid on the faial san for demonstration.90



C; and x; y are inside G(i; j)g. If C 0 is empty, the orresponding element is labeledas a hole (see Fig. 3.21). Otherwise, the value of eah grid is omputed as follows:XM(i; j) = 1jC 0j Xfor all (x;y;z)2C0 x;YM(i; j) = 1jC 0j Xfor all (x;y;z)2C0 y;ZM(i; j) = 1jC 0j Xfor all (x;y;z)2C0 z;where jC 0j is the number of elements in C 0.
Figure 3.21: Examples of the holes (shown as white pathes) after 3D normalization.(3). Interpolation. After the 3D rotation, the oluded points in the original sanause holes in the normalized san. The holes in XM , YM , and ZM are reoveredby interpolating the nearest neighbors as shown in Fig. 3.22.

Figure 3.22: The holes are �lled by interpolation.(4). Vetor formation. There are two ways to onstrut the feature vetor. One91



is utilizing all normalized X, Y , and Z oordinates, the other one is using only thenormalized Z (depth), beause after normalization most of the di�erenes betweensans are ontained in Z. We adopt the Z only representation for a more ompatrepresentation. The olumns in matries ZM are onatenated to generate the vetorV of length m� n, whih is used by the SVM lassi�ers for identi�ation.Identi�ation and FusionThe gender and ethniity identi�ation using individual modalities are formulated asa two-lass lassi�ation problem. In the appearane-based sheme, Support VetorMahines have provided high gender lassi�ation auray [123℄. We also use SVMsin our experiments for both ethniity and gender lassi�ations. Instead of mathingsores, the posterior probabilities are extrated from the SVMs [140℄.The ombination of range and intensity an be onduted at two levels, the featurelevel and the deision level. The latter has more generality, when lassi�ers havephysially di�erent types of features. Kittler [93℄ provides a theoretial frameworkfor ombining various lassi�ers at the deision level. The strategy we used in ourexperiments is the sum rule.For gender lassi�ation, the fusion proess is formulated as:p(malejs) = (p(malejsrange) + p(malejsintensity))=2; (3.8)p(femalejs) = (p(femalejsrange) + p(femalejsintensity))=2; (3.9)where s is the subjet to be lassi�ed, srange and sintensity are, respetively, the range92



and the intensity maps of the subjet, p(malejsrange) and p(femalejsrange) are theposterior probabilities provided by the SVM that uses range data for gender lassi-�ation, and p(malejsintensity) and p(femalejsintensity) are the posterior probabilitiesprovided by the SVM that uses intensity data for gender lassi�ation. The �naldeision is made by omparing p(malejs) and p(femalejs). The same fusion shemeis applied to the ethniity identi�ation.3.2.3 Experiments and DisussionA mixture of two frontal 3D fae databases is used for evaluating the proposedshemes. One is the UND database, omposed of 944 sans from 276 subjets. Theorresponding demographi information is shown in Table 3.4. Representative faeimages are given in Fig. 1.16. To inrease the size of the database (hene the om-plexity of the identi�ation), the frontal images of the MSU-I database (denoted asMSU-I-F), ontaining 296 frontal sans of 100 subjets, is added to the UND database.Table 3.5 gives the demographi information of the MSU-I-F database. All the ex-periments are onduted on the ombined database of UND and MSU-I-F databases,whose demographi information is summarized in Table 3.6.Table 3.4: Number of subjets and sans (given in parenthesis) in the UND databasein eah ategory. Non-Asian Asian SubtotalFemale 86 (295) 27 (92) 113 (387)Male 124 (411) 39 (146) 163 (557)Subtotal 210 (706) 66 (238) 276 (944)For ethniity identi�ation, a 10-fold ross-validation is onduted. Eah time we93



Table 3.5: Number of subjets and sans (given in parenthesis) in the MSU-I-Fdatabase in eah ategory. Non-Asian Asian SubtotalFemale 20 (60) 6 (18) 26 (78)Male 52 (152) 22 (66) 74 (218)Subtotal 72 (212) 28 (84) 100 (296)Table 3.6: Number of subjets and sans (given in parenthesis) in the ombined UNDand MSU-I-F database in eah ategory.Non-Asian Asian SubtotalFemale 106 (255) 33 (110) 139 (465)Male 176 (563) 61 (212) 237 (775)Subtotal 282 (918) 94 (322) 376 (1240)use 9 folds as the training set and the remaining fold as the test set. Sans from thesame subjet are grouped into the same set to ensure that the ethniity lassi�ationresults are not a�eted by the similarity between the testing and the training datain terms of the identity. The mean and the standard deviation of the mathing errorrates from these 10 experiments are reported. The same sheme is applied for genderidenti�ation.The ethniity and gender identi�ation performane is provided in Tables 3.7 and3.8.Table 3.7: Ethniity identi�ation performane. The average and standard deviationof the error rates using 10-fold ross-validation are reported.Non-Asian Asian OverallRange 2:7%� 0:028 6:7%� 0:052 3:8%� 0:024Intensity 2:1%� 0:027 5:9%� 0:051 3:2%� 0:029Range + Intensity 0:7%� 0:010 5:5%� 0:039 2:0%� 0:016
Figures 3.23 and 3.24 show the examples of the ethniity lassi�ation results and94



Table 3.8: Gender identi�ation performane. The average and standard deviationof the error rates using 10-fold ross-validation are reported.Female Male OverallRange 24:5%� 0:101 9:0%� 0:030 14:6%� 0:044Intensity 19:2%� 0:123 11:3%� 0:066 14:0%� 0:047Range + Intensity 17:0%� 0:093 4:4%� 0:032 9:0%� 0:030
(a) (b) () (d)Figure 3.23: Results of ethniity lassi�ation. (a) and (b) are orretly lassi�edbefore and after fusion. () is not orretly lassi�ed using range information, butorretly lassi�ed after fusion. (d) is not orretly lassi�ed using intensity informa-tion, but orretly lassi�ed after fusion.the gender lassi�ation results, respetively.For both ethniity and gender identi�ations, the experimental results show that3D (range) information provides ompetitive results to the 2D (intensity) modal-ity. It is demonstrated that the integration of range and intensity outperforms eahindividual modality.3D sensors in the urrent market are not as mature as 2D sensors. Typial prob-
(a) (b) () (d)Figure 3.24: Results of gender lassi�ation. (a) and (b) are orretly lassi�ed beforeand after fusion. () is not orretly lassi�ed using range information, but orretlylassi�ed after fusion. (d) is not orretly lassi�ed using intensity information, butorretly lassi�ed after fusion. 95



lems with range images inlude missing data near dark regions (e.g., eye regions),spikes at the region with high reetivity, and so on. The interpolation and smooth-ing results are the approximations. These fators may explain the lower gender andethniity identi�ation performane using range images.
3.3 SummaryWe have proposed a multimodal algorithm to automatially segment faes and extratfeature points from frontal faial sans, whih an be used for san normalization andregistration in 3D fae mathing systems (see Chapter 4). Besides the landmarkfeature points, we utilize both range and intensity modalities to identify gender andethniity from a faial san, whih is formulated as a lassi�ation problem underthe appearane-based analysis framework. Gender and ethniity an be utilized toimprove the fae reognition auray [88℄.
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Chapter 4
3D Fae Mathing
A number of approahes have been proposed for fae reognition based on range(depth) images, but most of them have foused on only frontal view reognition.Further, most of these methods only use the shape (geometry) information presentin the fae. However, the intensity/texture/appearane image of the fae also playsan important role in fae reognition proess, espeially when the shapes of two faesin the database are similar. Faial appearane in 2D images is the projetion of a3D fae, ontaining the texture information of the fae. Table 4.1 lists a number offators that an hange the faial geometry and appearane. Although the 3D faialshape will not hange due to pose and lighting variations, it is a�eted by expressionhanges and the aging fator. Therefore, using 3D shape information alone an notfully handle all the variations that a fae reognition system enounters.We have designed a fae reognition system [115℄, whih integrates surfae (shape)mathing and onstrained appearane-based methods for multi-view fae mathing(see Fig. 4.1) and an tolerate some expression variations. The surfae mathing97



