
MULTIPLE KERNEL AND MULTI -LABEL LEARNING FOR IMAGE
CATEGORIZATION

By

Serhat Selçuk Bucak

A D ISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2014

ABSTRACT

MULTIPLE KERNEL AND MULTI -LABEL LEARNING FOR IMAGE
CATEGORIZATION

By

Serhat Selçuk Bucak

One crucial step in recovering useful information from large image collections is image cat-

egorization. The goal of image categorization is to find the relevant labels for a given image

from a closed set of labels. Despite the huge interest and significant contributions by the research

community, there remains much room for improvement in the image categorization task. In this

dissertation, we develop efficient multiple kernel learning and multi-label learning algorithms with

high prediction performance for image categorization.

There are many image representation methods available in the literature. However, it is not

possible to pick one as the best method for image categorization, since different representations

work better in different scenarios. Multiple kernel learning (MKL), a natural extension of ker-

nel methods for information fusion, is often used by researchers to improve image representation

by integrating it to the learning step for selecting and combining different image features. MKL

is mostly considered as a binary classification tool, and it is difficult to scale up MKL when the

number of labels is large. We address this computational challenge by developing a stochastic ap-

proximation based framework for MKL that aims to learn a single kernel combination that benefits

all classes.

Another contribution of this dissertation is to develop efficient multi-label learning algorithms.

Multi-label learning is arguably the most suitable formulation for the image categorization task.

Many researchers have employed decomposition methods, particularly one-vs-all framework, with

SVM (support vector machines) as a base classifier for addressing the image categorization prob-

lem. However, the decomposition methods have several shortcomings, such as their inability to

exploit label correlations. Further, they suffer from imbalanced data distributions when the num-

ber of labels is large. Our contribution is to address multi-label learning via a ranking approach,

termed multi-label ranking. Given a test image, multi-label ranking algorithms aim to order all the

image classes such that the relevant classes are ranked higher than the irrelevant ones. The advan-

tage of the proposed multi-label ranking approach, termed MLR-L1 (multi-label ranking withL1

norm), over other multi-label learning methods is its computational efficiency and high prediction

performance.

Image categorization is a supervised learning task, thus requiring a large set of training images

annotated by humans. Unfortunately, labeling is an expensive process, and it is often the case that

the annotators provide a limited set of labels, meaning thatthey only give a small subset of relevant

tags for an image. One of the contributions of this dissertation is defining the problem of multi-label

learning with incomplete class assignments and presentinga robust multi-label ranking algorithm,

termed MLR-GL (multi-label ranking with group lasso norm), that addresses the challenge of

learning from incompletely labeled data.

Finally, we present a multiple kernel multi-label ranking algorithm to simultaneously address

two essential factors for improving the performance of image categorization: Heterogeneous infor-

mation fusion, and exploiting label correlations in multi-label data. We propose a multiple kernel

multi-label ranking method that learns a shared sparse kernel combination that benefits all image

classes. This way, we not only improve the training and prediction efficiency, but also improve the

accuracy, particularly for classes with a small number of samples, by enabling information shar-

ing between classes. We integrate the proposed MLR-L1 algorithm with an efficient semi-infinite

linear programming (SILP) based MKL solver and develop a computationally efficient wrapper

algorithm, termed MK-MLR (multiple kernel multi-label ranking).

To Dani

iv

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my thesisadvisor, Professor Anil K. Jain, for

his continuous support, generosity, patience, enthusiasm, and wisdom. Being his student and a part

of the PRIP Lab is something that will always make me feel proud and privileged. It has been a

great opportunity for me to work with such an intelligent, hard-working and renowned researcher

like Professor Jain, and I have tried to gain as much as possible from his immense knowledge of

pattern recognition and life.

I am thankful to Professor Rong Jin for working closely with me during my PhD. I was very

fortunate to work with a such a smart, disciplined, and knowledgeable researcher, and collaborating

with him taught me the importance of passion and hard work in research. I am grateful to have

Professor Selin Aviyente and Professor Pang-Ning Tan on my thesis committee. Their valuable

comments and suggestions helped me to improve my thesis. I would also like to thank Professor

Todd Fenton and Professor Roger Haut for supporting me in my last year of PhD under the National

Institute of Justice grant and giving me the opportunity to work with them in the pediatric fracture

printing project. I would also like to thank Professor George Stockman for the valuable advice he

gave to me throughout my PhD.

I thankfully acknowledge the funding sources that made my Ph.D. work possible. My research

was supported by grants from the Office of Naval Research, ONRN00014-09-1-0663. I was

funded by the National Institute of Justice grant, NIJ AwardNo. 2011-DN-BX-K540, in my last

year.

Professor Bilge Gunsel is a very important person for me. I started working with her in my

senior year and continued to study under her supervision formy MSc degree at Istanbul Technical

University. Her generosity, support, and passion for research helped me to have very rewarding

and pleasant time at ITU. Working with her was one of the main factors that encouraged me to

v

pursue a PhD.

I was fortunate to have great collaborations outside MSU. Itwas a very valuable learning

experience for me to work at IBM with Vikas Sindhwani and Jianying Hu. I also had a very fruitful

internship experience at Samsung working with Ankur Saxena, Abhishek Nagar, Felix Fernandes,

and Kong-Posh Bhat. I also had the pleasure of working on a research paper with Professor Akgul

from ITU.

I would like to thank the fellow PRIP students and friends: Soweon, Brendan, Pavan, Abhishek,

Radha, Jung-Eun, Kien, Alessandra, Tim, Sunpreet, Scott, Lacey, Charles, Unsang, and Mayur.

They made my life at MSU easier and more fun. I also consider myself fortunate and honored to

work on research papers with Pavan, Brendan, and Abhishek. Ali Mutlu, Mehrdad Mahdavi and

Jen Vollner are other fellow PhD students that I want to thank.

Sezai Turkes is another person I need to thank, not only for the school he created that provided

an excellent education and seven fun years for me, but also for his generosity and vision, which

were always a source of motivation.

Last but not least, I want to thank my families in US and in Turkey. My parents-in-law Shari

and Tom made my life in Michigan much easier with their kindness and generosity. I am grateful

to have three great siblings, Efkan, Serhan, and Tuba, who gave me support and encouragement

whenever I needed. My mother and father have been providing me a constant support with endless

patience during my long years of study, and it is not possibleto thank them enough. Finally, I

would like to thank my dear wife Danielle for making my life much more beautiful.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES .xiv

Chapter 1 Introduction . 1
1.1 Multiple Kernel Learning for Image Categorization 2
1.2 Multi-label Learning for Image Categorization 4
1.3 Challenges 5
1.3.1 Challenges in MKL for Image Categorization 6
1.3.2 Challenges in Multi-label Learning for Image Categorization 7
1.4 Contributions 8
1.5 Notation .. 15

Chapter 2 Multiple Kernel Learning for Image Categorizatio n: A Review 17
2.1 Introduction 17
2.2 Overview .. 19
2.2.1 Overview of Multiple Kernel Learning (MKL) 20
2.2.2 Relationship to the Other Approaches 21
2.3 Multiple Kernel Learning (MKL): Formulations 23
2.3.1 Multiple Kernel Learning and Group Lasso 24
2.3.2 Regularization in MKL 26
2.4 Multiple Kernel Learning: Optimization Techniques 28
2.4.1 Direct Approaches for MKL 29
2.4.1.1 A Sequential Minimum Optimization (SMO) based Approach for MKL 29
2.4.2 Wrapper Approaches for MKL 30
2.4.2.1 A Semi-infinite Programming Approach for MKL (MKL-SIP) 30
2.4.2.2 Subgradient Descent Approaches for MKL (MKL-SD & MKL-MD) 31
2.4.2.3 An Extended Level Method for MKL (MKL-Level) 32
2.4.2.4 An Alternating Optimization Method for MKL (MKL-GL) 33
2.4.3 Online Learning Algorithms for MKL 33
2.4.4 Computational Efficiency 34
2.5 Experiments 35
2.5.1 Data sets, Features and Kernels 35
2.5.2 MKL Methods Used in Comparison 37
2.5.3 Implementation 38
2.5.4 Classification Performance of MKL 39
2.5.4.1 Experiment 1: Classification Performance 39

vii

2.5.4.2 Experiment 2: Number of Kernels vs. Classification Accuracy 42
2.5.5 Computational Efficiency 43
2.5.5.1 Experiment 4: Evaluation of Training Time 43
2.5.5.2 Experiment 5: Evaluation of Sparseness 45
2.5.6 Large-scale MKL on ImageNet 46
2.6 Summary and Conclusions 47

Chapter 3 Multi-label Multiple Kernel Learning by Stochast ic Approximation . . . 59
3.1 Introduction 59
3.2 Previous Work .. . 60
3.3 Multi-label Multiple Kernel Learning (ML-MKL) 62
3.3.1 A Minimax Framework for Multi-label MKL 64
3.3.2 Convergence Analysis 67
3.4 Experimental Results 68
3.4.1 Data Sets .. . 68
3.4.2 Baseline Methods 69
3.4.3 Implementation 70
3.4.4 Classification Performance 70
3.4.5 Training Time 74
3.4.6 Sensitivity to Parameters 80
3.4.7 Large-scale MKL on ImageNet 81
3.5 Conclusions and Future Work 84

