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Abstract

Fingerprint Classification and Matching Using a

Filterbank

By

Salil Prabhakar

Accurate automatic personal identification is critical in a variety of applications

in our electronically interconnected society. Biometrics, which refers to identifica-

tion based on physical or behavioral characteristics, is being increasingly adopted to

provide positive identification with a high degree of confidence. Among all the bio-

metric techniques, fingerprint-based authentication systems have received the most

attention because of the long history of fingerprints and their extensive use in foren-

sics. However, the numerous fingerprint systems currently available still do not meet

the stringent performance requirements of several important civilian applications. To

assess the performance limitations of popular minutiae-based fingerprint verification

system, we theoretically estimate the probability of a false correspondence between

two fingerprints from different fingers based on the minutiae representation of fin-

gerprints. Due to the limited amount of information present in the minutiae-based

representation, it is desirable to explore alternative representations of fingerprints.



We present a novel filterbank-based representation of fingerprints. We have used this

compact representation for fingerprint classification as well as fingerprint verification.

Experimental results show that this algorithm competes well with the state-of-the-

art minutiae-based matchers. We have developed a decision level information fu-

sion framework which improves the fingerprint verification accuracy when multiple

matchers, multiple fingers of the user, or multiple impressions of the same finger are

combined. A feature verification and purification scheme is proposed to improve the

performance of the minutiae-based matcher.
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Chapter 1

Introduction

1.1 Automatic Identification

With the advent of electronic banking, e-commerce, and smartcards and an increased

emphasis on the privacy and security of information stored in various databases, auto-

matic personal identification has become a very important topic. Accurate automatic

personal identification is now needed in a wide range of civilian applications involv-

ing the use of passports, cellular telephones, automatic teller machines, and driver

licenses. Traditional knowledge-based (password or Personal Identification Number

(PIN)) and token-based (passport, driver license, and ID card) identifications are

prone to fraud because PINs may be forgotten or guessed by an imposter and the

tokens may be lost or stolen. Therefore, traditional knowledge-based and token-based

approaches are unable to satisfy the security requirements of our electronically inter-

connected information society (see Figure 1.1). As an example, a large part of the

annual $450 million Mastercard credit card fraud [14] is due to identity fraud. A
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perfect identity authentication system will necessarily have a biometric component.

Eventually, a foolproof identity authentication systems will have all the three com-

ponents (knowledge-based, token-based, and biometrics). In this thesis, we have only

focused on the biometrics component of an automatic identification system in general,

and a fingerprint-based biometric identification system in particular.

ATM

Credit
Card

Cellular
Phone

Airport
Check-in

Electronic
Banking

Access
Web

Network
Logon

Security
Data

Laptop

Access
Electronic

Figure 1.1: Various electronic access applications in widespread use that require au-
tomatic authentication.
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Gray scale image Orientation field

Thinned ridges Minutiae (©), Core (�), and Delta (�).

Figure 1.2: Orientation field, thinned ridges, minutiae, and singular points.

1.2 Biometrics

Biometrics, which refers to identifying an individual based on his or her physiological

or behavioral characteristics has the capability to reliably distinguish between an

authorized person and an imposter. Since biometric characteristics are distinctive,

can not be forgotten or lost, and the person to be authenticated needs to be physically

present at the point of identification, biometrics is inherently more reliable and more

capable than traditional knowledge-based and token-based techniques. Biometrics

also has a number of disadvantages. For example, if a password or an ID card is
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compromised, it can be easily replaced. However, once a biometrics is compromised,

it is not possible to replace it. Similarly, users can have a different password for each

account, thus if the password for one account is compromised, the other accounts

are still safe. However, if a biometrics is compromised, all biometrics-based accounts

can be broken-in. Among all biometrics (e.g., face, fingerprint, hand geometry, iris,

retina, signature, voice print, facial thermogram, hand vein, gait, ear, odor, keystroke

dynamics, etc. [14]), fingerprint-based identification is one of the most mature and

proven technique.

1.3 Applications

Biometrics has been widely used in forensics applications such as criminal identifica-

tion and prison security. The biometric technology is rapidly evolving and has a very

strong potential to be widely adopted in civilian applications such as electronic bank-

ing, e-commerce, and access control. Due to a rapid increase in the number and use

of electronic transactions, electronic banking and electronic commerce are becoming

one of the most important emerging applications of biometrics. These applications

include credit card and smart card security, ATM security, check cashing and fund

transfers, online transactions and web access. The physical access control applications

have traditionally used token-based authentication. With the progress in biomet-

ric technology, these applications will increasingly use biometrics for authentication.

Remote login and data access applications have traditionally used knowledge-based

authentication. These applications have already started using biometrics for person
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authentication. The use of biometrics will become more widespread in coming years

as the technology matures and becomes more trust worthy. Other biometric applica-

tions include welfare disbursement, immigration checkpoints, national ID, voter and

driver registration, and time and attendance.

1.4 Fingerprints

Fingerprints are the ridge and furrow patterns on the tip of the finger [78] and have

been used extensively for personal identification of people [11]. Figure 1.2 shows an

example of a fingerprint. The biological properties of fingerprint formation are well

understood and fingerprints have been used for identification purposes for centuries.

Since the beginning of the 20th century, fingerprints have been extensively used for

identification of criminals by the various forensic departments around the world [68].

Due to its criminal connotations, some people feel uncomfortable in providing their

fingerprints for identification in civilian applications. However, since fingerprint-based

biometric systems offer positive identification with a very high degree of confidence,

and compact solid state fingerprint sensors can be embedded in various systems (e.g.,

cellular phones), fingerprint-based authentication is becoming more and more popular

in a number of civilian and commercial applications such as, welfare disbursement,

cellular phone access, and laptop computer log-in. The availability of cheap and com-

pact solid state scanners [177] as well as robust fingerprint matchers are two important

factors in the popularity of fingerprint-based identification systems. Fingerprints also

have a number of disadvantages as compared to other biometrics. For example, ap-
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proximately 4% of the population does not have good quality fingerprints, manual

workers get regular scratches on their fingers which poses a difficulty to the match-

ing system, finger skin peels off due to weather, fingers develop natural permanent

creases, temporary creases are formed when the hands are immersed in water for a

long time, and dirty fingers can not be properly imaged with the existing fingerprint

sensors. Further, since fingerprints can not be captured without the user’s knowledge,

they are not suited for certain applications such as surveillance.

1.5 Fingerprint Formation

Fingerprints are fully formed at about seven months of fetus development and finger

ridge configurations do not change throughout the life of an individual except due

to accidents such as bruises and cuts on the finger tips [63]. This property makes

fingerprints a very attractive biometric identifier. Biological organisms, in general,

are the consequence of the interaction of genes and environment. It is assumed that

the phenotype is uniquely determined by the interaction of a specific genotype and

a specific environment. Physical appearance and fingerprints are, in general, a part

of an individual’s phenotype. In the case of fingerprints, the genes determine the

general characteristics of the pattern. Fingerprint formation is similar to the growth

of capillaries and blood vessels in angiogenesis [63]. The general characteristics of the

fingerprint emerge as the skin on the fingertip begins to differentiate. However, the

flow of amniotic fluids around the fetus and its position in the uterus change during the

differentiation process. Thus, the cells on the fingertip grow in a microenvironment
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that is slightly different from hand to hand and finger to finger. The finer details of the

fingerprints are determined by this changing microenvironment. A small difference

in microenvironment is amplified by the differentiation process of the cells. There

are so many variations during the formation of fingerprints that it would be virtually

impossible for two fingerprints to be alike. But since the fingerprints are differentiated

from the same genes, they will not be totally random patterns either. We could say

that the fingerprint formation process is a chaotic system rather than a random one

[63].

1.6 Fingerprint Individuality

Until recently, the testimony of latent fingerprint examiners was admitted in courts

without much scrutiny and challenge. However, in the 1993 case of Daubert vs. Mer-

rell Dow Pharmaceuticals, Inc. [50], the Supreme Court ruled that the reliability

of an expert scientific testimony must be established. Additionally, the court stated

that when assessing reliability, the following five factors should be considered: (i)

whether the particular technique or methodology in question has been subject to a

statistical evaluation (hypothesis testing), (ii) whether its error rate has been estab-

lished, (iii) whether the standards controlling the technique’s operations exist and

have been maintained, (iv) whether it has been peer reviewed, and published, and (v)

whether it has a general widespread acceptance. Subsequently, handwriting identifi-

cation was challenged under Daubert (it was claimed that handwriting identification

does not meet the scientific evidence criteria established in the Daubert case) in sev-
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eral cases between 1995 and 2001 and many courts have now decided that handwriting

identification does not meet the Daubert criteria. Fingerprint identification was first

challenged by the defense lawyers under Daubert in the 1999 case of USA vs. Byron

Mitchell [175] on the basis that the fundamental premises of fingerprint identification

have not been objectively tested and its potential error rate is not known. The de-

fense motion to exclude fingerprint evidence and testimony was denied. The outcome

of the USA vs. Byron Mitchell case is still pending. Fingerprint identification has

been challenged under Daubert in more than 10 court cases till date since the USA

vs. Byron Mitchell case in 1999 (http://onin.com/fp/daubert links.html).

The two fundamental premises on which fingerprint identification is based are: (i)

fingerprint details are permanent, and (ii) fingerprints of an individual are unique.

The validity of the first premise has been established by empirical observations as well

as based on the anatomy and morphogenesis of friction ridge skin. It is the second

premise which is being challenged in recent court cases. The notion of fingerprint

individuality has been widely accepted based on a manual inspection (by experts) of

millions of fingerprints. However, the underlying scientific basis of fingerprint individ-

uality has not been rigorously studied or tested. In March 2000, the U.S. Department

of Justice admitted that no such testing has been done and acknowledged the need

for such a study [174]. In response to this, the National Institute of Justice issued a

formal solicitation for “Forensic Friction Ridge (Fingerprint) Examination Validation

Studies” whose goal is to conduct “basic research to determine the scientific validity

of individuality in friction ridge examination based on measurement of features, quan-

tification, and statistical analysis” [174]. The two main topics of basic research under
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this solicitation include: (i) measure the amount of detail in a single fingerprint that

is available for comparison, and (ii) measure the amount of detail in correspondence

between two fingerprints.

What do we mean by fingerprint individuality? The fingerprint individuality prob-

lem can be formulated in many different ways depending on which one of the following

aspects of the problem is under examination: (i) the individuality problem may be

cast as determining the probability that any two individuals may have sufficiently

similar fingerprints in a given target population. (ii) Given a sample fingerprint,

determine the probability of finding a sufficiently similar fingerprint in a target pop-

ulation. In this thesis, we define the individuality problem as the probability of a

false association: given two fingerprints from two different fingers, determine the

probability that they are “sufficiently” similar. If two fingerprints originating from

two different fingers are examined at a very high level of detail, we may find that

the fingerprints are indeed different. However, most human experts and automatic

fingerprint identification systems (AFIS) declare that the fingerprints originate from

the same source if they are “sufficiently” similar. How much similarity is enough

depends on typical (intra-class) variations observed in the multiple impressions of a

finger. Solutions to the other two problem formulations (i) and (ii) above can be

derived from a solution to the problem considered in this thesis.

The distinctiveness of fingerprints can be studied by observing the fingerprints of

genetically related individuals. The closest genetic relationship is found in monozy-

gotic (identical) twins, and therefore, the maximum similarity between fingerprints

is expected to be found among them. A study of identical twin fingerprints can es-

9



tablish performance bounds on the automatic fingerprint verification systems. In this

thesis, we have discussed the implications of the similarity found in identical twin

fingerprints on the performance of automatic fingerprint verification systems.

1.7 Fingerprint Sensors

The fingerprint images may be acquired either by an offline or an online process.

The fingerprint images acquired by the offline process are known as the “inked”

fingerprints while the images acquired by the online process are known as “live-scan”

fingerprints. Inked fingerprints are of three types: (i) rolled, (ii) dab, and (ii) latent.

In the rolled method of fingerprint acquisition, ink is applied to the finger and then

rolled on a paper from one side of the nail to the other to form an impression. This

paper is then scanned at 500 dpi resolution by a standard grayscale scanner. The

rolled fingerprints have a larger ridge and furrow area due to the rolling process but

have larger deformations due to the inherent nature of the rolling process. In the dab

method of fingerprint acquisition, ink is applied to the finger and then pressed onto a

paper without rolling. The paper is then scanned into a digital image. Typically, dab

inked fingerprints have less nonlinear deformation but smaller area than the rolled

inked fingerprints. Latent fingerprints are formed when the fingers leave a thin layer

of sweat and grease on the surfaces that they touch due to the presence of sweat pores

in our fingertips. Forensic scientists dye this impression which is typically found at

the scene of a crime with color and then scan the fingerprint. In this thesis, we have

concentrated only on civil applications of fingerprints and therefore, have not used
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the latent fingerprints.

A live-scan fingerprint is obtained directly from the finger without the intermediate

use of paper (at a resolution of 500 dpi). Typically, live-scan sensors capture a

series of dab fingerprints when a finger is pressed on the sensor surface. For rolled

live-scan fingerprints, the user rolls her/his finger from one end of the nail to the

other on the sensor surface and the sensor captures a number of dab fingerprint

images. The rolled fingerprint image is then constructed by mosaicking the multiple

dab images captured during the rolling process. The commercially available live-scan

sensors are based on several different technologies. The optical fingerprint sensor from

Digital Biometrics Inc. [54] (model FC21RS1) is based on the “optical total internal

reflection” technology. The Thompson-CFS chip-based sensor [163] works on thermal

sensing of temperature difference across the ridges and valleys. The Veridicom [177]

and the Siemens [156] sensors are based on differential capacitance. The pressure-

based and ultrasonic-based fingerprint sensors are available in the market, but they

are not very widely used yet.

A number of commercial systems exist that use fingerprints captured by different

methods. For example, FBI captures fingerprints of known criminals using the inked

rolled method and stores the digitized fingerprint images in its database. A suspect’s

latent fingerprint found at a scene of crime is then matched to the rolled inked fin-

gerprints in the database. As another example, MasterCard instructs the new credit

card applicants to make an inked rolled impression of their finger on a paper and mail

the paper to them. The inked rolled fingerprint is then scanned and stored in the

user’s credit card. The user is then verified at the time of credit card transactions
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(a)

(b)

(c)

Figure 1.3: Fingerprint images captured using (a) inked method (NIST-9 database),
image size = 832 × 768 pixels, (b) Digital Biometrics optical sensor (MSU DBI
database), image size = 508 × 480 pixels, and (c) Veridicom solid-state sensor
(MSU VERIDICOM database), image size = 300 × 300 pixels. All the images have
256 gray levels.
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using a dab live-scan fingerprint image obtained with the live-scan fingerprint scanner

attached to the ATM.

An additional point worth mentioning in this section is that the FBI has pre-

scribed a standard resolution of 500!dpi for fingerprint images. A large number of

live fingerprint sensors available in the market today operate at this resolution. Na-

tional Institute of Standards and Technology (NIST) provides a number of finger-

print databases to the research community for benchmark purposes. A number of

these databases contain inked rolled fingerprints (e.g., NIST-4, NIST-9, etc). These

databases contain fingerprint images scanned at 500 dpi from the paper copy of the

rolled impressions as well as captured by 500 dpi live scanners. A few sensors that

image the fingerprints at a lower resolution are also available in the market. However,

since 500 dpi resolution is the standard, we use fingerprint images scanned only at

this resolution in this thesis.

Sensor

(a) (b)

Figure 1.4: Fingerprint sensors. (a) Optical sensor from Digital Biometrics, Inc., and
(b) solid-state sensor from Veridicom, Inc.
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Figure 1.3(a) shows a fingerprint image captured using the inked method. The

NIST 9 database, CD. No. 1, contains 900 fingerprint images captured by this method.

Figures 1.3(b) and (c) show fingerprint images captured by the optical live-scan sensor

manufactured by Digital Biometrics, Inc. (Figure 1.4(a)) and solid-state live-scan fin-

gerprint sensor manufactured by Veridicom, Inc. (Figure 1.4(b)). The inked method

captures the largest fingerprint area. The chip-based sensors capture only a part of

the whole fingerprint due to their small size. Two images of the same finger may

capture different parts of the fingerprint. Due to this relatively small overlap between

different images of the same finger captured with the small sensors, the fingerprint

matching problem is challenging. However, due to their small size (see Figure 1.4),

the solid-state sensors can be easily embedded into laptops, cellular phones, mouse

and firearms.

1.8 Fingerprint Representation

The popular fingerprint representation schemes have evolved from an intuitive system

developed by forensic experts who visually match the fingerprints. These schemes

are either based on predominantly local landmarks (e.g., minutiae-based fingerprint

matching systems [11, 56]) or exclusively global information (fingerprint classification

based on the Henry system [18, 76, 105]). The minutiae-based automatic identification

techniques first locate the minutiae points and then match their relative placement

in a given finger and the stored template [11]. A good quality inked fingerprint

image contains between 60 to 80 minutiae, but different fingerprints and different
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acquisitions of the same finger have different numbers of minutiae. A graph-based

representation [118, 155, 5] constructs a nearest neighbor graph from the minutiae

patterns. The matching algorithm is based on inexact graph matching techniques.

The point pattern-based representation [11, 26, 96] considers the minutiae points as a

two-dimensional pattern of points. Correlation-based techniques [61, 31] consider the

gray level information in the fingerprint as features and match the global patterns of

ridges and valleys to determine if the ridges align.

The global representation of fingerprints (e.g., whorl, left loop, right loop, arch,

and tented arch) is typically used for indexing [18, 76, 105], and does not offer good

individual discrimination. Further, the indexing efficacy of existing global representa-

tions is poor due to a small number of categories (typically five) that can be effectively

identified automatically and a highly skewed distribution of the population in each

category. The global representation schemes of the fingerprint used for classifica-

tion can be broadly categorized into four main categories: (i) knowledge-based, (ii)

structure-based, (iii) frequency-based, and (iv) syntactic. The knowledge-based fin-

gerprint representation technique uses the locations of singular points (core and delta)

to classify a fingerprint into five major classes (whorl, left loop, right loop, arch, and

tented arch) [18, 105]. A knowledge-based approach tries to capture the knowledge of

a human expert by deriving rules for each category by hand-constructing the models

and therefore, does not require training. Structure-based approach uses the estimated

orientation field in a fingerprint image [30, 122]. Frequency-based approaches use the

frequency spectrum of the fingerprints for representation [25]. Hybrid approaches

combine two or more approaches for representation [34, 120].
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There are two major shortcomings of the traditional approaches to fingerprint

representation. For a significant fraction of the population, the automatic extraction

of representations based on an explicit detection of complete ridge structures in the

fingerprint is difficult. The widely used minutiae-based representation does not uti-

lize a significant component of the rich discriminatory information available in the

fingerprints. Local ridge structures cannot be completely characterized by minutiae.

Further, minutiae-based matching has difficulty in efficiently and robustly matching

two fingerprint images containing different numbers of unregistered minutiae points.

Some applications such as smart cards will also benefit from a compact representation.

1.9 Fingerprint Classification

Large volumes of fingerprints are collected and stored everyday in a wide range of

applications, including forensics, access control, and driver license registration. Auto-

matic identity recognition based on fingerprints requires that the input fingerprint be

matched with a large number of fingerprints stored in a database (the FBI database

currently contains more than 630 million fingerprints! [69]). To reduce the search

time and computational complexity, it is desirable to classify these fingerprints in an

accurate and consistent manner such that the input fingerprint needs to be matched

only with a subset of the fingerprints in the database. Fingerprint classification is

a technique used to assign a fingerprint into one of the several pre-specified types

already established in the literature (and used in forensic applications) which can

provide an indexing mechanism. Fingerprint classification can be viewed as a coarse
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Twin Loop (W) Whorl (W)

Right Loop (R) Left Loop (L)

Arch (A) Tented Arch (T)

Figure 1.5: Six major fingerprint classes. Twin loop images are labeled as whorl in
the NIST-4 database.
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level matching of the fingerprints. An input fingerprint is first matched to one of

the pre-specified types and then it is compared to a subset of the database corre-

sponding to that fingerprint type. To increase the search efficiency, the fingerprint

classification algorithm can classify a fingerprint into more than one class. For exam-

ple, if the fingerprint database is binned into five classes, and a fingerprint classifier

outputs two classes (primary and secondary) with high accuracy, then the identifica-

tion system will only need to search two of the five bins, thus decreasing the search

space 2.5 folds. Continuous classification of fingerprints is also very attractive for

indexing where fingerprints are not partitioned in non-overlapping classes, but each

fingerprint is characterized with a numerical vector summarizing its main features.

The continuous features obtained are used for indexing fingerprints through spatial

data structures and for retrieving fingerprints by means of spatial queries [22]. In this

thesis, we have concentrated on an exclusive fingerprint classification and classify fin-

gerprints into five distinct classes, namely, whorl (W ), right loop (R), left loop (L),

arch (A), and tented arch (T ) (Figure 1.5). The five classes are chosen based on the

classes identified by the National Institute of Standards and Technology (NIST) to

benchmark automatic fingerprint classification algorithms. The natural proportion of

occurrence of these five major classes of fingerprints is 0.3252, 0.3648, 0.1703, 0.0616,

and 0.0779 for whorl, right loop, left loop, arch, and tented arch, respectively [173].

There are two main types of features in a fingerprint: (i) global ridge and furrow

structures which form special patterns in the central region of the fingerprint, and (ii)

local ridge and furrow minute details (see Figure 1.2). A fingerprint is classified based

on only the first type of features and is uniquely identified based on the second type
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of features (ridge endings and bifurcations, also known as minutiae). See Figure 1.2

for examples of ridges, minutiae, orientation field and singular points in a fingerprint

image.

1.10 Fingerprint Verification

Matcher
No

Yes

FeatureFeature

Extractor

Authentication Module

Enrollment Module

System DatabaseExtractor

Feature

User Name

User Interface

Figure 1.6: System diagram for an automatic verification system.

A biometric system can be operated in two modes: 1) verification mode and 2)

identification mode. In the verification mode, a biometric system either accepts or

rejects a user’s claimed identity while a biometric system operating in the identifica-

tion mode establishes the identity of the user without a claimed identity. Fingerprint

identification is a more difficult problem than fingerprint verification because a huge

number of comparisons needs to be performed in identification. In this thesis, we
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have focused on a biometric system operating in a verification mode and an indexing

scheme (fingerprint classification) that can be used in an identification system. A

number of civilian applications operate in verification mode on a regular basis and

perform identification only at the time of the user registration to check the integrity

of the database (e.g., finding duplicates). For example, in an ATM application, after

a user has been registered and issued an ATM card, the acquired fingerprint needs

to be matched only with a single template fingerprint stored on the ATM card on

each transaction. A typical verification system can be divided into two modules: (i)

enrollment and (ii) verification. The enrollment module scans the fingerprint of a

person through a sensing device and then stores a representation (called template) of

the fingerprint in the database. The verification module is invoked during the opera-

tion phase. The same representation which was used in enrollment phase is extracted

from the input fingerprint and matched against the template of the claimed identity

to give a “yes/no” answer. On the other hand, an identification system matches the

input fingerprint with a large number of fingerprints in the database and as a result,

fingerprint classification is effective only in an identification system and is not an

issue in a verification system. In this thesis, we have used the term “identification”

in a loose sense for both the fingerprint verification and identification problems and

the exact meaning of the term can be resolved based on the context.

The biometric verification problem can be formulated as follows. Let the stored

biometric signal (template) of a person be represented as S and the acquired signal

(input) for authentication be represented by I. Then the null and alternate hypotheses
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can be stated as:

H0 : I �= S, input fingerprint is NOT the same as the template,

H1 : I = S, input fingerprint is the same as the template.

The associated decisions are as follows:

D0 : person is an imposter,

D1 : person is genuine.

The verification involves matching S and I using a similarity measure. If the similar-

ity/matching score is less than some decision threshold T , then decide D0, else decide

D1. The above terminology is borrowed from communications theory where we want

to detect a message in the presence of noise. H0 is the hypothesis that the received

signal is noise alone and H1 is the hypothesis that the received signal is message plus

the noise. Such a hypothesis testing formulation inherently contains two types of

errors: Type I: false acceptance (D1 is decided when H0 is true) and Type II: false

rejection (D0 is decided when H1 is true). The two types of errors are also known as

FAR and FRR, defined as:

False Accept Rate = P (D1|w0),

False Reject Rate = P (D0|w1),
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where w0 is the class associated with H0 = true and w1 is the class associated with

H1 = true. The performance of a biometric system is usually specified in terms of

its FAR. The decision scheme should establish a decision boundary which minimizes

the FRR for the specified FAR. There is a trade-off between the two types of errors

and both the errors cannot be reduced simultaneously based on the operating point

alone. The given biometric application dictates the FAR and FRR requirements for

the verification system. For example, access to an ATM machine generally needs a

small FRR, but access to a secure military installation requires a very small FAR.

1.11 Information Fusion

A number of fingerprint verification systems have been developed and tested on large

databases but most of them are not able to meet the rigid performance requirements in

high security applications. Each fingerprint verification system uses different feature

extraction and/or matching algorithms to generate a matching score which is used for

authentication. It is well known in the pattern recognition literature that different

classifiers often misclassify different patterns [164, 90]. This suggests that different

classifiers offer rather complementary information about the given classification task.

A combination scheme which harnesses various information sources is likely to improve

the overall system performance. The outputs of various classifiers can be combined

to obtain a decision which is more accurate than the decisions made by any one of

the individual classifiers. Similar ideas can be used to combine different fingerprint

matching algorithms as described in Chapter 6.
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1.12 Feature Verification

Ideally, we would like to design pattern recognition systems which make decisions

based on all the information available in the input image. However, traditionally, for

simplicity of design, a sequential approach is often adopted to feature extraction and

matching, where each stage transforms a particular component of the information

relatively independently and the interaction between these components of informa-

tion is limited. Often, the rather simplistic model used in each component (stage)

is not sufficient to capture the entire sensed data. One of the problems with the

sequential approach is that the limited use of information in each stage results in

feature extraction and matching performance artifacts. Even though the sequential

approach is efficient from design and processing point of view, it may introduce er-

rors in the feature extraction and recognition stages. We believe that by reexamining

the original image data, some of the errors in the end-to-end sequential processing

can be eliminated, resulting in an improvement in system performance. The main

limitation of the feature verification algorithm is that it cannot address the problem

of missed features. Therefore, the feature detection algorithm should be operated

at a very low false reject rate at the expense of higher false accept rate. The false

accepts of the feature extraction algorithm will be verified by the feature verification

algorithm. Performance can also be improved by feature refinement. See Figure 1.7

for our proposed modifications to a sequential feature extraction system.
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Figure 1.7: A general pattern recognition system with proposed feedback in feature
extraction and a new feature refinement stage.

1.13 Challenges in Automatic Fingerprint Identi-

fication

Even though several commercial systems exist for fingerprint-based identification

[177], the matching accuracy performance is still not acceptable in many emerg-

ing civilian applications. A fingerprint identification system involves several stages.

First, the fingerprint image needs to be acquired and scanned into a digital repre-

sentation. There is a loss of information when the three-dimensional fingerprint is

scanned into a two-dimensional digital image. Placement of the finger on the sensor,

cuts and bruises on the finger and finger pressure differences cause different impres-

sions of the fingerprint to appear different. It is a challenge for the feature extraction

algorithm to reliably extract a robust representation from these images. Due to the
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noise present in the fingerprint image because of inexact sensing process, there may be

false features detected or important features missed. The matching algorithm should

recover the invariant information from the features such that it outputs a high score

when matching impressions of the same finger and a low score when matching the im-

pressions of different fingers. If the fingerprint image is of poor quality, a fingerprint

enhancement algorithm should be used to improve the quality of the image. However,

it is very difficult to design a fingerprint enhancement algorithm that is robust to all

types of noise in the sensed fingerprint. An inappropriate enhancement algorithm

may introduce undesirable artifacts into the fingerprint image.

Figure 1.8: An example fingerprint image from the NIST-4 database. The experts
have labeled this image to belong to two classes, right loop, and tented arch.

In a verification application, it is very important to make a decision in real time

(∼ 1 second) so that the verification process does not cause inconvenience to the user.

In an identification application, the fingerprint matching should be extremely fast due

to the large number of matchings that must be performed. The matching algorithm

should scale well with large databases, both in terms of time and space. Fingerprint

classification can be used to distribute the fingerprints in a fixed number of bins so
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that the matching algorithm needs to search only a few bins to find the correct match.

FBI requirements for a fingerprint classification algorithm are 1% error rate with a

maximum of 20% reject rate. Fingerprint classification is a difficult problem for both

the automatic systems and the human experts. For example, about 17% of the images

in the NIST-4 database [41] have two different ground truth labels. This means that

even human experts could not agree on the true class of the fingerprint for about 17%

of the fingerprint images in this database containing 4, 000 fingerprint images (see

Figure 1.8 for an example).

1.14 State-of-the-art in Fingerprint Identification

A number of systems exist for fingerprint verification as well as classification. Even

though National Institute of Standards and Technology (NIST) provides a number of

databases for performance evaluation and benchmark, many companies report results

on their proprietary databases and, therefore, their results cannot be independently

verified and compared. Some of the fingerprint vendors report extremely low er-

ror rates (see Table 1.1) that are not achieved in research laboratories on realistic

databases. As a comparison, a recent evaluation of various fingerprint verification

algorithms on a common database in a laboratory environment reports significantly

higher error rates (Table 1.2). The details of this performance evaluation can be

found in [57].

A state-of-the-art fingerprint classification algorithm [141] reports accuracies of

92.2% for the five-class classification problem with classes defined as arch, tented arch,
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Table 1.1: Performance of fingerprint verification systems reported by various com-
panies on their web sites. None of the companies mention the database used for
obtaining the performance results, and thus the performance numbers can not be
directly compared. FAR: False Accept Rate; FRR: False Reject Rate.