Table 4.1: Relationship between fae variation fators and faial properties (shapeand appearane).Fators Shape (3D) Appearane (2D)Pose No YesLighting No YesExpression Yes YesAging Yes YesMakeup No YesFaial aessories Yes Yes
utilizes the 3D shape information, while the appearane-based methods explore theintensity lues. Integrating these two di�erent modalities (shape and intensity) mayprovide a more robust fae reognition system to overome the limitations enounteredin the traditional 2D image-based fae reognition system under pose and lightinghanges. The appearane-based stage is onstrained to a small andidate list fromthe database generated by the surfae mathing stage, whih redues the lassi�ationomplexity. In the onventional appearane-based algorithms, all the subjets in thetraining database are used for subspae analysis and onstrution. When the numberof subjets in the database is large, this leads to a problem due to potentially largeinter-lass similarity. In our sheme, a 3D fae model is utilized to synthesize trainingsamples with faial appearane variations, whih are used for disriminant subspaeanalysis. The mathing distanes obtained by the two mathing omponents areombined to make the �nal deision. Further, a hierarhial mathing struture isdesigned to improve the system performane in terms of both auray and eÆieny.In setion 4.1, we will present our 3D fae model onstrution proedure. Se-tion 4.2 desribes the surfae mathing sheme. The onstrained appearane-based98



Figure 4.1: Mathing sheme.mathing omponent is proposed in setion 4.3. The integration sheme is presentedin setion 4.4. Setion 4.5 provides our experimental proedure for testing the systemand the mathing results.
4.1 3D Model ConstrutionSine eah 2.5D san obtained by the Minolta Vivid910 sanner used in our experi-ments an only over a partial view of the full 3D fae, the 3D fae model for eahsubjet is onstruted by stithing several 2.5D sans obtained from di�erent viewpoints that over the full faial area. In our urrent setup, 5 sans are used 1, i.e.,frontal, left 30 degrees, left 60 degrees, right 30 degrees, and right 60 degrees. The2.5D sans are �rst registered. Sine the sans have some overlapped portions, theyare then merged in order to reate a single surfae model. Basi lean-up proe-1It is possible to use fewer sans to onstrut the model as long as they over the full view andenough details of the fae objet and ontain overlaps between neighboring sans for registration.99



dures are applied to �ll holes, smooth the surfae, and remove noisy points assoiatedwith hair and lothing. The end result is a smooth full view texture mapped meshmodel of the fae for eah of our subjets. All the tehniques used in the model on-strution proedures are well studied in the omputer graphis and vision researhommunities [161, 59, 102, 157℄. For easy manipulation, a ommerial software alledGeomagi Studio [9℄ is used for our model onstrution. Figure 4.2 demonstrates the3D fae model onstrution proedure. The resulting model is highly dense, ontain-ing s27,000 verties and s50,000 polygons. The data representation for the 3D faemodel is shown in Fig. 4.3. It an be used to render new realisti faial appearanewith pose and illumination variations, see Fig. 4.4 for examples.

Figure 4.2: 3D model onstrution.
4.2 Surfae MathingIn order to math two faial surfaes (a test san and a 3D model), we follow theoarse-to-�ne strategy shown in Fig. 4.5.100



Figure 4.3: Data representation for 3D fae models.
Figure 4.4: Appearane synthesis of a 3D model with pose and lighting variations.4.2.1 Coarse AlignmentWe applied a feature point based alignment for oarse registration due to its simpli-ity and eÆieny. A minimum of three orresponding points is needed in order toalulate the rigid transformation between two sets of 3D points. One the three or-responding points (feature points) are extrated (see Chapter 3), the transformationis made using a ombination of rigid transformation matries following the guidelinesdesribed in [170℄. This is done by a least squares �tting between the triangles formedfrom the two sets of three feature points. The �rst set of three feature points ~a istransformed into the same loation as the seond set of feature points ~p (see Fig. 4.6).101



(a) (b) () (d)Figure 4.5: Surfae mathing streamline. The alignment results are shown by the 3Dmodel overlaid on the wire-frame of the test san.The rigid transformation is omposed of a series of simple transformations:TT = TCP �RtP �� �RA � TC�a ; (4.1)whereTT : Total Transformation from set ~a to set ~p.TC�a: Translate the enter to the origin.RA: Rotate into the xy-plane.�: Optimum rotation to align two sets of verties within the xy-plane.RtP : Rotate out of the xy-plane into the oordinate system of ~p.TCP : Translate to have the same entroid as ~p.A ombination of the eye orners and the nose tip is seleted as our three featurepoints. See Fig. 4.7 for examples. These points are seleted beause they are relativelyeasy to loate in the range image and they do not hange between di�erent sans of102



Figure 4.6: Rigid transformation between two sets of three orresponding points.(a) The original set of points (the red triangle is onstruted from the ~a points, theblue triangle is onstruted from the ~p points); (b) the set of points after the rigidtransformation of points ~a onto points ~p.di�erent people aross di�erent poses. See Fig. 4.5() for an example of a 2.5D faesan oarsely aligned to a 3D fae mesh model.
Figure 4.7: Feature points used for oarse alignment at di�erent poses: left-pro�le,frontal, and right-pro�le.
4.2.2 Fine AlignmentThe oarse alignment an only provide an approximation to the true registration. Butfor the purpose of surfae mathing, the two sets of 3D points (one from 2.5D san andone from 3D model) should be further tuned for �ne registration. Beause both thesan and model ontain highly dense data, it is possible to �nd a good approximationof the losest points in eah dataset, whih is the basis of the Iterative Closest Point103



(ICP) framework [30, 48, 181℄. The basi Iterative Closest Point sheme is as follows:1. Selet ontrol points in one point set2. Find the losest points in the other point set (orrespondene)3. Calulate the optimal transformation between the two sets based on the urrentorrespondene4. Transform the points; repeat step 2, until onvergene.Starting with an initial estimate of the rigid transformation derived in the oarsealignment stage, ICP iteratively updates the transformation parameters by alternatelyhoosing orresponding (ontrol) points in the 3D model and the 2.5D san and�nding the best translation and rotation that minimizes an error funtion based onthe distane between them.Besl and MKay [30℄ used point-to-point distane for whih a losed-form solutionan be obtained when alulating the transformation matrix during eah iteration.The point-to-plane distane used in [48℄ makes the ICP algorithm less suseptibleto the outliers (suh as the spikes aused by the 3D sensor) and loal minima thanthe point-to-point metri [68℄. It also needs a fewer number of iterations to onverge.But point-to-plane distane based ICP has to solve a non-linear optimization problemusing numerial algorithms. Sine both the 2.5D san and 3D model are representedas a dense mesh, the normal for eah vertex an be alulated, whih makes theomputation of point-to-plane distane feasible. We integrate Besl's and Chen's ICPalgorithms [30, 48℄ in a zigzag running style, and all it the hybrid ICP algorithm.104



Eah iteration of surfae registration onsists of two steps, (i) using Besl's sheme toompute an estimation of the alignment, and (ii) using Chen's sheme for a re�nement.Based on the extrated feature points, the sampling retangles of the ontrolpoints an be determined as shown in Fig. 4.8. A single retangle is determined forfrontal ases where both outside orners of the eyes are available. If one of the outsideorners of the eyes is oluded due to large pose hanges, the inside orner is usedinstead. Four small retangles are then determined; these over the eyes, nose, andpart of the heek to sample the ontrol points. In order to minimize the number ofoutliers, regions were seleted within the fae sans that do not vary greatly betweenthe sans. Examples are given in Fig. 4.9. Regions around the eyes and nose wereseleted beause these regions are less malleable to expression hanges than otherparts of the fae (suh as the region around the mouth, whih hanges greatly withfaial expression). The number of ontrol points is determined as a tradeo� betweenthe auray and omputational ost. The �ne alignment results are demonstratedin Fig. 4.5(d). Other non-uniform ontrol point seletion shemes, suh as urvature-based sampling shemes, an also be applied.
4.2.3 Surfae Mathing DistaneThe root mean square distane minimized by the ICP algorithm is used as the primarymathing distane between a fae san and the 3D model. We use the point-to-planedistane metri MDICP de�ned in [48℄. 105



(a)

(b)Figure 4.8: Automati ontrol point seletion sheme based on three feature points forfrontal (a) and pro�le (b) sans. The numbers (m� n) in eah bounding box denotethe resolution of the sampling grid. For example, there are 25 = 5� 5 ontrol pointssampled in the upper-left bounding box in (b). In (b), the value of Y is determined bythe farthest valid points from the nose in the orresponding horizontal diretion. Thevalid points are indiated in the mask image provided by the sensor (see Fig. 3.4()for an example). In total, 96 ontrol points are seleted in eah frontal san, and 98in eah pro�le san. 106