Chapter 4 Image Categorization by Multi-label Ranking 87
4.1 Introduction 87
4.2 Previous Work .. . 88
4.2.1 Label Set Transformation Methods 89
4.2.1.1 Problem Transformation Methods 89
4.2.1.2 Label Set Projection Methods 90
4.2.2 Supervised Algorithm Adaptation Methods 92
4.2.2.1 Transfer learning for multi-label classification 93
4.2.3 Multi-label Ranking Methods 93
4.2.4 Exploiting Label Correlation in Multi-label Learning 94
4.2.5 Related Problems 95
4.3 Maximum Margin Framework for Multi-label Ranking 96
4.4 Approximate Formulation 97
4.4.1 Relation to the One-vs-all Approach 98
4.4.2 Proposed Approximation 99
4.5 Efficient Algorithm 102
4.6 Experimental Results 103
4.6.1 Data Sets .. . 103
4.6.2 Baseline Methods 104
4.6.3 Multi-label Ranking Performance 105

viii

4.6.4 Training Time 110
4.7 Conclusions and Future Work 113

Chapter 5 Multi-label Ranking for Image Categorization wit h Incomplete Class As-
signments .116

5.1 Introduction 116
5.2 A Framework for Multi-label Learning from IncompletelyLabeled Data 120
5.3 Optimization Algorithm 122
5.4 Experimental Results 127
5.4.1 Data Sets .. . 127
5.4.2 Baseline Methods 128
5.4.3 Multi-label Ranking Performance on Incompletely Labeled Data 130
5.4.4 Training Time 132
5.5 Conclusions and Future Work 134

Chapter 6 Multiple Kernel Multi-label Ranking .138
6.1 Introduction 138
6.2 Previous Work .. . 140
6.3 Multiple Kernel Multi-Label Ranking (MK-MLR) 141
6.3.1 A Minimax Framework for Multiple kernel Multi-label Ranking 141
6.3.2 Proposed Approximation 144
6.3.3 Optimization via Semi-infinite Linear Programming 145
6.4 Experimental Results 146
6.4.1 Data Sets .. . 146
6.4.2 Baseline Methods 147
6.4.3 Implementation 148
6.4.4 Evaluation Measures 148
6.4.5 Multi-label Learning Performance 149
6.4.6 Training Efficiency 155
6.4.7 Prediction Efficiency 161
6.5 Conclusions and Future Work 163

Chapter 7 Contributions and Future Work .165
7.1 Contributions 165
7.2 Future Work .. . 168

APPENDIX .169

BIBLIOGRAPHY .196

ix

L IST OF TABLES

Table 1.1 Multi-label ranking performance (AUC-ROC) for the ESP Game and MIR
Flickr25000 data sets .. 12

Table 1.2 AUC-ROC (%) scores for the ESP Game and MIR Flickr25000 data sets for the
missing label scenario. .. . 13

Table 1.3 The list of symbols used in this dissertation 16

Table 2.1 Comparison of MKL baselines and simple baselines (“Single” for single best
performing kernel and “AVG” for the average of all the base kernels) in terms of
classification accuracy. The last three columns give the references in which either
“method1” or “method2” performs better, or both methods give comparable results,
respectively. .18

Table 2.2 Comparison of computational efficiency of MKL methods. The last three
columns give the references, where “method1” is better, “method2” is better, or
both give similar results. 19

Table 2.3 Description of the 48 kernels built for the Caltech101 data set. 36

Table 2.4 Classification results (MAP) for the Caltech 101 data set. We report the average
values over five random splits and the associated standard deviation. 40

Table 2.5 Classification results (MAP) for the VOC 2007 data set. We report the average
values over five random splits and the associated standard deviation. 41

Table 2.6 Comparison with the state-of-the-art performance for object classification on
the Caltech 101 (measured by classification accuracy) and VOC 2007 data sets
(measured by MAP). 42

Table 2.7 Comparison of training time between MKL-SMO and MKL-SIP 45

Table 2.8 Total training time (seconds), number of iterations, and total time spent on com-
bining the base kernels (seconds) for different MKL algorithms vs. number of
training examples for Caltech 101. 49

Table 2.9 Total training time (seconds), number of iterations, and total time spent on com-
bining the base kernels (seconds) for different MKL algorithms vs. number of
training examples for the VOC 2007 data set. 56

x

Table 2.10 Total training time (seconds), number of iterations, and total time spent on com-
bining the base kernels (seconds) for different MKL algorithms vs. number of base
kernels for the Caltech 101 data set. 57

Table 2.11 Total training time (seconds), number of iterations, and total time spent on com-
bining the base kernels (seconds) for different MKL algorithms vs. number of base
kernels for the VOC 2007 data set. 58

Table 3.1 Classification results (MAP) for the Caltech 101 data set. We report the average
values over five random splits and the associated standard deviation. 71

Table 3.2 Classification results (MAP) for the VOC 2007 data set. We report the average
values over five random splits and the associated standard deviation. 72

Table 3.3 Training time (seconds) for the Caltech 101 data set. We report the average
values over five random splits and the associated standard deviation. 74

Table 3.4 Training time (seconds) for the VOC 2007 data set. We report the average values
over five random splits and the associated standard deviation. 75

Table 4.1 AUC-ROC and MAP results for the VOC 2007 data set 106

Table 4.2 AUC-ROC (%) for the ESP Game data set with 10,000 training images 107

Table 4.3 MAP (%) for the ESP Game data set with 10,000 training images 108

Table 4.4 AUC-ROC and MAP results for the MIR Flickr25000 data set 110

Table 4.5 The label predictions by the baselines for four images from the ESP Game data
set. The first row under the images gives the true image class labels. For each
baseline, we provide the top six returned labels (three in the top row, and three in
the lower row) ranked from left to right. The hits are writtenwith bold characters. . 111

Table 5.1 Some concepts that can be confused with the incomplete label assignment problem119

Table 5.2 AUC-ROC (%) for the ESP Game data set with 10,000 training images and 200
classes. 128

Table 5.3 MAP (%) for the ESP Game data set with 10,000 training images and 200classes.128

Table 5.4 The label predictions by the baselines for four images from the ESP Game data
set, when40% of the training labels are missing. The first row under the images
gives the true image class labels. For each baseline, we provide the top nine re-
turned labels (three in the top row, and three it the lower row) ranked from left to
right. The hits are written with bold characters. 129

xi

Table 5.5 AUC-ROC results for the MIR Flickr data set 129

Table 5.6 Examples of training images from the ESP Game data set with true labels and an-
notations generated by different multi-label learning methods. Only the underlined
true labels are provided to the methods for training. For each method, the correct
(returned) keywords are highlighted by bold font whereas the incorrect ones are
highlighted by italic font. 136

Table 5.7 Examples of test images from the ESP Game data set with annotations generated
by different multi-label learning methods. The correct keywords are highlighted by
bold font whereas the incorrect ones are highlighted by italic font. 137

Table 6.1 The change of category based AUC score (%) withe respect to the number of
selected classes for a subset of the ESP Game data set with 2,500 training images. . 149

Table 6.2 The change of image based AUC score (%) withe respect to the number of
selected classes for a subset of the ESP Game data set with 2,500 training images. . 150

Table 6.3 The change of category based AUC score (%) withe respect to the number of
selected classes for a subset of the MIR Flickr data set with 6,250 training images. . 150

Table 6.4 The change of image based AUC score (%) withe respect to the number of
selected classes for a subset of the MIR Flickr data set with 6,250 training images. . 151

Table 6.5 The change of category based AUC score (%) with respect to the number of
training samples for a subset of the ESP Game data set. The AUCscore is calcu-
lated using the top 200 classes. 153

Table 6.6 The change of image based AUC score (%) with respectto the number of training
samples for a subset of the ESP Game data set. The AUC score is calculated using
the top 200 classes. .153

Table 6.7 The change of category based AUC score (%) with respect to the number of
training samples for a subset of the MIR Flickr data set. The AUC score is calcu-
lated using the top 200 classes. 154

Table 6.8 The change of image based AUC score (%) with respectto the number of training
samples for a subset of the MIR Flickr data set. The AUC score is calculated using
the top 200 classes. .155

Table 6.9 Sparsity (%) of kernel weights and dual variables for the multiple kernel base-
lines and the resulting prediction times. These results areobtained from a subset
of the ESP Game data set with5, 000 training images and 200 classes. 163

xii

Table A.1 A list of techniques that can be used in each module of the Bag-of-Words (BOW)
model . 172

Table A.2 Data set statistics 173

xiii

L IST OF FIGURES

Figure 1.1 The first column shows the surface graphs that demonstrate the influence of
different kernel combination weights on the mean average precision score for three
different classes. Four examples from each class are given in the second column.
For interpretation of the references to color in this and allother figures, the reader
is referred to the electronic version of this thesis. 3

Figure 1.2 Illustration of some image categorization challenges: (a) Blue Mosque under
two different illumination conditions, (b) two miniatureswith background clutter
and object deformation, (c) two different views of the Topkapi Palace, (d) two ferry
images, one being partially occluded. 6

Figure 1.3 In Chapter 2, we discuss binary MKL methods for theone-vs-all framework,
where an individual MKL algorithm is trained for each class.. 9

Figure 1.4 In Chapter 3, we present our multi-label MKL algorithm, which solves one
MKL problem for all classes. .. 10

Figure 1.5 The difference between the two proposed multi-label ranking approaches MLR-
L1 (Chapter 4) and MLR-GL (Chapter 3) is that MKL-L1 strictly addresses the
complete class assignment problem whereas MLR-GL can handle missing class
assignments. For example, the complete and full annotations are provided with all
four labels (soccer, referee, field, goalkeeper) for the given image. 13

Figure 1.6 The difference between the two proposed multi-label ranking approaches (a)
MLR-L1 (Chapter 4) and (b) MLR-GL (Chapter 3) is that MKL-L1 strictly ad-
dresses the complete class assignment problem whereas MLR-GL can handle miss-
ing class assignments. For example, only two labels (soccerandfield, written with
bold characters) are given for the above image whereas two labels (goalkeeperand
referee, underlined text) are missing. .. 14

Figure 2.1 A summary of representative MKL optimization schemes 50

Figure 2.2 Mean average precision (MAP) scores of differentL1-MKL methods vs. num-
ber of iterations for theanchorclass of the Caltech101 data set. 51