Company (web site) Sensor FAR FRR
(%) (%)

Biolink USA (biolinkusa.com) Optical 0.0000001 0.01
BiometricId (biometricid.com) Optical 0.01 0.01
Startek (startek.com.tw) Optical 0.001 3.3
IOSoftware (iosoftware.com) Optical 0.1 1
Identix (identix.com) Optical 0.0001 1
NEC (nectech.com) Solid-state 0.0002 0.05
Biometrix Int. (biometrix.at) Solid-state 0.001 0.0001
Pollex (pollex.ch) Solid-state 0.001 1
Sony (sony.com) Solid-state 0.001 1

left loop, right loop, and whorl, and 94.5% for the four-class classification, where the

classes arch and tented arch are merged into one. The state-of-the-art classification

systems have not met the FBI standards on any public domain database containing

equal number of patterns from each of the five fingerprint classes.

1.15 Thesis Objectives

Forensic experts who match fingerprints visually have predominantly used minutiae

features for fingerprint matching for over a century. Similarly, forensic experts have

used the locations of singularities in the fingerprints (e.g., core(s) and delta(s)) to

visually classify fingerprints for indexing purposes. Most of the existing automatic

fingerprint verification and classification systems use representations that are moti-

vated by the representations used by the forensic experts. In this thesis, we have
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Table 1.2: Comparison of state-of-the-art fingerprint verification algorithms in terms
of equal error rate (ERR) and timing on a database of 800 fingerprints (image size =
448×478 captured by DF-90 optical sensor manufactured by Identicator Technology).
Details of the evaluation protocol can be found in [57].

Algorithm ERR Avg Enroll Time Avg Match Time Reject Rate
(%) (seconds) (seconds) (%)

Sag1 3.64 5.70 2.13 0.00
Sag2 4.01 1.94 1.94 0.00
Cspn 5.33 0.35 0.35 1.81
Cetp 8.29 1.49 1.66 0.00
Cwai 5.90 0.46 0.57 20.86
Krdl 8.03 1.48 1.60 11.98

theoretically determined the information content of the traditional minutiae-based

representation and established an upper bound on the performance of fingerprint

verification systems based on a minutiae representation. As a result of the limited

information content of the minutiae representation, non-minutiae representations of

fingerprints should be explored. In this thesis, we have developed a novel non-minutiae

representation for fingerprints that combines both the global and the local informa-

tion present in a fingerprint. The proposed representation is based on considering

the fingerprint images as oriented textures, is very different from the representations

used by the forensic experts and is more amenable to automatic systems (in terms of

matching speed and storage size). The performance of this representation is evalu-

ated for both fingerprint classification and matching applications on large databases.

We have empirically shown that the proposed representation has a discriminatory

power that is comparable to the minutiae-based representation. A combination of a

matcher based on the proposed representation with two other minutiae-based match-
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ers significantly improves the verification performance. We have further shown that a

combination of multiple templates and multiple fingers can significantly improve the

performance of a fingerprint verification system. A feedback and feature refinement

scheme is proposed in a general pattern recognition framework which improves the

performance of a minutiae-based fingerprint verification system. Finally, we show

that the use of all the techniques presented in this thesis significantly improve the

performance of a fingerprint verification system on a large database.

1.16 Thesis Outline

Chapter 2 discusses the individuality of fingerprints. Chapter 3 describes our novel

filterbank-based fingerprint representation. A classification algorithm based on the

proposed representation is described in Chapter 4. Chapter 5 describes the filterbank-

based fingerprint verification system and compares it with a state-of-the-art minutiae-

based system. Chapter 6 presents a classifier combination strategy geared towards

decision level fusion in fingerprint verification systems. The results of combining four

different fingerprint matchers, two fingers of a person and two impressions of the

same fingerprint are presented. Chapter 7 presents results of minutiae verification

and classification. Chapter 8 presents conclusions and future directions.

29



Chapter 2

On the Individuality of

Fingerprints

Fingerprint identification is based on two basic premises: (i) persistence: the basic

characteristics of fingerprints do not change with time; and (ii) individuality: the

fingerprint is unique to an individual. The validity of the first premise has been

established by the anatomy and morphogenesis of friction ridge skin. While the

second premise has been generally accepted to be true based on empirical results, the

underlying scientific basis of fingerprint individuality has not been formally tested.

As a result, fingerprint evidence is now being challenged in several court cases. A

scientific basis for establishing fingerprint individuality will not only determine the

admissibility of fingerprint identification in the courts of law but will also establish

an upper bound on the performance of an automatic fingerprint verification system.

The distinguishing nature of physical characteristics of a person is due to both

the inherent individual genetic diversity within the human population as well as the
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random processes affecting the development of the embryo [146, 129]. Since two

individuals can be arbitrarily close with respect to their genetic constitution (e.g.,

identical twins), a pessimistic evaluation of identity discrimination based on biomet-

rics may need to rely solely on an assessment of diversity in the traits due to random

process affecting human development. Such an assessment strategy would necessarily

rely on biometric samples from individuals who are identical/similar in their genetic

constitution. Since identical twins have the closest genetics-based relationship, the

maximum similarity between fingerprints is expected to be found among them. In

Section 2.1, we have quantified the role of genetic similarity on the similarity of finger-

prints and shown that a state-of-the-art automatic fingerprint identification system

can successfully distinguish identical twins though with a slightly lower accuracy than

nontwins [21]. The implications of the similarity found in identical twin fingerprints

on the performance of fingerprint identification systems is discussed.

The environmental factors during the formation of fingerprints play an important

role in the distinctiveness of fingerprints. To quantify the diversity present in fin-

gerprint patters, we study the amount of information available in minutiae points to

establish a correspondence between two fingerprint images in Section 2.2. We derive

an expression which estimates the probability of falsely associating minutiae-based

representations from two arbitrary fingerprints. For example, we show that the prob-

ability that a fingerprint with 36 minutiae points will share 12 minutiae points with

another arbitrarily chosen fingerprint with 36 minutiae points is 6.10 × 10−8. These

probability estimates are compared with typical fingerprint matcher accuracy results.

Our results show that (i) contrary to the popular belief, fingerprint matching is not
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infallible and leads to some false associations, (ii) the performance of automatic fin-

gerprint matcher does not even come close to the theoretical performance, and (iii)

due to the limited information content of the minutiae-based representation, the au-

tomatic system designers should explore the use of non-minutiae-based information

present in the fingerprints.

2.1 Genetic Factors

2.1.1 Introduction

The extent of variation in a physical trait due to random development process differs

from trait to trait. By definition, identical twins can not be distinguished based on

DNA. Typically, most of the physical characteristics such as body type, voice, and

face are very similar for identical twins and automatic identification based on face and

hand geometry is unlikely to distinguish them. See Figure 2.1 for a photograph of an

identical twin pair. It is, however, claimed that identical twins can be distinguished

based on their fingerprints, retina, thermogram, or iris patterns. The focus of this

study is to empirically determine the similarity of fingerprints in identical twins. We

further attempt to assess the impact of this similarity on the performance of automatic

fingerprint-based verification systems. Since both, human iris and angiogenesis follow

a development pattern similar to fingerprints, we believe the results of this study

may be qualitatively applicable to other biometric identifiers such as iris, retina and

thermogram patterns as well.
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Figure 2.1: Photograph of identical twin sisters (www.visi.com/∼charlesr/).

How does one assess whether two fingerprints are identical? In order to reli-

ably establish whether two prints came from the same finger or different fingers, it

is necessary to capture some invariant representation (features) of the fingerprints:

the features which over a life-time will continue to remain unaltered irrespective of

the cuts and bruises, the orientation of the print with respect to the medium of the

capture, occlusion of a small part of the finger, the imaging technology used to ac-

quire the fingerprint from the finger, or the elastic distortion of the finger during the

acquisition of the print.

An important question in fingerprint matching is: which characteristics of the

fingerprints are inherited? A number of studies have shown a significant correlation

in the fingerprint class (i.e., whorl, right loop, left loop, arch, tented arch) of identical

twin fingers; correlation based on other generic attributes of the fingerprint such as

ridge count, ridge width, ridge separation, and ridge depth has also been found to
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(a) (b)

(c) (d)

Figure 2.2: Fingerprint images of identical twin sisters captured using an optical
scanner from Digital Biometrics Inc., (a) and (b) are two impressions of the same
finger of one twin and (c) and (d) are two impressions of the corresponding finger of
her sibling. Matching score between (a) and (b) is 487, and between (c) and (d) is
510. The matching score between (a) and (c) is 24, and the matching score between
(b) and (d) is 4. The fingerprints of both the twins here have the same type (right
loop) and look similar to untrained eyes. Fingerprint experts, as well as our automatic
fingerprint identification system can, however, easily differentiate the twins.
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be significant in identical twins. In dermatoglyphics studies, the maximum global

difference between fingerprints has been found among individuals of different races.

Unrelated persons of the same race have very little global similarity in their finger-

prints, parent and child have some global similarity as they share half the genes,

siblings have more similarity and the maximum global similarity is observed in the

monozygotic (identical) twins, which is the closest genetic relationship [79].

Monozygotic twins are a consequence of division of a single fertilized egg into

two embryos. Thus, they have exactly identical DNA except for the generally unde-

tectable micromutations that begin as soon as the cell starts dividing. Fingerprints of

identical twins start their development from the same DNA, so they show consider-

able generic similarity [178]. However, identical twins are situated in different parts of

the womb during development, so each fetus encounters slightly different intrauterine

forces from their siblings. As a result, fingerprints of identical twins have different

microdetails which can be used for identification purposes [79]. It is claimed that

a trained expert can usually differentiate between the fingerprints of identical twins

based on the minutiae (dis)similarity [79]. Thus, there is anecdotal evidence that

minutiae configurations are different in identical twins but to our knowledge, no one

has systematically investigated or quantified how minutiae information in identical

twins is (un)related in the context of an automatic fingerprint-based authentication

system. The multiple fingerprints of a single individual also share common genetic

information and a very common development environment. However, this chapter

focuses on analyzing the similarity in fingerprint minutiae patterns in identical twin

fingers.
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(a) (d)

(b) (e)

(c) (f)

Figure 2.3: Minutiae extraction for twins. (a) and (b) are fingerprint images of an
identical twin and his/her sibling while the fingerprint in (c) is from another person.
(d), (e), and (f) are the minutiae extracted from (a), (b), and (c), respectively using
the extraction algorithm in [11].

36



(a) (b)

Figure 2.4: Minutiae matching for (a) twin-nontwin (matching of Figures 2.3(e) and
2.3(f), matching score = 3 on a scale of 0-999) and (b) twin-twin (matching of Figures
2.3(d) and Figure 2.3(e), matching score = 38 on a scale of 0-999). The “matched”
minutiae pairs are shown by bounding boxes.

Figure 2.5: Minutiae matching for two impressions of the same finger shown in Figures
2.2(a) and 2.2(b) (matching score = 487 on a scale of 0-999). The “matched” minutiae
pairs are shown by bounding boxes.
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Using an automatic fingerprint biometric system [11], we study the (dis)similarity

between identical twin fingerprints and compare it to the (dis)similarity between two

arbitrary fingerprints. We have confirmed the claim that the identical twin finger-

prints have a large class correlation, i.e., if one of the identical twin’s fingerprint is

a whorl then it is very likely that the other twin’s fingerprint will also be of whorl

type. We also analyze the correlation between the fingerprint class and the minu-

tiae matching score between two randomly chosen fingerprints. Finally, we stipulate

the implications of the extent of the similarity in identical twin fingerprints to the

performance of a fingerprint-based person verification system.

2.1.2 Experimental Results

A randomly chosen subset of the rolled identical twin fingerprints collected for the

National Heart, Lung, and Blood Institute (NHLBI) twin study [66, 168] is used in

our experiments. The fingerprints were acquired using the methods documented in

[169]. The fingerprints of the index fingers of 100 pairs of identical twins were scanned

using an IBM flatbed color scanner in grayscale mode at 500 dpi resolution. Some

of the original fingerprints were in ink while others were taken on a sensitized paper

with ink-less fluid. The latter tend to fade with time. Due to differences in paper

quality and degradation of the print over time, several of these fingerprints are of

poor quality. We rejected some of the very poor quality fingerprints and used only

94 pairs of identical twin fingerprints in our study. See Figures 2.3(a) and (b) for

examples of fingerprint images in our twin database.
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To study the similarity of identical twin fingerprints, we matched every fingerprint

in our twin database with every other fingerprint. See Figure 2.3 for an example

of minutiae extraction for twin fingerprints. Figures 2.4 and 2.5 show examples of

matching twin-nontwin fingerprints, twin-twin fingerprints, and two impressions of the

same finger of a person. In Figure 2.6(a), the dash line shows the twin-twin imposter

distribution of matching scores computed by matching a fingerprint with his/her

identical twin sibling (twin-twin match), while the solid line shows the twin-nontwin

imposter distribution of matching scores between a person’s fingerprint and everyone

else except his/her twin (twin-nontwin match). The twin-twin imposter distribution

was estimated using 188 (94×2) matchings between the 94 twin fingerprint pairs in our

identical twin database whereas the twin-nontwin imposter distribution was estimated

using 17, 484 (94×93×2) matchings. Figure 2.6(a) shows that the twin-twin imposter

distribution is slightly shifted to the right of the twin-nontwin distribution indicating

that twin-twin fingerprints are generally more similar than twin-nontwin fingerprints.

The twin-twin and twin-nontwin distributions are found to be significantly different

(greater than 99.99% confidence) using the Kolmogorov-Smirnov test [179].

The genuine distribution of matching scores is estimated by matching multiple

fingerprint images of the same finger. Since we had access to only a single impression

of the fingers in our twin database, we had to synthesize the genuine distribution for

twin-twin matching. Since the identical twin fingerprint images in our database were

obtained by rolling inked fingers of the subjects by fairly experienced finger-printers,

we expect the genuine distribution characteristics of the twin database to closely

correspond to that obtained from a standard public domain fingerprint database
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Figure 2.6: (a) Distribution of matching scores for twin-twin imposter, twin-nontwin
imposter, and genuine fingerprint matchings. (b) ROC curves for twin-twin and twin-
nontwin minutiae pattern matchings.
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Figure 2.7: Effect of fingerprint class type on the matching score.

(e.g., NIST9 CD No. 1) [42]. This database, consisting of 1, 800 fingerprint images

taken from 900 independent fingers, two impressions per finger, was used to compute

the genuine distribution which is shown in Figure 2.6(a). This genuine distribution

along with the two “imposter” distributions in Figure 2.6(a) were used to generate the

Receiver Operating Characteristics (ROC) [172, 92] curves shown in Figure 2.6(b).

Figure 2.6(b) shows that, due to the similarity of twin fingerprints, the ability of

the system to distinguish identical twins is lower than its ability to distinguish twin-

nontwin pairs. However, contrary to claims made in the popular press [53], the

automatic fingerprint identification system can still be used to distinguish between

identical twins without a drastic degradation in performance. See Figure 2.2 for an

illustration. Table 2.1 shows the trade-off between FARs and FRRs of twin-twin and

twin-nontwin matchings for different thresholds on the matching score.
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To quantify the performance degradation of a fingerprint verification system due

to the inherent twin-twin similarity in fingerprints, we assume that twin-nontwin

imposter distribution is representative of the matchings between unrelated people

(nontwins). Suppose a fingerprint verification was set to operate at a decision thresh-

old of T to satisfy the specified FAR requirements. Now, suppose that identical twins

use this automatic fingerprint identification system. Since the twin-twin imposter

distribution in Figure 2.6(a) is slightly to the right of the twin-nontwin distribution,

this will increase the FAR of the system but will have no effect on the FRR. The

FAR for identical twins is generally 2% to 6% higher than twin-nontwin matchings

depending on the system operating point (different thresholds). The quantitative

implication of this in the performance of a fingerprint matching system is as follows.

Suppose our system is developed on fingerprints of unrelated people (nontwins) and

is set to operate at, say, a threshold of 20 which corresponds to an FAR of ∼ 1% (see

row 2 of Table 2.1). Now, if 1 million unrelated people (nontwins) used the system,

then, based on our empirical distributions, 10, 000 people will be falsely accepted

while 22, 000 people will be falsely rejected. However, if 500, 000 identical twin pairs

(1 million twins) used the system operating at the same threshold of 20, then 48, 000

of these will be falsely accepted while 22, 000 people will be falsely rejected. Notice

the increase in the false acceptance rate from 1.02% to 4.79%.

To safeguard against twin fraud, we can set the operating point of our system

pessimistically at a threshold of 26 which corresponds to an FAR of ∼ 1% for twin-

twin matchings and an FAR of ∼ 0.3% for twin-nontwin matchings. This raises

the FRR to ∼ 3.5% as opposed to 2.2% when operating at a threshold of 20. This
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Table 2.1: False accept and false reject rates with different threshold values for the
twin database.

Threshold FRR FAR (twin-twin) FAR (twin-nontwin)
T (%) (%) (%)
16 1.05 8.51 2.20
20 2.20 4.79 1.02
24 3.00 2.13 0.48
26 3.49 1.06 0.29

means that in the worst case scenario (when all the people accessing the system

are twins), the system will falsely accept 10,000 people out of one million at the

expense of falsely rejecting 35,000 people. In the best case (when there are no twins

accessing the system), only 3, 000 people will be falsely accepted while falsely rejecting

35, 000 people. In practice, the system will falsely accept between 3, 000 and 10, 000

people (between 0.3% and 1% ), depending upon the fraction of twins in our sample

population of 1 million while falsely rejecting 35, 000 people.

Dermatoglyphics studies have suggested that there is a large correlation between

the fingerprint types of identical twins. To confirm this claim, we manually classified

the 94 pairs of identical twin fingerprints in our database into five classes (right loop,

left loop, whorl, arch, and tented arch). The class correlation between the index

fingers of identical twins is found to be 0.775 (fraction of identical twin pairs whose

index fingerprints have the same class label). The natural proportion of occurrence

of each of the five major classes of fingerprints in the index finger is 0.3252, 0.3648,

0.1703, 0.0616, and 0.0779 for whorl (W), right loop (R), left loop (L), arch (A),

and tented arch (T), respectively [173]. If we randomly choose two index fingerprint

images from a large database, the probability that these two fingerprints will have
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the same class label is equal to p2
W +p2

R +p2
L +p2

A +p2
T , i.e., 0.2718, where pW , pR, pL,

pA, and pT , are the probabilities of a fingerprint chosen at random belonging to the

class of whorl, right loop, left loop, arch, and tented arch, respectively. Thus, there is

only 0.2718 chance that two randomly chosen index fingers will have the same type

which is much lower than the 0.775 chance that the fingerprints of two identical twins

will have the same class label.

We believe that the global similarity of fingerprints (shown as class similarity) is,

to a certain extent, responsible for the local similarity (shown in the matching per-

formance). Consider two fingerprints that belong to the same class (e.g., right loop).

Since the minutiae can exist only along the ridges (although at random locations),

the matching score between these two fingerprints is likely to be higher than the

matching score between two sets of random point patterns. To study the correlation

of class information with the matching performance, we used the NIST4 database [41]

which has 4, 000 fingerprint images collected from 2, 000 independent fingers with 800

fingerprints from each of the five classes.

We computed the genuine distribution from 3, 600 matchings between the two

impressions of the same finger from 1, 800 good quality fingerprint pairs from the

NIST4 database. The between-class and within-class distributions were computed

from about 130, 000 matchings each. The ROCs for between-class and within-class

matchings are shown in Figure 2.7. Note that the matching performance is better for

fingerprints belonging to different classes compared to fingerprints belonging to the

same class. Also, the magnitude of the shift between the two ROCs in Figure 2.7 is

of the same order of magnitude as the one manifested in Figure 2.6(b). Thus, we
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have shown that the minutiae-based similarity in identical twin fingerprints, is of the

same order as the similarity between unrelated people who have the same fingerprint

class label. Hence, the larger similarity observed in identical twins is due to the high

class correlation in their fingerprint types.

2.1.3 Summary

One out of every eighty births results in twins and one third of all the twins are

monozygotic (identical) twins [86]. Some identical twins have been reported to be

involved in fraud, which can be called “twin fraud”, since people mistake the identities

of the identical twins. The childhood mischief by the identical twins of switching

places on their teachers and taking each other’s exams may grow into serious criminal

activities in adulthood such as buying a single insurance for identical twin siblings

or claiming welfare benefits twice when only one sibling is unemployed. There have

been cases reported where an identical twin was sentenced for a crime that was

committed by his/her sibling [53]. Fertility treatments have resulted in an increase in

the identical twin birth rate (in fact, according to a study by Robert Derom [53], the

identical twin birth rate is about twice as high for women who use fertility drugs).

Further, because of the medical advances in the treatment of premature babies, the

population of identical twins is increasing.

We have shown that even though identical twin fingerprints have large class cor-

relation, they can still be distinguished using a minutiae-based automatic fingerprint

identification system; though with a slightly lower accuracy than nontwins. Our re-
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sults suggest that the marginal degradation in performance may be related to the

dependence of the minutiae distribution on fingerprint class.

What are the implications of our empirical results in person identification ap-

plications? In authentication applications, marginal degradation in accuracy perfor-

mance will have almost no effect on “evil” twins posing as impostors. In large scale

fingerprint based identification applications, a small degradation in authentication

accuracy may imply a significant degradation in the recognition accuracy. Further,

if the degradation in the performance is dependent on the class correlation which in

turn depends on the genetic constitution (as suggested by the dermatoglyphics stud-

ies), it may imply that benefits reaped by composition of ten-finger information may

have been overestimated in the literature. Further, the magnitude of performance

degradation of a minutiae-based fingerprint matcher may depend upon the genetic

relationship among a target population corpus. Both of these effects may need further

investigation; more research is necessary for class-independent minutiae-based match-

ers. Since the accuracy performance of a minutiae-based fingerprint matcher degrades

with genetic similarity in the population, alternate independent representations of fin-

gerprints should be explored that can be combined with the minutiae representation

to yield a more accurate automatic fingerprint matching system. Finally, fingerprint

classification applications used for the binning of population to increase efficiency of

fingerprint based search may not be very efficient in genetically related population.
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2.2 Environmental Factors

2.2.1 Introduction

Our interest in the fingerprint individuality problem is twofold. Firstly, a scientific

basis (reliable statistical estimate of the matching error) for fingerprint comparison

can determine the admissibility of fingerprint identification in the courts of law as

an evidence of identity. Secondly, it can establish an upper bound on the perfor-

mance of an automatic fingerprint verification system. Here, we develop a fingerprint

individuality model that attempts to estimate the probability of a false association.

We use this model to establish an upper bound on the performance of a fingerprint

verification system [11].

In order to solve the individuality problem, we need to first define a priori the

representation of a fingerprint (pattern) and the metric for the similarity. Finger-

prints can be represented by a large number of features, including the overall ridge

flow pattern, ridge frequency, location and position of singular points (core(s) and

delta(s)), type, direction, and location of minutiae points, ridge counts between pairs

of minutiae, and location of pores (see Figures 2.8(a) and (b)). All these features

contribute in establishing fingerprint individuality. In this study, we have chosen

minutiae representation of the fingerprints because it is utilized by forensic experts,

has been demonstrated to be relatively stable and has been adopted by most of the

automatic fingerprint matching systems.

Given a representation scheme and a similarity metric, there are two approaches

for determining the individuality of the fingerprints. In the empirical approach, repre-
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Figure 2.8: A fingerprint image of type “right loop”. The overall ridge structure,
singular points, and sweat pores are shown.

sentative samples of fingerprints are collected and using a typical fingerprint matcher,

the accuracy of the matcher on the samples provides an indication of the uniqueness

of the fingerprint with respect to the matcher. There are known problems (and costs)

associated with collection of the representative samples. In a theoretical approach to

individuality estimation, one models all realistic phenomenon affecting inter-class and

intra-class pattern variations. Given the similarity metric, one could then, theoreti-

cally estimate the probability of a false association. Theoretical approaches are often

limited by the extent to which the assumed model conforms to the reality. In this

work, we emphasize the theoretical formulation of the fingerprint individuality model
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based on a number of parameters derived from a database of fingerprint images. We

also juxtapose the probabilities obtained from individuality model with the empirical

matcher accuracy results.

Minutiae patterns are generated by the underlying fingerprints which are smoothly

flowing oriented textures. The minutiae points are not randomly distributed since the

positions are determined by the ridges (see Figure 2.9). Further, the orientations of

nearby minutiae are strongly correlated. Thus, the configuration space spanned by

the minutiae pattern is smaller than that spanned by a pattern of (directed) random

points. This typically implies that the probability of finding sufficiently similar prints

from two different fingers is higher than that of finding sufficiently similar sets of

random (directed) point patterns. In our study, we have imposed realistic fingerprint

structural (e.g., ridge/valley position, ridge orientation) constraints on a random

point configuration space to derive a more effective estimate of the probability of

false association.

The total number of degrees-of-freedom of the pattern space (e.g., minutiae config-

uration space) does not directly relate to the discriminability of the different patterns

(e.g., minutiae from different fingers). The effective estimation of discriminatory in-

formation can only be achieved by taking into account intra-pattern variations [16].

There are several sources of variability in the multiple impressions of a finger [11]:

non-uniform contact (with the sensor), irreproducible contact, inconsistent contact,

and imaging artifacts. This variability in multiple impressions of a finger manifests

itself in (i) detection of spurious minutiae or missing genuine minutiae, (ii) displace-

ment/disorientation (also called deformation) of the genuine detected minutiae, and
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(iii) transformation of the type of minutiae (connective ambiguity). This entails de-

signing a similarity metric (matcher) that accommodates these intra-class variations.

As a result, the probability of false association increases significantly.

Most of the earlier approaches did not explicitly incorporate these (intra-class)

variabilities into their individuality models (see [47] for a critical review of several

models) and, therefore, overestimate the fingerprint individuality. Since most of the

existing models of individuality do not address the problems associated with oc-

currence of spurious minutiae or missing genuine minutiae, they do not provide a

systematic framework to address issues related to a partial representational match

between two fingerprints (e.g., what is the probability of finding 7 matched minutiae

in two fingerprints with 18 and 37 minutiae, respectively?). This is very important

in an automatic fingerprint matching system (feature extraction algorithms are not

as accurate as a well-trained fingerprint expert in detecting minutiae) and in match-

ing latents (where a print depicting a small portion of a finger is matched against a

print depicting a full finger). Although, in a manual fingerprint matching procedure,

the likelihood of detecting false minutia is significantly smaller than that in an auto-

matic system, the prints imaged from different portions of fingers may give rise to the

variability in the number of detected minutia. Our approach not only explicitly mod-

els the situation of partial representational match but also incorporates constraints

on the configuration space due to intra-pattern variations (e.g., number of minutia,

minutia position/orientation, image area) based on empirical estimates derived from

the ground truth data marked on fingerprints obtained in a realistic environment.

The rest of the Chapter is organized as follows. Section 2.2.2 presents a summary

50



of major fingerprint individuality studies and compares the probability of a finger-

print configuration obtained by different models. Section 2.2.3 presents the proposed

fingerprint individuality model, and section 2.2.4 presents the results. Summary and

discussions are presented in section 2.2.5.

2.2.2 Background

The early individuality studies typically focused on a predominantly minutiae-based

representation; some studies explicitly factored in fingerprint class (e.g., right loop,

left loop, whorl, arch, tented arch, etc.) information. The type, direction, and lo-

cation of minutiae were the most commonly used features in the early individuality

studies. See Table 2.2 for a comparison of the features used in fingerprint individual-

ity models. The types of minutiae used varies from one study to other: some studies

used two minutia types (ending and bifurcation) whereas others used as many as 13

types of events (e.g., empty cell, ridge ending, ridge fork, island, dot, broken ridge,

bridge, spur, enclosure, delta, double fork, trifurcation, multiple events) [94]. Later

models considered additional features to determine the probability of occurrence of a

particular fingerprint configuration (e.g., ridge counts [47], sweat pores [29]).

Most of the early individuality studies examined the distinctiveness of a por-

tion/feature of the fingerprint. Under simplifying assumptions (e.g., implicit assump-

tions about statistical independence of events and the corresponding event distribu-

tions are identical), these studies estimated the distinctiveness of the entire fingerprint

(total pattern variation) by collating the distinctiveness in the feature extracted from

51



fingerprints (total feature variation). We will refer to these total pattern variation-

based fingerprint individuality estimates as the probability of fingerprint configuration.

A summary of these studies is presented below.

The fingerprint individuality problem was first addressed by Galton in 1892 [70],

who considered a square region spanning six-ridges in a given fingerprint. He assumed

that, on an average, a fingerprint can be covered by 24 such six-ridge wide independent

square regions. Galton estimated that he could correctly reconstruct any of the

regions with a probability of 1
2
, by looking at the surrounding ridges. Accordingly,

the probability of a specific fingerprint configuration, given the surrounding ridges

is
(

1
2

)24
. He multiplied this conditional (on surrounding ridges) probability with the

probability of finding the surrounding ridges to obtain the probability of occurrence

of a fingerprint as

P (Fingerprint Configuration) =
1

16
× 1

256
×
(

1

2

)24

= 1.45 × 10−11, (2.1)

where 1
16

is the probability of occurrence of a specific fingerprint type (such as arch,

tented arch, left loop, right loop, double loop, whorl, etc.) and 1
256

is the probability

of occurrence of the correct number of ridges entering and exiting each of the 24

regions. Eq. (2.1) gives the probability that a particular fingerprint configuration in

an average size fingerprint (containing 24 regions defined by Galton) will be observed

in nature. Roxburgh [170], Pearson [98], and Kingston [39] objected to Galton’s

assumption that the probability of occurrence of any particular ridge configuration

in a six-ridge square is 1
2
, and claimed that Eq. (2.1) grossly underestimated the
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fingerprint individuality (i.e., overestimated the probability of occurrence). Pearson

[98] argued that there could be 36 (6 × 6) possible minutiae locations within one of

Galton’s six-ridge-square regions, leading to a probability of occurrence of a particular

fingerprint configuration of

P (Fingerprint Configuration) =
1

16
× 1

256
×
(

1

36

)24

= 1.09 × 10−41. (2.2)

A number of subsequent models (Henry [64], Balthazard [176] (cf. [47]), Bose [47],

Wentworth and Wilder [36], Cummins and Midlo [79], and Gupta [161]) are interre-

lated and are based on a fixed probability, p, for the occurrence of a minutiae. They

compute the probability of a particular N -minutiae fingerprint configuration as

P (Fingerprint Configuration) = pN . (2.3)

In the following, we provide the values of p used in various studies. In most cases,

the authors do not present any details on how they arrived at their choice of p.