Figure 4.9: Examples of automati ontrol point seletion for a left pro�le, frontal,and right pro�le sans. MDICP =vuut 1N NXi=1 d2(	(pi); Si); (4.2)where d(�; �) is the point-to-plane metri; 	(�) is the rigid transformation applied toeah ontrol point pi in the 2.5D test san; Si is the orresponding tangent plane inthe 3D model w.r.t. pi; N is the number of ontrol points. The smaller the value ofMDICP , the better the surfae mathing.
4.3 Constrained Appearane-based MathingIn addition to the 3D shape, texture ontained in the o-registered 2D intensity imageis also an important ue for fae reognition. There are a number of appearane-basedalgorithms for image-based fae reognition [162, 27, 24℄. A typial appearane-basedmethod analyzes the intensity orrelation between all the pixels in the image, whihis a global harateristis of the fae image. The alignment of the training andtest images is important to the mathing auray of the appearane-based algo-rithms [151, 138℄. The ICP registration proedure aligns the 2.5D test san andthe 3D model, so the pose is already normalized. By synthesizing new appearane(image variation) from the onstruted 3D model, additional training samples of the107



subjets an be obtained. This allows us to use the linear disriminant analysis(LDA) for appearane-based mathing [27, 119℄. Instead of using all the subjets inthe database, the LDA is applied only to a small list of andidates, whih is gener-ated dynamially by the surfae mathing stage for eah test san. We all this asthe onstrained appearane-based mathing in our framework.
4.3.1 Appearane SynthesisEah subjet is represented by a 3D fae model with neutral expression in thedatabase. In order to apply the subspae analysis based on the faial appearane,a large number of training samples, whih are aligned with the test sample, areneeded [27, 119℄. After the surfae registration (pose normalization), the 3D modelgets aligned with the test san. Sine the dense 3D model is available, it is easy tosynthesize new appearane with lighting variations. As the alignment may not beperfet, small pose variations are also synthesized in our framework.Synthesis of pose variations is straightforward by simply rotating and shiftingthe 3D model. Lighting is simulated by adding a virtual light soure around thereonstruted fae surfae as illustrated in Fig. 4.10. The position of the light soureis ontrolled by the distane R between the light soure and the origin of the modeloordinate system and by the azimuth and elevation angles. Di�erent illuminationvariations are generated by hanging the position of the light soure. Phong shadingtehnique is employed to render lighting e�ets on the fae surfae [66℄.Based on the feature points (eye orners and the nose tip) and registration results,108



Figure 4.10: Lighting simulation. The light bulb denotes the simulated light soure.
the ritial area in the fae is determined, whih is used to automatially rop thesynthesized images. Examples of the ropped synthesized images for one subjet areshown in Fig. 4.11. These images are used in the following disriminant subspaeanalysis.We applied linear disriminant analysis (see Se. 2.1.1 for details) for appearane-based mathing. The projetion oeÆients in LDA (Y ) are used as the featurerepresentation of eah fae image. Given two projetion oeÆient vetors Y1 andY2, the mathing sore between them is alulated as the osine value of the anglebetween their oeÆient vetors, i.e.,MSLDA = hY1; Y2ikY1k � kY2k ; (4.3)109



Figure 4.11: Cropped synthesized training samples for disriminant subspae analysis.(a) test (san) image; (b) image rendered by the 3D model after pose normalization(alignment); (-f) images synthesized by the 3D model with shift displaement inhorizontal and vertial diretions; (g-j) images synthesized by the 3D model withlighting hanges. Only gray sale is used for appearane-based analysis. Beause thepose is normalized and feature points are known, the ropping is done automatially.where h�i denotes the dot-produt.4.3.2 Dynami Candidate SeletionIn the onventional LDA, all the subjets in the database (gallery) are used for sub-spae onstrution. As the number of subjets in the database inreases, the om-plexity of the reognition problem inreases due to large intra-lass variations andlarge inter-lass similarities, resulting in a low reognition auray. However, if the110



number of subjets in the gallery is small, the appearane-based method an providea relatively good performane. For eah individual test san, the gallery used forsubspae analysis and mathing is dynamially generated based on the output of thesurfae mathing. Only a small number of subjets in the database are seleted forthe appearane-based mathing, reduing the number of mathes for the test san. Inour experiments, the top M (M = 30) andidates in the sorted mathing list basedon surfae mathing are seleted (rank-based seletion) for onstrained appearanebased mathing.
4.4 Integration of Range and Intensity4.4.1 Weighted Sum RuleSurfae mathing and appearane-based mathing provide two sores based on di�er-ent ues. Sine these two mathers explore di�erent properties of the fae, namely,shape and texture, they are not highly orrelated. A ombination of these two math-ers has the potential to outperform eah individual mather [93℄. We applied theweighted sum rule to integrate the surfae mathing and appearane-based mathingdistanes as follows: MDomb =MDICP + � �MDLDA; (4.4)where MDLDA = (1�MSLDA)=2, and MSLDA is the mathing sore generated by theappearane-based mathing omponent (we onvert the mathing sore (similarity)111



to mathing distane (dissimilarity)). The weighting parameter � balanes the twomathing omponents, whih an be set beforehand or learned from an independentvalidation dataset.
4.4.2 Feature Vetor ConatenationThe sum rule based fusion is performed at the deision level. At the feature level,feature vetors from di�erent modalities (range and intensity) an be onatenatedinto a ombined feature vetor. Disriminant analysis is then onduted on the newombined feature vetor for lassi�ation.
4.4.3 Hierarhial MathingThe surfae mathing in Setion 4.2 foused on the region of the fae (near eyes andnose) that is more robust to deformation due to expression hanges. We all it the`loal' mathing sheme. But to solve the ambiguity between shapes, a larger fa-ial area may provide more evidene, espeially for the faes with the same neutralexpression as that of the 3D models stored in our database. Therefore, a hierarhi-al mathing framework is designed, where a `global' surfae mathing omponentis introdued, whih also uses the same ICP algorithm but di�erent ontrol pointseletion shemes. Figure 4.12 illustrates our hierarhial system and Fig. 4.13 showsthe global ontrol point sampling sheme. Only those test sans for whih the sur-fae mathing omponent does not have suÆient evidene to make the deision, arefed to the ombination stage. This asading framework also provides the potential112



to redue the total omputation ost. In our urrent implementation, if the shapemathing distane (MDICP in Eq. (4.2)) is below a pre-de�ned threshold Æ, then it isonsidered as a good surfae mathing. Sine the surfae mathing distane is mea-sured by the root mean square distane among the ontrol points, it has a physialmeaning. We hoose Æ equal to one millimeter. The value of Æ depends on the noiselevel in the sans and the performane of the automati anhor point loator for theoarse surfae mathing. The experimental results demonstrated that this hierarhi-al mathing framework improves the system performane in terms of both aurayand eÆieny [108℄.

Figure 4.12: Hierarhial mathing design. The full system using surfae math-ing only is omposed of (I), (II), and (III). The full system ombining surfae andappearane-based mathings onsists of (I), (II), and (IV).
113



Figure 4.13: Global ontrol point sampling based on three anhor points, for leftpro�le, frontal, and right pro�le sans. A 8� 12 sampling grid is used, resulting in atotal of 96 ontrol points for eah san.4.5 Experiments and Disussion
4.5.1 Data
Currently, there is no publily available multi-view fae san database, along withexpression variations. We use the MSU-I database in the experiments. The USFdatabase is ombined with the MSU-I database to inrease the number of 3D gallerymodels. In total, there are 598 2.5D test sans, whose distribution is provided inTable 1.1, and 3D fae models of 200 di�erent subjets in the gallery. Representativetest sans were shown in Fig. 1.13. Examples of 3D models were provided in Figs. 1.12and 1.15.We applied the three ICP algorithms, Besl's [30℄, Chen's [48℄, and our hybrid ICP,on the entire database. The total number of surfae mathing errors among the 598test sans were 98 (Besl's), 88 (Chen's), and 85 (hybrid). Based on these results, wedeided to use the hybrid ICP algorithm in the following experiments.114