Figure 2.3 Mean average precision (MAP) scores of differentL1-MKL methods vs. num-
ber of iterations for thebonsaiclass of the Caltech101 data set. 51

xiv

Figure 2.4 Mean average precision (MAP) scores of differentL1-MKL methods vs. num-
ber of iterations for thecameraclass of the Caltech101 data set. 52

Figure 2.5 The change in MAP score with respect to the number of base kernels for the
Caltech 101 data set. .52

Figure 2.6 The change in MAP score with respect to the number of base kernels for the
VOC 2007 data set. 53

Figure 2.7 Number of active kernels learned by the MKL-SIP algorithm vs. number of
iterations for the Caltech 101 data set. Note that it is difficult to distinguish the
results ofL2-MKL andL4-MKL from each other as they are identical. 53

Figure 2.8 Number of active kernels learned by the MKL-SIP algorithm vs. number of
iterations for the VOC 2007 data set. Note that it is difficultto distinguish the
results ofL2-MKL andL4-MKL from each other as they are identical. 54

Figure 2.9 Classification performance for different training set sizes for the ImageNet data
set. 54

Figure 2.10 Training times forL1-MKL andL2-MKL on different training set sizes for the
ImageNet data set. 55

Figure 3.1 For the 4 classes (ant, butterfly, ceiling fan, chair) taken from the Caltech 101
data set, the first row gives images which produced false negatives for the sin-
gle kernel baseline and true positives for ML-MKL-SA baseline. The second row
gives images which produced false positives for the single kernel baseline and true
negatives for the ML-MKL-SA baseline for the correspondingclasses. 69

Figure 3.2 For the 4 classes (bird, potted plant, dining table, train) taken from the VOC
2007 data set, the first row gives images which produced falsenegatives for the
single kernel baseline and true positives by the GMKL baseline. The second row
gives images which produced false positives for the single kernel baseline and true
negatives for the ML-MKL-SA method for the corresponding classes. 71

Figure 3.3 The evolution of kernel weights computed by the MKL-Level method over time
for the Caltech 101 data set with 30 training instances per class. 76

Figure 3.4 The evolution of kernel weights computed by the MKL-SIP-L1 method over
time for the Caltech 101 data set with 30 training instances per class. 77

Figure 3.5 The evolution of kernel weights computed by the ML-MKL-Sum method over
time for the Caltech 101 data set with 30 training instances per class. 78

Figure 3.6 The evolution of kernel weights computed by the ML-MKL-SA method over
time for the Caltech 101 data set with 30 training instances per class. 79

xv

Figure 3.7 Classification performance (MAP) of the proposedalgorithm ML-MKL-SA on
Caltech 101 with 30 training instances per class using different values ofδ (for
ηβ = ηγ = 0.01). 80

Figure 3.8 Classification performance (MAP) of the proposedalgorithm ML-MKL-SA on
Caltech 101 with 30 training instances per class using different values ofηβ (for
ηγ = 0.0001 andδ = 0.2). 81

Figure 3.9 Classification performance (MAP) of the proposedalgorithm ML-MKL-SA
on Caltech 101 with 30 training instances per class using different values ofηγ
(ηβ = 0.0001 andδ = 0.2). 82

Figure 3.10 Comparison of the mean average precision scoresfor different training set sizes
for the ImageNet data set. .. 83

Figure 3.11 Comparison training times for different training set sizes for the ImageNet data
set. 84

Figure 4.1 A diagram summarizing the label set projection schemes for multi-label learning. 91

Figure 4.2 For four images from the VOC 2007 data set, the original labels are given in
addition to the outputs of baseline methods. 106

Figure 4.3 Change of the AUC-ROC score with respect to the number of training images. . 109

Figure 4.4 Training time of the three baselines for a fixed number of categories (100) with
respect to the number of training samples for the ESP Game data set. 111

Figure 4.5 Training time of the three baselines for a fixed number of training samples
(10,000) with respect to the number of categories for the ESPGame data set. 112

Figure 5.1 Some example images from the VOC 2007 (top row) andESP Game (bottom
row) data sets with their annotations. The labels written initalic are provided with
the images, whereas the ones written in bold fonts are the missing labels. These
images, with their missing annotations, are examples of incomplete labeled data. . 117

Figure 5.2 Example images from the ESP Game data set and theirannotations. The annota-
tions highlighted by bold font, which are used to annotate the same concept/object
in the corresponding images, are examples of the label ambiguity problem. 119

Figure 5.3 The change in the baseline training times (seconds) with respect to the number
of training images from the ESP Game data set. 133

Figure 5.4 The change in the training time (seconds) for the proposed multi-label ranking
algorithms and one-vs-all SVM with respect to the number of image labels (m). . . 134

xvi

Figure 6.1 The plot of recall vs. number of retrieved labels per image. The number of
training images is2, 500. 152

Figure 6.2 Comparing MK-MLR to ML-MKL methods that learn optimal kernel combi-
nation separately for each class in terms of training time. We use5, 000 train-
ing images and create four different settings by changing the number of classes
{50, 100, 200, 500} . 156

Figure 6.3 Comparing MK-MLR to ML-MKL methods that learn oneoptimal kernel com-
bination for all classes in terms of training time. We use5, 000 training images and
create four different settings by changing the number of classes{50, 100, 200, 500} 157

Figure 6.4 Comparing MK-MLR to ML-MKL methods that learn oneoptimal kernel
combination separately for each class in terms of training time. We use im-
ages from 200 classes and create three settings by changing the data set size
{1, 000, 2, 500, 5, 000} . 159

Figure 6.5 Comparing MK-MLR to ML-MKL methods that learn oneoptimal kernel com-
bination for all classes in terms of training time. We use images from 200 classes
and create three settings by changing the data set size{1, 000, 2, 500, 5, 000} 160

Figure A.1 Four example images from the Caltech 101 data set with their labels. 174

Figure A.2 Four example images from the ImageNet data set. Acat and acar image are
shown in the top row. The second row has two dog images, one from thedalmatian
synset, and one from theMexican hairlesssynset 175

Figure A.3 Two example images from the MIR Flickr data set. Left image (reflection
effect) is by Szymczak [1] and the right image (fish eye effect) is by Wild. [2] . . . 176

Figure A.4 Four example images from the ESP Game data set. 177

xvii

Chapter 1

Introduction

In this dissertation, we develop multiple kernel and multi-label learning algorithms for the image

categorization problem. The goal of image categorization is labeling an image with the relevant

categories from a predefined tag set. In other words, image categorization requires desinging clas-

sifiers to ask the following type of question: “Does the queryimage have acat in it?” Answering

questions such as this (cat is one of the possible image labels) is also the goal of visualobject

recognition and automatic image annotation tasks, which weconsider as two very closely related

subsets of image categorization. Visual object recognition is defined as the task of determining if

any of the predefined objects (visible or tangible things) are present in an image or not. On the

other hand, automatic image annotation task differs from visual object recognition in that the goal

is not only to look for the existence of tangible objects, butalso concepts like color (green, white),

place (Paris, Ireland), and scene (sunset, fight). The methods we present in this dissertation are

designed to be used in both of these tasks.

Image categorization is a very good fit as a benchmark to test multiple kernel and multi-label

learning algorithms for several reasons. Firstly, we see that many state-of-the-art methods for im-

age categorization use information fusion to combine different image representations. Therefore,

multiple kernel learning (MKL), which is an information fusion technique, is expected to perform

1

well in image categorization. Secondly, different classesin image categorization data sets require

using similar features (i.e., the scale-invariant featuretransform, SIFT, works well for the majority

of image classes). Therefore, the assumption we use for our multiple kernel learning algorithms

holds, which is a kernel combination that benefits all classes can be learned. Thirdly, only a small

number of image representations are needed to obtain the optimal classification performance. This

means that sparseness, one of the goals of the multiple kernel learning algorithms we develop, is

a useful feature in image categorization. Fourthly, since image classes are often correlated with

each other, multi-label learning is expected to work well with image categorization. Finally, in-

completely labeled data, which is one of the problems we address in this dissertation, frequently

occur in image categorization applications.

1.1 Multiple Kernel Learning for Image Categorization

Given the variety of alternatives and the large number of ways for constructing image represen-

tations, one critical issue in developing statistical models for image categorization is how to ef-

fectively combine different image features. MKL presents aprincipled framework for combining

multiple image representations: It creates a set of base kernels for each representation and finds

the optimal kernel combination via a linear combination of kernels.

We demonstrate MKL on a simple image categorization problem. We create two kernels: one

based on color histogram and one based on texture distribution in the image. We choose three

object classes (crocodile, snoopy, strawberry) from the Caltech 101 data set [3], each with 15

instances, and train one-vs-all support vector machines (SVM) for each of the three classes by using

different combinations of these two kernels. To combine thekernels, we vary the combination

coefficients in the set{0, 0.2, 0.4, 0.6, 0.8, 1}. In Figure 1.1 we generate a heat map to represent

classification performance of different linear combinations of the two kernels. We observe that the

optimal combination varies from one class to another. For example, while the texture based kernel

2

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

texture kernel weights

co
lo

r
ke

rn
el

 w
ei

gh
t

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

texture kernel weights

co
lo

r
ke

rn
el

 w
ei

gh
t

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

texture kernel weights

co
lo

r
ke

rn
el

 w
ei

gh
t

Figure 1.1: The first column shows the surface graphs that demonstrate the influence of different
kernel combination weights on the mean average precision score for three different classes. Four
examples from each class are given in the second column. For interpretation of the references to
color in this and all other figures, the reader is referred to the electronic version of this thesis.

3

is assigned a higher coefficient for crocodile classification task, the color kernel should be used

with a higher weight for the strawberry class. This simple example illustrates the significance of

identifying the appropriate combination of kernels for recognizing a specific class of visual objects.