• Henry [64] chose p = 1
4

and added 2 to the number of minutiae, N , if the

fingerprint type and core-to-delta ridge count could be determined from the

given (latent) fingerprint.

• Balthazard [176] also set p = 1
4
, under the assumption that there are four types

of equally likely minutiae events: (i) fork (bifurcation) to the right, (ii) fork to

the left, (iii) ending to the right, and (iv) ending to the left.

• Bose [47] adopted p = 1
4
, under the assumption that there are four possibilities
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in each square region of one ridge-interval width in a fingerprint: (i) a dot, (ii)

a fork, (iii) an ending, and (iv) a continuous ridge.

• Wentworth and Wilder [36] chose 1
50

as the value of p.

• Cummins and Midlo [79] adopted the same value of p as Wentworth and Wilder,

but introduced a multiplicative constant of 1
31

to account for the variation in

fingerprint pattern type.

• Gupta [161] estimated the value of p as 1
10

for forks and endings, and 1
100

for the

less commonly occurring minutiae types, based on 1,000 fingerprints. He also

used a fingerprint-type-factor of 1
10

and correspondence-in-ridge-count-factor of

1
10

.

Because of the widely varying values of p used in the above studies, the probability

of a given fingerprint configuration also dramatically varies from one model to the

other.

Roxburgh [170] proposed a more comprehensive analysis to compute the probabil-

ity of a fingerprint configuration. His analysis was based on considering a fingerprint

as a pattern with concentric circles, one ridge interval apart, in a polar coordinate

system. Roxburgh also incorporated a quality measure of the fingerprint into his

calculations. He computed the probability of a particular fingerprint configuration to

be:

P (Fingerprint Configuration) =

(
C

P

)(
Q

RT

)N

, (2.4)

where P is the probability of encountering a particular fingerprint type and core type,
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Q is a measure of quality (Q = 1.5 for an average quality print, Q = 3.0 for a poor

quality print), R is the number of semicircular ridges in a fingerprint (R = 10), T is

the corrected number of minutiae types (T = 2.412), and C is the number of possible

positions for the configuration (C = 1). Amy [102] (cf. [47]) considered the variability

in minutiae type, number, and position in his model for computing the probability of

a fingerprint configuration. He further recognized that K multiple comparisons of the

fingerprint pair (e.g., each hypothesized orientation alignment, each reference point

correspondence) increase the possibility of false association which is given by

P (False Association) = 1 − (1 − P (Fingerprint Configuration))K . (2.5)

Kingston’s [39] model, which is very similar to Amy’s model, computes the probability

of a fingerprint configuration based on the probabilities of the observed number of

minutiae, observed positions of minutiae, and observed minutiae types as follows:

P (Fingerprint Configuration) = (e−y)(yN/N !)(P1)
N∏

i=2

(Pi)
(0.082)

[S − (i − 1)(0.082)]
,

(2.6)

where y is the expected number of minutiae in a region of given size S (in mm2) and

Pi is the probability of occurrence of a particular minutiae type.

Most of the models discussed above implicitly assume that fingerprints are being

matched manually. The probability of observing a given fingerprint feature is esti-

mated by manually extracting the features from a small number of fingerprint images.

Champod and Margot [37] used an AFIS to extract minutiae from 977 fingerprint im-
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Table 2.2: Fingerprint features used in different models.

Author Fingerprint features used

Galton (1892) ridges, minutiae types
Pearson (1930) ridges, minutiae types
Henry (1900) minutiae locations,

types, core-to-delta ridge count
Balthazard (1911) minutiae locations, two types,

and two directions
Bose (1917) minutiae locations and three types
Wentworth & Wilder (1918) minutiae locations
Cummins & Midlo (1943) minutiae locations, types,

core-to-delta ridge count
Gupta (1968) minutiae locations and types,

types, ridge count
Roxburgh (1933) minutiae locations, two minutiae types,

two orientations, fingerprint and core types,
number of possible positionings, area,
fingerprint quality

Amy (1948) minutiae locations, number,
types, and orientation

Trauring (1963) minutiae locations,
two types, and two orientations

Kingston (1964) minutiae locations,
number, and types

Osterburg et al. (1980) minutiae locations and types
Stoney et al. (1986) minutiae locations,

distribution, orientation, and types, variation
among prints from the same source, ridge
counts, and number of alignments
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Table 2.3: Comparison of probability of a particular fingerprint configuration using
different models. For a fair comparison, we do not distinguish between minutiae
types. By assuming that an average size fingerprint has 24 regions (R = 24) as
defined by Galton, 72 regions (M = 72) as defined by Osterburg et al., and has 36
minutiae on an average (N = 36), we compare the probability of observing a given
fingerprint configuration in the third column of the table. The probability of observing
a fingerprint configuration with N = 12, and equivalently, R = 8, is given in braces
in the third column. Note that all probabilities represent a full (N minutiae) match
as opposed to a partial match (see Table 2.5).

Author P(Fingerprint Configuration) N=36,R=24,M=72
(N=12,R=8,M=72)

Galton (1892) 1
16

× 1
256

× (
1
2

)R
1.45 × 10−11

(9.54 × 10−7)

Pearson (1930) 1
16

× 1
256

× (
1
36

)R
1.09 × 10−41

(8.65 × 10−17)

Henry (1900)
(

1
4

)N+2
1.32 × 10−23

(3.72 × 10−9)

Balthazard (1911)
(

1
4

)N
2.12 × 10−22

(5.96 × 10−8)

Bose (1917)
(

1
4

)N
2.12 × 10−22

(5.96 × 10−8)

Wentworth & Wilder (1918)
(

1
50

)N
6.87 × 10−62

(4.10 × 10−21)

Cummins & Midlo (1943) 1
31

× (
1
50

)N
2.22 × 10−63

(1.32 × 10−22)

Gupta (1968) 1
10

× 1
10

× (
1
10

)N
1.00 × 10−38

(1.00 × 10−14)

Roxburgh (1933) 1
1000

× (
1.5

10×2.412

)N
3.75 × 10−47

(3.35 × 10−18)
Trauring (1963) (0.1944)N 2.47 × 10−26

(2.91 × 10−9)
Osterburg et al. (1980) (0.766)M−N(0.234)N 1.33 × 10−27

(3.05 × 10−15)
Stoney (1985) N

5
× 0.6 × (0.5 × 10−3)N−1 1.2 × 10−80

(3.5 × 10−26)
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ages scanned at a relatively high resolution of 800 dpi. They generated frequencies

of minutiae occurrence and minutiae densities after manually verifying the thinned

ridges produced by the AFIS to ensure that the feature extraction algorithm did not

introduce errors. They considered minutiae only in concentric bands (five ridges wide)

above the core and acknowledged that their individuality estimates were conservative

(i.e., provided an upper bound). As an example, they estimated the probability of

occurrence of a seven-minutiae configuration (five endings and two bifurcations) as

2.25 × 10−5.

Osterburg et al. [94] divided fingerprints into discrete cells of size 1 mm× 1 mm.

They computed the frequencies of 13 types of minutiae events (including an empty

cell) from 39 fingerprints (8,591 cells) and estimated the probability that 12 ridge

endings will match between two fingerprints based on an average fingerprint area of

72 mm2 as 1.25 × 10−20. Sclove [157] modified Osterburg et al.’s model by incor-

porating the observed dependence of minutiae occurrence in cells and came up with

an estimate of probability of fingerprint configuration that is slightly higher than

that obtained by Osterburg et al. Stoney and Thornton [47] criticized Osterburg et

al.’s and Sclove’s models because these models did not consider the fingerprint ridge

structure, distortions, and the uncertainty in the positioning of the grid. Stoney and

Thornton [47] critically reviewed earlier fingerprint individuality models and proposed

a detailed set of fingerprint features that should be taken into consideration. These

features included ridge structure and description of minutiae location, ridge counts

between pairs of minutiae, description of minutiae distribution, orientation of minu-

tiae, variation in minutiae type, variation among fingerprints from the same source,
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number of positions (different translations and rotations of the input fingerprint to

match with the template), and number of comparisons performed with other finger-

prints for identification.

Stoney’s [49] model is different from other models in that it attempts to character-

ize a significant component of pairwise minutiae dependence. Stoney [49] and Stoney

and Thornton [47] studied probabilities of occurrences of various types of minutiae,

their orientation, number of neighboring minutiae, and distances/ridge counts to the

neighboring minutiae. Given a minutiae set, they calculated the probability of a

minutiae configuration by conjoining the probabilities of the individual events in the

configuration. For instance, they proposed a linear ordering of minutiae in a minutia

configuration and recursively estimated the probability of a n-minutiae configuration

from the probability of a (n− 1)-minutiae configuration and the occurrence of a new

minutiae of certain type/orientation at a particular distance/ridge counts from its

nearest minutiae within the (n − 1)-minutiae configuration. The model also incor-

porated constraints due to connective ambiguity and due to minutia-free areas. The

model corrected for the probability of false association by accounting for the various

possible linear orderings which could initiate/drive the search for correspondence. A

sample calculation for computing the probability of a false association using Stoney’s

model is given below.

P (False Association) = 1 −
(
1 − 0.6 ∗ (0.5 × 10−3

)(N−1)
)�N

5
�

≈ N

5
× 0.6 ∗ (0.5 × 10−3

)(N−1)
. (2.7)
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For the sake of simplicity, we have considered only a rudimentary version of Stoney’s

model for the above computation; it is arbitrarily assumed that the probability of

a typical starting minutia is 0.6, a typical neighboring minutia places an additional

constraint of 5×10−3 on the probability, and there are no constraints due to connective

ambiguity, minutia-free areas or minutia-free borders are assumed. Finally, it is

(arbitrarily) assumed that one in every five minutia can potentially serve as a starting

point for a new search. We believe that a more realistic estimation of the individuality

based on Stoney’s model would not deviate from the simplistic estimation presented

here by more than a couple of orders of magnitude.

Stoney and Thornton identified weaknesses in their model and acknowledged that

one of the most critical requirements, i.e., consideration of variation among prints

from the same source, is not sufficiently addressed in their model. Their tolerances

for minutiae position were derived from successive printings under ideal conditions

and are far too low to be applicable in actual fingerprint comparisons.

The models discussed above (including Amy’s model of false association due to

multiple comparisons) concentrated mainly on measuring the amount of detail in a

single fingerprint (i.e., estimation of the probability of a fingerprint configuration).

These models did not emphasize the intra-class variations in multiple impressions of a

finger. We will refer to the quantifications of fingerprint individuality which explicitly

consider the intra-class variations as the probability of correspondence. Trauring [125]

was the first to concentrate explicitly on measuring the amount of detail needed to

establish correspondence between two prints from the same finger using an AFIS and

observed that corresponding fingerprint features could be displaced from each other
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by as much as 1.5 times the inter-ridge distance. He further assumed that (i) minu-

tiae are distributed randomly, (ii) there are only two types of minutiae (ending and

bifurcation), (iii) the two types of minutiae are equally likely, (iv) the two possible

orientations of minutiae are equally likely, and (v) minutiae type, orientation, and po-

sition are independent variables. Trauring computed the probability of a coincidental

correspondence of N minutiae between two fingerprints to be:

P (Fingerprint Correspondence) = (0.1944)N . (2.8)

Stoney and Thornton’s [47] criticism of the Trauring model is that he did not consider

ridge count, connective ambiguity, and correlation among minutiae location. Further,

they claim that Trauring’s assumption that the minutiae types and orientations are

equally probable is not correct. The probabilities of observing a particular minutiae

configuration from different models are compared in Table 2.3.

There have been a few studies which empirically estimate the probability of find-

ing a fingerprint in a large database that successfully matches the input fingerprint.

Meagher et al. [151] (for more details see Stiles [123]) matched about 50,000 rolled

fingerprints belonging to the same fingerprint class (left loop) with each other to

compute the impostor distribution. However, the genuine distribution was computed

by matching each fingerprint image with itself; this ignores the variability present in

different impressions of the same finger. Further, they assumed that the impostor and

the genuine distributions follow a Gaussian distribution and computed the probability

of a false association to be 10−97. This model grossly underestimates the probability
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of a false association because it does not consider realistic intra-class variations in

impressions of a finger (see also, Stoney et al. [47] and Wayman [91]).

2.2.3 A Model of Fingerprint Individuality

We have developed a model to obtain a realistic and more accurate probability of

correspondence between fingerprints. The probabilities obtained using this model will

be compared against empirical values using an automatic fingerprint matching system

(AFMS) [11] (an AFIS is used for identification; an AFMS is used for verification).

To estimate the probability of correspondence, we make the following assumptions:

1. We consider only minutiae features since (i) most of the discriminatory power of

the AFMS is based on minutiae features, and (ii) for an objective measurement

of individuality, it is necessary that the representation be consistently repro-

ducible, easily localized, and quantified. Minutiae features have been shown

to be stable and practical systems have demonstrated a reliable extraction of

minutia representation from fingerprints of reasonable image quality. Only ridge

endings and ridge bifurcations are considered because the occurrence of other

minutiae types such as islands, dots, enclosures, bridges, double bifurcations,

trifurcations, etc. is relatively rare. Additionally, we do not distinguish be-

tween the two types of minutiae because ridge endings and ridge bifurcations

can not be accurately discriminated. Since minutiae can reside only on ridges

which follow certain overall patterns in a fingerprint, the minutiae directions are

not completely independent of the minutiae locations. We implicitly model the
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statistical dependence between minutiae directions and locations in our model.

Finally, we have not considered the pairwise minutiae features such as ridge

counts in the present analysis.

2. We assume a uniform distribution of minutiae in a fingerprint with the re-

striction that two minutiae cannot be very close to each other. While minu-

tiae locations are not uniformly distributed, our assumption approximates the

slightly overdispersed uniform distribution found by Stoney [48]. Sclove [157]

showed that the minutiae tend to cluster. We have not explicitly modeled the

clustering tendency of minutiae. Therefore, the assumption of independence

of minutiae locations will bias the estimate of the probability of a false asso-

ciation towards higher values. However, it is a common practice in fingerprint

individuality studies to make conservative (higher) estimates of the probability

of correspondence. Both Sclove [157] and Osterburg et al. [94] discuss how

these conservative estimates favor a suspect in a criminal investigation, in the

sense that it gives the suspect the benefit of the doubt by lowering the certainty

attached with the fingerprint matching.

3. Correspondence of a minutiae pair is an independent event and each corre-

spondence is equally important. Fingerprint matching systems weigh different

correspondence based on their position (e.g., correspondences involving minu-

tiae from peripheral pattern area are weighted less than those minutiae located

in the center of the fingerprint). Similarly, it is possible to weight spatially

diverse correspondences more than all correspondences localized in a narrow
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spatial neighborhood. Our analysis currently ignores such dependencies among

the minutiae correspondences.

4. We do not explicitly take into account fingerprint image quality in individu-

ality determination. It is very difficult to reliably assign a quality index to a

fingerprint because image quality is a subjective concept. Our approach to in-

corporating image quality in fingerprint matching assumes that only a subset

of the true minutiae in a fingerprint will be detected. All correspondences are

considered reliable and no certainty is associated with a correspondence based

on the fingerprint image quality. In good quality fingerprints, one could use

conflicting evidence (when a minutia in input does not match any minutiae in

template) to reject the hypothesis that the input and the template fingerprints

are the same. However, there will be some errors in identifying minutiae in fin-

gerprints with poor quality. Therefore, we explicitly consider only the positive

evidence from a minutiae correspondence; the negative information from the

conflicting evidence (e.g., a minutia that does not match) is ignored.

5. Ridge widths are same across the population and spatially uniform in the same

finger. This assumption is justified because the pressure variations could make

non-uniform ridge variations uniform and vice versa. Further, there may be

only limited discriminatory information in the ridge frequency.

6. The analysis of matchings of different impressions of the same finger binds the

parameters of the probability of matching minutiae in two fingerprints from

different fingers.
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7. We assume that there exists one and only one alignment between the template

and the input minutiae sets.

The fingerprint correspondence problem involves matching two fingerprints; one

is called the template (stored in the system) and the other is called the input (which

needs to be verified). We assume that a reasonable alignment has been established

between the template and the input. The alignment of the input minutiae set with the

template minutiae set is done so that the minutiae correspondences can be determined

in a small tolerance. In manual fingerprint matching, this alignment is typically

based on aligning the fingerprint singularities (core(s) and delta(s)) and ridges. An

automatic system may seek an alignment that maximizes a given objective function

(such as the number of matching minutiae). This assumption may not be valid when

matching a partial (latent) fingerprint with a full print in the database, as there may

be several “reasonable” alignments possible. When multiple alignments are indeed

warranted by a situation, the probability of false association increases (see Eq. (2.5)).

Given an input fingerprint containing n minutiae, our goal is to compute the

probability that any arbitrary fingerprint (template in a database of fingerprints)

containing m minutiae will have exactly q corresponding minutiae with the input.

Since we only consider fingerprint minutiae which is defined by its location, (x, y),

and by the angle of the ridge on which it resides, θ, the input and the template

minutiae sets, T and I, respectively, are defined as:
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(a)

(b)

Figure 2.9: Automatic minutiae matching. Two impressions of the same finger were
matched in (a) 39 minutiae were detected in input (left), 42 in template (right),
and 36 “true” correspondences were found. Two different fingers are matched in
(b) 64 minutiae were detected in input (left), 65 in template (right), and 25 “false”
correspondences were found.
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Figure 2.10: Fingerprint and minutiae.

T = {{x1, y1, θ1}, {x2, y2, θ2}, ..., {xm, ym, θm}} , (2.9)

I = {{x′
1, y

′
1, θ

′
1}, {x′

2, y
′
2, θ

′
2}, ..., {x′

n, y
′
n, θ′n}} . (2.10)

Once an alignment between the input minutiae set and the template minutiae set

is established, we develop our individuality model. Let us first model the intra-class

variation. A minutiae j in the input fingerprint is considered as “corresponding” or
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“matching” to the minutiae i in the template, if and only if

√
(x′

i − xj)2 + (y′
i − yj)2 ≤ r0, and (2.11)

min (|θ′i − θj| , 360 − |θ′i − θj|) ≤ θ0, (2.12)

where r0 is the tolerance in distance and θ0 is the tolerance in angle. Both manual

and automatic fingerprint matchings are based on some tolerance both in minutiae

location and angle to account for the variations in different impressions of the same

finger. Eq. (2.12) computes the minimum of |θ′i − θj| and 360− |θ′i − θj| because the

angles are mod 360 (the difference between angles of 2◦ and 358◦ is only 4◦).

Let A be the total area of overlap between the input and the template fingerprints

after a reasonable alignment has been achieved. The probabilities that any arbitrary

minutiae in the input will match any arbitrary minutiae in the template, only in

terms of location, and only in terms of direction, are given by Eqs. (2.13) and (2.14),

respectively. Eq. (2.13) assumes that (x, y) and (x′, y′) are independent and Eq.

(2.14) assumes that θ and θ′ are independent.

P

(√
(x′

i − xj)
2 + (y′

i − yj)
2 ≤ r0

)
=

area of tolerance

total area of overlap
=

πr2
0

A
=

C

A
, (2.13)

P (min (|θ′i − θj| , 360 − |θ′i − θj|) ≤ θ0) =
angle of tolerance

total angle
=

2θ0

360
. (2.14)

First we will develop our fingerprint correspondence model when only minutiae loca-

tions alone are matched and then introduce the minutiae angles later in the formula-

tion. If the template contains m minutiae, the probability that only one minutia in
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the input will correspond to any of the m template minutiae is given by mC
A

. Now,

given two input minutiae, the probability that only the first one corresponds to one

of the m template minutiae is the product of the probabilities that the first input

minutiae has a correspondence (mC
A

) and the second minutiae does not have a cor-

respondence (A−mC
A−C

). Thus, the probability that exactly 1 of the 2 input minutiae

matches any of the m template minutiae is 2× mC
A

× A−mC
A−C

, since either the first input

minutiae alone may have a correspondence or the second input minutiae alone may

have a correspondence. If the input fingerprint has n minutiae, the probability that

exactly one input minutia matches one of the m template minutiae is

p(A,C, m, n) =

⎛
⎜⎜⎝ n

1

⎞
⎟⎟⎠
(

mC

A

)(
A − mC

A − C

)
. (2.15)

The probability that there are exactly ρ corresponding minutiae between the n input

minutiae and m template minutiae is then given by:

p(A,C, m, n, ρ) =

⎛
⎜⎜⎝ n

ρ

⎞
⎟⎟⎠
(

mC

A

)(
(m − 1)C

A − C

)
...

(
(m − ρ − 1)C

A − (ρ − 1)C

)
︸ ︷︷ ︸

ρ terms

×

(
A − mC

A − ρC

)(
A − (m − 1)C

A − (ρ + 1)C

)
...

(
(A − (m − (n − ρ + 1))C

A − (n − 1)C

)
︸ ︷︷ ︸

n−ρ terms

. (2.16)

The first ρ terms in Eq. (2.16) denote the probability of matching ρ minutiae between

the template and the input; and remaining n − ρ terms express the probability that

n− ρ minutiae in the input do not match any minutiae in the template. Dividing the
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numerator and denominator of each term in Eq. (2.16) by C, we obtain:

p(A,C,m, n, ρ) =

⎛
⎜⎜⎝ n

ρ

⎞
⎟⎟⎠
(

m
A
C

)(
(m − 1)

A
C
− 1

)
...

(
(m − ρ − 1)
A
C
− (ρ − 1)

)
×

(
A
C
− m

A
C
− ρ

)(
A
C
− (m − 1)

A
C
− (ρ + 1)

)
...

(
(A

C
− (m − (n − ρ + 1))

A
C
− (n − 1)

)
. (2.17)

Letting M = A
C

, we get

p(M, m, n, ρ) =

⎛
⎜⎜⎝ n

ρ

⎞
⎟⎟⎠(m

M

)((m − 1)

M − 1

)
...

(
(m − ρ − 1)

M − (ρ − 1)

)
×

(
M − m

M − ρ

)(
M − (m − 1)

M − (ρ + 1)

)
...

(
(M − (m − (n − ρ − 1))

M − (n − 1)

)
. (2.18)

By assuming that M is an integer (which is a realistic assumption because A 
 C),

we can write the above equation in a compact form as:

p(M, m, n, ρ) =
n!

ρ!(n − ρ)!
× (M − n)!

M !
× m!

(m − ρ)!
× (M − m)!

((M − m) − (n − ρ))!
. (2.19)

Rearranging the terms,

p(M, m, n, ρ) =
m!

ρ!(m − ρ)!
× (M − m)!

(n − ρ)!((M − m) − (n − ρ))!
× (M − n)!n!

M !
, (2.20)
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which finally reduces to:

p(M, m, n, ρ) =

⎛
⎜⎜⎝ m

ρ

⎞
⎟⎟⎠
⎛
⎜⎜⎝ M − m

n − ρ

⎞
⎟⎟⎠

⎛
⎜⎜⎝ M

n

⎞
⎟⎟⎠

. (2.21)

Eq. (2.21) defines a hyper-geometric distribution. To get an intuitive understand-

ing of the probability model for the minutiae correspondence in two fingerprints,

imagine that the overlapping area of the template and the input fingerprints is di-

vided into M non-overlapping cells. The shape of the individual cells does not matter,

just the number of cells. Now consider a deck of cards containing M distinct cards.

Each card represents a cell in the overlapping area. There is one such deck for the

template fingerprint and an identical deck for the input fingerprint. If m cards are

drawn from the first (template) deck without replacement, and n cards are drawn

from the second (input) deck without replacement, the probability of matching ex-

actly q cards among the cards drawn is given by the hyper-geometric distribution in

Eq. (2.21) [83].

The above analysis considers a minutiae correspondence based solely on the minu-

tiae location. Next we consider a minutiae correspondence that depends on minutiae

directions as well as minutiae positions. For the sake of this analysis, let us assume

that the minutiae directions are completely independent of the minutiae positions and

matching minutiae position and minutiae direction are therefore independent events.
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Let l be such that P (min (|θ′i − θj| , 360 − |θ′i − θj|) ≤ θ0) = 1
l

in Eq. (2.14). Given n

input and m template minutiae, the probability of ρ minutiae falling into the similar

positions can be estimated by Eq. (2.21). Once ρ minutiae positions are matched,

the probability that q (q ≤ ρ) minutiae among them have similar directions is given

by ⎛
⎜⎜⎝ ρ

q

⎞
⎟⎟⎠
(

1

l

)q (
l − 1

l

)ρ−q

, (2.22)

where 1
l
is the probability of two position-matched minutiae having a similar direction

and l−1
l

is the probability of two position-matched minutiae taking different directions.

Therefore, probability of matching q minutiae in both position as well as direction is

given by

p(M,m, n, q) =

min (m,n)∑
ρ=q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ m

ρ

⎞
⎟⎟⎠
⎛
⎜⎜⎝ M − m

n − ρ

⎞
⎟⎟⎠

⎛
⎜⎜⎝ M

n

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ρ

q

⎞
⎟⎟⎠
(

1

l

)q (
l − 1

l

)ρ−q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(2.23)

Until now, we have assumed that the minutiae locations are uniformly distributed

within the entire fingerprint area. Since A is the area of the overlap between the

template and the input fingerprints, the ridges occupy approximately A
2

of the area,

with the other half being occupied by the valleys. Since the minutiae can lie only on

ridges, i.e., along a curve of length A
w
, where w is the ridge period, the value of M in

Eq. (2.23) should therefore be changed from M = A/C to M = A/w
2r0

, where 2r0 is
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the length tolerance in minutiae location.

Parameter Estimation

Our individuality model has several parameters, namely, r0, l, w, A, m, n, and q.

The value of l further depends on θ0. The values of r0, l, and w are estimated in

this section for a given sensor resolution. To compare the values obtained from the

theoretical model with the empirical results, we will estimate the values of A, m, and

n from two different databases in the next section.
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Figure 2.11: Distribution of minutiae distance differences for the genuine fingerprint
pairs in the GT database.

The value of r0 should be determined to account for the variation in the different

impressions of the same finger. However, since the spatial tolerance is dependent

upon the scale at which the fingerprint images are scanned, we need to calculate

it for the specific sensor resolution. We used a database (called GT ) consisting of
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450 mated pairs of fingerprints acquired using a high quality (Identicator [81]) op-

tical scanner at a resolution of 500 dpi. The second print in the mated pair was

acquired at least a week after the first print. The minutia were manually extracted

from the prints by a fingerprint expert. The expert also determined the correspon-

dence information for the detected minutiae. Using the ground truth correspondence

information between duplex (two) pairs of corresponding minutiae, a rigid transfor-

mation between the mated pair was determined. The overall rigid transformation

between the mated pair was determined using a least square approximation of the

candidate rigid transformations estimated from each duplex pairs of the corresponding

minutiae. After aligning a given mated pair of fingerprints using the overall transfor-

mation, the location difference (x′−x, y′−y) for each corresponding minutia pair was

computed; distance (
√

(x′ − x)2 + (y′ − y)2) estimates for all minutiae in all mated

fingerprint pairs were pooled to obtain a distribution for the distance between the

corresponding minutiae (see Figure 2.11). We are seeking that value of r0 for which

P

(√
(x′ − x)2 + (y′ − y)2 ≤ r0

)
≥ 0.975, i.e., the value of r0 which accounts for at

least 97.5% of variation in the minutiae position of genuine fingerprint matchings.

Thus, r0 is determined from the distribution of
√

(x′ − x)2 + (y′ − y)2 estimated in

Figure 2.11 and is found to be 15 pixels for fingerprint images scanned at 500 dpi

resolution.

To estimate the value of l, we first estimate the value of θ0. The value of θ0 can

also be estimated using the database GT . After aligning a given mated pair of fin-

gerprints using the overall transformation, we seek that value of θ0 which accounts

for 97.5% variation in the minutia angles in the genuine fingerprint matchings, i.e.,
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Figure 2.12: Distributions for minutiae angle differences for the (a) genuine finger-
print pairs using the ground truth and (b) imposter matchings using the automatic
fingerprint matching system.
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Figure 2.13: Area of overlap between the two fingerprints that are matched based
on the bounding boxes of the minutiae features for (a) MSU DBI database; (b)
MSU VERIDICOM database.
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we seek that value of θ0 for which P (min (|θ′i − θj| , 360 − |θ′i − θj|) ≤ θ0) ≥ 0.975.

The distribution, P (min (|θ′ − θ| , 360 − |θ′i − θj|)) for the genuine fingerprint match-

ings in GT is shown in Figure 2.12(a). Note that the minimum of the distribution

occurs at 90◦ and the distribution between 90◦ and 180◦ is monotonically increasing.

The area under this density from 90◦ to 180◦ is about 0.5% of the total area and

quantifies the “connective ambiguity” (transformation of a ridge ending and a ridge

bifurcation and v ice versa due to finger pressure variations). We believe that since

the connective ambiguity is small (about 0.5%), it could be ignored. The value for

θ0 for which P (min (|θ′ − θ| , 360 − |θ′ − θ|) ≤ θ0) ≥ 0.975 is found to be θ0 = 22.5◦.

In the second step, we determine the distribution P (min (|θ′ − θ| , 360 − |θ′ − θ|)) for

the imposter fingerprint matchings. Since we do not have correspondences marked

by an expert between imposter fingerprint pairs, we depend on our fingerprint

matcher to establish correspondences between minutiae in imposter pairs. Thus,

our estimation of l is slightly dependent on the automatic fingerprint matcher used

but we believe that the value estimated here is very close to the true value of l.