4.5.2 Mathing PerformaneBased on the three feature points, ontrol points are automatially sampled for theICP registration. Figure 4.9 showed the ontrol point sampling sheme. Examples ofthe registration results were given in Figs. 4.5() and 4.5(d). The surfae mathingwas ahieved using the distane sore produed by the ICP registration. Our mathingproess was onduted in the identi�ation mode. Eah san was mathed to all the3D models stored in the gallery.Conventional appearane-based algorithms su�er from large pose hanges [184, 7℄,and their performane depends on the quality of the alignment. In our math-ing sheme, after the surfae mathing, the test san and 3D models are alreadyaligned, whih permits the use of appearane-based algorithms. In the onstrainedappearane-based mathing stage, although the number of synthesized samples, whihare used as the training samples for the appearane-based methods, an be arbitrarylarge in priniple, in pratie, we only generate a small number of samples beausethis synthesis proess and the subsequent LDA need to be onduted online. In ourexperiments, 4 images with di�erent shift displaements and 4 images with di�erentlighting onditions were synthesized. Hene, 9 images for eah model are used for theLDA alulation (8 synthesized versions plus the original one, see Figs. 4.11(b)-(j) foran example).The LDA is only applied to the �rst 30 mathed andidates based on the surfaemathing distane. By applying surfae mathing and onstrained appearane-basedsheme separately to the dataset, we found that the sets of mislassi�ed test sans115



are signi�antly di�erent for these two mathing shemes, implying that these twoshemes are not highly orrelated. Therefore, a suitable fusion of these two shemeshas the potential to lead to an improvement in the mathing auray.We �rst study the mathing omponent using manually loated feature pointsto eliminate feature extration errors. The mathing results are summarized in Ta-ble 4.2. Experimental results of the fully automati system using the automatifeature extrator desribed in Chapter 3 are provided separately in Se. 4.5.4.1. Frontal sans with neutral expression.In this ategory, all the test sans are frontal, with neutral expression, whihis similar to the expression ontained in the 3D models. The surfae mathingahieves 98% auray on these test sans. The onstrained appearane-basedmethod also ahieves the highest auray (86%) among all the ategories listedin Table 4.2, due to the good alignment results and very little hange in theexpression. A ombination of surfae mathing and appearane-based mathinggives an auray of 99%.2. Pro�le Sans with Neutral Expression.Although both surfae mathing and appearane-based mathing omponentsperform a little bit worse than the frontal ase, we still attain an auray of96% for the surfae mathing and 98% for the ombination sheme. The lowerperformane here ompared to the frontal ases is due to the smaller overlapbetween the 2.5D test san and 3D models.3. Sans with Smiling Expression. 116



Regardless of pose variations, expression hanges, whih alter the faial geomet-ri shape, derease the surfae mathing auray drastially. This is mainlybeause our ICP based surfae mathing is foused on extrating the rigid trans-formation parameters, while the faial expression hange is a typial non-rigidtransformation. Although the appearane-based method an handle the faialexpression hanges to some extent, its performane depends on the quality ofthe alignment (pose normalization), whih is provided by the surfae mathingomponent. Still, surfae mathing and appearane-based mathing augmenteah other and their ombination leads to 81% auray.The expression hange a�ets both sides of the fae. Aording to our urrentontrol point sampling sheme, the frontal ase has a larger faial area whoseshape is hanged more by the expression than the pro�le views. This ould beone reason for a lower surfae mathing auray in the frontal smiling ategoryompared to the pro�le smiling test sans.Table 4.2: Rank-one mathing auray for di�erent ategories of test sans. Thetotal number of test sans in eah ategory is listed in Table 1.1. The number oferrors is provided in the parenthesis. The weights for the surfae mathing and theonstrained appearane mathing omponents are set to be equal (i.e., � = 1 inEq. 4.4).Test san ategory Surfae mathing Constrained LDA Surfae mathing +onstrained LDAFrontal & Neutral 98% (2) 86% (14) 99% (1)Pro�le & Neutral 96% (7) 84% (35) 98% (5)Frontal & Smiling 68% (31) 71% (28) 77% (23)Pro�le & Smiling 76% (45) 69% (59) 84% (31)In all the three ategories of the test sans, the ombination of surfae mathing117



and appearane-based mathing outperforms eah individual mathing omponent.4.5.3 Overall PerformaneA summary of the experimental results for the entire dataset onsisting of 598 testsans is given in Table 4.3, running in the identi�ation mode. Out of the 60 errorsover the entire test database (orresponding to 90% auray), 54 test sans ontainsmiling expression. As mentioned earlier, the expression hange leads to non-linearsurfae deformation that is not adequately handled by the rigid transform basedICP algorithm. The surfae mathing distane distributions for genuine users andimpostors are provided in Fig. 4.14. Figure 4.15 shows 4 orretly mathed examplesusing the ombined sheme.

Figure 4.14: Surfae mathing distane distributions.The umulative math sore urves for the three di�erent mathing shemes areprovided in Fig. 4.16. The ombination of surfae mathing (ICP only) and on-strained appearane-based mathing (LDA only) onsistently outperforms eah indi-118



Table 4.3: Mathing auray with equal weights for ICP and LDA omponents (i.e.,� = 1 in Eq. 4.4). The total number of test sans is 598.Sheme Rank-one math auraySurfae mathing 86%Constrained LDA 77%Surfae mathing + Constrained LDA 90%

Figure 4.15: Test sans (top row), and the orresponding 3D models orretlymathed. The 3D model is shown in a pose similar to the orresponding test san.vidual sheme.The performane reported in Table 4.3 is based on setting equal weights to surfaemathing and appearane-based mathing distanes, i.e., the value of � in Eq. (4.4)is set to 1. However, there may exist an optimal value of �, whih minimizes thenumber of errors. The performane hange with respet to � is shown in Fig. 4.17.In pratie, the value of � an be learned from the validation data.Using the mathing distanes omputed from mathing 598 test sans to 200 3Dfae models, the ROC urves are generated, whih are provided in Fig. 4.18. Theurves are alulated by setting the same threshold for all the users. A user-spei�threshold ould be omputed for eah user to yield better performane [89℄. Note that119



Figure 4.16: Cumulative mathing performane with equal weights for the surfaemathing (ICP) and the onstrained appearane mathing (LDA) omponents (i.e.,� = 1). The LDA omponent is onstrained by the surfae mathing (ICP) ompo-nent. The LDA is only applied to the top 30 andidate models seleted in the surfaemathing stage.the appearane-based mathing (LDA) in Fig. 4.18 relies on the 3D pose alignmentahieved by ICP-based registration.Based on the onatenation-based fusion sheme in Se. 4.4.2, the rank-1 reog-nition rate is 78%, less than 90% obtained by the sum rule on the mathing soresfrom eah modality.In our urrent implementation, on an average, mathing one test san to a 3D faemodel takes about 16 seonds using the hybrid ICP algorithm for surfae mathingand 2 seonds using the aelerated Besl's ICP algorithm for surfae mathing, on aPentium 4 2.8GHz CPU. The speed bottlenek is the nearest neighbor searh in ICP,beause the omputation required for sequential (exhaustive) searh for one ontrolpoint is proportional to N , where N is the number of verties in the model. We have120



Figure 4.17: Identi�ation auray based on the ombination strategy with respetto �, the parameter used to balane the surfae mathing and appearane mathing.A higher auray is ahieved at � = 2 than the 90% auray at � = 1.integrated the KD-tree struture 2 [28, 67℄ with the Besl's ICP algorithm [30℄. Theexpeted omputation to perform the nearest neighbor searh for eah ontrol pointis then proportional to logN . If we use only Besl's ICP algorithm in the surfaemathing stage instead of the proposed hybrid ICP algorithm, the entire mathingproess an be ahieved in approximately 2 seonds with about 2% derease in theidenti�ation auray. Unlike the point-to-point (Eulidean) distane based Besl'sICP algorithm, the point-to-plane distane based Chen's ICP algorithm annot beintegrated with the KD-tree struture. The nearest neighbor searh in ICP an beimplemented in parallel for eah ontrol point, so parallel omputation and hardwareaelerators an also be utilized. With the urrent omputation power, the proposedsheme would be more suitable for identi�ation on a small database or veri�a-tion appliations. For identi�ation in a large database, fast sreening or indexingapproahes would need to be integrated.2The KD-tree software pakage is provided by Guy Shehter.121



Figure 4.18: ROC urves. ICP (all): surfae mathing on the entire test database;ICP (neutral): surfae mathing on the test sans with neutral expression. LDA isapplied only after pose normalization by ICP rigid registration. Equal weights (i.e.,� = 1) were applied to the surfae mathing (ICP) and the onstrained appearane-based mathing (LDA) omponents.4.5.4 Automati Fae ReognitionWith automati feature point extration (desribed in Chapter 3) integrated, a fullyautomati multimodal fae reognition system is developed. The feature points areused for both alignment in three-dimensional spae for surfae mathing and for faialarea ropping for the appearane-based mathing. The same database (see Se. 4.5.1)and the evaluation protool are used. Due to omputational ost, only Besl's ICPalgorithm [30℄ is used for surfae mathing.The fae reognition system automatially mathes the 598 test sans to the 2003D fae models in the identi�ation mode. The identi�ation results are given inFig. 4.19. The identi�ation results using manually labeled feature points are also122



plotted for omparison. The plots show that the fully automati system providesidenti�ation auraies lose to those of the system using (three) manually labeledfeature points. In the urrent implementation, the total omputational ost of thefully automati system is about 4 seonds for integrating both range and intensity,and 3 seonds for surfae mathing only (2 seonds for feature extration).