It also motivates the need for developing automatic approaches for finding the optimal combination

of kernels from training examples, as there is no universal solution for kernel combination that

works well for all classes.

MKL has been successfully applied to a number of tasks in computer vision, particularly to

image categorization. For instance, the winning group in the Pascal VOC 2010 object categoriza-

tion challenge [4] used MKL to combine multiple sets of visual features. The best performance

reported on the Caltech 101 data set was achieved by learningthe optimal combination of multiple

kernels [5]. Recent studies have also shown promising performance of MKL for object detec-

tion [6].

1.2 Multi-label Learning for Image Categorization

In multi-label learning, more than one class can be assignedto an instance. With the increase in the

number of data sets where each image has multiple labels, there have been a vast amount of studies

that focus on developing strong classification methods for image categorization [7–9]. Many re-

searchers employ decomposition methods, particularly one-vs-all framework, with SVM as a base

classifier. In this setting, a separate classifier is trainedfor each image label, leading to an inde-

pendent prediction for each label on a query image. Althoughdecomposition based methods are

frequently used to solve multi-label classification, they do have some limitations (see Chapter 4).

To overcome the limitations of decomposition techniques, there have been many direct multi-label

learning methods proposed in the literature that do not decompose or transform the multi-label

learning problem into a set of binary classification tasks [10–14]. In this dissertation, we are par-

ticularly interested in multi-label ranking, in which the learning task is formulated as a bipartite

4

ranking problem. Multi-label ranking is an example of a direct multi-label learning approach that

can exploit label correlations. Also, by avoiding a binary decision, multi-label ranking is usually

more robust than the classification approaches, particularly when the number of classes is very

large [10,15].

Ranking has been successfully used in other application domains such as document classifi-

cation and recommender systems. For example, it makes more sense in recommender systems

to provide the user an ordered list of items that she/he mightbe interested in. Also, since the

preference ratings given by the users are not universal (i.e., the rating “7” is not same for every

user) ranking results would be easier to obtain compared to predicting the exact ratings. Similarly,

ranking labels might be useful for image categorization systems. Consider an image search system

where the search is based on image labels. Being able to rank image labels can be useful for refin-

ing the search. For example, if a user is interested in finding“cafe shop” images from the internet

to decide where to go, then a system that only focuses on the label “cafe shop” would not help in

refining the search. If the user is looking for images of pet-friendly cafe shops where more people

read books than use computers, then ranking labels would be useful. Such a system would aim to

retrieve images where the labelscafe shops, books, cats, dogs,have higher scores than the label

computer. This does not mean that the image should not contain any computers, but the emphasis

on the other labels is set to be higher.

1.3 Challenges

There are thousands of possible image classes and as such, there is no optimal image represen-

tation technique that would work best for all of these classes. In fact, it is very difficult to find

a salient representation for even a single image class due tolarge variations in the visual appear-

ance of samples within a class, a phenomenon known as the intra-class variation problem [16,17].

In addition to intra-class variation, challenges include translation [18], scale [19], rotation [20],

5

illumination problem background clutter

viewpoint variation viewpoint occlusion

Figure 1.2: Illustration of some image categorization challenges: (a) Blue Mosque under two dif-
ferent illumination conditions, (b) two miniatures with background clutter and object deformation,
(c) two different views of the Topkapi Palace, (d) two ferry images, one being partially occluded.

affine transformation [21], viewpoint variation [22], occlusion [23], background clutter [24], and

illumination [25]. Figure 1.2 shows example images that demonstrate some of these challenges.

The problems we have stated above often force recognition algorithms to utilize complex mod-

els. More specifically, kernel machines, which use non-linear functions of the features, generally

work better than linear classification models. For instance, we see from the image categorization

literature that using SVM with RBF (radial basis function) or χ2 kernel gives superior performance

compared to linear SVM [26]. However, there are some challenges of using kernel machines for

image categorization. We examine these under the followingtwo topics: (i) challenges of multiple

kernel learning and (ii) challenges of multi-label learning for image categorization.

1.3.1 Challenges in MKL for Image Categorization

• The application of MKL to multi-labeled data, such as in image categorization, is primarily

limited to one-vs-all framework, which fails to exploit label correlations. As MKL solvers

for each class operate independently, no interaction or information transfer between image

6

classes takes place, leading to suboptimal performance [15,27,28].

• The training complexities of MKL algorithms are quadratic in terms of the number of train-

ing samples and linear in terms of the number of classes. Moreimportantly, the prediction

is computationally expensive. Once the distance between a query sample and the support

vectors is calculated, a different kernel combination needs to be calculated for each class

prior to prediction, which is a costly process.

1.3.2 Challenges in Multi-label Learning for Image Categorization

• Exploiting correlations or dependencies between different classes is an important research

problem, and a number of approaches have been developed for multi-label learning that aim

to capture dependencies among classes [10, 12, 13, 29, 30]. The majority of such methods

make strong assumptions regarding the type of relationships that exist between class labels.

Although these methods give promising results when the underlying assumptions hold, there

is no guarantee that the assumptions would hold for all typesof data.

• Formulating a multi-label learning problem as multi-labelranking methods is an effective

approach that takes advantage of the label correlations without making a strong assumption

about the data structure. However, the bipartite ranking constraints make the computational

complexity quadratic in the number of classes, making thesealgorithms computationally

inefficient when the number of classes is large.

• It is unclear if strong multi-label learning algorithms would work well in practice. One of the

main concerns for real world systems is that the labeling process is very expensive and often

inaccurate. In image categorization systems, the image annotations for the training data set

are provided primarily by online users through services like Amazon Mechanical Turk [31].

As a result, the retrieved annotations are often incomplete; only a subset of the true image

7

labels is given by the annotators. Therefore, it is important to build robust classifiers that

would work well even when the full label information is not provided.

1.4 Contributions

We can divide our contributions in this dissertation into two parts: (i) multiple kernel learning

and (ii) multi-label learning for image categorization. Chapters 2 and 3 show how multiple kernel

learning can be used to simultaneously improve the representation and learning stages. Chapters 4

and 5 discuss the multi-label learning problem, which is arguably the most appropriate formulation

of the image categorization problem. We present our (single) kernel based multi-label learning

algorithms in Chapters 4 and 5. Finally, we merge these two directions by developing a multiple

kernel multi-label ranking approach in Chapter 6 and address our main goal, which is to develop

efficient algorithms that outperform published classification methods when state-of-the-art image

representations are used. We can list our contributions as follows:

• Our contribution in Chapter 3 is to improve the computational efficiency of MKL with re-

spect to the number of classes for both the training and prediction steps. The majority of

MKL methods require executing a binary MKL algorithm individually for each image class,

see Figure 1.3, making the training and prediction complexities linear in terms of the num-

ber of classes. This is the reason that the existing MKL solvers do not scale well when the

number of classes is large. We address this computational challenge by developing a frame-

work for MKL that learns a single kernel combination benefiting all classes by combining a

worst-case analysis with stochastic approximation (see Figure 1.4). Our analysis shows that

the training complexity of our algorithm isO(m1/3 logm) in terms of the number of classes,

m. Moreover, since our algorithm learns a single sparse kernel combination for all classes,

the time consumed for the kernel construction step of the prediction phase is also reduced

significantly.

8

feature 1

feature 2

feature s

.

.

.

MKL class 2

MKL class 1

MKL class 3

MKL class m

.

.

.

Training
images

Test image

Complete training label set

{-1,1}

{-1,1}

{-1,1}

{-1,1}

.

.

.

K

K

K

Training
images

Figure 1.3: In Chapter 2, we discuss binary MKL methods for the one-vs-all framework, where an
individual MKL algorithm is trained for each class.

9

feature 1

feature 2

feature s

.

.

.

ML-MKL
for

m classes

Training
images

Test image

Complete training label set

{-1,1}

{-1,1}

{-1,1}

{-1,1}

.

.

.

K

K

K

Figure 1.4: In Chapter 3, we present our multi-label MKL algorithm, which solves one MKL
problem for all classes.

10

• Our contributions in Chapters 4 and 5 are efficient multi-label ranking algorithms. Given a

test image, a multi-label ranking method aims to order all the object classes such that the

relevant classes are ranked higher than the irrelevant classes (Figure 1.5). We present two ef-

ficient algorithms for multi-label ranking based on the ideaof block coordinate descent. The

proposed methods are computationally efficient; their computational complexity is linear in

the number of classes, while the majority of the multi-labelranking schemes suffer from

quadratic dependence on the number of classes. Our experimental results show that the pro-

posed methods outperform state-of-the-art classificationmethods. Table 1.1 gives a compar-

ison between the proposed multi-label ranking methods (MLR-L1 and MLR-GL), and two

state-of-the-art approaches on two benchmark data sets, ESP Game and MIR Flickr25000, in

terms of AUC-ROC score. We use dense-SIFT features to generate the results in Table 1.1;

however, the proposed methods consistently outperform thebaselines even when different

features are used.

• In Chapter 5 we present a robust multi-label learning methodthat performs well under the

setting of limited annotations. Specifically, we consider asituation where the training ex-

ample class assignments are incomplete, see Figure 1.6. Consider a training image whose

true class assignment is(c1, c2, c3, c4), but is only assigned to classesc1 andc4. We refer to

this problem as multi-label learning with incomplete classassignments, which has not been

addressed in the multi-label learning literature. Incompletely labeled data is frequently en-

countered when the number of classes is very large (hundredsas in the MIR Flickr data set)

or when there is a large ambiguity between classes (e.g., labelsjet andplane). In both cases,

it is difficult for users to provide complete class assignments for objects.