The distribution P (min (|θ′i − θj| , 360 − |θ′i − θj|)) estimated by using our matcher

on the GT database is shown in Figure 2.12(b) from which we determined that

P (min (|θ′i − θj| , 360 − |θ′i − θj|) ≤ 22.5◦) = 0.267, i.e., l = 3.75. Note that under

the assumption that minutiae directions are uniformly distributed and the minutiae

directions for the minutiae that match in their location are independent, we obtain

l = 360
2×22.5

= 8. If minutiae orientations (0-180) are considered instead of directions

(0-360) , the value for l determined from the experiments is 2.4 as opposed to a value

of 4 determined under the assumption stated above.
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The value of w was taken as reported by Stoney [48]. Stoney estimated the value

of ridge period as 0.463 mm/ridge from a database of 412 fingerprints. For fingerprint

sensors with a resolution of 500 dpi, the ridge period converts to ∼ 9.1 pixels/ridge.

Thus, w ∼ 9.1.

2.2.4 Experimental Results and Discussions

Fingerprint images were collected in our laboratory from 167 subjects using an optical

sensor manufactured by Digital Biometrics, Inc. (image size = 508 × 480, resolution

= 500 dpi). Single impressions of the right index, right middle, left index, and left

middle fingers for each subject were taken in that order. This process was then

repeated to acquire a second impression. The fingerprint images were collected again

from the same subjects after an interval of six weeks in a similar fashion. Thus, we

have four impressions for each of the four fingers of a subject. This resulted in a

total of 2, 672 (167 × 4 × 4) fingerprint images. We call this database MSU DBI.

A live feedback of the acquired image was provided and the subjects were guided

in placing their fingers in the center of the sensor in an upright orientation. Using

the protocol described above, we also collected fingerprint images using a solid-state

fingerprint sensor manufactured by Veridicom, Inc. (image size = 300×300, resolution

= 500 dpi). We call this database MSU VERIDICOM. A large number of impostor

matchings (over 4, 000, 000) were generated using the automatic fingerprint matching

system [11].

The mean values of m and n for impostor matchings were estimated as 46 for the
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Figure 2.14: Distributions for m, n, and q for computation of averages for (a)
MSU DBI database; (b) MSU VERIDICOM database.
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Figure 2.15: Comparison of experimental and theoretical probabilities for the number
of matching minutiae. (a) MSU DBI database; (b) MSU VERIDICOM database.
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MSU DBI database and as 26 for the MSU VERIDICOM database from the distribu-

tions of m,n (Figures 2.14(a) and (b)). The average value of A for the MSU DBI and

the MSU VERIDICOM databases are 67, 415 pixels and 28, 383 pixels, respectively.

The value of the overlapping area A was estimated in the following fashion. After

the template and the input fingerprints were aligned using the estimated transforma-

tion, a bounding box Ai of all the corresponding minutiae in the input fingerprint

was computed in the common coordinate system. Similarly, a bounding box At of

all the corresponding minutiae in the template fingerprint was also computed in the

common coordinate system. The intersection A of these two bounding boxes Ai and

At for each matching was then estimated. The estimates of A for all the matchings

performed in the database were pooled to obtain a distribution for A (see Figures

2.13 (a) and (b)). An arithmetic mean of the distribution was used to arrive at an

estimate of A.

The probabilities of a fingerprint correspondence obtained for different values of

M , m, n, and q are given in Table 2.5. The values obtained from our model shown in

Table 2.5 can be compared with values obtained from the previous models in Table

2.3 for m = 36, n = 36, and q = 36, 12.

Typically, a match consisting of 12 minutiae points (the 12-point rule) is con-

sidered as sufficient evidence in many courts of law. Assuming that an expert can

correctly glean all the minutia in the latent, a 12-point match with the full-print tem-

plate (see the first row, last column entry in Table 2.4) is an overwhelming amount of

evidence, provided that there is no contradictory minutia evidence in the overlapping

area. The value of A was computed for 500 dpi fingerprint images from the minutiae
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Table 2.4: The effects of the fingerprint expert misjudgments in using the 12-point
rule. The source of error could be in underestimating the minutiae detected in the
latent print (n) or overestimating the correct number of matched minutiae (q). m = 12
for all entries. Except for (m = 12, n = 12, q = 12) entry, all other entries represent
incorrect judgments by the fingerprint expert. For instance, the entry (m = 12, n =
14, q = 8) in the table indicates that although the fingerprint examiner determined
that 12 template minutia unequivocally matched with all 12 input minutiae, there
were indeed 14 input minutiae (2 missed input minutiae) out of which only 8 correctly
matched with the corresponding template minutiae (4 incorrect match judgments).

q 8 9 10 11 12
n
12 6.19 × 10−10 4.88 × 10−12 1.96 × 10−14 3.21 × 10−17 1.22 × 10−20

13 1.58 × 10−9 1.56 × 10−11 8.42 × 10−14 2.08 × 10−16 1.58 × 10−19

14 3.62 × 10−9 4.32 × 10−11 2.92 × 10−13 9.66 × 10−16 1.11 × 10−18

15 7.63 × 10−9 1.06 × 10−10 8.68 × 10−13 3.60 × 10−15 5.53 × 10−18

16 1.50 × 10−8 2.40 × 10−10 2.30 × 10−12 1.45 × 10−14 2.21 × 10−17

density of 0.246 minutiae/mm2 estimated by Kingston (cf. [48]) from 100 fingerprints;

thus M = 35. Since latents are typically of very poor quality, it is possible that there

could be an error in judgment of existence of minutiae in the latent or their possible

match to the minutiae in the template print. The effect of such misjudgments on the

chance of false associations is rather dramatic. For instance, imposing two incorrect

minutiae match judgments lowers the probability of the match from 1.22 × 10−20 to

1.96 × 10−14 and ignoring two genuine minutiae present in the input (latent) print

lowers the probability from 1.22 × 10−20 to 1.11 × 10−18. Thus, the misjudgment of

a false minutiae match has significantly more impact that that of missing genuine

minutiae in the input latent print.

Figures 2.15(a) and (b) show the distribution of the number of matching minutiae

computed from the MSU DBI and MSU VERIDICOM databases using an automatic

fingerprint matching system (AFMS) [11], respectively. These figures also show the
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Table 2.5: Fingerprint correspondence probabilities obtained from the proposed in-
dividuality model for different sizes of fingerprint images containing 26, 36 or 46
minutiae. M for the last entry was computed by estimating typical print area man-
ifesting 12 minutia in a 500 dpi optical fingerprint scan. The entry (35, 12, 12, 12)
corresponds to the 12-point rule.

M , m, n, q P(Fingerprint Correspondence)
104, 26, 26, 26 5.27 × 10−40

104, 26, 26, 12 3.87 × 10−9

176, 36, 36, 36 5.47 × 10−59

176, 36, 36, 12 6.10 × 10−8

248, 46, 46, 46 1.33 × 10−77

248, 46, 46, 12 5.86 × 10−7

70, 12, 12, 12 1.22 × 10−20

theoretical distributions obtained from our model described in Section 2.2.3 for the

average values of M , m, and n computed from the databases. The empirical dis-

tribution is to the right of the theoretical distribution, which can be explained by

the following factors: (i) some true minutiae are missed and some spurious minu-

tiae are detected by the automatic system due to noise in the fingerprint images and

the imperfect nature of the automatic algorithms. Spurious minutiae may also be

detected because of cuts and bruises on the fingertips; (ii) the automatic matching

algorithm cannot completely recover the non-linear deformation present in the fin-

gerprint images; so the alignment between the input and template has some error.

(iii) automatic feature extraction introduces error in minutiae location and orienta-

tions. (iv) the matcher seeks that alignment which maximizes the number of minutiae

correspondences. Consequently, the chance of false associations increases.

The theoretical curve is the upper bound on the performance of a minutiae-based

automatic fingerprint verification system which means that it is possible to improve

the system to match the theoretical curve. At the same time, the automatic sys-
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tem can not perform better than the theoretical limit because of limited information

content in the minutiae-based matching.

Table 2.6 shows the empirical probability of matching 10 and 15 minutiae in

MSU VERIDICOM and MSU DBI databases, respectively. The typical values of m

and n were estimated from their distributions by computing the arithmetic means.

The probabilities of false correspondence for these values of m, n and q, are reported

in the third column of Table 2.6. Admittedly, this is an approximate procedure but

we do not expect significant deviations from our probability estimates even when the

exact procedure for estimating the probability is adopted.

Table 2.6: Fingerprint correspondence probabilities obtained from matching imposter
fingerprints using an AFMS [11] for the MSU VERIDICOM and MSU DBI databases.
The probabilities given in the table are for matching “exactly q” minutiae. The
probabilities for matching “q or more” minutiae are 3.0× 10−2 and 3.2× 10−2 for the
MSU VERIDICOM and MSU DBI databases, respectively, i.e., of the same order.
The average values for M , m, and n are 28, 383, 26, and 26 for the MSU VERIDICOM
database and 67, 415, 46 and 46 for the MSU DBI database, respectively.

Database m,n,q P(False Correspondence)
MSU VERIDICOM 26, 26, 10 1.7 × 10−2

MSU DBI 46, 46, 15 1.4 × 10−2

2.2.5 Summary

One of the most fundamental questions one would like to ask about any practical

biometric authentication system is: what is the inherent discriminable information

available in the input signal? Unfortunately, this question, if at all, has been answered

in a very limited setting for most biometrics modalities, including fingerprints. The

inherent signal capacity issue is of enormous complexity as it involves modeling both
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the composition of the population as well as the interaction between the behavioral

and physiological attributes at different scales of time and space. Nevertheless, a

first-order approximation to the answers to these questions will have a significant

bearing on the acceptance of fingerprint- (biometrics-) based personal identification

systems into our society as well as determining the upper bounds on scalability of

deployments of such systems.

Estimating fingerprint individuality essentially involves determining the discrim-

inatory information within the input measurements (fingerprint images) to resolve

the identities of the people. The empirical and theoretical methods of estimating

individuality serve complementary goals. Empirical observations lead us to charac-

terize the constraints on the discriminatory information across different fingers as

well as the invariant information among the different impressions of the same finger;

the theoretical modeling/generalization of these constraints permits a prediction of

the bounds on the performance and facilitates development of constructive methods

for an independent empirical validation. Historically, there has been a disconnect in

the performance evaluations of practical fingerprint systems and theoretical perfor-

mance predictions. Further, the data-dependent empirical performance evaluations

themselves have varied quite dramatically.

The model proposed here is relatively simple. It ignores most of the known (weak)

dependencies among the features and does not directly include features such as ridge

counts, fingerprint class, ridge frequencies, permanent scars, etc. For these reasons, we

suspect that the proposed model does not yet compete in predicting the performance

of human fingerprint expert matcher. Yet, we believe that the individuality estimates
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predicted by the present model are significantly closer to the performance of practical

automatic fingerprint matchers on realistic data samples than other models reported

in the literature.

While the individuality of the minutiae based fingerprint representation based on

our model is lower than the previous estimates, our study indicates that the likelihood

of an adversary guessing someone’s fingerprint pattern (e.g., requiring matching 20

or more minutia from a total of 36) is significantly lower than a hacker being able to

guess a six-character alpha-numerical case-sensitive (most probably weak) password

by social engineering techniques (most common passwords are based on birthday,

spouse’s name, etc.) or by brute force. Obviously, more stringent conditions on

matching will provide a better cryptographic strength at the risk of increasing the

false negative error rate.

If a typical full dab fingerprint contains 46 minutiae, there is an overwhelming

amount of information present in the minutiae representation of fingerprints for man-

ual identification (the probability of a false correspondence between two fingerprints

from different users containing 46 minutiae each is 1.33 × 10−77). However, an auto-

matic system that makes its decision based on 12 minutiae correspondences is utilizing

only a limited amount of information (the probability of a false correspondence for

matching 12 minutiae between two fingerprints from different users containing 46

minutiae each is 5.86 × 10−7). Due to this limited amount of information present in

the minutiae representation of fingerprints, it is desirable to explore alternate com-

plementary representations of fingerprints for automatic matching. In Chapter 3, we

describe such an alternate texture-based representation of fingerprints and empirically
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show that it has a discriminatory power similar to the minutiae-based representation.
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Chapter 3

Fingerprint as Oriented Texture

Traditionally, there are two main types of features in fingerprints: (i) global ridge and

furrow structures which form a special pattern in the central region of the fingerprints,

and (ii) minute details associated with local ridges and furrows. A fingerprint is

typically classified based on only the first type of features and uniquely identified

based on the second type of features. The minutiae-based representation is the most

popular representation of fingerprints as it has a long history of use by the forensic

experts who visually match fingerprints. Forensic experts also use other features such

as ridge count between pairs of minutiae and ridge width in conjunction with minutiae

for identification purposes. However, automatic processing of fingerprints allows the

use of Cartesian coordinates and Euclidean distances in establishing the similarity

between fingerprints. Similarly, the use of an alternate representation of fingerprint

that has good discriminatory power is also feasible for automatic systems. Chapter

2 has established an upper bound on the performance of minutiae-based fingerprint

matching systems due to the limited amount of information content present in the
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minutiae-based representation. As a result, it is desirable to explore an alternate

independent representation of fingerprints that can complement the minutiae-based

representation. This complementary representation should combine both the global

and the local information sources in a fingerprint to obtain a rich representation.

This representation should not only take into account the local anomalies in the

ridge structure (e.g., minutiae), but also, for instance, the global pattern of ridges

and furrows, inter-ridge distances, and overall patterns of ridge flow. Further, it

is an added advantage to design representations which can be automatically and

reliably extracted from the fingerprint and whose extraction will degrade gracefully

with deterioration in the quality of the fingerprints.

3.1 Introduction

The smooth flow pattern of ridges and valleys in a fingerprint can be viewed as an

oriented texture field [28] (see Figure 3.1). The image intensity surface in fingerprint

images is comprised of ridges whose directions vary continuously, which constitutes an

oriented texture. Most textured images contain a limited range of spatial frequencies,

and mutually distinct textures differ significantly in their dominant frequencies [2, 84,

10]. Textured regions possessing different spatial frequency, orientation, or phase can

be easily discriminated by decomposing the image in several spatial frequency and

orientation channels. For typical fingerprint images scanned at 500 dpi, there is very

little variation in the spatial frequencies (determined by inter-ridge distances) among

different fingerprints. This implies that there is an optimal scale (spatial frequency)
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Figure 3.1: Flow pattern in a fingerprint image. (a) A section of a fingerprint image,
(b) 3-dimensional surface plot of (a).
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for analyzing the fingerprint texture. Every pixel in a fingerprint image is associated

with a dominant local orientation and a local measure of coherence of the flow pattern.

A symbolic description of a fingerprint image can be derived by computing the angle

and coherence at each pixel in the image. Fingerprints can be represented/matched

by using quantitative measures associated with the flow pattern (oriented texture) as

features.

Analysis and modeling of oriented textures is an important research problem with

a wide variety of practical applications [28]. Previous attempts at describing oriented

textures have used either exclusively local or predominantly global features. Examples

of local representations include Poincaré indices, winding numbers, and information

related to singularities and anomalies. The primary limitation of the local approaches

to representation of an oriented texture is that it does not efficiently capture the gross

discriminatory information. Local information also tends to be unstable and noise

prone. Examples of global representations include directional co-occurrence matri-

ces, phase portraits of the orientation fields, and autocorrelation methods. Jain and

Farrokhnia [10] derived a global representation of texture by decomposing the input

image into different frequency and orientation components using a Gabor filterbank.

They applied this representation to successfully classify and segment textured images.

The global representations, although efficient, do not capture all the discriminatory

information. For example, the global configuration of the two fingerprints shown in

Figure 3.2 is the same but the prints are different due to different configuration of the

local anomalies. Discriminating individual members of such a texture family based

on global representations alone is not feasible.
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(a) (b)

Figure 3.2: Difficulty in fingerprint matching. (a) and (b) have the same global
configuration but are images of two different fingers.

Daugman [86] derived a translation and scale invariant texture representation

(called IrisCode) for the human iris by an ordered enumeration of multi-scale quadra-

ture Gabor wavelet coefficients of the visible iris texture. Daugman’s iris texture rep-

resentation is not rotation invariant. But large rotations in human iris do not occur

due to the restricted movement of the head. Small amounts of rotation were handled

in the the matching phase by a rotation of the IrisCode itself. Our representation for

oriented texture of fingerprints was inspired by Daugman’s work on iris recognition

and the success of the Gabor filterbank as reported by Jain and Farrokhnia [10] . We

propose a generic scheme for representing fingerprint texture that relies on extracting

one (or more) invariant points of reference of the fingerprint texture based on an anal-

ysis of its orientation field. A predetermined region of interest around the reference

point is tessellated into cells. Each cell is then examined for the information in one
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or more different, orientation specific, spatial frequency channels. An ordered enu-

meration of the features thus extracted from each cell is used as the representation of

the fingerprint (see Figure 3.3). Thus, the representation elements capture the local

information and the ordered enumeration of the tessellation captures the invariant

global relationships among the local patterns.
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Figure 3.3: Schematic diagram for extraction of generic texture-based representation
for fingerprints.

It is desirable to obtain representations for fingerprints which are scale (due to

pressure and sensor resolution), translation, and rotation invariant. Scale invariance

is not a significant problem since most fingerprint images could be scaled as per the dpi

specification of the sensors. Figure 3.4 shows that a child’s fingerprint has a smaller

area when both the fingerprints were scanned at the same dpi resolution. When a
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(a)
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Figure 3.4: Fingerprint of (a) a child, and (b) an adult. Both the fingerprints were
scanned at 500 dpi.
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child grows up, the scale difference between his fingerprints acquired at different ages

may result in a fingerprint mismatch. Periodically updating the fingerprint template

will alleviate this problem. The translation invariance is accomplished by locating

the reference point. The representation proposed here is not rotation invariant and so

the rotation is handled by a rotation of the representation in the matching stage. A

circular tessellation is defined so that a rotation in the fingerprint image corresponds

to a cyclic rotation of the elements of the representation. The local discriminatory

information in the sector needs to be decomposed into separate components. A Ga-

bor filterbank is one of the well-known techniques to capture useful information in

specific bandpass channels as well as to decompose this information into orthogonal

components in terms of spatial frequencies. The four main steps in our representation

extraction algorithm are: (i) determine a reference point for the fingerprint image,

(ii) tessellate the region around the reference point, (iii) filter the region of interest

in eight different directions using a bank of Gabor filters (eight directions are required

to completely capture the local ridge characteristics in a fingerprint while only four

directions are required to capture the global configuration [18]), and (iv) compute the

average absolute deviation from the mean (AAD) of gray values in individual sectors

in filtered images to define the feature vector, also called the FingerCode (similar to

the IrisCode introduced by Daugman [86]).
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x

Convex ridgesConcave ridges
Figure 3.5: Concave and convex ridges in a fingerprint image when the finger is
positioned upright. The reference point is marked by X.

3.2 Reference Point Location

Fingerprints have many conspicuous landmarks and any combination of them could be

used for establishing a reference point. We define the reference point of a fingerprint

as the point of maximum curvature of the concave ridges (see Figure 3.5) in the

fingerprint image.

Many previous approaches to determination of a reference point (xc, yc) critically

relied on the local features like Poincaré index [97] or some other similar properties

of the orientation field. While these methods work well for good quality fingerprint

images, they fail to correctly localize reference points in poor quality fingerprints

with cracks and scars, dry skin, or poor ridge and valley contrast. Recently, Hong

and Jain [105] have attempted to judiciously combine the orientation field information

with available ridge details for fingerprint classification. However, their method does

not reliably handle poor quality fingerprints when the orientation field is very noisy

and it can be misled by poor structural cues in the presence of finger cuts and bruises
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on the skin.

In order that a reference point algorithm gracefully handle local noise in a poor

quality fingerprint, the detection should necessarily consider a large neighborhood

in the fingerprint image. On the other hand, for an accurate localization of the

reference point, the approach should be sensitive to the local variations in a small

neighborhood. To meet these conflicting requirements of an accurate and reliable

localization, we propose a new method of reference point determination based on

multi-resolution analysis of the orientation fields. This method locates the reference

point more precisely than the algorithm proposed by Hong and Jain [105].

Given an M × N fingerprint image, I, its orientation field, O, is defined as an

P × Q image, where O(i, j) represents the local ridge orientation at pixel (i, j), P ≤

M,Q ≤ N . Local ridge orientation is usually specified for a block rather than at

every pixel in the image I. The fingerprint image is divided into a set of w ×w non-

overlapping blocks and a single orientation is defined for each block (see Figures 3.6

(a) and (b)); P = �M
w

, Q = �N

w

. Note that there is an ambiguity by a factor of

π in fingerprint orientation, i.e., local ridges oriented at π
2

and ridges oriented at 3π
2

cannot be differentiated from each other. A number of methods have been developed

to estimate the orientation field in a fingerprint [119, 162, 120, 28]. The least mean

square orientation estimation algorithm [108] used here has the following steps:

1. Divide I, the input fingerprint image, into non-overlapping blocks of size w×w.

2. Compute the gradients ∂x(i, j) and ∂y(i, j) at each pixel (i, j). Depending on

the computational requirement, the gradient operator may vary from the simple
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Sobel operator to the more complex Marr-Hildreth operator [59].

3. Estimate the local orientation of each block centered at pixel (i, j) using the

following equations [28]:

Vx(i, j) =

i+w
2∑

u=i−w
2

j+w
2∑

v=j−w
2

2∂x(u, v)∂y(u, v), (3.1)

Vy(i, j) =

i+w
2∑

u=i−w
2

j+w
2∑

v=j−w
2

(∂2
x(u, v) − ∂2

y(u, v)), (3.2)

O(i, j) =
1

2
tan−1(

Vy(i, j)

Vx(i, j)
), (3.3)

where O(i, j) is the least square estimate of the local ridge orientation of the

block centered at pixel (i, j). Mathematically, it represents the direction that

is orthogonal to the dominant direction of the Fourier spectrum of the w × w

window.

A summary of our reference point location algorithm is presented below:

1. Estimate the orientation field O as described above using a window size of w×w.

2. Smooth the orientation field in a local neighborhood. Let the smoothed ori-

entation field be represented as O′. In order to perform smoothing (low-pass

filtering), the orientation image needs to be converted into a continuous vector

field, which is defined as follows:

Φx(i, j) = cos(2O(i, j)), and (3.4)

Φy(i, j) = sin(2O(i, j)), (3.5)
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(a)

(b)

(c)

Figure 3.6: Estimating the reference point. (a) Smoothed orientation field overlapped
on the original image, (b) orientation field (w=10) shown as intensity distribution; the
background has been segmented, and (c) sine component of the orientation field; the
darkest pixel in the center of the image marks the detected reference point. Images
have been scaled to the range 0-255 for viewing.
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where Φx and Φy, are the x and y components of the vector field, respectively.

A low-pass filtering of the resulting vector field is performed as follows:

Φ′
x(i, j) =

wΦ/2∑
u=−wΦ/2

wΦ/2∑
v=−wΦ/2

W (u, v)Φx(i − uw, j − vw) and (3.6)

Φ′
y(i, j) =

wΦ/2∑
u=−wΦ/2

wΦ/2∑
v=−wΦ/2

W (u, v)Φy(i − uw, j − vw), (3.7)

where W is a wΦ×wΦ low-pass filter with unit integral. Note that the smoothing

operation is performed at the block level. For our experiments, we used a 5× 5

mean filter. The smoothed orientation field O′ at (i, j) is computed as follows

O′(i, j) =
1

2
tan−1(

Φ′
y(i, j)

Φ′
x(i, j)

). (3.8)

3. Compute E , an image containing only the sine component of O′.

E(i, j) = sin (O′(i, j)) . (3.9)

4. Initialize A, a label image used to indicate the reference point.

5. For each pixel (i, j) in E , integrate pixel intensities (sine component of the

orientation field) in regions RI and RII shown in Figure 3.7 and assign the

corresponding pixels in A the value of their difference.

A(i, j) =
∑
RI

E(i, j) −
∑
RII

E(i, j). (3.10)
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The regions RI and RII (see Figure 3.7) were determined empirically by applying

the reference point location algorithm over a large database. The radius of the

semi-circular region was set equal to the window size w. The geometry of regions

RI and RII is designed to capture the maximum curvature in concave ridges

(see Figure 3.5). Although this approach successfully detects the reference point

in most of the cases, including double loops (see Figure 3.8 (a)), the present

implementation is not very precise and consistent for the arch type fingerprints

because it is difficult to localize points of high curvature in arch type fingerprint

images.

Figure 3.7: Regions for integrating pixel intensities in E for computing A(i, j).

6. Find the maximum value in A and assign its coordinate to the core, i.e., the

reference point.

7. For a fixed number of times, repeat steps 1-6 by using a window size of w′×w′,

where w′ < w and restrict the search for the reference point in step 6 in a local

neighborhood of the detected reference point. In our experiments, we used three
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iterations with w = 15, 10, and 5 pixels respectively, and hence the precision of

the detected reference point is 5 pixels.

Figure 3.8 shows the results of our reference point location algorithm for four

different images. The reference point location algorithm performs extremely well for

good quality fingerprint images of whorl, left loop, right loop, and arch types. This

algorithm has higher error in consistently locating the reference point in the arch type

fingerprints due to the absence of singular points in arch type fingerprint images. The

algorithm fails for very poor quality fingerprints because of the errors in orientation

field estimation.

3.3 Tessellation

Let I(x, y) denote the gray level at pixel (x, y) in an M ×N fingerprint image and let

(xc, yc) denote the reference point. The region of interest in the fingerprint is defined

as the collection of all the sectors Si, where the ith sector Si is computed in terms of

parameters (r, θ) as follows:

Si = {(x, y) |b(Ti + 1) ≤ r < b(Ti + 2),

θi ≤ θ < θi+1 , 1 ≤ x ≤ N, 1 ≤ y ≤ M} , (3.11)
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(a) (b)

(c) (d)

Figure 3.8: Examples of the results of our reference point location algorithm. The
algorithm fails on very poor quality fingerprints such as (c) and (d).
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where

Ti = i div k, (3.12)

θi = (i mod k) × (2π/k), (3.13)

r =
√

(x − xc)2 + (y − yc)2, (3.14)

θ = tan−1((y − yc)/(x − xc)), (3.15)

b is the width of each band, k is the number of sectors considered in each band, and

i = 0, ..., (B × k − 1), where B is the number of concentric bands considered around

the reference point for feature extraction. The parameter B depends on the area of

the finger imaged. For example, at the same resolution of 500 dpi, a larger finger area

will be captured in a 640×480 pixel image than in a 320×320 pixel image. Thus the

parameter B depends on the image size and the dpi resolution of the sensor. The width

of the concentric bands is defined by the parameter b and depends on the dpi resolution

of the sensor. The width of the bands should capture one ridge and valley pair on

an average. For fingerprint images scanned at 500 dpi, we choose b = 20. A band

with a width of 20 pixels is necessary to capture a single minutia in a sector, allowing

our low-level features to capture this local information. If the sector width is more

than 20 pixels, then the local information is modulated by more global information.

The innermost band (circle) is not used for feature extraction because the sectors in

the region near the reference point contain very few pixels and, therefore, the feature

extraction in this region is not very reliable. A circular tessellation is chosen because a

rotation of the fingerprint will correspond to the rotation of the tessellation. The value
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of k controls the capture of the global versus the local information in a fingerprint

and depends upon the application. For example, more global information is required

by the fingerprint classification algorithm, and so, a lower k value is chosen. On

the other hand, the fingerprint verification application needs to capture more local

information in the fingerprints and hence requires a higher value of k. The values

for these parameters, B, b, and k were determined empirically to obtain the best

performance for the fingerprint classification and matching applications. Both the

classification and the matching algorithms based on the FingerCode representation

are able to handle small changes in these parameters without a significant degradation

in performance. A large change in the parameter values is also handled gracefully

with a decrease in performance proportional to the change in the parameter values.

The value of B should be set in such as way as to capture maximum ridge and valley

details without rejecting a large number of fingerprint images. The value of k should

be chosen based on the tradeoff between local and global information required for a

particular application, the value of b should be chosen based on the dpi resolution

of the sensor and the average inter-ridge distance in fingerprint images. Once the

parameter values are chosen for an application, they remain constant.

3.4 Filtering

Fingerprints have local parallel ridges and valleys, and well-defined local frequency

and orientation (see Figure 3.10). Properly tuned Gabor filters [86, 88] can remove

noise, preserve the true ridge and valley structures, and provide information contained
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Figure 3.9: Reference point (×), the region of interest, and 80 sectors (B = 5, k = 16)
superimposed on a fingerprint.

in a particular orientation in the image. A minutia point can be viewed as an anomaly

in locally parallel ridges and it is this information that we are attempting to capture

using the Gabor filters.

Before filtering the fingerprint image, we normalize the grey level intensities in the

region of interest in each sector separately to a constant mean and variance. Normal-

ization is performed to remove the effects of sensor noise and gray level background

due to finger pressure differences. Let I(x, y) denote the gray value at pixel (x, y), Mi

and Vi, the estimated mean and variance of grey levels in sector Si, respectively, and

Ni(x, y), the normalized gray-level value at pixel (x, y). For all the pixels in sector
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(a) (b)

(c) (d)

Figure 3.10: Fingerprints have well defined local frequency and orientation. Ridges
in local regions are shown in (a) and (b). Fourier spectrum of (a) and (b) are shown
in (c) and (d), respectively.

Si, the normalized image is defined as:

Ni(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M0 +
√

V0×(I(x,y)−Mi)2)
Vi

, if I(x, y) > Mi

M0 −
√

V0×(I(x,y)−Mi)2)
Vi

, otherwise,

(3.16)

where M0 and V0 are the desired mean and variance values, respectively. Normal-

ization is a pixel-wise operation which does not change the clarity of the ridge and

valley structures. If normalization is performed on the entire image, then it cannot

compensate for the intensity variations in different parts of the image due to the fin-
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Figure 3.11: Gabor filters (mask size = 33 × 33, f = 0.1, δx = 4.0, δy = 4.0). Only
0◦ and 90◦ oriented filters are shown here.
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ger pressure differences. A separate normalization of each individual sector alleviates

this problem. Figure 3.12 shows an example of this normalization scheme. For our

experiments, we set the values of both M0 and V0 to 100. The values of M0 and V0

should be the same across all the training and test sets.