Figure 4.19: CMC urves of the fully automati systems in omparison with thesystems with three manually labeled feature points.
4.6 SummaryWe have designed and implemented a fae reognition system that mathes 2.5Dsans of faes with di�erent pose and expression variations to a database of 3D faemodels. Both shape and intensity information ontained in 3D models are employed.123



We propose a ombination sheme, whih integrates surfae (shape) mathing anda onstrained appearane-based method for fae mathing, that omplement eahother. The surfae mathing is ahieved by a hybrid ICP sheme. The subsequentappearane-based identi�ation omponent is onstrained to a small andidate listgenerated by the surfae mathing omponent, whih redues the lassi�ation om-plexity. The 3D template registered (after pose normalization ahieved in the surfaemathing stage) to the test san is utilized to synthesize training samples with fa-ial appearane variations, whih are used for disriminant subspae analysis. Themathing distanes obtained by the two mathing omponents are ombined usingthe weighted sum rule to make the �nal deision. A hierarhial mathing frameworkis designed to further improve the system performane in terms of both auray andeÆieny.The urrent surfae mathing sheme is still based on rigid transformation, result-ing in relatively poor mathing performane on fae sans in the presene of non-rigiddeformations, suh as expression hanges. We will explore 3D templates that an bedeformed by integrating prior knowledge of non-rigid variations to deal with faialexpression hanges for mathing. Details are presented in the next Chapter.
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Chapter 5
3D Fae Deformation Analysis
Fae reognition based on range images has been investigated by a number of re-searhers [98, 75, 156, 31, 131, 43℄, but only a few of them have addressed the defor-mation (expression) issue, whih is a major hallenge in 3D fae reognition [45, 115℄.Chua et al. [49℄ extended the use of Point Signature to reognize frontal fae sanswith di�erent expressions, whih was treated as a 3D reognition problem of non-rigidsurfaes. A database of 6 subjets with 4 expressions was used in the experiments.Chang et al. [44℄ presented a method to independently math multiple regions aroundthe nose, and integrate individual mathing results to make the �nal mathing de-ision. Their method was evaluated on a database of about 4000 faial sans from449 subjets. However, the nose region does not ontain suÆient disriminant powerto distinguish faes aross a large population. Bronstein et al. [38, 39℄ proposed analgorithm based on an isometri model of faial surfaes, in an attempt to derive anexpression-invariant faial surfae representation for 3D fae reognition. However,they onsidered only frontal fae sans and the proposed model assumed the mouth125



was losed in all faial expressions. Their experiments were onduted on a databaseontaining 27 human subjets with 8 expressions. Passalis et al. [132℄ �tted an an-notated fae model to a given faial san and applied wavelet analysis to derive anew representation, i.e., deformation image, whih is used for mathing. The FRGCVer2.0 database [135℄ was used to evaluated the algorithms. A number of 3D faialexpression analysis approahes are listed in Table 5.1.
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Table 5.1: Faial expression analysis approahes using 3D data.
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We address the problem of mathingmultiview 2.5D faial sans (range images) to3D neutral fae models (or 2.5D faial sans) in the presene of expression variations.A 3D deformation modeling sheme is proposed to handle the non-rigid deformations,e.g., expressions. To aount for the large intra-subjet di�erene in 3D faial shapeaused by expression hanges, we propose to expliitly model the 3D deformation.Gross et al. [76℄ showed that user-spei� deformable models are more robust thanthe generi deformable model (aross subjets). However, to build a user-spei�deformable model, a large number of training samples for a user are needed; olletingand storing 3D data of eah subjet in a large gallery with multiple expressionsis not pratial. Further, it is diÆult to ollet fae sans to over all possiblevariations even for the same type of expression, beause the expression deformationis a ontinuous faial movement. See Figure 5.1.

Figure 5.1: Deformation variations for one subjet with the same type of expression.We ollet data on 3D faial deformations from only a small group of subjets,alled the ontrol group. Eah subjet in the ontrol group provides a san withneutral expression and several sans with non-neutral expressions. The deformations(between neutral san and non-neutral sans) learned from the ontrol group aretransferred to and synthesized for all the 3D neutral fae models in the gallery, yielding128



deformed templates with synthesized expressions. Multiple deformed templates forthe same subjet based on members in the ontrol group are ombined to builddeformable models for eah subjet in the gallery.Our deformation transfer and synthesis falls under the performane-driven frame-work [172, 139, 127, 153℄. Unlike previous methods designed for realisti animation,we simplify the deformation transfer problem that is suitable for 3D mathing. In or-der to learn deformation from the ontrol group, we need a set of �duial landmarks.Besides the �duial faial landmarks, suh as eye and mouth orners, landmarks inthe faial area with little texture, e.g., heeks, are extrated in order to model the3D surfae movement due to expression hanges. We have designed a hierarhialgeodesi-based resampling sheme onstrained by �duial landmarks to derive a newlandmark-based surfae representation for establishing orrespondene aross expres-sions and subjets. Thin-plate-spline (TPS) is used to transfer the landmark-baseddeformation. The deformation transfer is ahieved by minimizing a global bendingenergy funtion [36℄, while preserving the faial topology.During mathing, the user-spei� deformable model is �tted to a test san bysolving an optimization problem to yield a mathing distane. To handle the headpose hanges, the rotation and translation parameters are integrated into the ostfuntion for �tting, whih is solved using an alternating optimization sheme. Theproposed sheme is designed to handle both expression and pose hanges simultane-ously.The proposed sheme of deformation modeling for 3D fae mathing is presentedin Fig. 5.2. 129



Figure 5.2: Deformation modeling for 3D fae mathing. To math a 2.5D test santo a 3D neutral fae model in the gallery database, the deformation learned fromthe ontrol group is transferred to the 3D neutral model. Eah subjet in the ontrolgroup provides its own deformation transform. The 3D models with the orrespondingdeformation are synthesized. The M synthesized models are ombined to onstruta user-spei� deformable model, whih is �tted to the given test san.5.1 Hierarhial Faial Surfae SamplingHuman faes share a ommon geometri topology, whih an be represented by theraniofaial (�duial) landmarks de�ned in Anthropometry [64℄. To model the ex-pressions aross the population, we use a �duial set of 9 landmarks (i.e., two innereye orners, two outside eye orners, two mouth orners, nasion, nose tip, and sub-nasal) as onstraints and the �rst layer in the hierarhial sheme, see Fig. 5.3(a).To learn the 3D surfae deformation, the orrespondenes between the landmarksneed to be established [139, 127℄. For those faial regions that have little texture butare important for expression modeling, suh as the heeks, we extrat landmarks bysampling the faial surfae hierarhially based on geodesis, whih have been demon-130



strated to be insensitive aross faial expressions [38℄. The seond layer of landmarksis established based on the �rst layer. The geodesi distane and the orrespondingpath between two �duial landmarks (e.g., from one eye orner to one mouth orner)on the faial surfae are omputed based on the fast marhing algorithm [91℄. Thederived paths enode the faial surfae movement of di�erent expressions as shownin Fig. 5.4. We divide eah path into L segments with equal geodesi length. Thesepoints are then used as the newly extrated landmarks. Fig. 5.3(b) gives an example.

(a) (b) () (d)Figure 5.3: Hierarhial surfae sampling. (a) First layer (�duial set); (b) seondlayer; () third layer; (d) �nal landmark set.

(a) (b) () (d)Figure 5.4: Geodesi paths (yellow) aross di�erent expressions. (a,b) A neutral sanshown in two di�erent views. (,d) A san of a happy expression from the samesubjet in the same two views. 131



The third layer of landmarks is onstruted based on the extrated landmarksobtained in the seond layer by omputing the geodesi paths between landmarks inthe seond layer and sampling the paths with equal geodesi length; see Fig. 5.3().This hierarhial sampling sheme an be further onduted automatially to obtainhigher resolution representations, based on whih the orrespondene aross bothsubjets and expressions an be established. Our experiments show that three layersprovide a reasonable approximation for expression modeling.The resulting landmark set inludes �duial landmarks (9 points), �rst layer land-marks (34 points), seond layer landmarks (40 points), along with the hin point(1 point) and mouth ontour (10 points). The hin point and mouth ontour areurrently manually identi�ed; they are not involved in the geodesi-based samplingsheme but important for expression modeling. In total, there are 94 landmarks asshown in Fig. 5.3(d).
5.2 Deformation Transfer and SynthesisThe deformation is learned from a ontrol group of M subjets, who provide bothneutral and non-neutral expression sans. The learned deformation is transferred toa 3D neutral model in the gallery for synthesis, aording to the following proedure,whih is illustrated in Fig. 5.5.(1) Register the non-neutral san with the neutral san to estimate the displae-ment vetor of landmarks due to the expression hange.(2) Establish a mapping � from the landmark set (LSne) of the neutral san to132



that (LMne) of the 3D neutral model;(3) Use the mapping � to transfer the landmarks (LSsm) in the non-neutral santo the 3D neutral model as LS 0sm.(4) Establish a mapping  from the landmarks (LMne) of the 3D neutral modelto LS 0sm.(5) Apply  to other verties in the 3D neutral model to move them to the newpositions aused by the expression.