• We propose a ranking based multi-label learning framework that explicitly addresses the

challenge of learning from incompletely labeled data by exploiting the group lasso technique

to combine the ranking errors. Table 1.2 reports the resultson two benchmarks data sets,

11

Table 1.1: Multi-label ranking performance (AUC-ROC) for the ESP Game and MIR Flickr25000
data sets

ESP Game MIRFlickr25000
SVM 79.5 70.2
MLLS 79.4 75.9

MLR-L1 81.5 75.4
MLR-GL 80.5 76.2

ESP Game and MIR Flickr25000, in terms of AUC-ROC score, in two scenarios: (i) the

complete label information is provided, (ii)60% of the training labels are randomly removed.

With performance in Table 1.2 and the experimental results in Chapter 5, we claim that

the proposed method, MLR-GL outperforms the state-of-the-art multi-label classification

methods on incompletely labeled data, including our other multi-label ranking approach

MLR-L1.

• Finally, we propose a multiple kernel multi-label ranking method (MK-MLR) by combining

the strengths of the algorithms in Chapters 2, 3, and 4. We extend the proposed MLR-L1

method to multiple kernel setting by integrating it into theSILP (semi-infinite linear pro-

gramming) based wrapper MKL solver, which is the most efficient MKL-L1 optimization

method according to our detailed analysis in Chapter 2. We also use the idea of learning a

shared kernel combination for all image classes to improve the computational efficiency. The

MK-MLR method addresses the two essential factors for improving the performance of im-

age categorization: (i) heterogeneous information fusion, and (ii) exploiting label correlation

of multi-label data.

12

Feature set

Training
images

Test image Complete training
label set

Multi-label
ranking

K

c1 > c2 > c3 > … cm-1 > cm

Ordered list of labels

Soccer, referee,
Goalkeeper, field
Soccer, referee,
Goalkeeper, field
Soccer, referee,
Goalkeeper, field
Soccer, referee,
Goalkeeper, field

Figure 1.5: The difference between the two proposed multi-label ranking approaches MLR-L1

(Chapter 4) and MLR-GL (Chapter 3) is that MKL-L1 strictly addresses the complete class as-
signment problem whereas MLR-GL can handle missing class assignments. For example, the
complete and full annotations are provided with all four labels (soccer, referee, field, goalkeeper)
for the given image.

Table 1.2: AUC-ROC (%) scores for the ESP Game and MIR Flickr25000 data sets for themissing
label scenario.

ESP Game MIR Flickr25000
complete 60% missing complete 60% missing

SVM 80.2 75.2 70.2 65.7
MLLS 79.8 75.0 75.9 71.5

MLR-L1 82.9 79.4 75.4 69.1
MLR-GL 83.8 82.1 76.2 74.1

13

Feature set

Training
images

Test image Incomplete training
label set

Multi-label
ranking

K

c1 > c2 > c3 > … cm-1 > cm

Ordered list of labels

Soccer, referee,
Goalkeeper, field

Figure 1.6: The difference between the two proposed multi-label ranking approaches (a) MLR-L1

(Chapter 4) and (b) MLR-GL (Chapter 3) is that MKL-L1 strictly addresses the complete class
assignment problem whereas MLR-GL can handle missing classassignments. For example, only
two labels (soccerandfield, written with bold characters) are given for the above imagewhereas
two labels (goalkeeperandreferee, underlined text) are missing.

14

1.5 Notation

LetD = {x1, . . . ,xn} be a collection ofn training instances, whereX ⊆ R
d is a compact domain.

Each training examplexi is annotated by a set of class labels fromL, denoted by a binary vector

yi = (yi1, . . . , y
i
m) ∈ {−1, 1}m, wherem is the total number of classes, andyik = 1 whenxi is

assigned to classck and−1, otherwise. In multi-label ranking, we aim to learnm classification

functionsfk(x) : Rd 7→ R, k = 1, . . . , m, one for each class.

We denote by{κj(x,x′) : X × X 7→ R, j = 1, . . . , s} a set ofs base kernels to be com-

bined in multiple kernel learning (MKL). For each kernel function κj(·, ·), we construct a kernel

matrix Kj = [κj(x,x
′)]n×n by applyingκj(·, ·) to the training instances inD. We denote by

β = (β1, . . . , βs)
⊤ ∈ R

s
+ the set of coefficients used to combine the base kernels, and denote by

κ(x,x′;β) =
∑s

j=1 βjκj(x,x
′) andK(β) =

∑s
j=1 βjKj the combined kernel function and kernel

matrix, respectively. We further denote byHβ the Reproducing Kernel Hilbert Space (RKHS)

endowed with the combined kernelκ(x,x′;β). The list of symbols and descriptions are given in

Table 1.3.

The vectors and matrices are denoted by bold lowercase and uppercase characters, respectively.

We use superscript to indicate the training instance index and subscript to show the class index for

the feature and label vectors. For example,yi ∈ R
m, with m being the number of labels, denotes

the label vector for multi-labeled the training instancexi. On the other hand,yk ∈ R
n, where

n is the number of training instances, is the label assignmentvector on all training instances for

classck. We use a scalaryik ∈ {−1,+1} to indicate the label assignment of instancei for classck.

For binary classification tasks, for example Chapter 2, we drop the subscript, i.e.,yi ∈ {−1,+1},

for simplicity. For a matrixK, K:,i andKj,: denote theith column and andjth row vectors,

respectively. For the multiple kernel learning section,Kj indicates thejth base kernel.

15

Table 1.3: The list of symbols used in this dissertation

Definition Symbol
Instance space X ∈ R

d

Label set L
Number of dimensions d
Number of instances n
Number of class labels m
Number of base kernels for MKL s
Kernel function κ(., .)
1k k dimensional vector of all ones
0k k dimensional vector of all zeros
M:,i ith column vector of the matrixM
Classification function for classk fk(x) : R

d 7→ R

Reproducing Kernel Hilbert Space (RKHS)Hβ

endowed with the combined kernel
Kernel coefficients for MKL β = (β1, . . . , βs)

⊤ ∈ R
s
+

Training instance xi = (xi1, x
i
2, . . . , x

i
d) ∈ X

Label vector yi = (yi1, . . . , y
i
m) ∈ {−1, 1}m

16

Chapter 2

Multiple Kernel Learning for Image

Categorization: A Review

2.1 Introduction

Kernel methods [32] have become popular in computer vision,particularly for image categoriza-

tion. The key idea of kernel methods is to introduce nonlinearity into the decision function by

mapping the original features to a higher dimensional space. Many studies [4, 33, 34] have shown

that nonlinear kernels, such as radial basis functions (RBF) or chi-squared kernels, yield signifi-

cantly higher accuracy for image categorization than a linear classification model.

One difficulty in developing kernel classifiers is to design an appropriate kernel function for

a given task. We often have multiple kernel candidates for image categorization. These kernels

arise either because multiple feature representations arederived for images, or because different

kernel functions (e.g., polynomial, RBF, and chi-squared)are used to measure the visual similarity

between two images for a given feature representation. One of the key challenges in image cate-

gorization is to find the optimal combination of these kernels for a given object class. This is the

central question addressed by Multiple Kernel Learning (MKL).

17

Table 2.1: Comparison of MKL baselines and simple baselines(“Single” for single best performing
kernel and “AVG” for the average of all the base kernels) in terms of classification accuracy. The
last three columns give the references in which either “method1” or “method2” performs better, or
both methods give comparable results, respectively.

meth1 meth2 dataset # samples # kernels mtd1 mtd2 comp.

MKL Single UCI [1-6K] [1-10] [35] [36]
MKL Single UCI [1-2K] [10-200] [37]

L1-MKL AVG Cal-101 [510-3K] [10-1K] [38], [9] [39], [40] [41]
L1-MKL AVG VOC07 5011 [10-22] [9], [41] [42]
L1-MKL AVG Oxford 680 [5-65] [43]

Flowers
Lp-MKL AVG VOC07 5011 10 [42]
Lp-MKL AVG Cal-101 [1K-3K] [24-1K] [41] [40]
Lp-MKL AVG Oxford 680 [5,65] [41]

Flowers
L1-MKL Lp-MKL UCI [1-2K] [1-50] [44] [45], [46] [47]
L1-MKL Lp-MKL VOC07 5011 [10-22] [42], [41]
L1-MKL Lp-MKL Cal-101 [510-3K] [10-1K] [40] [41]

A lack of comprehensive studies has resulted in different, sometimes conflicting, statements re-

garding the effectiveness of various MKL methods on real-world problems, particularly for image

categorization. For instance, some of the studies [5, 9, 41,46] reported that MKL outperforms the

average kernel baseline while other studies made the opposite conclusion [40,48,49], see Table 2.1.

Moreover, as Table 2.2 shows, there are also some confusing results and statements about the effi-

ciency of different MKL methods. Besides summarizing the latest developments in MKL and its

application to image categorization, an important contribution of this chapter is to resolve the con-

flicting statements by conducting a comprehensive evaluation of state-of-the-art MKL algorithms

under various experimental conditions.

The main contributions of the survey we give in this chapter are:

• A review of a wide range of MKL formulations that use different regularization mechanisms,

and the related optimization algorithms.

• A comprehensive study that evaluates and compares a representative set of MKL algorithms

18

Table 2.2: Comparison of computational efficiency of MKL methods. The last three columns give
the references, where “method1” is better, “method2” is better, or both give similar results.

meth1 meth2 datasets # samples # kernels mtd1 mtd2 cmp.
training time

L1-MKL Lp-MKL MedMill 30,993 3 [50]
MKL-L1 Lp-MKL UCI [1-2K] [90-800] [48]
MKL-SD MKL-SIP UCI [1-2K] [50-200] [51], [52]
MKL-SD MKL-SIP UCI [1-2K] [50-200] [53], [46]
MKL-SD MKL-SIP Oxford 680 [5-65] [43]

Flowers
MKL-SD MKL-MD Oxford 680 [5-65] [39]

Flowers
MKL-SD MKL-MD Cal-101 3,060 9 [9]
MKL-SD MKL-MD VOC07 5,011 22 [9]
MKL-SD MKL-Lev UCI [1-2K] [50-200] [52]
MKL-SIP MKL-Lev UCI [1-2K] [50-200] [52]

active kernels
MKL-SD MKL-SIP UCI [1-2K] [50-200] [51]
MKL-SD MKL-SIP UCI [1-2K] [50-200] [53]
MKL-SD MKL-Lev UCI [1-2K] [50-200] [52]
MKL-SIP MKL-Lev UCI [1-2K] [50-200] [52]

for image categorization under different experimental settings.