An even symmetric Gabor filter has the following general form in the spatial

domain:

G(x, y; f, θ) = exp

{−1

2

[
x′2

δ2
x

+
y′2

δ2
y

]}
cos(2πfx′), (3.17)

x′ = xsinθ + ycosθ, (3.18)

y′ = xcosθ − ysinθ, (3.19)

where f is the frequency of the sinusoidal plane wave along the direction θ from the

x-axis, and δx and δy are the space constants of the Gaussian envelope along x and y

axes, respectively. The spatial characteristics of Gabor filters can be seen in Figure

3.11.

We perform the filtering in the spatial domain with a mask size of 33×33. Figure

3.11 shows that the filter values outside this 33× 33 mask are close to zero. To speed

up the filtering process, we convolve a pixel only with those values in the filter mask

whose absolute value is greater than 0.05. This speeds up the convolution process

significantly while maintaining the information content as the convolution with small

values of the filter mask does not contribute significantly to the overall convolution

output. We also make use of the symmetry of the filter to speed up the convolution.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.12: Normalized, filtered, and reconstructed fingerprint images. (a) area
of interest, (b) normalized image, (c)-(j) 0◦, 22.5◦, 45◦, 90◦, 112.5◦, 157.5◦ filtered
images, respectively, (k) reconstructed image with 4 filters, and (l) reconstructed
image with 8 filters. While four filter orientations are sufficient to capture the global
structure of the fingerprint, eight filter orientations are required to capture the local
characteristics.
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Table 3.1: Gabor filter mask of size 33 × 33, θ = 0◦, f = 0.1, δx = δy = 4.0. Only a
19× 19 matrix from the center of the 33× 33 filter is shown because the mask values
outside this are zero. Also, only the top left quarter of the mask is shown due to the
symmetry in the X and Y axes of the 0◦ oriented filter. The mask values less than
0.05 are set to zero. Each entry is to be multiplied by 10−3.

57 62 64 62 57 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -51 -59 -65 -67
0 0 -57 -85 -120 -160 -199 -232 -255 -263
0 -62 -99 -149 -210 -278 -346 -404 -444 -458
0 -66 -106 -159 -224 -297 -370 -433 -475 -490
0 0 -50 -76 -106 -141 -176 -205 -225 -233
0 0 59 89 125 166 206 241 265 273

62 106 170 255 359 476 592 692 760 784
80 135 216 325 458 607 755 882 969 1000

One such mask for the 0◦-oriented Gabor filter is shown in Table 3.1. However,

convolution with Gabor filters is still the major contributor to the overall feature

extraction time (approx. 3 seconds of CPU time for convolution of a circular area of

radius 120 pixels with 8 Gabor filters on a SUN ULTRA 10 workstation).

In our experiments, we set the filter frequency f to the average ridge frequency

(1/K), where K is the average inter-ridge distance. The average inter-ridge distance

is approximately 10 pixels in a 500 dpi fingerprint image. If f is too large, spurious

ridges are created in the filtered image whereas if f is too small, nearby ridges are

merged into one. Different filter directions (θ) include 0◦, 22.5◦, 45◦, 67.5◦, 90◦,

112.5◦, 135◦, and 157.5◦ with respect to the x-axis. The normalized region of interest

in a fingerprint image is convolved with each of these eight filters to produce a set

of eight filtered images. A fingerprint convolved with a 0◦-oriented filter accentuates

those ridges which are parallel to the x-axis and smoothes the ridges in the other
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directions. Filters tuned to other directions work in a similar way. These eight

directional-sensitive filters capture most of the global ridge directionality information

as well as the local ridge characteristics present in a fingerprint. We illustrate this

through reconstructing a fingerprint image by adding together all the eight filtered

images. The reconstructed image is similar to the original image without a significant

loss of information (Figure 3.12(l)). Empirically, we have determined that at least

four directional filters are required to capture the entire global ridge information in

a fingerprint (Figure 3.12(k)), but eight directional filters are required to capture

the local characteristics. By capturing both the global and local information, the

verification accuracy is improved although there is some redundancy among the eight

filtered images. If δx and δy (standard deviations of the Gaussian envelope) values are

too large, the filter is more robust to noise, but is more likely to smooth the image

to the extent that the ridge and valley details in the fingerprint are lost. If δx and δy

values are too small, the filter is not effective in removing the noise. The values for

δx and δy were empirically determined and each is set to 4.0 (about half the average

inter-ridge distance).

3.5 Feature Vector

It is difficult to rely on features that are extracted based on explicit detection of

structural features in fingerprints, especially in poor quality images. Features based

on statistical properties of images are likely to degrade gracefully with the image

quality deterioration. For this study, we use grayscale variance-based features. The
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average absolute deviation of the gray levels from the mean value in an image sector

is indicative of the overall ridge activity in that sector which we claim to be useful

for fingerprint classification and verification. Similar features were successfully used

earlier by Jain and Farrokhnia [10] for texture classification and segmentation. Our

empirical results on fingerprint classification and verification applications show that

this simple statistical feature performs extremely well.

Let Fiθ(x, y) be the θ-direction filtered image for sector Si. Now, ∀ i ∈

{0, 1, . . . , 79} and θ ∈ {0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦}, the feature

value, Viθ, is the average absolute deviation from the mean defined as:

Viθ =
1

ni

(∑
ni

|Fiθ(x, y) − Piθ|
)

, (3.20)

where ni is the number of pixels in Si and Piθ is the mean of pixel values of Fiθ(x, y) in

sector Si. The average absolute deviation of each sector in each of the eight filtered

images defines the components of our 640-dimensional feature vector. The feature

vectors for some example images in the MSU DBI database are shown as grayscale

images in Figure 3.13.

The average absolute deviation (AAD) features give slightly better performance

than variance features in our experiments. The number of filter orientations required

was empirically determined. In the fingerprint verification application, using eight

orientation filters resulted in a better performance than when only four orientation

filters were used. A further increase in the number of filters did not provide any

increase in the verification performance. Similarly, using eight filters instead of four
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.13: Examples of 640-dimensional feature vectors. (a) First impression of
finger 1, (b) Second impression of finger 1, (c) and (d) are the corresponding Finger-
Codes, (e) First impression of finger 2, (f) Second impression of finger 2, (g) and (h)
are the corresponding FingerCodes.
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filters did not improve the performance of the fingerprint classification algorithm (see

Chapter 4.

The 640-dimensional feature vectors (FingerCodes) for fingerprint images of two

different fingers from the MSU DBI database are shown as gray level images with eight

disks, each disk corresponding to one filtered image in Figure 3.13. The gray level

in a sector in a disk represents the feature value for that sector in the corresponding

filtered image. Note that Figures 3.13(c) and (d) appear to be visually similar as

are Figures 3.13(g) and (h), but the corresponding disks for two different fingers look

very different.

The translation is handled by a single reference point location during the feature

extraction stage. Our representation scheme is able to tolerate the imprecision in

the reference point estimates of up to 10 pixels (approximately 1 inter-ridge distance

unit) away from its “true” location. A circular tessellation is chosen because the

sector size increases as we go farther away from the center and handles the error

in center location better. The present implementation of feature extraction assumes

that the fingerprints are vertically oriented (fingertip pointed straight up). In reality,

the fingerprints in our database are not exactly vertically oriented; the fingerprints

may be oriented up to ±45◦ away from the assumed vertical orientation. The circular

tessellation assists in obtaining a representation corresponding to a rotation of the

fingerprint image by a cyclic rotation of the values in the feature vector. We use this

cyclic rotation of the feature vector to partially handle the rotation in the matching

stage.
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3.6 Summary

Chapter 2 establishes an upper bound on the performance of the minutiae-based au-

tomatic fingerprint identification systems due to the limited information content of

the minutiae representation. This was a powerful motivation for exploring a novel

and rich alternate representation for fingerprints. The proposed filterbank-based rep-

resentation for fingerprints was motivated by Daugman’s work on Iris recognition

[86] that quantified the textural information present in the human iris using a Ga-

bor filterbank in a small IrisCode. Gabor filterbank has also been successfully used

in texture classification and segmentation tasks [10]. Since fingerprint images can be

viewed as a textured pattern, it is appropriate to use this filterbank-based representa-

tion for fingerprints. Our proposed filterbank-based representation has the desirable

property of capturing both the local minute details and the global pattern informa-

tion in a fingerprint. One of the main advantages of this representation is that a

single representation can be used for fingerprint classification as well as matching. As

a comparison, earlier approaches to fingerprint representation are either exclusively

local (e.g., minutiae) or exclusively global (e.g., orientation field). The exclusively lo-

cal representation is traditionally used for fingerprint matching while the exclusively

global representation is used for fingerprint classification. Additionally, the compact-

ness of the filterbank representation is very attractive for credit card or smart card

applications where the amount of available storage is limited. The good discrimina-

tory power of the representation is demonstrated by the classification and verification

applications in Chapters 4 and 5, respectively. The current implementation of the
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feature extraction is computationally expensive due to the image convolution op-

erations. It is possible to significantly enhance the speed of the feature extraction

algorithm by implementing the convolution operation via a dedicated DSP chip. For

an example, a DSP implementation of the FingerCode extraction algorithm using an

Analog Devices Sharc (Super Harvard Architecture Computer) DSP 21062 EZ-LAB

Development board developed by Bittware, Inc. was reported in [115] and the feature

extraction time was reduced by an order of magnitude. The primary advantage of

our approach is its computationally attractive matching/indexing capability. As far

as the fingerprint database is concerned, the feature extraction is an off-line process

and if the normalized (for orientation and size) FingerCodes of all the enrolled fin-

gerprints are stored as templates, the classification or verification effectively involves

a “bit” comparison with the test image. As a result, the identification time would be

relatively insensitive to the database size because “bit” comparison is an extremely

fast operation. Further, our approach for representation extraction and matching

is more amenable to hardware implementation than, say, a string-based fingerprint

matcher.

There are a number of limitations of our approach to fingerprint representation.

The implementation of the representation extraction algorithm that is based on a ref-

erence point in the fingerprint image rejects about 5% of the images (in the NIST-9

database) due to failure of the reference point location on poor quality fingerprint

images. An alignment based on the minutiae points or orientation field in an image is

expected to overcome this problem but the resulting representation is not translation

and rotation invariant and thus, is not very attractive for indexing purposes. More-
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(a) (b)

Figure 3.14: Example of new touchless fingerprint sensor TFS 050 from Biometric
Partners, Inc. (http://www.biometricpartners.com/). The touchless sensor captures
a fingerprint from a distance of approximately 50mm. Advantages of touchless tech-
nology include capture of larger fingerprint area, is more hygienic, the sensor does not
degrade with repeated use, and there is no nonlinear distortion due to finger pressure
difference in the captured image. The image captured by the sensor in (a) is shown in
(b). However, the touchless sensors have their own problems, including poor quality
images.

over, the filterbank representation is not invariant to nonlinear deformations which is

an inherent property of the touch-based fingerprint sensing process. The new gener-

ation of touchless sensors (see Figure 3.14) do not suffer from nonlinear deformations

in the captured fingerprint image but there are additional degrees of freedom in the

translation (translation in z-axis results in a scaling in two-dimensional projection)

and rotation variance.
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Chapter 4

Fingerprint Classification

Fingerprint classification provides an important indexing mechanism in a fingerprint

database. An accurate and consistent classification can greatly reduce fingerprint

matching time for a large database. We present a fingerprint classification algorithm

which is able to achieve an accuracy which is comparable to the algorithms reported in

the literature. In 1899, Edward Henry and his two assistants established the “Henry

System” of fingerprint classification [78]. The Henry system classifies fingerprints

into three main categories: (i) loop, (ii) whorl, and (iii) arch. Each category is then

further divided resulting in a total of more than twenty categories. Federal Bureau

of Investigation (FBI) follows Henry system of classification but recognizes only eight

different types of fingerprint: radial loop, ulnar loop, double loop, central pocket

loop, plain arch, tented arch, plain whorl, and accidental. Due to the small interclass

separability of these types fingerprint types, it is extremely difficult to design an eight-

class classifier with high accuracy. As a result, most automatic systems reduce the

number of fingerprint types to a subset of classes defined in the Henry system. For
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example, academic institutes have typically concentrated on a five-class classification

that includes whorl, left loop, right loop, arch, and tented arch, while the commercial

systems typically provide ulnar, radial loops, accidental, whorl, double loop, and arch

classification [78].

Fingerprint classification remains a very difficult problem for both human experts

and automatic systems because of large variations in fingerprint configurations. A

substantial amount of experience is required for a forensic expert to reach a satisfac-

tory level of performance in fingerprint classification. Fingerprints have a continuum

in the pattern space. For example, there is a continuum of patterns between the

two extremes of a “true” arch and a “true” loop. As a result, there exists patterns

which lie on any arbitrarily drawn class boundary drawn for an exclusive classifica-

tion. Due to the fuzzy boundaries between the large number of fingerprint classes,

NIST [41] chose a five-element subset in the Henry system of fingerprint classification

for automatic system development. These five classes are whorl, right loop, left loop,

arch, and tented arch. Our automatic system classifies fingerprints into these five

categories. The algorithm uses the novel representation (FingerCode) described in

Chapter 3 and is based on a two-stage classifier to make a decision. Our approach

has been tested on 4, 000 images in the NIST-4 database. For the five-class problem,

a classification accuracy of 90% is achieved (with a 1.8% rejection during the feature

extraction phase). For the four-class problem (arch and tented arch combined into

one class), we are able to achieve a classification accuracy of 94.8% (with 1.8% re-

jection). By incorporating a reject option in the classifier, the classification accuracy

can be increased to 96% for the five-class classification task, and to 97.8% for the
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four-class classification task after a total of 32.5% of the images are rejected.

4.1 Introduction

Several approaches have been developed for automatic fingerprint classification.

These approaches can be broadly categorized into four main categories: (i) knowledge-

based, (ii) structure-based, (iii) frequency-based, and (iv) syntactic. The knowledge-

based fingerprint classification technique uses the locations of singular points (core

and delta) to classify a fingerprint into the five above-mentioned classes [97, 105].

A knowledge-based approach tries to capture the knowledge of a human expert by

deriving rules for each category by hand-constructing the models and therefore, does

not require training. Accuracies of 85% [97] and 87.5% [105] have been reported

on the NIST-4 database [41] using these approaches. A structure-based approach

uses the estimated orientation field in a fingerprint image to classify the fingerprint

into one of the five classes. An accuracy of 90.2% with 10% rejection is reported

on NIST-4 [43]. The neural network used in [43] was trained on images from 2, 000

fingers (one image per finger) and then tested on an independent set of 2, 000 images

taken from the same fingers. The error reported is thus optimistically biased. A

later version of this algorithm [76] was tested on the NIST-14 database which is a

naturally distributed database resulting in a better performance (in a naturally dis-

tributed database, the number of fingerprint images for a particular fingerprint type

is proportional to the probability of occurrence of that type in nature). A further

enhancement of this algorithm was reported in [44, 45]. However, this performance

121



improvement should be expected since the NIST-14 database contains only a small

percentage of arch-type fingerprints which pose the most difficultly for fingerprint

classifiers, and the neural network used in the algorithm implicitly takes advantage

of this information. A similar structure-based approach which uses hidden Markov

models for classification [30] depends on a reliable estimation of ridge locations which

is difficult in noisy images. In another structure-based approach, B-spline curves are

used to represent and classify fingerprints [122]. A syntactic approach uses a formal

grammar to represent and classify fingerprints [46]. Frequency-based approaches use

the frequency spectrum of the fingerprints for classification [25]. Hybrid approaches

combine two or more approaches for classification [34, 120]. These approaches show

some promise but have not been tested on large databases. For example, Chong et

al. [122] report results on 89 fingerprints, Fitz and Green [25] on 40 fingerprints, and

Kawagoe and Tojo [120] on 94 fingerprints. Recently, Cappelli et al. [141] proposed a

fingerprint classification algorithm based on the multi-space KL transform applied to

the orientation field. This algorithm reports about 2% better accuracy than our algo-

rithm on the NIST-4 database. See Table 4.1 for a comparison of different fingerprint

classification algorithms.

Most of the information about a fingerprint category is contained in the central

part of the fingerprint, called the pattern area [68]. The pattern area is the area be-

tween the two innermost ridges (known as typelines) that form a divergence tending

to encircle or encompass the central portion of the fingerprint as shown in Figure 4.1.

The knowledge-based techniques which use both the core and delta points for classifi-

cation require that these singular points be present in the image. The dab fingerprint
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Table 4.1: Fingerprint classification literature survey. The number of classes is de-
noted by C, the classification accuracy is denoted by Acc, and the reject rate is
denoted by RR. The classification accuracies reported by the different authors are
on different databases with different number of fingerprints and therefore, they can-
not be directly compared. Most of the work in fingerprint classification is based on
supervised learning and discrete class assignment using knowledge-based features.

Authors C Features Method Acc.
(RR)

Kawagoe and Tojo 1984 7 Singular points Rule-based 91.5%
(0%)

Blue et al. 1994 5 Orientation field Neural network 92.8%
(0%)

Wilson et al. 1994 5 Orientation field Neural network 90.2%
(10%)

Candela et al. 1995 6 Orientation field Neural network 92.2%
(0%)

Pal and Mitra 1996 5 Orientation field Neural network 82+%
(0%)

Fitz and Green 1996 3 FFT Nearest-neighbor 85 %
(0%)

Karu and Jain 1996 5 Singular points Rule-based 85%
(0%)

Senior 1997 4 Ridge lines Hidden Markov Model 90%
(0%)

Chong et al. 1997 5 Ridge lines Rule-based 96.5%
(0%)

Hong and Jain 1999 5 Singular points Rule-based 87.5%
and ridge lines (0%)

Proposed 1999 5 Gabor response Combination 90%
(1.8%)

Cappelli et al. 2000 5 Orientation field Combination 99%
(20%)
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Typelines

Figure 4.1: Pattern area and typelines [68, 104].

images obtained by optical scanners do not always capture the entire fingerprint and

often have the delta point(s) missing. Also, the core or delta point(s) are difficult to

detect in noisy fingerprint images. There is, however, sufficient information available

in the ridge pattern itself to classify a fingerprint. While the structure-based approach

does not depend upon the core or delta points, it requires a reliable estimate of the

orientation field which is very difficult to obtain in low quality fingerprint images.

We propose a fingerprint classification algorithm (Figure 4.2) based on our fil-

terbank fingerprint representation scheme which is directly derived from local ridge

structures. The representation does not use the core, delta, and orientation field,

explicitly. It is more capable of tolerating poor image quality, which is a major dif-

ficulty in fingerprint classification. The main steps of our classification algorithm

are as follows: (i) Locate a reference point in the input image and define a spatial

tessellation (sectors) of the region around the reference point; (ii) decompose the

input image into a set of component images, each of which preserves certain ridge

orientation information; compute the standard deviation of the component images in

each sector to generate the feature vector (called FingerCode); (iii) feed the feature
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Two-stage

Classifier
Fingerprint
Category

Compute S.D.

192-dimensional FingerCode

Input Image Normalize Each Sector

Tessellate Image SpaceFind Registration Point

Decompose Input Image

Figure 4.2: Flow diagram of our fingerprint classification algorithm.
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vector into a multi-stage classifier; in our algorithm, a two-stage classifier is used.

This two-stage classifier uses a K-nearest neighbor classifier in its first stage and a

set of neural network classifiers in its second stage to classify a feature vector into

one of the five fingerprint classes.

In the following sections, we will present the details of our fingerprint classification

algorithm.

4.2 Feature Extraction

The category of a fingerprint is determined by its global ridge and furrow structures.

A valid feature set for fingerprint classification should be able to capture this global

information effectively. The filterbank-based fingerprint representation developed in

Chapter 3 is able to represent both the minute details and the global ridge and

furrow structures of a fingerprint. For the purpose of classification, we adapt our

representation such that it is very effective in representing the global ridge and furrow

structures and is invariant to individual minute details.

The representation scheme developed in Chapter 3 has certain parameters which

are adapted to our fingerprint classification algorithm. We choose the tessellation

parameter B, the number of concentric bands to be 6 based on the size of the images

in the NIST 4 database (512 × 512). Number of sectors in each band is chosen to be

eight (k = 8). This results in large sectors which are capable of capturing the global

information in the fingerprints. Thus, a total of 8 × 6 = 48 sectors (S0 through S47)

are defined. Since most of the category information is present in the part below the
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core point in the fingerprints (different fingerprint types have similar ridge structure

in the part above the core point), we move the reference point down by 40 pixels

with respect to the core point detected by the reference point detection algorithm in

Chapter 3.

Figure 4.3: Reference point detected by the algorithm described in Chapter 3 (�),
moved reference point (×), the region of interest and 48 sectors.

A fingerprint image is convolved with four Gabor filters (θ = 0◦, 45◦, 90◦, and 135◦)

to produce the four component images. Thus, our feature vector is 192-dimensional

(48 × 4). Our experimental results indicate that the four component images capture

most of the ridge directionality information present in a fingerprint image and thus

form a valid representation. We illustrate this by reconstructing a fingerprint image

by adding together all the four filtered images. The reconstructed image is similar
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Normalized image Component image 0◦

Component image 45◦ Component image 90◦

Component image 135◦ Reconstructed image

Figure 4.4: Normalized, filtered, and reconstructed fingerprint images.
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(a) (b)

Figure 4.5: Reconstructed fingerprint images using (a) four filters, and (b) eight
filters. Most of the directionality information is captured by four filters.

to the original image without a significant loss of information (Figure 4.4). Using

additional filters does not necessarily improve the directionality information in the

reconstructed image (see the comparison of reconstruction using four filters with

reconstruction using eight filers in Figure 4.5). Since convolution with Gabor filters

is an expensive operation, the use of additional filters will increase the classification

time without necessarily improving the classification accuracy.

In each component filtered image, a local neighborhood with ridges and furrows

that are parallel to the corresponding filter direction exhibits a higher variation,

whereas a local neighborhood with ridges and furrows that are not parallel to the

corresponding filter tends to be diminished resulting in a lower variation. The spatial

distribution of the variations in local neighborhoods of the component images thus

constitutes a characterization of the global ridge structures which is captured by

the average absolute deviation of grayscale values from the mean (AAD features)

(Equation (3.20)).
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(a) Test Image (b) Whorl (c) Right Loop

(d) Left Loop (e) Arch (f) Tented Arch

Figure 4.6: Fingerprint representation using 192-dimensional feature vectors (In each
representation, the top left disc represents the 0◦ component, the top right disc rep-
resents the 45◦ component, the bottom left disc represents the 90◦ component, and
the bottom right disc represents the 135◦ component). The test image is a right loop.
Each disk corresponds to one particular filter and there are 48 features (shown as
gray values) in each disk (8 × 6 = 48 sectors) for a total of 192 (48 × 4) features.

4.3 Classification

Automatic classification of fingerprints is a difficult problem because of the small

interclass variability and large intraclass variability among the five classes under

consideration. In order to simplify the classification task, we decompose the five-class

problem into a set of 10 two-class problems. Further, we use a two-stage classifier for

fingerprint classification. In the first stage, we use a K-nearest neighbor classifier to

find the two most probable classes for a given input pattern. The K-nearest neighbor
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Figure 4.7: Two-stage classification scheme using K-NN and neural network classifiers.

decision rule first finds the K nearest neighbors of the test pattern in the feature space

and then assigns the test pattern to the class which is most frequently represented

among the K nearest neighbors. The top two categories can be retrieved from the

K-NN classifier corresponding to the classes which have the highest and the second

highest count among the K nearest neighbors, i.e., the first recall and the second

recall. In the second stage of the classifier, 10 (C5
2) neural networks are trained to

solve each of the 10 two-class problems. The second stage uses the first and second

recalls to select the specific neural network which has been trained to distinguish
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between the corresponding pair of classes and the input pattern is then sent to the

selected neural network for further classification. This neural network makes the final

decision between these two classes.

4.4 Experimental Results

4.4.1 Dataset

(a) (b)

Figure 4.8: Example of images in the NIST 4 database with two ground truth labels.
The poor quality fingerprint in (a) is labeled as belonging to both the arch and tented
arch classes, (b) is labeled as belonging to both the left loop and tented arch classes.

The NIST-4 database consists of 4, 000 fingerprint images (image size is 512×480)

from 2, 000 fingers. Each finger has two impressions (first and second). Each image

is labeled with one or more of the five classes (W , R, L, A, and T ). About 17% of the

fingerprint images in the NIST 4 database are labeled with two labels which shows

that there is disagreement among the human experts about the true class of a large
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(a) (b)

Figure 4.9: Example of images which were rejected because a valid tessellation could
not be established.

number of fingerprints. The fraction of images with more than one label can also

be interpreted as a measure of human accuracy in classifying fingerprints. On this

basis, we can say that there is about 17% error in classifying fingerprints by human

experts. The accuracy of the current automatic fingerprint classification system is of

the same order. See Figure 4.8 for examples of fingerprint images that were assigned

two different labels. To simplify the training procedure, we make use of only the first

label of a fingerprint to train our system. For testing, however, we make use of all

the true labels assigned to a fingerprint and consider the output of our classifier to be

correct if the output matches any one of the labels. This is in line with the common

practice used by other researchers in comparing the classification results on the NIST-

4 database. The images in the NIST-4 database are numbered f0001 through f2000

and s0001 through s2000. Each number represents a fingerprint from a different

finger. We form our training set with the first 2, 000 fingerprints from 1, 000 fingers

(f0001 to f1000 and s0001 to s1000) and the test set contains the remaining 2, 000
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fingerprints (f1001 to f2000 and s1001 to s2000). The natural proportion (prior

probabilities) of fingerprints belonging to each class is 0.279, 0.317, 0.338, 0.037, and

0.029 for the classes W, R, L, A, and T, respectively [43]. Classification accuracies

can be significantly increased by using datasets whose records follow the natural

distribution of fingerprint classes because the more common types of fingerprints

(loop and whorl) are easier to recognize. However, we do not use datasets with

a natural class distribution. Twenty eight fingerprints from the training set were

rejected by our feature extraction algorithm because the reference point was detected

at a corner of the image and, therefore, a valid tessellation could not be established

for these images (Figure 4.9). Thirty five fingerprints were rejected from the test

set for the same reason. So, our training set contains 1, 972 fingerprint images and

the test set contains 1, 965 fingerprint images. The thirty five images rejected from

the test set of 2, 000 fingerprints amounts to a reject rate of 1.8%. We report the

results of our fingerprint classification algorithm on the NIST-4 database for the

five-class fingerprint classification problem. Since fingerprint classes A (arch) and

T (tented arch) have a substantial overlap, it is very difficult to separate these two

classes. Therefore, we also report our results for the four-class classification problem,

where classes A and T have been merged into one class. By incorporating a rejection

option, classification accuracy can be increased. We report the improvement in error

rates at different rejection rates for both the five-class and the four-class classification

problems.
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4.4.2 K-Nearest neighbor classifier

The K-nearest neighbor classifier results in an accuracy of 85.4% for the five-class

classification task when 10 nearest neighbors (K = 10) are considered. Classification

accuracy does not always increase with increasing K; there exists an optimal value

of K which is a function of the number of available training samples (Figure 4.10)

[8]. For the four-class classification task (where classes A and T were collapsed into

one class), an accuracy of 91.5% is achieved. The confusion matrix for the K-nearest

neighbor classification for the five-class problem is shown in Table 4.2. The diagonal

entries in this matrix show the number of test patterns from different classes which

are correctly classified and the off-diagonal entries denote the number of classification

errors. Since a number of fingerprints in the NIST-4 database are labeled as belonging

to two different classes, row sums of the confusion matrices in Tables 4.2, 4.4, and 4.6

are not identical.

Table 4.2: Confusion matrix for the K-nearest neighbor classification for the five-class
problem; K = 10.

Assigned class
True class

W R L A T
W 320 38 31 6 0
R 1 368 2 10 21
L 0 1 359 13 8
A 1 3 7 422 20
T 0 15 16 95 208
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Figure 4.10: K vs. classification error for the K-nearest neighbor classifier for the
five-class problem.

4.4.3 Neural network classifier

We trained a multi-layer feed-forward neural network using a quick propagation train-

ing algorithm [154]. The neural network has one hidden layer with 20 neurons, 192

input neurons corresponding to the 192 features, and 5 output neurons corresponding

to the five classes. We obtained an accuracy of 86.4% for the five-class classification

task. For the four-class classification task, an accuracy of 92.1% is achieved. The

confusion matrix for the neural network classification is shown in Table 4.4.

136



Table 4.3: Confusion matrix for the K-nearest neighbor classification for the four-class
problem; K = 10.

Assigned class
True class

W R L A + T
W 320 38 31 6
R 1 368 2 32
L 0 1 359 21

A + T 1 18 23 745

Table 4.4: Confusion matrix for the neural network classification for the five-class
problem.

Assigned class
True class

W R L A T
W 352 29 10 2 2
R 6 374 1 9 17
L 10 2 353 10 7
A 0 6 8 384 48
T 1 16 19 64 235

4.4.4 Two-stage classifier

The objective here is to perform a “simple” classification task using a K-NN classifier

and then use a bank of two-class neural network classifiers to handle more subtle

discriminations. The first stage uses the K-nearest neighbor (K = 10) classifier

to yield the two most probable classes. We observed that 85.4% of the time, the

class with the maximum vote among the K nearest neighbors is the correct class

and 12.6% of the time, the class with the second highest vote is the correct class.

In other words, the K-nearest neighbor classifier yields the top two classes with an

accuracy of 98%. This result itself can be used to accurately classify fingerprints into

two out of the five classes. Each fingerprint will have an entry in two of the five
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Table 4.5: Confusion matrix for the neural network classification for the four-class
problem.

Assigned class
True class

W R L A + T
W 352 29 10 4
R 6 374 1 26
L 10 2 353 17

A + T 1 22 27 731

partitions of the database and the matching is required to be performed only in the

corresponding two partitions of the database. The second classification stage uses 10

different neural networks for 10 different pairwise classifications of five classes. These

neural networks have 192 input neurons, 20− 40 hidden neurons in one hidden layer,

and 2 output neurons. Each neural network is trained using the patterns from only

the two corresponding classes in the training set. For example, the neural network

which distinguishes between R and W is trained using only the patterns labeled R

and W in the training set.