Figure 5.5: Deformation transfer and synthesis. (a) Landmark set (LSne) of theneutral san in the ontrol group. (b) Landmark set (LSsm) of the san with non-neutral expression in the ontrol group. () Rigid alignment between (a) and (b)using the nose region that is invariant to expression hanges; and the deformation�eld of the landmarks from (a) to (b) after rigid alignment. (d) Landmark set (LMne)of the 3D neutral model (f) in the gallery. (e) Landmark set (LS 0sm) after deformationtransfer. (g) 3D non-neutral model after applying deformation transfer and synthesison (f). (h) and (i) show pro�le views of the model in (f) and (g), respetively.We use TPS as the mapping and interpolation tool for deformation transfer and133



synthesis.5.2.1 Thin-Plate-SplineTPS [36, 60℄ represents a natural parametri generalization from rigid to mild non-rigid deformations and is used to estimate the deformation F for two sets of points(U; V ). The thin plate spline algorithm spei�es the mapping of points for a refereneset to the orresponding points in a target set. Let g0 and g1 denote two surfaes. Awarping of g0 to g1 is de�ned as the funtion F suh thatF (g0) = g1: (5.1)The funtion F is alled the warping funtion, whih takes g0 to g1. Given a pairof point patterns with known orrespondenes (landmarks) on two surfaes, U =(u1; u2; � � � ; um)T and V = (v1; v2; � � � ; vm)T , where U � g0 and V � g1, we need toestablish orrespondenes between other surfae points; uk and vk denote the (x; y; z)oordinates of the k-th orresponding pair andm is the total number of orrespondingpoints. A warping funtion, F , that warps U to V subjet to perfet alignment isgiven by the onditions F (uj) = vj; (5.2)for j = 1; 2; � � � ; m. The interpolation deformation model is given in terms of thewarping funtion F (u), withF (u) = + A � u+W Ts(u); (5.3)134



where u 2 g0; , A andW are TPS parameters; s(u) = (�(u�u1); �(u�u2); � � � ; �(u�um))T and �(r) = jrj. An analytial solution of F an be obtained for 3D points [36,60℄. In our appliation, the set U and V orrespond to 94 landmarks on a neutralsan and a non-neutral san or a 3D neutral model, respetively.
5.2.2 Deformation TransferThe deformation transfer problem is de�ned as follows: given a pair of soure surfaesrepresented by meshes (in the ontrol group), S and S 0, and a target mesh T (in thegallery), generate a new mesh T 0 suh that the relationship between T and T 0 issimilar to the relationship between S and S 0. Our deformation transfer is based onthe extrated landmarks. Figure 5.5(a) shows the landmark set on the pair of faesans in the ontrol group. The same set of landmarks are extrated on the 3D neutralmodel for deformation transfer (see Fig. 5.5(d)).In order to separate non-rigid faial expressions from rigid head motion, a rigidtransformation (translation and rotation), is applied to align the neutral san andthe non-neutral san in the ontrol group based on those landmarks that are insen-sitive to expression hanges, suh as eye orners and nose tip. This normalizes thefaial (geometry) position (see Fig. 5.5()). After the rigid alignment of neutral andnon-neutral sans, the estimated displaement vetors need to be transferred to the3D neutral model in the gallery. Sine faial geometry and aspet ratios are di�er-ent between the sans in the ontrol group and the 3D models in the gallery, souredisplaements annot be simply transferred without adjusting the diretion and mag-135



nitude of eah motion vetor. We establish a TPS mapping from the landmark set ofthe neutral san in the ontrol group to that in the 3D neutral model in the gallery.Sine the TPS mapping ontains the aÆne omponent and the distortion omponent,both the sale and orientation of the motion vetors are also adjusted. The land-marks for the non-neutral sans are mapped onto the orresponding positions in theoordinate system of the 3D neutral model by applying the estimated TPS mapping.5.2.3 Deformation Synthesis

(a) (b) ()Figure 5.6: Deformation synthesis. (a) 3D neutral model with landmarks. The dotsare the landmarks in orrespondene to those in the ontrol group (see Fig. 5.5(a)).The star points are used for boundary onstraints. (b) Synthesis result without �xed-point boundary onstraint. () Synthesis result with �xed-point boundary onstraints.Deformation transfer establishes the new positions of the landmarks in the 3Dneutral model. A TPS mapping is omputed from the landmarks in the 3D neutralmodel to their deformed positions. The resulting mapping is used to interpolate thepositions of surfae points in-between the landmarks. For the verties in-between theonvex hull spanned by the landmarks, the interpolation an be done by TPS map-ping. However, for those verties that lie outside this onvex hull, an extrapolation136



has to be performed, leading to distortions, suh as shown in Fig. 5.6(). Therefore,we add a few additional landmarks (shown as `*' in Fig. 5.6(a)), whih speify theboundary onstraints. These landmarks are mapped to themselves. By omputing theTPS mapping based on this augmented landmark set (dots plus stars in Fig. 5.6(a)),the interpolation an generate a better synthesis result as shown in Fig. 5.6().
5.2.4 Synthesizing Open MouthA number of faial expressions involve open mouth, but the templates (3D modelor 2.5D san) with neutral expression usually do not ontain any data inside themouth. In order to model the open mouth aording to expression hanges, we add�ve landmarks to partition the mouth (labeled as `+' in Fig. 5.7), so that the upperand lower lips an move independently.

(a) (b) () (d)Figure 5.7: Expression transfer and synthesis with mouth open. (a) Landmark setfor the neutral san in the ontrol group. (b) Landmark set for the san with non-neutral expression in the ontrol group. () Landmark set for a 3D neutral model inthe gallery; points marked as `+' are inluded to partition the mouth so that the upperand lower lips an move independently. (d) 3D non-neutral model with synthesizedexpression transferred from the pair (a,b) to ().137



5.3 Deformable Model ConstrutionWhile a hange in faial expression is a ontinuous proess, a synthesized template(non-neutral model) aptures only a spei� instane of the expression. Further, sineeah single synthesized non-neutral model is obtained by transferring the deformationfrom one member in the ontrol group to the neutral gallery model, it is not likelyto be the true expression of the gallery model. Therefore, we learn the expressiondeformation from all the M members in the ontrol group. This leads to a user-spei� deformable model that is a linear ombination of non-neutral models, eahobtained as a result of deformation transfer from one member of the ontrol group tothe neutral model.Let S represent a fae surfae model: S = (x1; y1; z1; � � � ; xn; yn; zn)T , where(xk; yk; zk) is the loation of the kth surfae vertex, k = 1; 2; � � � ; n, and n is thetotal number of verties. For eah subjet, let Sne denote the neutral model and Si(i = 1; 2; � � � ;M) denote the deformed model generated by the ith member in theontrol group. We assume that all Si's orrespond to the same type of expressionsynthesized from Sne. Notie that sine all Si's are synthesized from Sne, the or-respondene between them is automatially established. By ombining all the Msynthesized models, we onstrut the deformable model for this subjet asS = Sne + MXi=1 �i � (Si � Sne); (5.4)whereM is the total number of synthesized templates from Sne and �i's are the mixing138



weights. The deformable model onsists of two omponents; the �rst omponent is thesubjet's neutral model Sne and the seond is the variation omponent representingthe hange in faial surfae due to expression. In other words, while Sne ontrols thesubjet's identity, the variation omponent does deformation adaptation by adjustingthe weights �i. As the number of subjets, M , in the ontrol group inreases, thenumber of weights (�i) also inreases, leading to a more omplex �tting problem in ahigh dimensional parameter spae. The prinipal omponent analysis an be appliedto reformulate the deformable model and redue the omplexity by keeping only theprinipal modes [33℄.
5.3.1 Expression-spei� vs. Expression-generi ModelsFor eah subjet, we onstrut one deformable model for eah type of expression ofinterest. So, if the ontrol group ontains P di�erent non-neutral expressions, welearn P expression-spei� deformable models. These expression-spei� models analso be integrated into a single expression-generi deformable model by adding newlinear variation omponents in Eq. 5.4. But this approah substantially inreasesthe omplexity of the model as the number of expression types inreases, leadingto diÆulties in the subsequent model �tting. Experimental results show that theexpression-generi deformable model based sheme gives lower mathing auraythan the expression-spei� model based sheme (see Setion 5.5 for details).139