• An exposition of the conflicting statements regarding the performance of different MKL

methods, particularly for image categorization. We attempt to understand these statements

and determine to what degree and under what conditions thesestatements are correct.

2.2 Overview

In this section we give an overview of multiple kernel learning.

19

2.2.1 Overview of Multiple Kernel Learning (MKL)

MKL was first proposed in [54], where it was cast into a Semi-Definite Programming (SDP) prob-

lem. Most studies on MKL are centered around two issues, (i) how to improve the classification

accuracy of MKL by exploring different formulations, and (ii) how to improve the learning effi-

ciency of MKL by exploiting different optimization techniques (see Figure 2.1).

In order to learn an appropriate kernel combination, various regularizers have been introduced

for MKL, including L1 norm [55],Lp norm (p > 1) [56], entropy based [48], and mixed norms

[57]. Among them,L1 norm is probably the most popular choice because it results in sparse

solutions and could potentially eliminate irrelevant and noisy kernels. In addition, theoretical

studies [58, 59] have shown thatL1 norm will result in a small generalization error even when the

number of kernels is very large.

A number of empirical studies have compared the effect of different regularizers used for MKL

[41,46,60]. Unfortunately, different studies arrive at contradictory conclusions. For instance, while

many studies claim thatL1 regularization yields good performance for object recognition [40,61],

others show thatL1 regularization results in information loss by imposing sparseness over MKL

solutions, thus leading to suboptimal performance [41,46,48,60,62].

In addition to a linear combination of base kernels, severalalgorithms have been proposed to

find a nonlinear combination of base kernels [39, 45, 63–65].Some of these algorithms try to

find a polynomial combination of the base kernels [45, 63], while others aim to learn an instance-

dependent linear combination of kernels [5, 66, 67]. The main shortcoming of these approaches

is that they have to deal with non-convex optimization problems, leading to poor computational

efficiency and suboptimal performance. Given these shortcomings, we will not review them in

detail.

Despite significant efforts in improving the effectivenessof MKL, one of the critical questions

remaining is whether MKL is more effective than the popular simple baselines, e.g., taking the

average of the base kernels. While many studies show that MKLalgorithms bring significant

20

improvement over the average kernel approach [46,62,68], opposite conclusions have been drawn

by some other studies [40,41,48,49]. Our empirical studiesshow that these conflicting statements

are largely due to the variations in the experimental conditions, or in other words, the consequence

of a lack of comprehensive studies on MKL.

The second line of research in MKL is to improve the learning efficiency. Many efficient MKL

algorithms [46,48,53,55,64,69,70] have been proposed, mostly forL1 regularized MKL, based on

the first order optimization methods. We again observe conflicting statements in the MKL literature

when comparing different optimization algorithms. For instance, while some studies [46,51,52] re-

port that the subgradient descent (SD) algorithms [53] are more efficient in training MKL than the

semi-infinite linear programming (SILP) based algorithm [71], an opposing statement was given

in [61]. It is important to note that besides the training time, the sparseness of the solution also

plays an important role in computational efficiency: both the number of active kernels and the

number of support vectors affect the number of kernel evaluations and, consequentially, computa-

tional times for both training and testing. Unfortunately,most studies focus on only one aspect of

computational efficiency: some only report the total training time [48, 61] while others focus on

the number of support vectors (support set size) [46,67]. Another limitation of the previous studies

is that they are mostly constrained to small data sets (around 1,000 samples) and limited number of

base kernels (10 to 50), making it difficult to draw meaningful conclusions on the computational

efficiency.

2.2.2 Relationship to the Other Approaches

Multiple kernel learning is closely related to feature selection [72], where the goal is to identify

a subset of features that are optimal for a given prediction task. This is evidenced by the equiva-

lence between MKL and group lasso [73], a feature selection method where features are organized

into groups, and the selection is conducted at the group level instead of at the level of individual

features.

21

Feature selection and feature combination can be given among the main motivations of multiple

kernel learning, particularly for the image categorization task. There is a vast amount of choices of

image representations. Feature selection is related to choosing the correct image representation for

the given classification task. In this manner, MKL is closelyrelated to feature selection. However,

selecting one type of representation might not be adequate,since image categorization often in-

volves many classification tasks, one for each image class, and one representation that would work

for some of the classes might not work for others. One way to tackle this problem is combining

several features. The early approaches for feature combination includes unweighted combination

of features [34] or employing brute force learning of feature combination parameters [74]. How-

ever, the goal of MKL is to find a more principled way of performing feature combination. It is

important to note that equivalence between MKL and group lasso has been proven in [73] building

a formal connection between MKL and feature selection.

MKL is also related to metric learning [75], where the goal isto find a distance metric, or

more generally a distance function, consistent with the class assignment. MKL generalizes metric

learning by searching for a combination of kernel functionsthat gives a larger similarity to any

instance pair from the same class than instance pairs from different classes.

Finally, it is important to note that multiple kernel learning is a special case of kernel learn-

ing. In addition to MKL, another popular approach for learning a linear combination of multiple

kernels is kernel alignment [76], which finds the optimal combination of kernels by maximizing

the alignment between the combined kernel and the class assignments matrix. More generally,

kernel learning methods can be classified into two groups: parametric and non-parametric kernel

learning. In parametric kernel learning, a parametric formis assumed for the combined kernel

function [77, 78]. In contrast, nonparametric kernel learning does not make any parametric as-

sumption about the target kernel function [76, 79, 80]. Multiple kernel learning belongs to the

category of parametric kernel learning. Despite its generality, the high computational cost of non-

parametric kernel learning limits its applications to real-world problems. Aside from supervised

22

kernel learning, both semi-supervised and unsupervised kernel learning have also been investi-

gated [76,78,81]. We do not review them in detail here because of their limited success in practice

and because of their high computational cost.

2.3 Multiple Kernel Learning (MKL): Formulations

In this section, we first review the theory of multiple kernellearning for binary classification. We

leave the discussion of the MKL methods for multi-class and multi-label learning to Chapter 3.

Let D = {x1, . . . ,xn} be a collection ofn training instances, whereX ⊆ R
d is a compact

domain. Lety = (y1, . . . , yn)⊤ ∈ {−1,+1}n be the vector of class assignments for the instances

in D. We denote by{κj(x,x′) : X × X 7→ R, j = 1, . . . , s} the set ofs base kernels to be

combined. For each kernel functionκj(·, ·), we construct a kernel matrixKj = [κj(x,x
′)]n×n by

applyingκj(·, ·) to the training instances inD. We denote byβ = (β1, . . . , βs)
⊤ ∈ R

s
+ the set

of coefficients used to combine the base kernels, and denote by κ(x,x′;β) =
∑s

j=1 βjκj(x,x
′)

andK(β) =
∑s

j=1 βjKj the combined kernel function and kernel matrix, respectively. We further

denote byHβ the Reproducing Kernel Hilbert Space (RKHS) endowed with the combined kernel

κ(x,x′;β). In order to learn the optimal combination of kernels, we first define the regularized

classification errorL(β) for a combined kernelκ(·, ·;β), i.e.,

L(β) = min
f∈Hβ

1

2
||f ||2Hβ

+ C

n∑

i=1

ℓ(yif(xi)), (2.1)

whereℓ(z) = max(0, 1 − z) is the hinge loss andC > 0 is a regularization parameter. Given the

regularized classification error, the optimal combinationvectorβ is found by minimizingL(β),

i.e.,

min
β∈∆,f∈Hβ

1

2
||f ||2Hβ

+ C
n∑

i=1

ℓ(yif(xi)) (2.2)

where∆ is a convex domain for combination weightsβ that will be discussed later. As in [54],

23

the problem in Eq. (2.2) can be written into its dual form, leading to the following convex-concave

optimization problem

min
β∈∆

max
α∈Q
L̂(α,β) = 1⊤α− 1

2
(α ◦ y)⊤K(β)(α ◦ y), (2.3)

where◦ denotes the Hadamard (element-wise) product,1 is a vector of all ones, andQ = {α ∈

[0, C]n} is the domain for dual variablesα.

The choice of domain∆ for kernel coefficients can have a significant impact on both classi-

fication accuracy and efficiency of MKL. One common practice is to restrictβ to a probability

distribution, leading to the following definition of domain∆ [54,55],

∆1 =

{
β ∈ R

s
+ : ‖β‖1 =

s∑

j=1

|βj| ≤ 1

}
. (2.4)

Since∆1 bounds‖β‖1, we also refer to MKL using∆1 as theL1 regularized MKL, orL1-MKL.

The key advantage of using∆1 is that it results in a sparse solution forβ, leading to the elimination

of irrelevant kernels and consequentially an improvement in computational efficiency as well as

robustness in classification.

2.3.1 Multiple Kernel Learning and Group Lasso

Lasso (least absolute shrinkage and selection operator), regression withL1 regularization, is a

popular technique that performs feature selection and shrinkage [82]. Shrinkage in this context

means producing sparse solutions, since theL1-norm regularization forces some of the covariates

to shrink to zero. An extension of the lasso technique, in which theL1-norm is replaced by a block

L1-norm, is called the group lasso. In group lasso the covariates are assumed to be clustered and

the absolute values of each group’s Euclidean norm are addedwhen constructing the regularizer

term. Therefore, the shrinkage is forced at the group level,meaning that all covariates within a

24

group are forced to be zero altogether.