Table 4.6: Confusion matrix for the two-stage classification for the five-class problem.

Assigned class
True class

W R L A T
W 366 16 8 4 1
R 3 372 1 8 17
L 6 0 364 6 7
A 2 1 3 405 39
T 0 6 14 55 261

This two-stage classifier yields an accuracy of 90% for the five-class classification

task and an accuracy of 94.8% is achieved for the four-class classification task. The

confusion matrix for the two-stage classifier for the five-class and four-class classifi-

138



Table 4.7: Confusion matrix for the two-stage classification for the four-class problem.

Assigned class
True class

W R L A + T
W 366 16 8 5
R 3 372 1 25
L 6 0 364 13

A + T 2 7 17 760

(a) Arch (b) Left Loop

Figure 4.11: Poor quality images which were correctly classified.

cations are shown in Tables 4.6 and 4.7 respectively. These classification accuracies

do not take into account the prior class probabilities. The equal number of samples

for each class in the NIST-4 database provides a relatively larger number of samples

of the rare classes (arch and tented arch). However, in an operational system, the

number of fingerprints for a class will be proportional to the natural distribution of

fingerprints. We can estimate the performance of our two-stage fingerprint classifier

on a naturally distributed database from the confusion matrices in Tables 4.6 and

4.7 by multiplying the error rate for each class with its prior probability. The es-

timated classification accuracy on a naturally distributed database is 93.0% for the
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(a) Whorl (b) Right Loop

Figure 4.12: Poor quality images which were misclassified as arch.

five-class problem and 93.9% for the four-class problem. Although our classifier is

robust to noise and is able to correctly classify most of the poor quality fingerprints

in the NIST-4 database (Figure 4.11), it fails on some very bad quality fingerprint

images where no ridge information is present in the central part of the fingerprint

(Figure 4.12). In poor quality fingerprints it is very difficult to detect the reference

point correctly (Figure 4.9 (b)). Our classifier also fails to correctly classify twin loop

images which are labeled as whorl in the NIST-4 database. For these images, our

reference point location algorithm picks up the upper core and on considering that

as the center, the image looks like a loop in the region of interest which leads to a

misclassification of W as L or R. See Figures 4.13 for these misclassifications. About

3% of the errors result from loop-arch misclassification because of the subtle difference

between loop and arch types (see Figure 4.14(a)). The A-T misclassification accounts

for about 5% of the errors. An example of this type of confusion is shown in Figure

4.14(b).
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(a) Whorl as Right Loop (b) Whorl as Left Loop

Figure 4.13: Misclassification of whorl (twin loop) as (a) right loop (b) left loop.

4.4.5 Reject option

Classification accuracies can be further increased by incorporating a reject option. We

use the (K,K ′)-nearest neighbor classifier [145] for rejection and the proposed two-

stage classifier for classification. If the number of training samples from the majority

class among the K nearest neighbors of a test pattern is less than K ′ (K ′ < K), we

reject the test pattern and do not attempt to classify it. Most of the rejected images

using this scheme are of poor quality (Figures 4.15 (a) and (b)). Other rejected images

are those images which “appear” to belong to different classes. For example, for the

fingerprint image shown in Figure 4.15 (c), 3 of its nearest neighbors belong to class

R, 3 to class A and 4 to class T . By rejecting 19.5% of the images for the five-class

problem, the classification accuracy can be increased to 93.5% and for the four-class

classification problem, the accuracy can be increased to 96.6% (Table 4.8).
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(a) Right loop (b) Arch

Figure 4.14: Examples of arch-loop misclassifications; (a) a right loop misclassified
as an arch; (b) an arch misclassified as a tented arch.

Table 4.8: Error-reject tradeoff.

Classifier (10,0)-NN (10,5)-NN (10,6)-NN (10,7)-NN
(%) (%) (%) (%)

Rejection rate 1.8 8.5 19.5 32.5
5-class error 10 8.8 6.5 4
4-class error 5.2 4.5 3.4 2.2

4.4.6 Support vector machine classifier

For comparison purposes, we also used a support vector machine (SVM) classifier

for our fingerprint classification problem. Support vector machines are kernel-based

classifiers that have gained a significant popularity in recent years due to their supe-

rior performance demonstrated on a number of practical classification applications.

The SVM classifiers are binary classifiers which seek that hyperplane as the decision

boundary which maximizes the margin between the two classes. The parameters of a

support vector machine classifier are the type of kernel, kernel parameters, and a con-
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(a)

(b)

(c)

Figure 4.15: Examples of images rejected by (10, 5)-NN classifier.

143



Table 4.9: A comparison of various fingerprint classification algorithms on the NIST
4 database.

Algorithm Year 5-class accuracy 4-class accuracy
% (reject rate %) % (reject rate %)

Wilson et al. [43] 1993 90.2 (10) NA
Karu et al. [97] 1996 85.5 91.1
Hong et al. [105] 1999 87.2 92.3
Proposed 1999 90.0 (1.8) 94.8 (1.8)
Cappelli et al. [141] 1999 92.2 94.5

stant c that controls the trade-off between the training error and the margin. We used

the SVM Torch package [144] for our fingerprint classification problem. The best accu-

racy of 86.1% for the five-class classification task was achieved when a Gaussian kernel

of standard deviation 10 and c = 100 was used. For a four-class problem, an accuracy

of 91.8% is achieved using the same parameters. An n-class classification problem is

solved by considering n one-against-the-others support vector machine classifiers. The

number of support vectors generated in the five-class classification task for the whorl-

against-the others classifier was 239, the left loop-against-the-others classifier was 325,

the right loop-against-the-others was 380, the arch-against-the-others was 427, and

the tented arch-against-the-others was 638. Thus the total number of support vectors

used by the multi-class SVM was 2, 009. Consequently, the SVM classifier is slower

than the K-nearest neighbor classifier while providing no significant improvement in

classification accuracy.
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4.4.7 Consistency results

In the fingerprint classification task, another metric of performance evaluation is the

classifier consistency. The purpose of the fingerprint classification task is to index the

fingerprint database such that the input fingerprint needs to be compared only with

a subset of the database. Suppose a fingerprint (let us say, of type arch) is “wrongly”

classified (let us say, to type left loop) during the indexing. However, if the input

fingerprint is another impression of the same finger, and is again misclassified as the

same category (left loop), the indexing scheme would still be effective. The best

consistency results for 967 pairs of fingerprints in the test set was achieved using a

16-nearest neighbor classifier as 82.6% for the five-class classification and 89.8% for

the four-class classification. The classification results stated in Table 4.8 made use of

the multiple labels of the fingerprint images in the NIST-4 database. However, if we

strictly consider only the first label of the fingerprint images in the NIST-4 database

for a fair comparison, the K-nearest neighbor fingerprint classifier gives a five-class

classification accuracy of 79.8% and four-class classification accuracy of 88.3%. Thus,

the consistency result is 2.8% (82.6%−79.8%) better than the accuracy result for the

five-class problem and 1.5% (89.8% − 88.3%) better for the four-class problem.

4.4.8 Defining New Classes

The five fingerprint classes, i.e., whorl, left loop, right loop, arch, and tented arch,

used in this chapter are based on the Henry system of classification which has been

in use for more than one hundred years. These classes used in the forensic domain
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may not be the best separable categories in our filterbank-based feature space. It is

possible to define new classes such that the fingerprints belonging to different classes

are compact and well separated in the feature space. We first assumed that the

“clusters” formed by the fingerprint patters in the FingerCode-space are essentially

spherical. As a result, we used a standard k-means clustering algorithm that uses

Euclidean distance metric on the training data to detect clusters in the feature space.

The clusters thus detected do not have any physical meaning in terms of fingerprint

patterns and define non-intuitive fingerprint categories. Since the k-means clustering

algorithm depends on the initialization of cluster centers, we performed multiple (20)

runs of the k-means algorithm with different initializations and chose the clustering

with the minimum squared error. The best consistency results on the 967 pairs of

test images were 73.8% (using a 7-nearest neighbor classifier) when five clusters were

defined and 82.2% (using a 12-nearest neighbor classifier) when four clusters were

defined. On changing the distance metric for the k-means algorithm from Euclidian

distance to Mahalanobis distance [145], the k-means algorithm seeks hyper-elliptical

clusters instead of spherical cluster. We achieve sightly higher consistency results

of 76.2% for the four-class problem and 85.2% for the five-class problem by using

the Mahalanobis distance. This suggests that the shape of the clusters formed in

the FingerCode feature space is closer to elliptical than spherical. However, the

consistency results when the classes were defined using a clustering of the data are

inferior as compared to the consistency results when the classes were defined by a

fingerprint expert. This implies that the fingerprints do not form well defined clusters

in the FingerCode feature space and an exclusive classification of fingerprints has

146



limitations because of the inherent overlap between the fingerprint classes. Therefore,

a continuous classification of fingerprints should be explored. A successful continuous

fingerprint classifier is developed by Lumini et al. in [22].

4.4.9 Dimensionality Reduction Using PCA

The training and the test sets contain about 2, 000 samples each while our feature

vector is 192-dimensional. It is desirable to have a large number of representative

samples per class (e.g., ten times) with respect to the feature dimension for good

generalization of a practical classification system [145]. Since the collection of a

large number of representative samples is expensive, we used the principal component

analysis (KL transform) to reduce the dimensionality of the feature vector and used

a K-nearest neighbor algorithm classifier. While an accuracy of 85.4% was achieved

with this KL-KNN classifier when all the 192 features were used, we achieved an

accuracy of 85.1% when only 96 features were used (8-nearest neighbor classifier),

84.3% when 72 features were used (10-nearest neighbor classifier), and 83% when 48

features were used (12-nearest neighbor classifier). Thus, with a slight degradation

in performance, we were able to reduce the feature vector size to 1/4th of its original

value. A similar behavior was observed in the classifier consistency results as well.

The consistency was 81.1% for 96 features, 81.0% for 72 features, and 79.2% for 48

features.

Cappelli et al. [141] used a Multi-space KL transform for feature reduction. The

central idea of this approach is to find one or more KL subspaces for each class that
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are well-suited in representing the fingerprints in that class. They used a fixed number

of subspaces for each class. The selection of the number of subspaces for a class was

ad-hoc and was based on the authors’ perception of complexity of that class (arch,

left loop, right loop, whorl, and tented arch, were assigned 1, 2, 2, 3, and 1 subspaces,

respectively). An accuracy of over 99% with 20% reject rate was reported on the

naturally distributed NIST-14 database using a combination of six classifiers including

the Multi-KL-KNN classifier which was the best individual classifier. The accuracy on

the NIST-4 database that contains equal number of fingerprint images from the five

classes was not reported and is expected to be inferior due to inclusion of large number

of more difficult arch and tented arch type fingerprint images. We used a similar idea

to develop a Multi-KL-KNN classifier based on the filterbank representation. We

used an equal number of subspaces for all the five classes (one for each class) because

the complexity of each class in not known apriori in the filterbank representation. We

were able to achieve a five-class classification accuracy of 85.1% when only 96 features

were used for each class, an accuracy of 84.9% was achieved when 72 features were

used, and an accuracy of 83.2% was achieved when only 48 features were used. This

shows that Multi-KL-KNN classifier performs marginally better than the KL-KNN

classifier but not as good as without dimensionality reduction.

4.4.10 Dimensionality Reduction Using Feature Clustering

Although the feature dimension reduction using principal component analysis is useful

as the final classifier is based on fewer features and as a consequence, is faster, the
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feature extraction time is not reduced. All the 192 features are first extracted from

the fingerprint images and then the feature vector is reduced by projecting it to the

new space. In order that the feature extraction time is reduced, we need to “select”

a subset of features while maintaining the classification accuracy. For this purpose,

we used a standard k-means clustering algorithm to cluster the features into 96 and

48 clusters, respectively. Due to very few number of samples in each cluster, the

clustering results are not used directly for feature reduction. We observe that the

corresponding feature values for the same location but different orientation cluster

together. This means that there is some redundancy in the different directions (4

in our case) used for the Gabor filters during the feature extraction. However, each

direction yields some extra information such that the classification accuracy increases

by using more directions. The increase in the classification accuracy that results from

using more number of orientation specific filters result in increased computation time

for feature extraction. Depending on the application, the tradeoff between accuracy

and time can be selected. For example, using a K-nearest neighbor classifier, an

accuracy of 85.4% is achieved by using 4 directions, an accuracy of 82.0% is achieved

when 2 directions are used and an accuracy of 65% is achieved when only one direction

is used. A similar behavior was observed in the classification consistency results as

well. The consistency was 82.6% for four directions, 79.1% for two directions, and

61.9% when only one direction was used.
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4.5 Summary

We have developed a fingerprint classification algorithm that uses the filterbank-based

representation and outputs an accuracy comparable to the state-of-the-art algorithms

reported in the literature on the NIST-4 database. Our feature vector, called Fin-

gerCode, captures the fingerprint class information and is robust to noise which is

reflected in the high classification accuracy. We have tested our algorithm on the

NIST-4 database and a very good performance has been achieved (90% for the five-

class classification problem and 94.8% for the four-class classification problem with

1.8% rejection during the feature extraction phase). However, this algorithm suf-

fers from the requirement that the region of interest be correctly located, requiring

the accurate detection of reference point in the fingerprint image. Our system takes

about 3 seconds on a Sun Ultra-10 machine to classify one fingerprint. Since image

decomposition (filtering) steps account for 90% of the total compute time, special

purpose hardware for convolution can significantly decrease the overall time for clas-

sification. Most of the work in fingerprint classification has concentrated on features

(e.g., location of singular points, orientation field) that the forensic scientists have

used for a long time. These classifiers perform discrete classification of fingerprint

images into one of the predetermined classes. Since there exits a continuum of finger-

print patterns between these discrete predetermined classes, the automatic systems

based on simple features such as singular points or orientation field will have a lim-

ited performance irrespective of the location and shape of the decision boundary

when performing discrete classification. By attempting to design features which are
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parameterized, rich and completely data driven, such as the ones proposed in this

thesis, we can apply advanced pattern recognition and clustering techniques instead

of simple hand-crafted rules to gain performance improvement. We believe that the

FBI requirement of 1% error with 20% reject rate is very challenging to meet. The

algorithms that have reported a performance close to or surpassing this requirement

[44, 141] have reported their results on a naturally distributed database and have thus

taken the advantage of the fact that the less frequently occurring classes are more

difficult to classify. We have shown that the simple variance-based features proposed

in this thesis work quite well. However, we expect that better performance can be

achieved by extracting richer, more discriminatory features from the filtered images

in the feature extraction algorithm.
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Chapter 5

Fingerprint Matching

The distinctiveness of a fingerprint can be determined by the overall pattern of ridges

and valleys as well as the local ridge anomalies (minutiae points). Although the ridges

possess the discriminatory information, designing a reliable automatic fingerprint

matching algorithm is very challenging due to the nonlinear deformation and noise in

fingerprint images (see Figure 3.2).

The existing popular fingerprint matching techniques can be broadly classified

into two categories: (a) minutiae-based and (b) correlation-based. The minutiae-

based techniques typically match the two minutiae sets from two fingerprints by first

aligning the two sets and then counting the number of minutiae that match. A typ-

ical minutiae extraction technique performs the following sequential operations on

the fingerprint image: (i) fingerprint image enhancement, (ii) binarization (segmen-

tation into ridges and valleys), (iii) thinning, and (iv) minutiae detection. Several

commercial [112] and academic [131, 11] algorithms follow these sequential steps for

minutiae detection. Alternative techniques for minutiae detection directly operate
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on the gray scale fingerprint image itself and detect minutiae by adaptively tracing

the gray scale ridges in the fingerprint images [56, 181]. The alignment between the

input and the template fingerprints can be obtained using one or more of the finger-

print features. For example, an alignment can be achieved based on the orientation

field of the fingerprints, the location of singular points such as the core and the delta

[95], ridges [11], inexact graph-matching on the minutiae graphs [5], Hough trans-

form [131], point patterns [128]), etc. The number of matched minutiae in certain

tolerances is typically normalized by the total number of minutiae in the two sets to

account for the falsely detected and missed minutiae during the feature extraction.

One of the main difficulties in the minutiae-based approach is that it is very difficult

to reliably extract minutiae in a poor quality fingerprint image. A number of image

enhancement techniques can be used to improve the quality of the fingerprint image

prior to minutiae extraction (e.g., [108]).

Correlation-based techniques match the global pattern of ridges and furrows to

see if the ridges align. The simplest technique is to align the two fingerprint images

and subtract the input from the template to see if the ridges correspond. However,

such a simplistic approach suffers from many problems including the errors in esti-

mation of alignment, non-linear deformation in fingerprint images, and noise. An

auto-correlation technique has been proposed by Sibbald [31] that computes the cor-

relation between the input and the template at fixed translation and rotation incre-

ments. If the correlation exceeds a certain threshold, the two fingerprints are declared

to originate from the same finger. A variant of the correlation technique is to perform

the correlation in the frequency domain instead of the spatial domain by performing
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a two-dimensional fast Fourier transform (FFT) on both the input and the template

fingerprints. The sum of the pixel-to-pixel multiplication of the two frequency do-

main representations of the fingerprint images is then compared to a threshold to

make a decision. One of the advantages of performing correlation in the frequency

domain is that the frequency representations of the fingerprints are translation in-

variant. One of the major disadvantages, however, is the extra computation time

required to convert the spatial image to a frequency representation. The frequency

domain correlation matching can also be performed optically [137, 38, 73]. The input

and the template fingerprints are projected via laser light through a lens to produce

their Fourier transform and their superposition leads to a correlation peak whose

magnitude is high for the matching pair and low otherwise. The main advantage of

performing optical correlation is the speed; the main disadvantage is that optical pro-

cessors have very limited versatility (programmability) (cf. [112]). A modification of

the spatial correlation-based techniques is to divide the fingerprint images into grids

and determine the correlation in each sector instead of the whole image [61, 103].

The correlation-based technique overcomes some of the limitations of minutiae-based

approach. For example, the minutiae extraction algorithm detects a large number

of spurious minutiae and misses genuine minutiae in very noisy fingerprint images.

Correlation-based techniques are less sensitive to the noise in fingerprint images but

have problems of their own. For example, correlation-based techniques are more sen-

sitive to an error in estimation of the alignment between the two fingerprints. Also,

the correlation-based techniques cannot easily deal with the non-linear deformation

present in the fingerprint images. Additionally, the correlation-based techniques typi-
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cally have larger template size. See Table 5.1 for a comparison of different fingerprint

matching algorithms.

Table 5.1: Fingerprint matcher literature survey. The fingerprint matching algorithms
are classified based on the alignment assumed between the template and the input
fingerprint features. The rotation is denoted by R, the translation is denoted by T ,
and the scale is denoted by S.

Author (Year) Alignment Features Used

Kovacs-Vajna [186] (2000) nonlinear minutiae and its
16 × 16 grayscale
neighborhood

Jiang et al. [182] (2000) R + T + S minutiae
Almansa and Cohen [1] (2000) nonlinear minutiae
Jain et al. [19] (2000) R + T texture features
O’Gorman [112] (1999) R + T in local regions minutiae
Jain et al. [11] (1997) R + T + nonlinear thin ridges, minutiae
Sibbald [31] (1997) R + T grayscale intensity
Ratha et al. [131] (1996) R + T + S minutiae
Maio et al. [58] (1995) R + T minutiae, core, delta
Coetzee and Botha [103] (1993) R + T minutiae and

frequency-domain
features

Marsh and Petty [137] (1991) R + T grayscale intensity
Driscoll et al. [61] (1991) R + T grayscale intensity

The filterbank-based representation described in Chapter 3 does not fall either

into the minutiae-based or the correlation-based matching categories. The proposed

technique is a feature-based technique that captures both the local and the global

details in a fingerprint as a compact fixed length feature vector (FingerCode). The

fingerprint matching is based on the Euclidean distance between the two correspond-

ing FingerCodes and hence is extremely fast. We are able to achieve a verification

accuracy superior to the results of a typical state-of-the-art minutiae-based algorithm

[11] in terms of equal error rates (see Table 5.3) and only marginally inferior at very

155



low false accept rates on two different databases. Finally, we show that the matching

performance can be improved by combining the decisions of the matchers based on

complementary (minutiae-based and filter-based) fingerprint information.

5.1 Introduction

It is desirable to explore representation schemes which combine global and local infor-

mation in a fingerprint. Our novel, relatively short, fixed length code representation

for the fingerprints, called FingerCode is suitable for matching as well as storage on

a smartcard. The matching reduces to finding the Euclidean distance between these

FingerCodes and hence the matching is very fast and the representation is amenable

to indexing.

5.2 Feature Extraction

We have used the proposed filterbank-based representation described in Chapter 3

with the values of the parameters described below. In our initial experiments with

MSU DBI database (image size = 508×480 pixels, scanned at 500 dpi), we considered

five concentric bands (B = 5) for feature extraction. Each band is 20-pixels wide (b

= 20), and segmented into sixteen sectors (k = 16) (Figure 3.9). Thus, we have a

total of 16 × 5 = 80 sectors (S0 through S79) and the region of interest is a circle

of radius 120 pixels, centered at the reference point. Eighty features for each of the

eight filtered images provide a total of 640 (80 × 8) features per fingerprint image.
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Matching result

Template FingerCode

Input Image Normalize each sector

Divide image in sectors

Input FingerCode

Filtering

Locate the reference point

feature
Compute A.A.D.

Calculate Euclidean distance

Figure 5.1: System diagram of our fingerprint authentication system.
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Each feature can be quantized into 256 values and requires 1 byte of storage, so the

entire feature vector requires only 640 bytes of storage. Note that these parameters of

the tessellation depend upon the image resolution and size. In our second experiment

with NIST-9 database (image size = 832 × 768 pixels, scanned at 500 dpi), we used

7 concentric bands (B = 7), b = 20, and k = 16, giving us an 896 byte FingerCode.

The 640-dimensional feature vectors (FingerCodes) for nine different impressions

of the same finger are shown as gray level images with eight disks, each disk corre-

sponding to one filtered image in Figure 5.2. The gray level in a sector in a disk

represents the feature value for that sector in the corresponding filtered image. The

nine fingerprint images of the different impressions of the same finger differ from each

other in translation, rotation, non-linear deformation, image intensities in different

part of the fingerprint, and noise. A simple correlation-based technique that subtracts

the input image from the template is unlikely to succeed due to the large intra-class

variation in different impressions of the same finger. The tessellation scheme of the

proposed filterbank-based algorithm is able to handle small errors in the location of

the reference point for translation invariance of the representation. One can see that

the representations for the nine impressions of the same finger visually look very sim-

ilar. However, the feature values in different impressions are not exactly the same.

This difference results from the image rotation and non-linear deformation. However,

the gray scale intensity-based feature (variance) is able to handle small rotation and

non-linear deformation in each sector. The Euclidean distance between these nine

FingerCodes ranges from 10 and 40 (normalized to a scale of 0-100) which quantifies

the typical intra-class variability in a single user. The Euclidean distance between the
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FingerCodes from different fingers range from 30 to 100 on the same scale quantifying

the typical inter-class variability in the representation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Examples of 640-dimensional feature vectors corresponding to nine dif-
ferent impressions of the same finger.
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5.3 Matching

Fingerprint matching is based on finding the Euclidean distance between the corre-

sponding FingerCodes. The translation invariance in the FingerCode is established by

identifying the reference point. However, FingerCodes are not rotationally invariant.

The approximate rotation invariance is achieved by cyclically rotating the features in

the FingerCode itself. A single-step cyclic rotation of the features in the FingerCode

described by Eqs. (5.1)-(5.3) corresponds to a feature vector which would be obtained

if the image was rotated by 22.5◦. A rotation by R steps corresponds to a R × 22.5◦

rotation of the image. A positive rotation implies counterclockwise rotation while a

negative rotation implies clockwise rotation. See Figure 5.3 for an illustration. The

FingerCode obtained after R steps of rotation is given by

V R
iθ = Vi′θ′ , (5.1)

i′ = (i + k − R) mod k + (i div k) × k, (5.2)

θ′ = (θ + 180◦ + 22.5◦ × (−R)) mod 180◦, (5.3)

where V R
iθ is the rotated FingerCode, Vi′θ′ is the original FingerCode, k (= 16) is the

number of sectors in a band, i ∈ [0, 1, 2, ...79], and θ ∈ [0◦, 22.5◦, 45◦, 67.5◦, 90◦,

112.5◦, 135◦, 157.5◦].

For each fingerprint in the database, we store five templates corresponding to the

following five rotations of the corresponding FingerCode: V −2
iθ , V −1

iθ , V 0
iθ, V 1

iθ, and

V 2
iθ. We use only five values of parameter R (−2,−1, 0, 1, 2) because the fingerprint
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(a) (b)

(c) (d) (e)

Figure 5.3: The fingerprint image in (b) is obtained by a −22.5◦ rotation of (a). A
part of the feature vector corresponding to the 0◦ Gabor filtered image extracted
from (a) is shown in (c) as a gray scale image. The feature vector in (c) is rotated
by −22.5◦ (R = −1 in Equations (5.2) and (5.3)) and is shown in (d). (e) shows the
feature vector extracted from the fingerprint image in (b). The feature vectors shown
in (d) and (e) are similar illustrating that the feature vector for a −22.5◦ rotation in
the original image approximately corresponds to a unit anticlockwise cyclic rotation
of the feature vector.

images in both the MSU DBI and NIST-9 databases do not have more than ±45◦

rotation. For databases that have more rotation in the fingerprint images, a higher

range for the parameter R may be used. The input FingerCode is matched with

the five templates stored in the database to obtain five different matching scores.

The minimum of these five matching scores corresponds to the best alignment of

the input fingerprint with the database fingerprint. Since a single cyclic rotation

of the features in the FingerCode corresponds to a rotation of 22.5◦ in the original

image, we can only generate those representations of the fingerprint which are in
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multiples of 22.5◦. Due to the nature of the tessellation, our features are invariant to

only small perturbations that are less than ±11.25◦. Therefore, we generate another

feature vector for each fingerprint at the time of user enrollment which corresponds

to a rotation of 11.25◦. The original image is rotated by an angle of 11.25◦ and its

FingerCode is generated. Five templates corresponding to the various rotations of

this FingerCode are also stored in the database. Thus, the database contains 10

templates for each fingerprint. These 10 templates correspond to all the rotations of

the fingerprint image in multiples of 11.25◦. This takes care of the fingerprint rotation

while matching the input FingerCode with the stored templates. The final matching

distance score is taken as the minimum of the ten scores obtained by matching the

input FingerCode with each of the 10 templates. This minimum score corresponds

to the best alignment of the two fingerprints being matched. Since the template

generation for storage in the database is an off-line process and the matching process

is extremely fast, the verification time still depends on the time taken to generate a

single template for the test image.

5.4 Experimental Results

Our MSU DBI database consists of a total of 2, 672 fingerprint images from 167

subjects. A live feedback of the acquired image was provided during the data capture

and the volunteers guided the subjects in placing their fingers in the center of the

sensor and in an upright position. Due to this assistance provided to the subjects,

most of the fingerprints were reasonably well centered. Despite the supervised image
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acquisition, there is a significant intra-class deformation and up to ±45◦ deviation

from the assumed vertical upright orientation in the acquired images. However, these

images are of better quality than the traditional inked fingerprints (see Figure 5.4).

The fingerprint images which were captured after a period of six weeks have significant

nonlinear distortions due to finger pressure differences (see Figures 5.5 and 5.7(c) and

(d)). This presents a challenge to all the fingerprint matching algorithms.

(a) (b)

Figure 5.4: A comparison of the quality of inked fingerprints and dab fingerprints.
(a) inked fingerprint, (b) dab fingerprint.

We have also evaluated our system on 1, 800 images of the public domain database

NIST-9 (Vol. 1, CD. No. 1) which contains 1, 800 fingerprint images (image size =

832×768 pixels) from 900 different fingers. The complete NIST-9 fingerprint database

contains 1, 350 mated fingerprint card pairs (13, 500 fingerprint image pairs) that

approximate a natural distribution of the National Crime and Information Center

fingerprint classes. The database is divided into multiple volumes. Each volume has
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(a) (b)

(c) (d)

Figure 5.5: Examples of images with large deformation due to finger pressure differ-
ences in the MSU DBI database. Fingerprint images in (b) and (d) were taken six
weeks after the images in (a) and (c) were acquired, respectively.

three compact discs (CD’s). Each CD contains 900 images of card type 1 and 900

images of card type 2. Fingerprints on the card type 1 were scanned using a rolled

method, and fingerprints on card type 2 were scanned using a live-scan method.

Matching fingerprint images in the NIST-9 database is more difficult compared to

the live-scan fingerprint images because the two impressions from the same finger in

the NIST-9 database are captured using different methods (rolled and live-scan) and
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hence the two images of the same finger differ significantly in their ridge structures. A

large number of NIST-9 images are of poorer quality and these images often contain

extraneous objects like handwritten characters and other artifacts common to inked

fingerprints.

One hundred images (approximately 4% of the database) were rejected from the

MSU DBI database because of the following reasons: (i) the reference point was

located at a corner of the image and therefore an appropriate region of interest (tes-

sellation) could not be established, (ii) the quality of the image was poor based on

the quality index of the images. See Figure 5.6 for examples of images which were

rejected. A total of 100 images (approximately 5.6% of the database) were rejected

from the NIST-9 database based on the same criteria. The quality index was deter-

mined using a quality checker algorithm [147] that estimates the dryness of the finger

(or smudginess of the fingerprint image) and the extent to which the surface of the

finger tip is imaged. The estimate of the dryness/smudginess is based on the variance

of the grayscale in the captured image.