5.4 Deformable Model FittingTwo types of transformations are applied to a 3D deformable model, when it ismathed to a given test san with a laimed identity. The �rst one is the rigidtransformation due to the head pose hanges, whih an be represented by a rotationmatrix and a translation vetor. The seond one is the non-rigid deformation, whihan be modeled by the weights �i in Eq. 5.4. Fitting the deformable model to a giventest san is formulated as an optimization problem to minimize the ost funtionE(�i; � � � ; �M ;R; T ) = kS � �(StjR; T )k2= kSne + MXi=1 �i � (Si � Sne)� �(StjR; T )k2; (5.5)
where R and T are the rotation matrix and translation vetor, respetively; S is the3D deformable model, St denotes the test san, and �(StjR; T ) represents applying thetransformations of (R,T ) to St. To redue the omputation ost in the optimizationproess, we subsample the test san surfae into a number of ontrol points that areused for the alignment and ost funtion evaluation [115℄, see below.We fatorize the rigid and nonrigid omponents and use an alternating optimiza-tion sheme to solve for them:1. Initialize the deformable model parameters to generate a 3D model; estimatea oarse alignment between the model and the test san using three anhor points.See Chapter 3 for an automati anhor point extration algorithm.2. The iterative losest point (ICP) algorithm is utilized to solve for the rotationand translation parameters (R,T ) [30℄ to ahieve pose normalization, while �xing �i's.140



3. Given R and T obtained in step 2, minimize the ost funtion E by solving for�i's.4. Use the �i's omputed in step 3 to generate a new instane of the 3D model;repeat steps 2 to 4 until the onvergene is reahed.In step 3, the optimization an be ahieved by a gradient-based iterative approah,suh as the BFGS quasi-Newton method [70℄. But, beause the ost funtion isevaluated based on the ontrol points in the test san and their losest ounterpartsin the deformable model, and the losest ounterparts may hange due to adjustmentof �is, the optimization problem is highly non-linear. Multiple iterations of ostfuntion evaluation are omputationally expensive due to the large number of losestpoint searhes. However, as an approximation, by �xing the orrespondene, the �isan be obtained in a non-iterative way by solving a linear least square problem as�opt = ( ~ST ~S)�1( ~ST (St � Sne)); (5.6)where ~S is the matrix [(S1 � Sne); (S2 � Sne); :::; (SM � Sne)℄. Experimental resultsshow that this simpli�ation signi�antly redues the omputational ost while pro-viding ompetitive auray ompared to the iterative BFGS optimization algorithm.Moreover, this linear non-iterative optimization is muh more eÆient than iterativegradient-based algorithms as the number of parameters (�is) inreases. After the �t-ting proess, the root-mean-square distane alulated by the ICP algorithm is usedas the mathing distane. A model �tting example is provided in Fig. 5.8. In theexpression-spei� model based sheme, for eah subjet, we math all its deformable141



models, one per expression, to a given test san. The minimum of all the obtainedmathing distanes is used as the �nal mathing distane.

Figure 5.8: Deformable model �tting. (a) Test san. (b) 3D neutral model. ()Deformed model after �tting to (a). Registration results of (a) to models (b) and ()are given in (d), (e), respetively (the test san (yellow wire-frame) is overlaid on the3D model); the mathing distanes are 2:7 and 1:3, respetively.
5.5 Experiments and DisussionWe evaluate the proposed sheme on three databases (MSU-II, MSU-I, and FRGCVer2.0 database) in the identi�ation mode, i.e., by mathing a test san to all thegallery models. The proposed deformable model sheme is ompared with rigid-only (ICP [29℄) based mathing sheme. The ICP-based baseline algorithm has beendemonstrated to perform better than the PCA-based baseline method [44℄ for 3Dfaial surfae mathing. Both expression-spei� and expression-generi deformable142



Table 5.2: Identi�ation auray of 10-fold ross-validation in experiment I.Mean StdWithout deformation modeling 91% 3%With deformation modeling; expression spei� 96% 2%With deformation modeling; expression generi 95% 3%
model based shemes are evaluated. The expression-generi deformable model isonstruted by inluding all 7 expressions olleted in the MSU-II database, whihare smile, happy, surprise, angry, inated, deated, and neutral (see Fig. 1.14 forexamples).
5.5.1 Experiment IExperiment I uses the MSU-II database, whih ontains range images of 10 subjetsat 3 di�erent poses (see Setion 1.5.2 for details). Five subjets are randomly hosenas the ontrol group and the remaining 5 subjets are used as the gallery. There are105 (5� 7� 3) test sans in total. For the subjets in the ontrol group, only frontalsans are used for deformation modeling. To eliminate anhor point extration errorswhen evaluating the deformation modeling sheme, we use three manually labeledanhor points (two eye orners and the nose tip) from a given test san for initialoarse alignment in the model �tting proess (see Step 1 in Se. 5.4). The reognitionauray based on 10-fold ross validation is provided in Table 5.5.1.143



5.5.2 Experiment IIThe ontrol group is omposed of the 10 subjets in the MSU-II database (only frontalsans are used). Another 90 subjets in the MSU-I database that are not in the MSU-II database formed the gallery. There are a total of 90 3D models stored in the galleryand 533 independent 2.5D sans for testing. The representative test sans are shownin Fig. 5.9. To initialize a oarse alignment between a test san and a gallery template(see Step 1 in Se. 5.4), three anhor points (two eye orners and the nose tip) areautomatially extrated from a test san (see Chapter 3). The mathing proess isfully automati.

Figure 5.9: Test san examples in experiment II.
The CMC urves are provided in Fig. 5.10. Based on all the omputed mathingdistanes, the ROC urves are generated, whih are given in Fig. 5.11.144



Figure 5.10: CMC urves of experiment II.5.5.3 Experiment IIIFRGC Ver2.0 [135℄ is a large publi domain fae database, whih ontains (near)frontal 2.5D faial sans. Although no 3D models are available for subjets in thisdatabase, the proposed deformation modeling and mathing sheme is still appliableby replaing a 3D full-view model in the gallery with a 2.5D frontal neutral san. Inaddition to the neutral expression, subjets provided sans with several non-neutralexpressions, suh as smiling (happiness), frown, astonishing (surprise), disgust, sad,and pu�y heeks. In our experiments, all the sans are downsampled to 320 � 240.Due to the omputational ost of model �tting, the �rst 100 subjets are seletedfrom the FRGC Ver2.0 database. For eah subjet, the san with neutral expressionand the earliest time stamp is used as the template to onstrut the gallery. Theremaining sans with various expressions are hosen as test sans. In total, thereare 100 2.5D gallery templates and 877 independent 2.5D sans for testing. Repre-145



Figure 5.11: ROC urves of experiment II.sentative sans are provided in Fig. 1.17. The 10 subjets in the MSU-II databaseformed the ontrol group (only frontal sans are used). The expression deformationsare learned and transferred from the ontrol group to onstrut a deformable model(a 2.5D deformable frontal template) for eah subjet in the gallery. To initialize aoarse alignment between a test san and a gallery template (see Step 1 in Se. 5.4),three anhor points (two eye orners and the nose tip) are automatially extratedfrom a test san (see Chapter 3). The mathing proess is fully automati.The CMC urves from our mathing algorithm are provided in Fig. 5.12. Based onall the omputed mathing distanes, the ROC urves are generated, whih are givenin Fig. 5.13. Fig. 5.14 shows some of the test sans that are inorretly mathed usingrigid transformation (ICP) but orretly mathed by using the proposed deformationmodeling sheme. 146



Figure 5.12: CMC urves of experiment III.5.5.4 Disussion
These experimental results demonstrate that the proposed deformation modelingsheme improves the mathing auray in the presene of expression variations alongwith large pose hanges. Fig. 5.15 shows examples where the proposed sheme failsto �nd the orret mathes in experiment III on the FRGC database. One of thereasons for the mathing errors is that the urrent �tting (optimization) proess isstill subjet to loal minimum. In addition, sine our ontrol group ontains only 10subjets, we are not able to fully learn the deformation that is generalizable aross alarge population.The average CPU time (Pentium4 2.8GHz) of model �tting for a pair of test sanand a model is 5 seonds implemented in Matlabr.147