Let each training instancexi ∈ R
d have a block structure withm blocks, such thatxi =

(xi1,xi2, . . . ,xim), wherexik ∈ R
dk , k = 1, 2, . . . , m and

∑m
k=1 dk = d. The group lasso can be

formulated as the optimization problem in Eq. (2.5),

min
w∈Rd,b∈R

C

n∑

i=1

ℓ((xi, yi);w) +

m∑

k=1

λk||wk||, (2.5)

wherew is a linear classifier,b is a bias term,C is a constant, andλk, k = 1, . . . , m are positive

weights. Square of the blockL1-norm,(
∑m

k=1 λk||wk||)2, can also be used as an alternative group

lasso regularizer and would give the same path of solutions [35,73].

The group lasso formulation with the squared blockL1-norm, can be extended to nonlinear case

by using functions and reproducing kernel Hilbert norms instead of linear predictors and Euclidean

norms as expressed in Eq.(2.6),

min
{fk}

m
k=1∈

1

2
(

m∑

k=1

||fk||Hk
)2 + C

n∑

i=1

ℓ(yi
m∑

k=1

fk(x
i)), (2.6)

whereHk is thek-th Reproducing Kernel Hilbert Space (RKHS). Note that thisformulation,

which learns a sparse combination of functions, enables using an infinite dimensional space for

each group. By following [46, 73], it is possible to show thatthis formulation is equivalent to

learning a convex combination of kernel functions, each corresponding to one group and endows

the corresponding RKHS. To prove this connection, we will use an alternative MKL formulation

that is given by Eq. (2.7).

min
λ∈Rm

+ ,
∑

k λk=1
min

{fk∈Hk}
m
k=1

1

2

m∑

k=1

λk||fk||2Hk
+ C

n∑

i=1

ℓ(

m∑

k=1

yiλkfk(x
i)). (2.7)

We provide the proof of equivalence between Eqs. (2.2) and (2.7) in the Appendix.

25

Replacingλkfk with f̃k, we rewrite Eq. (2.7) as Eq. (2.8).

min
λ∈Rm

+ ,
∑

k λk=1
min

{f̃k∈Hk}
m
k=1

1

2

m∑

k=1

1

λk
||f̃k||2Hk

+ C

n∑

i=1

ℓ(

m∑

k=1

yif̃k(x
i)). (2.8)

It is straightforward to show that the expression in Eq. (2.9) is the minimizer of Eq. (2.8),

λk =
||f̃k||Hk∑m
k=1 ||f̃k||Hk

. (2.9)

Substituting the expression in Eq. (2.9) into Eq. (2.8) leads to the following optimization prob-

lem,

min
{fk}

m
k=1∈

1

2
(

m∑

k=1

||fk||Hk
)2 + C

n∑

i=1

ℓ(yi
m∑

j=1

fk(x
i)), (2.10)

which is the same as Eq. (2.10), proving the equivalance between MKL and group lasso.

2.3.2 Regularization in MKL

The robustness ofL1-MKL is verified by the analysis in [58], which states that theadditional

generalization error caused by combining multiple kernelsisO(
√
log s/n) when using∆1 as the

domain forβ, implying thatL1-MKL is robust to the number of kernels as long as the number

of training examples is not too small. The advantage ofL1-MKL is further supported by the

equivalence betweenL1-MKL and feature selection using group Lasso [73]. Since group Lasso is

proved to be effective in identifying the groups of irrelevant features,L1-MKL is expected to be

resilient to weak kernels.

Despite the advantages ofL1-MKL, it was reported in [50] that sparse solutions generated

by L1-MKL might result in information loss and consequentially suboptimal performance. As a

result,Lp regularized MKL (Lp-MKL), with p > 1, was proposed in [56, 61] in order to obtain a

26

smooth kernel combination, with the following definition for domain∆

∆p =
{
β ∈ R

s
+ : ||β||p ≤ 1

}
. (2.11)

Among various choices ofLp-MKL (p > 1),L2-MKL is probably the most popular one [49,50,56].

Other smooth regularizers proposed for MKL include negative entropy (i.e.,
∑s

j=1 βj log βj) [48]

and Bregman divergence [70]. In addition, hybrid approaches have been proposed to combine

different regularizers for MKL [49,83,84].

Although many studies comparedL1 regularization to smooth regularizers for MKL, the results

are inconsistent. While some studies claimed thatL1 regularization yields better performance

for image categorization [40, 61], others show thatL1 regularization may result in suboptimal

performance due to the sparseness of the solutions [41, 46, 48, 60, 62]. In addition, some studies

reported that training anL1-MKL is significantly more efficient than training aL2-MKL [48],

while others claimed that the training times for both MKL techniques are comparable [50].

A resolution to these contradictions, as revealed by our empirical study, depends on the num-

ber of training examples and the number of kernels. In terms of classification accuracy, smooth

regularizers are more effective for MKL when the number of training examples is small. Given

a sufficiently large number of training examples, particularly when the number of base kernels is

large,L1 regularization is likely to outperform the smooth regularizers.

In terms of computation time, we found thatLp-MKL methods are generally more efficient

thanL1-MKL. This is because the objective function ofLp-MKL is smooth while the objective

function of L1-MKL is not 1. As a result,Lp-MKL enjoys a significantly faster convergence

rate(O(1/T 2)) thanL1-MKL (O(1/T)) according to [85], whereT is the number of iterations.

However, when the number of kernels is sufficiently large andkernel combination becomes the

dominant computational cost at each iteration,L1-MKL can be as efficient asLp-MKL because

1A function is smooth if its gradient is Lipschitz continuous

27

L1-MKL produces sparse solutions.

One critical question that remains to be answered is whetherMKL is more effective than simple

approaches for kernel combination, e.g., using the best single kernel (selected by cross validation)

or the average kernel method. Most studies show thatL1-MKL outperforms the best performing

kernel, although there are scenarios where kernel combination might not perform as well as the sin-

gle best performing kernel [50]. Regarding the comparison of MKL to the average kernel baseline,

the answer is far from conclusive (see Table 2.2). While somestudies show thatL1-MKL brings

significant improvement over the average kernel approach [46, 62, 68, 86], other studies claim the

opposite [40, 41, 48, 49]. As revealed by the empirical studypresented in Section 2.5, the answer

to this question depends on the experimental setup. When thenumber of training examples is

not sufficient to identify the strong kernels, MKL may not perform better than the average kernel

approach. But, with a large number of base kernels and a sufficiently large number of training

examples, MKL is very likely to outperform, or at least yieldsimilar performance as, the average

kernel technique.

2.4 Multiple Kernel Learning: Optimization Techniques

A large number of algorithms have been proposed to solve the optimization problems posed in

Eqs. (2.2) and (2.3). We can broadly classify them into two categories. The first group of ap-

proaches directly solve the primal problem in Eq. (2.2) or the dual problem in Eq. (2.3). We refer

to them as thedirect approaches. The methods of the second group solve the convex-concave opti-

mization problem in Eq. (2.3) by alternating between two steps, i.e., the step for updating the kernel

combination weights and the step for solving the SVM classifier for the given combination weights.

We refer to them as thewrapper approaches. Figure 2.1 summarizes different optimization meth-

ods developed for MKL. We note that due to the scalability issue, almost all MKL algorithms are

based on first order methods (i.e., iteratively updating thesolutions which use the gradient of the

28

objective function or the most violated constraint). We refer the readers to [52, 60, 87] for more

discussion about the equivalence or similarities among different MKL algorithms.

2.4.1 Direct Approaches for MKL

Lanckriet et al. [54] showed that the problem in Eq. (2.2) canbe cast into Semi-Definite Program-

ming (SDP) problem, i.e.,

min
z∈Rn,β∈∆,t≥0

t/2 + C
n∑

i=1

max(0, 1− yizi)

s. t.




K(β) z

z⊤ t


 � 0. (2.12)

Although general-purpose optimization tools such as SeDuMi [88] and Mosek [89] can be used

to directly solve the optimization problem in Eq. (2.12), they are computationally expensive and

are unable to handle more than a few hundred training examples.

Besides directly solving the primal problem, several algorithms have been developed to directly

solve the dual problem in Eq. (2.3). Bach et al. [35] proposedto solve the dual problem using

sequential minimal optimization (SMO) [90]. In [48], the authors applied the Nesterov’s method

to solve the optimization problem in Eq. (2.3). Although both approaches are significantly more

efficient than the direct approaches that solve the primal problem of MKL, they are generally less

efficient than the wrapper approaches [55].

2.4.1.1 A Sequential Minimum Optimization (SMO) based Approach for MKL

This approach is designed forLp-MKL. Instead of constraining‖β‖p ≤ 1, Vishwanathan et al.

proposed to solve a regularized version of MKL in [70], and converted it into the following opti-

mization problem,

29

max
α∈Q

1⊤α− 1

8λ

(
s∑

j=1

[
(α ◦ y)⊤Kj(α ◦ y)

]q
) 2

q

. (2.13)

It can be shown that givenα, the optimal solution forβ is given by

βj =
γj
2λ

(
s∑

k=1

(
(α ◦ y)⊤Kk(α ◦ y)

)q
) 1

q
− 1

p

(2.14)

whereγj =
(
(α ◦ y)⊤Kj(α ◦ y)

) q
p andq−1 + p−1 = 1. Since the objective given in Eq. (2.13) is

differentiable, a Sequential Minimum Optimization (SMO) approach [70] can be used.