To establish the verification accuracy of our fingerprint representation and match-

ing approach, each fingerprint image in the database is matched with all the other

fingerprints in the database. A matching is labeled correct if the matched pair is

from the same finger and incorrect, otherwise. None of the genuine (correct) match-

ing scores was zero indicating that the images from the same finger did not yield an

identical FingerCode because of the rotation, distortion, and inconsistency in refer-

ence point location. For the MSU DBI database, a total of 3, 306, 306 matchings were

performed. The probability distribution for genuine (correct) matches was estimated
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(a) (b)

Figure 5.6: Examples of rejected images. (a) a poor quality image, (b) the reference
point is (correctly) detected at a corner of the image and so an appropriate region of
interest could not be established.

with 7, 472 matches and the imposter distribution was estimated with 3, 298, 834

matches. Figure 5.8 (a) shows the two distributions. For the NIST-9 database, a to-

tal of 722, 419 matchings were performed and the genuine and imposter distributions

were estimated with 1, 640 and 720, 779 matching scores, respectively. Figure 5.8 (b)

shows the imposter and genuine distributions for the NIST-9 database. If the Eu-

clidean distance between two FingerCodes is less than a threshold, then the decision

that “the two images come from the same finger” is made, otherwise a decision that

“the two images come from different fingers” is made. Different decision thresholds

lead to different values of FAR and FRR (see Table 5.2).

A Receiver Operating Characteristic (ROC) curve is a plot of Genuine Acceptance

Rate (1-FRR) against False Acceptance Rate for all possible system operating points

(i.e., matching distance threshold) and measures the overall performance of the sys-

tem. Each point on the curve corresponds to a particular decision threshold. In the
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(a) (b)

(c) (d)

Figure 5.7: Errors in matching. Examples of fingerprint images from the same finger
that were not correctly matched by our algorithm. (a) and (b) do not match because
of the failure of reference point location, (c) and (d) do not match because of the
change in inter ridge distances due to finger pressure difference.
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Table 5.2: False acceptance and false reject rates with different threshold values for
the MSU DBI database.

Threshold value False Acceptance Rate (%) False Reject Rate (%)
30 0.10 19.32
35 1.07 7.87
40 4.59 2.83

ideal case, both the error rates, i.e., FAR and FRR should be zero and the genuine

distribution and imposter distribution should be disjoint. In such a case, the “ideal”

ROC curve is a step function at the zero False Acceptance Rate. On the other ex-

treme, if the genuine and imposter distributions are exactly the same, then the ROC

is a line segment with a slope of 45◦ with an end point at zero False Acceptance Rate.

In practice, the ROC curve behaves in between these two extremes. An Equal Error

Rate (EER) is defined as that operating point where the two types of errors, FAR

and FRR, are equal. Figures 5.9 (a) and (b) compare the ROCs of a state-of-the-art

minutiae-based matcher [11] with our filter-based matcher on the MSU DBI and the

NIST-9 databases, respectively. The ROC curves show that our system performs bet-

ter than the minutiae-based system when the system performance requirements are

less demanding on FAR (FAR greater than 2%) on both the databases. A number of

applications including bank’s ATM machines usually have such FAR requirements.

However, at very low FARs, our system performs worse than the minutiae-based ap-

proach. Our system also performs better than the minutiae-based system at the equal

error rate (see Table 5.3).

Most of the false accepts in our system occur among the same “type” (class) of

fingerprints; a whorl is confused with another whorl and not a loop. This confirms
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Figure 5.8: Genuine and imposter distributions for the proposed verification scheme.
(a) MSU DBI database, (b) NIST-9 (Vol. 1, CD No. 1).
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Figure 5.9: Receiver Operating Characteristic (ROC) curves for two different
(filterbank-based and minutiae-based) matchers. (a) MSU DBI database, (b) NIST-9
(Vol. 1, CD No. 1). FAR and FRR are equal at all points on the Equal-Error Line.
Thus, the point of crossing of ROC with this line denotes the equal error rate on the
ROC.
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that the proposed approach does capture the global information as well as the local

information and hence is suitable for indexing as shown in Chapter 4. However, this

is a shortcoming in terms of verification. The imposter distributions in Figure 5.8 are

wider than the typical imposter distribution in a minutiae-based approach. This also

suggests that FingerCodes capture more global information; at a global information

level, there is more similarity in fingerprints from different fingers. Since FingerCodes

also capture local information, there is more variation in imposter scores which results

in a wider imposter distribution than the minutiae-based technique. The genuine dis-

tribution for the minutiae-based approach is typically very wide because the matching

score depends heavily on the quality of the fingerprint image. The filterbank-based

approach, on the other hand, has a relatively narrower genuine distribution due to

its superior ability to deal with noise in the fingerprint image. As a result of this

difference in the characteristics of the genuine and the imposter distributions, when

the threshold is changed from a value corresponding to a very low FAR to high FARs,

the FRR for the minutiae-based approach drops very rapidly and then stabilizes. On

the other hand, the FRR for the filterbank-based approach drops slowly but steadily

with increasing FAR leading to a crossover of its ROC with the minutiae-based ROC

(see Figures 5.9(a) and (b)). This implies that the filterbank-based approach is supe-

rior to the minutiae-based approach at high FARs due to its ability to gracefully deal

with large amount of noise in the fingerprint images. The filterbank-based approach

is inferior to the minutiae-based approach at low FARs because it is capturing more

global information and is not able to distinguish between fingerprints that have a very

similar global structure. This suggests that the FingerCode representation captures

171



discriminatory information that is complementary to the information used by pop-

ular minutiae-based fingerprint matchers. An added advantage of such independent

knowledge is that a combination of the two approaches, i.e., filterbank-based and

minutiae-based, can significantly improve the overall performance of the verification

system. This will be further discussed in Chapter 6.

Table 5.3: Comparison of the equal error rates (ERR) of the proposed filterbank-
based technique with a state-of-the-art minutiae-based technique on two different
databases.

Database Minutiae-based (%) Filterbank-based (%)
(reject rate (%)) (reject rate (%))

MSU DBI 3.9 (0) 3.5 (4.0)
NIST-9 7.1 (0) 6.7 (5.6)

5.5 Summary

We have developed a novel filter-based representation technique for fingerprint veri-

fication. The technique exploits both the local and global characteristics in a finger-

print image to make a verification. Each fingerprint image is filtered in a number of

directions and a fixed-length feature vector is extracted in the central region of the

fingerprint. The feature vector (FingerCode) is compact and requires only 640 (or

896, depending on image size) bytes. The matching stage computes the Euclidean

distance between the template FingerCode and the input FingerCode. With increas-

ingly cheaper CPU cycles and use of special purpose DSP chips, the computation

time in FingerCode extraction will become a nonissue. On MSU DBI database of

2, 672 fingerprints from 167 different subjects, 4 impressions per finger, we are able
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to achieve a verification accuracy better than a state-of-the-art minutiae-based fin-

gerprint matcher in terms of Equal Error Rate (EER) and only marginally inferior at

very low FARs (when the reject rate is not considered). A similar performance is ob-

served on the more challenging NIST-9 database. This shows that the discriminatory

power of the proposed representation is comparable to that of the minutiae-based

representation. Note that the performance of neither the minutiae-based system nor

the filterbank-based system is even close to the theoretical performance upper bound

established in Chapter 2.

The filterbank approach suffers from a number of disadvantages and more research

is needed in the following areas to improve the representation and matching: (i) The

registration is based on the detection of the reference point. Even though our multi-

resolution reference point location algorithm is accurate and handles the poor quality

fingerprint images gracefully, it fails to detect the reference point in very low quality

images leading to either a rejection of the image or even worse, a false rejection in the

verification system. A filterbank approach that aligns the fingerprints based on the

minutiae information can achieve a more reliable registration and will not reject any

images due to the absence of the reference point. However, the representation thus

extracted will not be translation and rotation invariant resulting in a longer match-

ing time. (ii) The current implementation of the filterbank representation is not

rotational invariant. The rotation is handled in the matching stage by rotating the

FingerCode itself. However, due to quantization of the rotation space and generation

of multiple alignment hypotheses, the false accepts increase. This problem can be

addressed by estimating a frame of reference of the fingerprints. However, estimation
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of a frame of reference in the fingerprints is a difficult problem because all fingerprints

have circular ridges in the portion above the core point. (iii) Due to skin elasticity,

there is non-linear distortion in the fingerprint images and even if the fingerprints are

registered in location and orientation, all ridges in all sectors may not align. This

problem can be partially addressed by estimating the local ridge frequency in each

sector and normalizing each sector to a constant ridge frequency. (iv) the Finger-

Code representation does not have any explicit procedure to handle the noise in the

fingerprint images due to the dryness/smudginess of the finger. Although the sec-

tors are normalized to a constant mean and variance and then filtered using a bank

of Gabor filters, large amount of noise changes the gray-level image characteristics

and causes problems in the quantification of discriminatory information in sectors.

The simple variance-based features proposed in this thesis perform well, have good

discriminatory power, and degrade more gracefully than the minutiae-based features

with noise in the fingerprint images. However, we believe that extraction of richer

and more discriminatory features from the sectors in the filtered images should be

explored to improve the matching performance. (v) The current implementation of

filterbank representation extraction takes longer than a typical minutiae-extraction

algorithm. Approximately 99% of the total compute time for verification (∼ 3 sec-

onds on a SUN ULTRA 10) for the images in the MSU DBI database is taken by the

convolution of the input image with 8 Gabor filters. The convolution operation can

be made significantly faster by dedicated DSP processors or performing the filtering

in the frequency domain. If the reference point is correctly located, the features are

translation invariant and the rotation handled in the matching stage is very fast. As
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a result, the matching process is extremely fast. (vi) The current matching algorithm

is very simple, an implementation of a smarter matching algorithm should be able

to improve the verification performance. For example, the match resulting from each

sector can be weighed differently based on image quality and a quantitative measure

of the nonlinear distortion in the sector. The verification system should also benefit

from a matcher that can handle conflicting information in the fingerprints.
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Chapter 6

Decision-level Fusion in

Fingerprint Verification

The current fingerprint verification systems do not meet the low FAR requirements

of several civilian applications due to the nonlinear deformation and noise present

in fingerprint images. An efficient and effective method to improve the verification

performance is to combine multiple fingerprint matchers, multiple templates, and

multiple fingers. We propose a combination scheme that is optimal (in the Neyman-

Pearson sense) when sufficient data are available to obtain reasonable estimates of

the joint densities of classifier outputs. Four different fingerprint matching algorithms

are combined using the proposed scheme to improve the accuracy of a fingerprint

verification system. Experiments conducted on the MSU DBI database confirm the

effectiveness of the proposed integration scheme. At the same FAR, the FRR improves

by ∼ 3% at all operating points as compared to the best individual matcher. We

further show that a combination of multiple impressions or multiple fingers improves
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the FRR by more than 4% and 5%, respectively at the same FAR at all operating

points. Analysis of the results provide some insight into the various decision-level

classifier combination strategies.

6.1 Introduction

In some applications with a stringent performance requirement (e.g., very low FAR),

no single biometric can meet the requirements due to the inexact nature of sensing,

feature extraction, and matching processes. This has generated interest in designing

multimodal biometric systems [107]. Multimodal biometric systems can be designed

to operate in one of the following five scenarios (see Figure 6.1): (i) Multiple sen-

sors: for example, optical, ultrasound, and capacitance based sensors are available

to capture fingerprints. (ii) Multiple biometric system: multiple biometrics such as

fingerprint and face may be combined [65, 90, 13]. (iii) Multiple units of the same

biometric: one image each from both the irises, or both the hands, or ten fingerprints

may be combined [17]. (iv) Multiple instances of the same biometric: for exam-

ple, multiple impressions of the same finger [17], or multiple samples of the voice,

or multiple images of the face may be combined. (v) Multiple representations and

matching algorithms for the same input biometric signal: for example, combining

different approaches to feature extraction and matching of fingerprints [20]. The first

two scenarios require several sensors and are not cost effective. Scenario (iii) causes

an inconvenience to the user in providing multiple cues and has a longer acquisition

time. In scenario (iv), only a single input is acquired during verification and matched
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with several stored templates acquired during the one-time enrollment process. Thus,

it is slightly better than scenario (iii). In our opinion, scenario (v), combination of

different representation and matching algorithm, is the most cost-effective way to

improve biometric system performance.

Chip-BasedOptical

FingerprintFace

Multiple Finger System

Multiple Sensor System

Minutiae-Based

Multiple Matcher System

MULTIMODAL

SYSTEMS

BIOMETRIC
Filter-Based

Multiple Biometric System

Multiple Impression System

Figure 6.1: Various Multi-modal Biometric Systems [158].

We propose to use a combination of four different fingerprint-based biometric sys-

tems where each system uses different feature extraction and/or matching algorithms

to generate a matching score which can be interpreted as the confidence level of

the matcher. The proposed combination scheme operates at the decision-level. A

combination at the feature level can result in a larger improvement. However, the

feature extraction algorithms from different fingerprint verification system designers

use proprietary code and typically only the confidence from the matcher is available.
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A combination at the decision level is preferred over a combination at the abstract or

the rank level because of more information being contained in the confidence value

of a matcher. We combine the four different matching scores from four different

matchers available to us to obtain the lowest possible FRR for a given FAR.

We also compare the performance of our integration strategy with the sum and

the product rules [90]. Even though we propose and report results in scenarios (iii),

(iv) and (v), our combination strategy could be used for scenarios (i) and (ii) as well.

6.2 Matcher Combination

A comprehensive list of classifier combination strategies can be found in [15, 90]. Jain

et al. [15] summarize and categorize various classifier combination schemes based on

architecture, selection and training of individual classifiers, and the characteristics of

the combiner. A summary of various classifier combination schemes is shown in Table

6.1 [15]. However, a priori it is not known which combination strategy works better

than the others and if so under what circumstances.

In this chapter we will restrict ourselves to a particular decision-level integration

scenario where each classifier may select its own representation scheme and produces

a confidence value as its output. A theoretical framework for combining classifiers in

such a scenario has been developed by Kittler et al. [90]. The well known sum rule

computes the sum of the aposteriori probabilities for each of the classes generated

by individual classifiers generated by each matcher/classifier and makes the decision

in favor of the class with the maximum sum. The product rule computes the prod-
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Table 6.1: Confidence-level classifier combination schemes. A more detailed compar-
ison can be found in [15].

Combination Scheme Trainable Adaptable

Sum, mean, median No No
Product, min, max No No
Generalized ensemble Yes No
Adaptive weighting Yes Yes
Stacking Yes No
Logistic Regression Yes No
Dempster-Shafer No No
Mixture of local experts (MLE) Yes Yes
Hierarchical MLE Yes Yes
Bagging Yes No
Boosting Yes No
Neural tree Yes No

uct of the aposteriori probabilities for each of the classes and makes the decision in

favor of the class with the maximum product. The product rule implicitly assumes

an independence of classifiers. The sum rule further assumes that the aposteriori

probabilities computed by the respective classifiers do not deviate dramatically from

the prior probabilities. The max rule, min rule, median rule, and majority vote rule

have been shown to be special cases of the sum and the product rules [90]. Making

these assumptions simplifies the combination rule but does not guarantee optimal re-

sults and hinders the combination performance. We follow Kittler et al.’s framework

without making any assumptions about the independence of various classifiers.
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6.3 Integration Strategy

Let us suppose that the test pattern Z is to be assigned to one of the two possible

classes, w0 and w1. Let us assume that we have N classifiers, and the ith classifier

outputs a single confidence value θi about class w1 (the confidence for the class w0

will be 1 − θi), i = 1, 2, .., N . Let us assume that the prior probabilities for the two

classes are equal. The classifier combination task can now be posed as an independent

(from the original N classifier designs) classifier design problem with two classes and

N features (θi, i = 1, 2, .., N).

6.3.1 Matcher Selection

It is a common practice in classifier combination to perform an extensive analysis of

various combination strategies involving all the N available classifiers. In feature se-

lection, it is well known that the most informative d-element subset of N conditionally

independent features is not necessarily the union of the d individually most informa-

tive features [85, 77, 166, 75]. Cover [167] argues that no non-exhaustive sequential

d-element selection procedure is optimal, even for jointly normal features. He further

showed that all possible probability of error orderings can occur among subsets of

features subject to a monotonicity constraint. The statistical dependence among fea-

tures causes further uncertainty in the d-element subset composed of the individually

best features. One could argue that the combination strategy itself should pick out

a subset of the classifiers that should be combined. However, we know in practice

that the “curse of dimensionality” makes it difficult for a classifier to automatically
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delete less discriminative features [8, 160]. Therefore, we propose a classifier selection

scheme prior to classifier combination. We also propose to use the class separation

statistic [82] as the feature effectiveness criterion. This statistic, CS, measures how

well the two classes (imposter and genuine, in our case) are separated with respect

to the feature vector, Xd, in a d-dimensional space, Rd.

CS(Xd) =

∫
Rd

|p(Xd|w0) − p(Xd|w1)|dx, (6.1)

where p(Xd|w0) and p(Xd|w1) are the estimated distributions for the w0 (imposter)

and w1 (genuine) classes, respectively. Note that 0 ≤ CS ≤ 2.

We will use the class separation statistic to obtain the best subset of matchers

using an exhaustive search of all possible 2N − 1 matcher subsets.

6.3.2 Non-parametric density estimation

Once we have selected the classifier subset containing d (d ≤ N , N = 4 in our case)

classifiers, we develop our combination strategy. We do not make any assumptions

about the form of the distributions for the two classes and use non-parametric methods

to estimate the two (imposter and genuine) distributions. We will later show that

this method is superior to a parametric approach which assumes a specific form of

the density.

The Parzen window density estimate of a d-dimensional density function based
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on n i.i.d. observations (training samples) and a Gaussian kernel is given by [145]:

P (X) =
1

nhd

n∑
j=1

{
1

(2π)
d
2 |Σ| 12

exp

[
− 1

2h2
(X − Xj)

tΣ−1(X − Xj)

]}
, (6.2)

where h is the window width. The covariance matrix, Σ, of the kernel is estimated

from the n training samples and h ∝ n
−1
d . The value of h is usually determined

empirically. A large value of h means a large degree of smoothing and a small value

of h means a small degree of smoothing of the estimated density. A rule of thumb

states that for a small (large) number of training samples (n), window width should

be large (small). Further, for a fixed n, the window width should be large (small) for

large (small) number of features (d). When a large number of training samples are

available, the density estimated using Parzen window approach is very close to the

true density.

6.3.3 Decision Strategy

Bayes decision rule [145] is “optimal” for given prior probabilities and the class con-

ditional densities. Bayes decision rule minimizes the total classification error (FAR

+ FRR) , that is, no other decision rule can yield a lower total error than the Bayes

decision rule. However, in a fingerprint verification system, usually there is a con-

straint on the FAR dictated by the application of the verification system. In the

case when the FAR is required to be below a prespecified value, the Neyman-Pearson

decision rule is preferred which minimizes the FRR for a given FAR. The fingerprint

verification is formulated as a hypothesis testing problem and the likelihood ratio
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L = P (Xd|w0)/P (Xd|w1) is used to construct the decision rule in our two-class prob-

lem: Decide D0 (person is an imposter) for low values of L; decide D1 (person is

genuine) for high values of L. If L is small, the input is more likely to come from

class w1; the likelihood ratio test rejects the null hypothesis for small values of L. The

Neyman-Pearson lemma states that this test is optimal, that is, among all the tests

with a given significance level, α (FAR), the likelihood ratio test has the maximum

power (1-FRR). For a specified α, λ is the smallest constant such that P{L ≤ λ} ≤ α.

The type II error (β) is given by P{L > λ}. If we choose λ = 1, the Neyman-Pearson

decision rule is equivalent to the Bayes decision rule under a 0 − 1 loss function and

equal priors. Since the designers of the verification system do not know in advance

the particular application that the system will be used for, it is a common practice

to report the performance of the system for a range of different FARs. We plot ROC

curves using several different FARs and their corresponding FRR values obtained for

a range of thresholds (values of λ).

6.4 Matching Algorithms

We have used four different fingerprint matching algorithms which can be broadly

classified into two categories: (i) minutiae-based, and (ii) filter-based. The three

minutiae-based and one filter-based algorithms are summarized in this section.
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6.4.1 Hough Transform Based Matching (Algorithm Hough)

The fingerprint matching problem can be regarded as template matching [131]: given

two sets of minutia features, compute their matching score. The two main steps of the

algorithm are: (i) Compute the transformation parameters δx, δy, θ, and s between the

two images, where δx and δy are translations along x- and y- directions, respectively,

θ is the rotation angle, and s is the scaling factor; (ii) Align two sets of minutia points

with the estimated parameters and count the matched pairs within a bounding box;

(iii) Repeat the previous two steps for the range of allowed transformations. The

transformation that results in the highest matching score is believed to be the correct

one. The final matching score is scaled between 0 and 99. Details of the algorithm

can be found in [131].

6.4.2 String Distance Based Matching (Algorithm String)

Each set of extracted minutia features is first converted into polar coordinates with

respect to an anchor point. The two-dimensional (2D) minutia features are, therefore,

reduced to a one-dimensional (1D) string by concatenating points in an increasing

order of radial angle in polar coordinates. The string matching algorithm is applied

to compute the edit distance between the two strings. The edit distance can be easily

normalized and converted into a matching score. This algorithm [11] can be summa-

rized as follows: (i) Rotation and translation are estimated by matching ridge segment

(represented as planar curve) associated with each minutia in the input image with

the ridge segment associated with each minutia in the template image. The rotation
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and translation parameters that result in the maximum number of matched minutiae

pairs within a bounding box was used to define the estimated transformation and

the corresponding minutiae are labeled as anchor minutiae, A1 and A2, respectively.

(ii) Convert each set of minutia into a 1D string using polar coordinates anchored

at A1 and A2, respectively; (iii) Compute the edit distance between the two 1D

strings. The matched minutiae pairs are retrieved based on the minimal edit distance

between the two strings; (iv) Output the normalized matching score (in the range of

0-99) which is the ratio of the number of matched-pairs and the number of minutiae

points.

6.4.3 2D Dynamic Programming Based Matching (Algo-

rithm Dynamic)

This matching algorithm is a generalization of the above mentioned string-based algo-

rithm. The transformation of a 2D pattern into a 1D pattern usually results in a loss

of information. Chen and Jain [152] have shown that fingerprint matching using 2D

dynamic time warping can be done as efficiently as 1D string editing while avoiding

the above mentioned problems with algorithm String. The 2D dynamic time warp-

ing algorithm can be characterized by the following steps: (i) Estimate the rotation

between the two sets of minutia features as in Step 1 of algorithm String; (ii) Align

the two minutia sets using the estimated parameters from Step 1; (iv) Compute the

maximal matched minutia pairs of the two minutia sets using 2D dynamic program-

ming technique. The intuitive interpretation of this step is to warp one set of minutia
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to align with the other so that the number of matched minutiae is maximized; (iv)

Output the normalized matching score (in the range of 0-99) which is based on only

those minutiae that lie within the overlapping region. A penalty term is added to

deal with unmatched minutia features.

6.4.4 Filterbank Based Matching (Algorithm Filter)

Chapter 5 describes our filterbank-based fingerprint verification algorithm. The dis-

tance score was inverted and normalized to a matching score between 0 and 99.

6.5 Experimental Results

One hundred images (about 4% of the database) were removed from the total of

2, 672 images in the MSU DBI database because the filter-based fingerprint matching

algorithm rejected these images due to failure in locating the center or due to a poor

quality of the images. We matched all the remaining 2, 572 fingerprint images with

each other to obtain 3, 306, 306 (2572 × 2571/2) matchings and called a matching

genuine only if the pair contains different impressions of the same finger. Thus, we

have a total of 3, 298, 834 (3, 306, 306−7, 472) imposter and 7, 472 genuine matchings

per matcher from this database. For the multiple matcher combination, we randomly

selected half the imposter matching scores and half the genuine matching scores for

training (the Neyman-Pearson decision rule) and the remaining samples for test.

This process was repeated ten times to obtain ten different training sets and ten

corresponding independent test sets. All performances will be reported in terms of
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ROC curves computed as an average of the ten ROC curves corresponding to the

ten different training and test sets. For the multiple impression and multiple finger

combinations, the same database of 3, 298, 834 imposter and 7, 472 genuine matchings

computed using the Dynamic matcher was used because it is the best individual

matcher at low FARs.
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Figure 6.2: Performance of individual fingerprint matchers. The ROC curves have
been averaged over ten runs.

The ROC curves computed from the test data for the four individual fingerprint

matchers used in this study are shown in Figure 6.2. The class separation statistic

computed from the training data was 1.88, 1.87, 1.85 and 1.76 for the algorithms

Dynamic, String, Filter, and Hough, respectively, and is found to be highly cor-

related to the matching performance on the independent test set. Figure 6.2 shows

that matcher Filter is better than the other three matchers at high FARs while it

has the worst performance at very low FARs. Matcher Hough is the worst at most
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Figure 6.3: Normal approximation to the imposter distribution for the matcher
Filter. (a) Imposter and genuine distributions, (b) ROC curves. Visually, the Normal
approximation seems to be good, but causes significant decrease in the performance
compared to the nonparametric estimate of the imposter distribution at low FARs.
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operating points except at very low FARs. At an equal error rate of about 3.5%, the

matchers Dynamic, String, and Filter perform at the same level while the matcher

Hough has an equal error rate of about 6.4%.

In general, biometrics applications demand very low error rates (e.g., FAR=0.01%

and FRR=1.0%). Small errors in estimation of the imposter and genuine distribu-

tions can significantly effect the performance of a system. We will demonstrate this

by approximating the imposter density with a normal density and using the empirical

genuine density. This is because, visually, the imposter density looks like a normal

density while the genuine density does not resemble a normal density. Consider the

empirical genuine density and a normal approximation to the imposter density for

the algorithm Filter shown in Figure 6.3(a). One would expect to get very accurate

estimates of the parameters of a one-dimensional density from over 1.6 million data

points. In fact, visually the normal approximation to the imposter density seems to

fit the empirical density very well (see Figure 6.3(a)). As far as the equal error rate

is concerned, using either the normal approximation or the nonparametric approxi-

mation of the imposter density give similar results. However, a significant decrease in

performance is observed at low FARs when a normal approximation to the density is

used in place of the nonparametric estimate (see Figure 6.3(b)). This is because the

normal approximation to the imposter density has a heavier tail than the empirical

density. To achieve the same low value of FAR, the system will operate at a higher

threshold when the normal approximation to the density is used compared to when

the nonparametric estimate of the density is used. The FRR, which is the area under

the genuine density curve below the threshold, increases significantly. So, we would
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like to stress that a parameterization of the density should be done with care.
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Figure 6.4: Plot of joint scores from matchers String and Filter. The solid lines
denote the three sum rule decision boundaries corresponding to three different thresh-
olds. The dotted lines denote the three product rule decision boundaries correspond-
ing to three different thresholds.

Next, we combine the four available fingerprint matchers in pairs of two. It is

well known in classifier combination studies that the independence of classifiers plays

an important role in performance improvement [15]. A plot of the scores in a two-

dimensional space from the training data for the String + Filter combination is

shown in Figure 6.4. The correlation coefficient, ρ, between the matching scores can

be used as a measure of diversity between a pair of matchers [110]. A positive value
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Table 6.2: Combining two fingerprint matchers. CS is the class separation statistic.
CS and ρ are computed from the training data. Ranks by EER (Equal Error Rate)
are computed from the independent test data.

Combination CS (rank) rank by EER ρ
String + Filter 1.95 (1) 1 0.52
Dynamic + Filter 1.95 (1) 2 0.56
String + Dynamic 1.94 (3) 4 0.82
Hough + Dynamic 1.93 (4) 3 0.80
Hough + Filter 1.91 (5) 6 0.53
Hough + String 1.90 (6) 5 0.83

of ρ is directly proportional to the measure of “dependence” between the scores from

the two matchers. Table 6.2 lists the correlation coefficients for all possible pairings

of the four available fingerprint matchers. It can be observed from this table that

the minutiae-based fingerprint matchers have more dependence among themselves

than with the filter-based fingerprint matcher. This is because the minutiae-based

matchers are using the same features (minutiae set) and differ only in the matching

algorithm.

To combine two fingerprint matchers, we first estimate the two-dimensional gen-

uine and imposter densities from the training data. The two-dimensional genuine

density was computed using the Parzen density estimation method. The value of

window width (h) was empirically determined to obtain a smooth density estimate

and was set at 0.01. We used the same value of h for all the two-matcher combina-

tions. As a comparison, the genuine density estimates obtained from the normalized

histograms were extremely peaky due to unavailability of sufficient data (only about

3, 780 genuine matching scores were available in the training set to estimate a two-

dimensional distribution in 10, 000 (100 × 100) bins). However, for estimation of the
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Figure 6.5: Two-dimensional density estimates for the genuine and imposter classes
for String + Filter combination. Genuine density was estimated using Parzen win-
dow (h = 0.01) estimator and the imposter density was estimated using normalized
histograms.

two-dimensional imposter distribution, over 1.6 million matching scores were avail-

able. Hence, we estimated the two-dimensional imposter distribution by computing

a normalized histogram using the following formula:

p(Xd|w0) =
1

n

n∑
j=1

δ(X, Xj), (6.3)

where δ is the delta function that equals 1 if the raw matching score vectors X and

Xj are equal, 0 otherwise. Here n is the number of imposter matchings from the

training data. The computation time for Parzen window density estimate depends

on n and so, it is considerably larger than the normalized histogram method for large

n. The smooth estimates of the two-dimensional genuine and imposter densities for
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Figure 6.6: ROC curves for all possible two-matchers combinations.

String + Filter combination are shown in Figure 6.5. The class separation statistic

for all pairs of matcher combination is shown in the second column of Table 6.2; the

number in parenthesis is the predicted ranking of the combination performance based

on CS. The actual ranking of performance obtained from the independent test set is

listed in the third column marked ROC (see Figure 6.6 for ROC curves). As can be

seen, the predicted ranking is very close to the actual rankings on independent test

data.

The following observations can be made from the two-matcher combinations:

• Classifier combination improvement is directly related to the “independence”

(lower values of ρ) of the classifiers.

• Combining two weak classifiers results in a large performance improvement.
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Figure 6.7: Comparison of the proposed combination scheme with the sum and the
product rules for the String + Filter combination.

• Combining two strong classifiers results in a small performance improvement.

• The two individually best classifiers do not form the best pair.