Figure 5.13: ROC urves of experiment III.5.6 SummaryWe have proposed a fully automati framework for robust 3D fae mathing in thepresene of nonrigid deformation (due to expression hanges) and large pose hangessimultaneously in the test san. A hierarhial surfae resampling sheme with on-straints of �duial landmarks is developed to obtain a representation for analyzing 3Dfaial surfaes aross expression and pose. This hierarhial representation providesthe exibility to ontrol the resolution of the derived model. Landmarks in faialsurfaes in regions with little texture are automatially extrated using the geodesi-based approah. 3D deformation learned from a small ontrol group is transferredto the 3D models with neutral expression in the gallery. The orresponding defor-mation is synthesized in the 3D neutral model to generate a deformed template. Auser-spei� deformable model is built by ombining the deformed templates from148



Figure 5.14: Examples of test sans (top row) in experiment III on the FRGC databasethat are inorretly identi�ed with rigid transformation (ICP) but orretly identi�edwith deformation modeling. Middle row: orresponding genuine 2.5D neutral tem-plates; bottom row: orresponding genuine deformed templates after model �tting.eah member in the ontrol group. Two types of deformable models have been built,expression-spei� and expression generi. The mathing is performed by �tting thedeformable model to a given test san, whih is formulated as a minimization of a ostfuntion. Experimental results demonstrate the apabilities of the proposed shemeto learn and synthesize the deformation on new fae models and to make the 3D faesurfae mathing system more robust aross expression and pose.Landmark labeling is needed in deformation modeling. Currently, �duial land-mark labeling is done manually. Although this is onduted in the o�ine training149



Figure 5.15: Examples of inorret mathes in experiment III on the FRGC database.Top row: test sans; middle row: orresponding best mathed templates after model�tting; bottom row: orresponding genuine templates after modeling �tting.stage, it would be more onvenient to make it a fully automati proess in manyappliations. Reduing the omputational ost is also being pursued.The proposed deformation modeling sheme integrates the priors of the deforma-tion (expression hanges) into the 3D model. The apability of handling deformationsis enhaned for eah gallery model. We also explored another diretion, analyzingthe deformation from the lassi�ation perspetive, espeially for the fae (identity)mathing purpose. In general, there are two soures of deformation. One is the de-formation aused by the expression of the same subjet. The other is the surfae150



shape di�erene between di�erent subjets. To resolve the ambiguity in fae (iden-tity) mathing introdued by measuring 3D shape di�erene (deformation) alone, wepropose to expliitly estimate and disriminate the shape deformation into two lassesfor the identity mathing purpose, namely, intra-subjet deformation and inter-subjetdeformation.The proposed mathing framework aptures both rigid and non-rigid deformation,and expliitly lassi�es the non-rigid deformation into intra-subjet or inter-subjetategory. The ICP is applied to ahieve the rigid registration. The non-rigid registra-tion is performed by the thin plate spline model, whih generates the displaementvetor �eld as the deformation representation. The displaement vetor �eld is usedas the feature representation, whih is fed into the deformation lassi�er. The de-formation lassi�ation results are integrated with the mathing distanes obtainedfrom rigid and non-rigid registration for the �nal math. Preliminary results showthat this sheme improves the mathing auray [107℄.
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Chapter 6
Conlusions and Future Diretions
Fig. 6.1 illustrates the thesis struture assoiated with the major omponents of theproposed 3D fae mathing system. Related publiations are Chapter 3 [113, 112, 109,103, 88℄, Chapter 4 [105, 104, 108, 115, 106, 116, 111℄, and Chapter 5 [110, 107, 114℄.

Figure 6.1: Thesis struture and the proposed 3D fae mathing system.
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6.1 ConlusionsThe performane of fae reognition systems that use two-dimensional (2D) imagesis dependent on onsistent onditions suh as pose, lighting, and faial expression. Afully automati multi-view fae reognition system has been developed to be morerobust to those variations, espeially large pose and expression variations. Majorontributions inlude feature extration, multimodal integration, and deformationanalysis.6.1.1 Feature Extration� An automati feature extration sheme has been developed to loate faialfeature points from faial sans aptured under large viewpoint hanges., leadingto a fully automati 3D fae mathing system.� A simple but e�etive approah has been presented to extrat faial area fromthe bakground in a fae san.� A feature extrator based on the diretional maximum is proposed to estimatethe nose tip loation and the head pose angle simultaneously. A nose pro�lemodel represented by subspaes is used to selet the best andidates for thenose tip.� Assisted by a statistial feature loation model, a multimodal sheme ombiningboth 3D (range) and 2D (intensity) information in multiview faial sans hasbeen presented to extrat eye and mouth orners.153



� With the estimated pose, the system automatially rejets the feature pointsthat are not valid due to self-olusion.� Evaluated on both self-olleted and publily available databases, our fae reog-nition system based on automati feature extrator ahieves an identi�ationauray lose to the system with manually labeled feature points.6.1.2 Multimodal IntegrationWe have designed a 3D fae mathing sheme that mathes 2.5D sans of faes withdi�erent pose and expression variations to a database of 3D/2.5D fae templates.Both shape and intensity information of faial sans are employed. We have developeda ombination sheme, whih integrates surfae (shape) mathing and a onstrainedappearane-based method for fae mathing, that omplement eah other.� The surfae mathing is ahieved by a hybrid ICP sheme.� The subsequent appearane-based identi�ation omponent is onstrained toa small andidate list generated by the surfae mathing omponent, whihredues the lassi�ation omplexity. The registered 3D template (after posenormalization is ahieved in the surfae mathing stage) to the test san isutilized to synthesize training samples with faial appearane variations, whihare used for disriminant subspae analysis.� The mathing distanes obtained by the two mathing omponents are ombinedusing the weighted sum rule to make the �nal deision.154



� A hierarhial mathing framework has been designed to further improve thesystem performane in both auray and eÆieny.6.1.3 Deformation AnalysisOne major diÆulty enountered in urrent 3D fae mathing systems is the preseneof the non-rigid deformation in the test sans, whih is mainly aused by expressions.Faial expressions hange ontinuously and do not have a well-de�ned desriptionusing a quantitative representation for ategorization. We have proposed a deforma-tion modeling sheme that is able to handle expressions and large head pose hangessimultaneously.� We designed a hierarhial geodesi-based resampling sheme onstrained by�duial landmarks to derive a faial surfae representation for establishing or-respondene aross expressions and subjets.� Based on the developed representation, we extrated and modeled three-dimensional non-rigid faial deformations suh as expression hanges for ex-pression transfer and synthesis using thin-plate-spline models as the mappingand interpolation tool.� For 3D fae mathing purposes, we built a user-spei� 3D deformable modeldriven by faial expressions. An alternating optimization sheme was applied to�t the deformable model to a test faial san, resulting in a mathing distane.� Computational ost is saved by reduing a highly non-linear optimization prob-155



lem into a linear one that an be solved with a non-iterative approah insteadof traditional gradient-based iterative methods.� Experimental results demonstrate the proposed expression modeling shemeimproves the 3D fae mathing auray.� For fae mathing purposes, the non-rigid deformations from two di�erentsoures are disriminated, namely, intra-subjet deformation vs. inter-subjetdeformation. The deformation lassi�ation results are integrated with the reg-istration distanes for making the �nal mathing deision.
6.2 Future Diretions� Robust and eÆient feature extration. The proposed feature extrationalgorithm is designed to estimate the nose tip and head pose hange by anglespae quantization. The omputational ost to handle the entire 3D spae isexpensive using exhaustive searh. Therefore, a more eÆient searh shemeis being pursued. Moreover, a more aurate feature point loator should bedeveloped to redue the loalization errors, espeially in the presene of largepose and expression variations.� Feature seletion and rejet option. In pratial appliations, a rejetoption is useful for making the system generate fewer inorret deisions. Forexample, feature sores assoiated with eah extrated feature point an be usedas on�dene measures to robustly selet the most reliable points for registration156



or design a rejet option if an insuÆient number of feature points are extrated.� Automati landmark labeling. Landmark labeling is needed in deformationmodeling. Currently, �duial landmark labeling is done manually. Although thisis onduted in the o�ine training stage, it would be more desirable to makeit a fully automati proess in many appliations. Reduing the omputationalost is also a major researh topi.� Expression invariant representation. Finding an intrinsi representationthat is invariant to the expression hanges is desirable. The faial skin elastiitymakes more diÆult to �nd suh invariane. In priniple, this sheme shouldbe able to handle any deformation present in human faes.With advanes in 3D imaging tehnologies, 3D fae reognition holds promise tomake faial reognition systems more robust in pratie. 3D fae reognition is anexiting and hallenging researh topi.
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