The proposed combination scheme either outperforms or maintains the perfor-

mance of the sum rule and outperforms the product rule in all the two-, three-, and

four-matcher combinations. However, we provide illustrations of the comparison in

two-matcher combinations as it is easier to visualize the decision boundaries in two

dimensions. We choose the String + Filter combination which involves a strong and

a weak classifier. The results of this combination and a comparison with the sum and

the product rules is shown in Figure 6.7. By assuming that the errors in estimation
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Figure 6.8: The performance of the best individual matcher Dynamic is compared
with various combinations. The String+Filter is the best two-matcher combination
and String + Dynamic + Filter is the best overall combination. Note that addition
of the matcher Hough to the combination String + Filter results in a degradation
of the performance.

of aposteriori probabilities (matching scores) are very small, Kittler et al. [90] math-

ematically showed that the sum rule is less sensitive to these errors than the product

rule. In our case, instead of considering the scores from two classifiers as estimates

of aposteriori probability, we consider them as features in a separate classification

problem. In such a case, the decision boundaries corresponding to the sum and the

product rules can be drawn and visualized. In Figure 6.4 the decision boundaries cor-

responding to three different thresholds are shown for the sum and the product rules

by solid and dotted lines, respectively. The product rule has a strong bias for low

values of the two component classifier outputs. This is undesirable in most practical

situations and the product rule is not expected to perform well in most cases. The
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Figure 6.9: Matching scores for the best combination involving String, Dynamic, and
Filter matchers. Visually, one can see a small overlap between the genuine (◦) and the
imposter (∗) classes. The class separation statistic is 1.97 for the three-dimensional
genuine and imposter densities estimated from these scores.

sum rule decision boundary is always a line with 135◦ slope and sum rule performs

well only when combining two classifiers of equal strength (two weak or two strong

classifiers). When a weak and a strong classifiers are combined, the decision boundary

bends towards the axis of the strong classifier. A weighted sum rule weights the de-

cisions from different classifiers differently for combination. Thus, the weighted sum

rule can adapt the slope of its decision boundary but the decision boundary is still

linear. The proposed technique can produce a decision boundary that is non-linear

and is expected to perform better than the sum and the product rules. However, the

disadvantage of the proposed technique is that it requires sufficient training data to

obtain reasonable estimates of the densities while the sum rule is a fixed rule and does

not require any training. The weighted sum rule can perform better than the sum
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Table 6.3: Comparison of the performance of the best matcher combination with the
best individual matcher. GAR refers to the genuine acceptance rate that is plotted on
the ordinate of the ROC curves. We performed ten runs of the combination scheme
with ten different splits of the database into training and test sets. The mean (Mean)
and variance (Var) of the GAR values for three fixed values of FAR are reported.

FAR GAR GAR GAR
Dynamic String + Dynamic + Filter Improvement

(%) Mean (%) (Var (%)) Mean (%) (Var (%)) (%)

1.00 95.53 (0.08) 98.23 (0.02) 2.70
0.10 92.96 (0.05) 96.16 (0.04) 3.20
0.01 90.25 (0.04) 93.72 (0.05) 3.47

rule but it is difficult to determine the weights. In summary, the proposed matcher

combination scheme outperforms the commonly used sum rule and the product rule

(Figure 6.7).

Finally, we combine the matchers in groups of three and then combine all the four

matchers together. From the tests conducted on the independent data set, we make

the following observations (see Figure 6.8).

• Adding a matcher may actually degrade the performance of classifier combina-

tion. This degradation in performance is a consequence of lack of independent

information provided by the classifier being added and finite size of the training

and test sets.

• Matcher selection based on a “goodness” statistic is a promising approach.

• Performance of combination of matchers is significantly better than the best

individual matcher.

Among all the possible subsets of the four fingerprint matchers, the class separa-
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Figure 6.10: Proposed architecture of multi-modal biometrics system based on several
fingerprint matchers.

tion statistic is the maximum for String + Dynamic + Filter combination. Hence,

our feature selection scheme selects this subset for the final combination and rejects

the matcher Hough. This is consistent with the nature of the Hough algorithm,

which is basically the linear pairing step in algorithms String and Dynamic, without

the capability of dealing with elastic distortions. Therefore, Hough does not provide

“independent” information with respect to String and Dynamic matchers. Figure

6.9 shows the small overlap in the scores from the genuine and the imposter classes for

the best combination involving fingerprint matchers String, Dynamic, and Filter.
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(a) Finger 1, Impression 1 (b) Finger 1, Impression 2

(c) Finger 2, Impression 1 (d) Finger 2, Impression 2

Figure 6.11: Performance of matcher combination. (a) & (b) and (c) & (d) were mis-
classified by the three individual matchers String, Dynamic, and Filter as impostors,
but correctly classified as genuine by the combination. Both the minutiae-based and
filterbank-based matchers can not deal with large nonlinear deformations, however,
a combination of matchers can overcome this.
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The performance of the various matcher combinations on an independent test set

supports our claim that String + Dynamic + Filter is the best combination. Figure

6.11 shows two pairs of images which were misclassified as impostors by all the three

individual algorithms but correctly classified by the combined system.

Table 6.4: Equal error rate improvement due to combination of matchers.

String Dynamic Filter Combination
Equal Error Rate (%) 3.9 3.5 3.5 1.4

The performance of the combined system is more than 3% better than the best

individual matcher at low FARs (see Table 6.3). The equal error rate is more than 2%

better than the best individual matcher (see Table 6.4). The matcher combination

takes about 0.02 seconds on an Sun Ultra 10 in the test phase. This additional

computational burden will have almost no effect on the overall matching time which

will still be bounded by the slowest individual matcher (Filter) which takes about

3 seconds. Based on the experimental results presented above, we propose a multi-

matcher biometric system design in Figure 6.10.

The performance improvement due to combination of two impressions of the same

finger and the combination of two different fingers of the same person using the pro-

posed strategy is shown in Figures 6.12(a) and (b), respectively. The best individual

matcher Dynamic was used in these experiments. The correlation coefficient be-

tween the two scores from two different impressions of the same finger is 0.42 and

between two different fingers of the same person is 0.68 and is directly related to the

improvement in the performance of combination. The CS for individual impressions
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Figure 6.12: Performance improvement by using multiple impressions and multiple
fingers. (a) Combining two impressions of the same finger, and (b) combining two
fingers of the same person.
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is 1.84 and 1.87, respectively, and for the combination CS value is 1.95. The CS

for individual fingers is 1.87 and 1.86, respectively, and for the combination the CS

value is 1.98. Combination of two impressions of the same finger or two fingers of the

same person using the proposed combination strategy is extremely fast. Therefore,

the overall verification time is the same as the time taken by the matcher Dynamic.

6.6 Summary

We have presented a scheme for combining multiple matchers at decision-level in

an optimal fashion. Our design emphasis is on matcher selection before arriving

at the final combination. It was shown that one of the fingerprint matchers in the

given pool of matchers is redundant and no performance improvement is achieved by

utilizing this matcher in the combination. This matcher was identified and rejected by

the matcher selection scheme. In case of a larger number of matchers and relatively

small training data, a matcher may actually degrade the performance when combined

with other matchers, and hence matcher selection is essential. We demonstrate that

our combination scheme improves the false reject of a fingerprint verification system

by more than 3% with no significant computational overhead. We also show that

combining multiple impressions instances of a finger or multiple fingers is a viable

way to improve the verification system performance. We observe that independence

among various matchers is directly related to the improvement in performance of the

combination.
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Chapter 7

Fingerprint Feature Detection and

Verification

Raw image data offer rich source of information for feature extraction and matching.

For simplicity of pattern recognition system design, a sequential approach consisting

of sensing, feature extraction and matching is conventionally adopted where each

stage transforms a particular component of information relatively independently. The

interaction between these modules is limited to one-way flow of control. Some of

the errors in the end-to-end sequential processing can be easily eliminated especially

for the feature extraction stage by revisiting the original image data. We propose

a feedback path for the feature extraction stage, followed by a feature refinement

stage for improving the matching performance. This performance improvement is

illustrated in the context of a minutiae-based fingerprint verification system. We

show that a minutia verification stage based on reexamining the gray-scale profile

in a detected minutia’s spatial neighborhood in the sensed image can improve the
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matching performance by ∼ 2.2% equal error rate (point on the ROC where FAR

is equal to FRR) on the GT database. Further, we show that a feature refinement

stage which assigns a class label to each detected minutia (ridge ending and ridge

bifurcation) before matching can also improve the matching performance by ∼ 1%

equal error rate. A combination of feedback (minutia verification) in the feature

extraction phase and feature refinement (minutia classification) improves the overall

performance of the fingerprint verification system by ∼ 3%.

7.1 Introduction

(a) QI = 0.96 (b) QI = 0.53 (c) QI = 0.04

Figure 7.1: Sample images from the GT database with varying quality index (QI). 0
false minutiae were detected in (a), 7 in (b), and 27 in (c) by the automatic minutiae
detection algorithm [11].

Most of the existing automatic fingerprint verification systems first detect the

minutiae in a fingerprint image and then match the input minutiae set with the stored

template [11, 56]. A typical algorithm described in [11] uses a sequential approach to
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feature extraction. The feature extraction first binarizes the ridges in a fingerprint

image using masks that are capable of adaptively accentuating the local maximum

gray-level values along a direction normal to the local ridge direction. Minutiae are

determined as points that have either one neighbor (ridge ending) or more than two

neighbors (ridge bifurcation) in the skeletonized image (see Figure 1.2). However,

the orientation estimation in a poor quality image is extremely unreliable, resulting

in the detection of many false minutiae (see Figure 7.1). Several researchers have

proposed minutia-pruning in the post-processing stage to delete spurious minutiae

[11, 52, 136] but the pruning is based on rather ad-hoc techniques. In this chapter,

we propose a feedback system for minutiae extraction which is based on an analysis

of the gray scale profile in the neighborhood of potential minutiae. We also propose

a feature refinement stage where the minutiae are classified into two major classes:

ridge bifurcation and ending. The goal of the proposed feedback system (which we

call minutia verification) is to learn the characteristics of minutiae in gray level images

which can then be used to verify each detected minutia. This step can be used to

replace the rather ad-hoc minutia-pruning stage used in [11]. Each detected minutia

is filtered through this verification stage and is either accepted or rejected based on

the learnt gray level characteristics in the neighborhood of a minutia. The minutia

classifier is based on supervised Learning Vector Quantization (LVQ) [165]. We chose

to use LVQ for our classification problem due to its fast learning speed and good

performance. Also, public domain LVQ software can be downloaded from the web.

We show that the feature refinement (minutia classification into bifurcation and

ending) can further improve the matching performance. We use a rule-based classifier
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to classify a minutia into the two categories. The matching algorithm proposed in

[11] is modified to match minutiae of the same type in the sensed image and the

template. The modification of minutia matching algorithm used in [11] with minutia

verification and minutia classification significantly improves the matching accuracy.

7.2 Minutia Verification

Our minutia verification algorithm can be divided into three stages; (i) feature ex-

traction, (ii) training (learning the minutiae characteristics), and (iii) verification.

7.2.1 Feature Extraction

We use the minutiae detection algorithm developed by Jain et al. [11] for our study.

Each detected minutia has the following three attributes: the x and y position and

the direction of the ridge on which the minutia resides. We extract a 64 × 64 region

centered at the x and y position of the minutia and oriented in the direction of the

minutia. A minutia is captured in a 32 × 32 block in fingerprint images scanned

at 500 dpi. A larger region of 64 × 64 was chosen to avoid the boundary problems

in filtering. The extracted region is normalized to a constant mean and variance to

remove the effects of sensor noise and gray-scale deformation because of finger pressure

variations. In our experiments, we set the values of both the mean and variance to

100. We enhance the contrast of the ridges by filtering each 64 × 64 window with an

appropriately tuned Gabor filter [19]. We set the frequency, f , of the Gabor filter to

the average ridge frequency (1/K), where K is the average inter-ridge distance. The

207



average inter-ridge distance is approximately 10 pixels in a 500 dpi fingerprint image.

The values of parameters δx and δy for Gabor filters were empirically determined and

each is set to 4.0 (about half the average inter-ridge distance). Since the extracted

region is in the direction of the minutia, the filter is tuned to 0◦ direction. We perform

the filtering in the spatial domain with a mask size of 33 × 33. The Gabor response

for each pixel in the region is scaled to eight gray levels. We extract a 32× 32 region

(see Figure 7.3) from the center of the 64 × 64 region to avoid boundary problems

in normalization and filtering and concatenate the rows of the window to form a

1, 024-dimensional feature vector.

7.2.2 Training

In the training phase, minutiae and non-minutiae feature vectors are fed to a Learning

Vector Quantizer to learn the characteristics of minutiae and non-minutiae regions.

For the training phase, we need ground truth for the minutiae and non-minutiae

points in a large number of fingerprints. So, we use the GT database that contains

900 fingerprint images from 269 different fingers and have the ground truth minu-

tiae information provided by a fingerprint expert (see Figure 7.2). Other fingerprint

databases that we have access to do not have the associated minutiae ground truth

marked in them. The multiple impressions for each finger in the GT database were

taken at different times. The images are of different sizes but all the images have

been scanned at 500 dpi resolution with 256 gray levels. We use the first 450 images

for training and the remaining 450 images from different fingers for testing.

208



(a) (b)

Figure 7.2: Examples of images in the GT database. The ground truth minutiae
provided by an expert are marked on the image.

We extract approximately 15, 000 feature vectors (each feature vector has 1, 024

components) corresponding to all the true minutiae from the 450 images in the train-

ing database. We also extracted an equal number of negative samples (non-minutiae)

by randomly sampling the images in the training set and making sure that there is

no minutia in its immediate 32 × 32 neighborhood. For the true minutia, we use

the direction of the minutia provided by the expert. For the negative examples, we

compute the direction of the 32 × 32 block using the hierarchical orientation-field

algorithm [11]. See Figure 7.3 for examples of minutiae and non-minutiae gray level

profiles.
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7.2.3 Testing

We use two methods to test the LVQ-based minutiae vs. non-minutiae classifier. In

the first method, we evaluate the classifier using the ground truth minutia information

in the test database. In the second method, we extract the minutiae from the test

database using the minutiae extraction algorithm described in [11]. An automatically

detected minutia may be slightly perturbed from its original location because of the

noise introduced during the binarizing and thinning processes. So, we extract twenty

five 32 × 32 windows in the neighborhood of each detected minutia and verify the

presence of minutiae in each window. The decisions from the verification of these 25

windows are combined in a simple manner. If the classifier yields a positive verification

for any of the 25 windows, the minutia is accepted. Figures 7.4 (a)-(c) compare the

minutiae detection without pruning, with pruning, and with pruning replaced with

minutia verification for a good quality fingerprint.

7.3 Minutia Classification

The American National Standards Institute proposes four classes of minutia: ending,

bifurcation, trifurcation, and undetermined [23]. The most discriminable categories

are ridge ending and bifurcation. A number of fingerprint matching algorithms do

not even use minutia type information because of the difficultly in designing a robust

classifier to identify minutiae type. However, we show that a consistent classification

of minutia can indeed improve the overall matching performance. We use a rule-based

minutiae classification scheme. In minutiae extraction algorithm, if a pixel in the
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(a) (b)

Figure 7.3: Examples of gray level profiles in the neighborhood of (a) minutiae and
(b) non-minutiae. These 32 × 32 subimages, scaled to 8 gray levels, are used for
training an LVQ.

thinned image has only one neighbor then the minutia is classified as an ending, and

if a pixel has more than 2 neighbors, then the minutia is classified as a bifurcation.

The matching algorithm in [11] is modified to match minutiae endings only with

minutiae endings and minutiae bifurcations only with minutiae bifurcations. In our

experience, there are significantly more endings present in a typical fingerprint than

bifurcations (according to a study conducted by Osterburg [94], the probability of

occurrence of ridge endings is more than twice the probability of occurrence of ridge

bifurcations). See Figure 7.4 (d) for minutia classification results.
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(a) (b)

(c) (d)

Figure 7.4: Minutiae detection and classification; (a) Minutiae detection using the
algorithm in [11] without pruning, (b) results of minutia-pruning; minutiae marked
in white were pruned, (c) result of minutia verification instead of pruning; minutiae
marked in white were rejected, (d) result of classifying minutiae shown in (b); minutia
bifurcations are marked in black and endings are marked in white.
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Figure 7.5: ROC for fingerprint matching when minutia verification is used.

7.4 Experimental Results

We first evaluated the performance of a minutiae-based fingerprint verification sys-

tem [11] which incorporates the minutiae vs. non-minutiae classifier. Approximately

15, 000 1, 024-dimensional feature vectors each for minutiae and non-minutiae were

extracted from the the training database to design the LVQ classifier. The classifier

was tested on an independent test set containing 450 images. The best performance

of ∼ 95% on the training data and ∼ 87% on the test data was achieved with one

hundred code book vectors per class. A real test for the utility of the minutiae verifi-

cation module is the gain in matching accuracy when this module is incorporated in

the matcher. So, we replaced the minutia-pruning stage in the algorithm in [11] with

the proposed minutia verification stage. In the ROC curves shown in Figure 7.5, the

dotted line represents the matching accuracy on the test set and the solid line repre-

sents the performance when the pruning stage in [11] is replaced with the proposed
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Figure 7.6: ROC for fingerprint matching when minutia classification is used.

minutia verification scheme. These ROC curves show that the overall performance of

the fingerprint verification system increases by ∼ 3% equal error rate.

The benefits of using minutia type information is illustrated in Figure 7.6. The

solid line in the figure represents the performance when the minutia type information

is used. Figure 7.7 shows the performance improvement when both minutia verifica-

tion and minutiae classification are incorporated in the matcher. The classification is

done before the verification but the classification information is not used during the

verification. The performance of the fingerprint verification system in [11] is signifi-

cantly improved by using the proposed minutia classification and minutiae verification

modules.
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Figure 7.7: ROC for fingerprint verification when both minutia classification and
verification are used.

7.5 Summary

We have shown that the performance of a minutiae-based fingerprint verification sys-

tem can be improved by providing feedback in feature extraction (verification of each

detected minutia by an analysis of grey-level profile in its spatial neighborhood in

the original image). Performance can also be improved if the features are refined

and more discriminable attributes (minutia type information) can be extracted and

utilized in matching. The minutiae verification approach suffers from the problem of

missed minutiae, i.e., the true minutiae in the fingerprint image that are missed by the

feature extraction algorithm can not be recovered by the minutiae verification algo-

rithm. Minutiae verification algorithm can only reject the falsely detected minutiae.

Therefore, the minutiae detection algorithm should be operated at a very low false

reject rate. We have accomplished this by removing the post-processing stage from
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the feature extraction algorithm. However, there are still many missed minutiae in

the fingerprint images that can not be recovered. The minutiae verification algorithm

can also be applied on the whole or a subset of the image for minutiae detection.

The minutiae detection algorithm will essentially need to examine a large number

of candidates in the fingerprint image. With the current accuracy of the minutiae

verification algorithm of ∼ 85%, a large number of errors will be made in the minutiae

detection task. As a result, techniques to improve the current minutiae verification

task should be explored further. In our training of the minutiae verification algo-

rithm, the minutiae examples are representative of the total pattern variation in the

minutiae types. However, the non-minutiae examples selected from random locations

in the fingerprint images may not be representative of all the non-minutiae patterns.

A more representative non-minutiae training set or a more clever method of using

the training patterns for a more effective training should be explored to improve the

performance of the minutiae verification algorithm.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions and Research Contributions

This thesis has concentrated on fingerprint-based biometric identification systems.

Further, we have focused only on the core technology of fingerprint feature extrac-

tion, classification, and matching. There are a number of other very important issues

in a fingerprint-based identification system including encryption, security of the fin-

gerprint template, detection of fake fingers, and privacy concerns. These issues need

to be addressed in a systematic way in developing a foolproof fingerprint-based iden-

tification system for a wide-scale deployment but are out of the scope of this thesis.

The core fingerprint identification technology, i.e., fingerprint feature extraction, clas-

sification, and matching, are extremely important but challenging problems and even

though several commercial systems exist for fingerprint verification, the performance

(verification accuracy and time) needs to be improved for a wide adoption in authen-

tication applications. One of the most fundamental questions one would like to ask
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Figure 8.1: The best performance achieved on the MSU DBI database. The minutiae
extraction algorithm of Jain et al. [11] was modified by replacing its post process-
ing stage with minutiae verification stage as described in Chapter 7. Three different
matchers, namely, String, Dynamic, and Filter, two different fingers, and three
different impressions for each finger of a person were combined. The genuine dis-
tribution was estimated using 2, 640 matchings and the imposter distribution was
estimated using 95, 920 matchings. Note that the improvement in performance by
combining multiple fingers is higher than combining multiple matchers or multiple
templates (impressions). This is because different fingers provide the most “indepen-
dent” information. A simple “sum rule” was used for the combination.
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about a fingerprint authentication system is: what is the inherent discriminable infor-

mation available in the fingerprints? Unfortunately, this question, if at all, has been

answered in a very limited setting. In this thesis, we have quantitatively analyzed ge-

netic and environmental factors influencing the information content in minutiae-based

representation of fingerprints. This analysis established a performance limitation on

automatic minutiae-based fingerprint identification due to the limited amount of in-

formation present in minutiae representation. Automatic fingerprint identification

system designers, should therefore, explore non-minutiae-based fingerprint represen-

tations.

We have developed a novel filterbank-based representation for fingerprints. This

representation is compact and has good discriminatory power. We have used this rep-

resentation to achieve fingerprint classification and matching accuracies in line with

the best accuracies reported in the literature. The primary advantage of our approach

is its computationally attractive matching/indexing capability. For instance, if the

translation and orientation normalized FingerCodes of all the enrolled fingerprints

are stored as templates, the identification effectively involves a “bit” comparison.

As a result, the identification time would be relatively insensitive to the database

size. Further, our approach for feature extraction and matching is more amenable

to hardware implementation than, say, a string-based minutiae matcher. We have

proposed a general system design for decision-level matcher fusion that uses the opti-

mal Neyman-Pearson decision rule and outperforms the combination strategies based

on the assumption of independence among the matchers. We have proposed a multi-

modal biometric system design based on multiple fingerprint matchers. The use of the
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proposed combination strategy in combining multiple matchers significantly improves

the overall accuracy of the fingerprint-based verification system. The effectiveness of

the proposed integration strategy is further demonstrated by building multi-modal

biometric systems that combine two different impressions of the same finger or finger-

prints of two different fingers. The proposed feature refinement and feedback stages in

a minutiae-based feature extraction algorithm has been shown to improve the verifi-

cation performance. The various techniques proposed in this thesis have significantly

improved the overall performance of the fingerprint verification system (see Figure

8.1) and have contributed significantly in improving the state-of-the-art in fingerprint

verification.

There are still a number of challenges in fingerprint verification. For example,

almost all current fingerprint capture devices can be spoofed by some kind of a fake

finger (e.g., tight fitting latex glove having an impression of somebody else’s finger-

print). Fingerprint liveness detection is a difficult problem because the vital signs or

liveliness identifiers often turn out to be more behavioral characteristics and tend to

be volatile. However, the fingerprint capture devices and verification systems should

strive to make it increasingly difficult to fake a finger by incorporating anti-spoofing

measures into the hardware and software. The current combined (minutiae-based and

filterbank-based) verification system still cannot deal with very poor quality finger-

prints and large nonlinear distortion. An estimated 4% of the population including

old people, asian women, and manual workers do not have good quality fingerprints

and this poses a challenge to the matching system. Although, our fingerprint ver-

ification system has no difficulty in identifying children of any age, our tests were
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conducted over a short period of time (three months). Children’s fingers grow in size

with age and the ridge characteristics such as the inter-ridge distance changes. If a

child registers into the system today, the verification system will have difficulty in

identifying him/her in a few years with the same template. This problem can be

addressed by either a regular update of the child’s template in the database or by

incorporating the finger growth invariance into the matcher.

If we put all the advantages and disadvantages of fingerprint as a biometrics in

perspective, we believe that the core technology of fingerprint verification (one-to-one

matching) has achieved a performance (error rates and timing) that may be sufficient

for several civilian applications and in the near future we should see fingerprints beings

increasingly used in authentication systems as the cost of the fingerprint devices

reduces further. The fingerprint classification (indexing) and identification (one-to-

many matchings), on the other hand, have not reached sufficiently high accuracy for

a wide-scale deployment. If an identification system has N users in the database,

then N fingerprint matching are needed to be performed without any indexing. An

efficient indexing technique should be able to reduce the number of matchings to N ′

where N ′ ≤ N . However, the foundation of an identification system lies on the core

technology of fingerprint feature extraction and matching. Therefore, the feature

extraction and matching algorithms need to be further improved in order to be used

in identification systems. A number of future research directions to improve the

filterbank-based as well as minutiae-based systems are given in the following section.
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8.2 Future Directions

Our research can be expanded in the following areas:

• The registration in the FingerCode extraction is based on the detection of the

reference point. Even though our multi-resolution reference point location algo-

rithm is accurate and handles the poor quality fingerprint images gracefully, it

fails to detect the reference point in very low quality images leading to either a

rejection of the image or even worse, a false rejection in the verification system.

A more robust feature extraction algorithm should not rely on a single refer-

ence point alone. As a possible solution, multiple reference point candidates

can be located and representations corresponding all of these reference points

can be stored as multiple templates. At the time of verification, match the

input representation with each of the multiple representations and output the

maximum matching score. As another possible solution, an alignment can be

established using the minutiae features in a fingerprint. Such a system will not

reject any images due to the absence of the reference point and perform well for

the medium quality fingerprint images where the extracted minutiae can still be

used to achieve an alignment. However, the representation thus extracted will

not be translation and rotation invariant resulting in a longer matching time.

To deal with very poor quality fingerprint images where an alignment based

on the detected minutiae points can not be established, an alternate alignment

technique based on some other features of fingerprints such as the orientation

field should be explored.
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• The current implementation of the filterbank representation is not rotation in-

variant. The rotation is handled in the matching stage by rotating the Finger-

Code itself. However, due to quantization of the rotation space and generation

of multiple alignment hypothesis, the false accepts increase. This problem can

be addressed by estimating a frame of reference of the fingerprints. However, es-

timation of a frame of reference in the fingerprints is a difficult problem because

all fingerprints have circular ridges in the portion above the reference point.

• Due to skin elasticity, there is non-linear distortion in the fingerprint images

and even if the fingerprints are registered in location and orientation, all ridges

in all sectors may not align. This problem can be partially addressed by esti-

mating the local ridge frequency in each sector and normalizing each sector to a

constant ridge frequency. To further address the non-linear distortion problem,

the tessellation can be distorted in a non-linear way according to the fingerprint

distortion model proposed in [142].

• The FingerCode representation does not have any explicit procedure to han-

dle the noise in the fingerprint images due to the dryness/smudginess of the

finger. Although the sectors are normalized to a constant mean and variance

and then filtered using a bank of Gabor filters, large amount of noise changes

the gray-level image characteristics and causes problems in the quantification of

discriminatory information in sectors. The simple variance-based features pro-

posed in this thesis perform well, have good discriminatory power, and degrade

more gracefully than the minutiae-based features with noise in the fingerprint
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images. However, we believe that extraction of richer and more discriminatory

features from the sectors in the filtered images should be explored to improve

the matching performance.

• The current implementation of filterbank representation extraction takes longer

than a typical minutiae-extraction algorithm. The convolution operation can be

made significantly faster by dedicated DSP processors or performing the filtering

in the frequency domain. These implementation issues need to be addressed to

make the FingerCode matching system real-time.

• The current matching algorithm is very simple. An implementation of a smarter

matching algorithm should be able to improve the verification performance. For

example, the match resulting from each sector can be weighed differently based

on image quality and a quantitative measure of the nonlinear distortion in the

sector. The verification system should also benefit from a matcher that can

handle conflicting information in the fingerprints.

• The current minutiae verification algorithm is applied on the minutiae extracted

using the algorithm in [11] that detects the minutiae in the thinned binarized

fingerprint ridges. The minutiae patterns that are learnt during the training

can be used to detect the minutiae in the gray scale fingerprint image directly.

However, the current implementation of the minutiae verification algorithm can

not be used for the minutiae detection problem due to its poor accuracy. For

example, consider a 320 × 320 pixels fingerprint image scanned at 500 dpi res-

olution. Our minutiae verification algorithm samples a 32 × 32 region around
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each minutiae and cannot tolerate more than 8-pixel displacement in the minu-

tiae location. Therefore, at least 400 (4× 320×320
32×32

) candidate minutiae locations

in the fingerprint image will need to be sampled. With the current 87% accu-

racy of our minutiae verification algorithm, there will be 52 errors made by the

minutiae identification algorithm in the image. In a typical 320×320 fingerprint

image scanned at 500 dpi resolution containing 30− 40 minutiae on an average,

52 errors can result in missing all the correct minutiae on one extreme to a false

detection of 52 minutiae on the other extreme. Therefore, techniques to improve

the accuracy of the minutiae verification algorithm should be explored. At the

same time, an intelligent scheme to apply the minutiae verification algorithm

to only selected locations instead of the whole image should also be explored.

• The design of a core point learning and verification algorithm similar to the

minutiae learning and verification algorithm described in this thesis should be

explored to verify the detected reference point in the filterbank representation

extraction algorithm. The current limitation in developing such an algorithm

is the unavailability of large number of ground truth core examples.

• A number of people have speculated upon the nature of invariant information

in the fingerprints. In particular, different researchers have granted a varying

degree of latitude in the transformation invariance of the minutiae and based

their matching algorithms on this hypotheses. For instance, some assume mostly

rigid global transformation, others similarity transformation, while some others

non-linear local transformations. However, there is no study supporting the ba-

225



sis for these hypotheses on which the entire matcher design relies. A study and

quantization of minutiae transformation invariance information will be bene-

ficial for the minutiae-based algorithms. Also, an estimate of the minutiae

transformation invariance could also form a basis for the transformation invari-

ance information for the fingerprints themselves. This study could be conducted

using the GT database which has 900 fingerprint images that have the minutiae

location, orientation and correspondences between a pair of fingerprints marked

by an expert.
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