2.4.2 Wrapper Approaches for MKL

The main advantage of the wrapper approaches is that they areable to effectively exploit the

off-the-shelf SVM solvers, making them, in general, significantly more efficient than the direct

approaches. Below, we describe several representative wrapper approaches for MKL, including

a semi-infinite programming (SIP) approach, a subgradient descent approach, an extended level

method, an alternating optimization approach, and a sequential minimum optimization (SMO)

based approach.

2.4.2.1 A Semi-infinite Programming Approach for MKL (MKL-S IP)

It was shown in [71] that the dual problem in Eq. (2.3) can be cast into the following SIP problem:

min
θ∈R,β∈∆

θ (2.15)

s. t.
s∑

j=1

βj{α⊤1− 1

2
(α ◦ y)⊤Kj(α ◦ y)} ≥ θ,

∀α ∈ Q

30

When the domain∆1 is used forβ, the problem in Eq. (2.15) is reduced to a Semi-Infinite Linear

Programming (SILP) problem. To solve Eq. (2.15), we first initialize the problem with a small

number of linear constraints. Then the SIP problem in Eq. (2.15) is solved by alternating between

two steps, i.e., (i) finding the optimalβ andθ with fixed constraints, and (ii) finding the unsatisfied

constraints with the largest violation under the fixedβ andθ and adding them to the system. Note

that in the second step, to find the most violated constraints, the following optimization problem,

which is an SVM problem for the combined kernelκ(·, ·;β), needs to be solved:

max
α∈Q

s∑

j=1

βjSj(α) = α⊤1− 1

2
(α ◦ y)⊤K(β)(α ◦ y).

2.4.2.2 Subgradient Descent Approaches for MKL (MKL-SD & MKL-MD)

A popular wrapper approach for MKL is SimpleMKL [53], which solves the dual problem in

Eq. (2.3) by a subgradient descent approach. The authors turn the convex concave optimization

problem in Eq. (2.3) into a minimization problemmin
β∈∆

J(β), where the objectiveJ(β) is defined

as

J(β) = max
α∈Q
−1
2
(α ◦ y)⊤K(β)(α ◦ y) + 1⊤α. (2.16)

Since the partial gradient ofJ(β) is given by∂βj
J(β) = 1− 1

2
(α∗ ◦y)⊤Kj(α

∗ ◦y), j = 1, . . . , s,

whereα∗ is an optimal solution to Eq. (2.16), following the subgradient descent algorithm, we

update the solutionβ by

β ← π∆ (β − η∂J(β))

whereη > 0 is the step size determined by a line search [53] andπ∆(β) projectsβ into the domain

∆. Similar approaches were proposed in [62,63].

A generalization of the subgradient descent method for MKL is a mirror descent method

(MKL-MD) [39]. Given a proximity functionw(β′,β), the current solutionβt and the subgra-

31

dient∂J(βt), the new solutionβt+1 is obtained by solving the following optimization problem

βt+1 = argmin
β∈∆

η(β − βt)⊤∂J(βt) + w(βt,β), (2.17)

whereη > 0 is the step size.

The main shortcoming of SimpleMKL arises from the high computational cost of line search.

It was indicated in [46] that many iterations may be needed bythe line search to determine the

optimal step size. Since each iteration of the line search requires solving a kernel SVM, it becomes

computationally expensive when the number of training examples is large. Another subtle issue of

SimpleMKL, as pointed out in [53], is that it may not convergeto the global optimum if the kernel

SVMs in the intermediate steps are not solved with high precision.

2.4.2.3 An Extended Level Method for MKL (MKL-Level)

An extended level method is proposed forL1-MKL in [52]. To solve the optimization problem

in Eq. (2.3), at each iteration, the level method first constructs a cutting plane modelgt(β) that

provides a lower bound for the objective functionJ(β). Given{βa}ta=1, the solutions obtained for

the firstt iterations, a cutting plane model is constructed asgt(β) = max1≤a≤t L(β,α
a), where

αa = argmaxα∈QL(β
a,α). Given the cutting plane model, the level method then constructs a

level setSt as

St = {β ∈ ∆1 : g
t(β) ≤ lt = λL̄t + (1− λ)Lt}, (2.18)

and obtain the new solutionβt+1 by projectingβt into St, whereL̄t andLt, the upper and lower

bounds for the optimal valueL(β∗,α∗), are given byLt = min
β∈∆

gt(β) andL̄t = min
1≤a≤t

L(βa,αa).

Compared to the subgradient-based approaches, the main advantage of the extended level

method is that it is able to exploit all the gradients computed in the past for generating new so-

lutions, leading to a faster convergence to the optimal solution.

32

2.4.2.4 An Alternating Optimization Method for MKL (MKL-GL)

This approach was proposed in [53,56] forL1-MKL. It is based on the equivalence between group

Lasso and MKL, and solves the following optimization problem for MKL

min

β ∈ ∆1

fj ∈ Hj

1

2

s∑

j=1

‖fj‖2Hj

βj
+ C

n∑

i=1

ℓ

(
yi

s∑

j=1

fj(x
i)

)
(2.19)

The solution requires alternating between two steps, i.e.,the step of optimizingfj under fixed

β and the step of optimizingβ given fixedfj . The first step is equivalent to solving a kernel SVM

with a combined kernelκ(·, ·;β), and the optimal solution in the second step is given by

βj =
||fj ||Hj∑s
k=1 ||fk||Hk

, j = 1, . . . , s. (2.20)

It was shown in [46] that the above approach can be extended toLp-MKL.

2.4.3 Online Learning Algorithms for MKL

Online learning is computationally efficient as it only needs to process one training example at each

iteration. In [91], the authors proposed several online learning algorithms for MKL that combine

the Perceptron algorithm [92] with the Hedge algorithm [93]. More specifically, the authors applied

the Perceptron algorithm to update the classifiers for the base kernels and the Hedge algorithm

to learn the combination weights. In [38], Jie et al. presented an online learning algorithm for

MKL, based on the follow-the-regularized-leader (FTRL) framework. One disadvantage of online

learning for MKL is that it usually yields suboptimal recognition performance compared to the

batch learning algorithms. As a result, we did not include online MKL in our empirical study.

33

2.4.4 Computational Efficiency

In this section, we review the conflicting statements in MKL literature about the computational ef-

ficiency of different optimization algorithms for MKL. First, there is no consensus on the efficiency

of the SIP based approach for MKL (MKL-SIP). While several studies show a slow convergence

of MKL-SIP [52,53,68,70], it was stated in [87] that only a few iterations would suffice when the

number of relevant kernels is small. According to our empirical study, the SIP based approach can

converge in a few iterations forLp-MKL. On the other hand, MKL-SIP takes many more iterations

to converge forL1-MKL.

Second, several studies evaluated the training time of SimpleMKL in comparison to the other

approaches for MKL, but with different conclusions. In [46]MKL-SIP was found to be signifi-

cantly slower than SimpleMKL while the studies in [51,52] reported the opposite.

The main reason behind the conflicting conclusions is that the size of test bed (i.e. the number

of training examples and the number of base kernels) varies significantly from one study to another

(Table 2.2). When the number of kernels and the number of training examples are large, calculation

and combination of the base kernels take a significant amountof the computational load, while

for small data sets, the computational efficiency is mostly decided by the iteration complexity

of algorithms. In addition, implementation details, including the choice of stopping criteria and

programming tricks for calculating the combined kernel matrix, can also affect the running time.

Our empirical study for image categorization showed that SimpleMKL is less efficient than

MKL-SIP. Although SimpleMKL requires a smaller number of iterations, it takes significantly

longer time to finish one iteration compared to the other approaches for MKL, due to the high

computational cost of the line search. Overall, we observedthat MKL-SIP is more efficient than

the other wrapper optimization techniques for MKL whereas MKL-SMO is the fastest method for

solvingLp-MKL.

34

2.5 Experiments

Our goal is to evaluate the classification performance of different MKL formulations and the ef-

ficiency of different optimization techniques for MKL. We focus on MKL algorithms for binary

classification, and apply the one-vs-all strategy to convert a multi-label learning problem into a

set of binary classification problems. Among various formulations for MKL, we only evaluate

algorithms forL1 andLp regularized MKL. As stated earlier, we do not consider (i) online MKL

algorithms due to their suboptimal performance and (ii) nonlinear MKL algorithms due to their

high computational costs.

The first objective of this empirical study is to compareL1-MKL algorithms to the two simple

baselines of kernel combination mentioned in Section 2.2.1, i.e., the single best performing kernel

and the average kernel approach. As already mentioned in Section 2.2.1, there are contradictory

statements from different studies regarding the comparison of MKL algorithms to these two base-

lines. The goal of our empirical study is to examine and identify the factors that may contribute

to the conflicting statements. The factors we consider here include (i) the number of training ex-

amples and (ii) the number of base kernels. The second objective of this study is to evaluate the

classification performance of different MKL formulations for image categorization. In particular,

we will compareL1-MKL to Lp-MKL with p = 2 andp = 4. The final objective of this study is to

evaluate the computational efficiency of different optimization algorithms for MKL. To this end,

we choose seven representative MKL algorithms in our study (See Section 2.5.2).

2.5.1 Data sets, Features and Kernels

Three benchmark data sets for image categorization are usedin our study: Caltech 101 [3], Pascal

VOC 2007 [94], and a subset of ImageNet (see Appendix A). All the experiments conducted in this

study are repeated five times, each with an independent random partition of training and testing

data. Average classification accuracies along with the associated standard deviation are reported.

35

The Caltech 101:To obtain the full spectrum of classification performance for MKL, we vary

the number of training examples per class (10, 20, 30). We construct48 base kernels (Table 2.3) for

the Caltech 101 data set:39 of them are built by following the procedure in [43] and the remaining9

are constructed by following [69]. For all the feature sets except the one that is based on geometric

blur, RBF kernel withχ2 distance is used as the kernel function [33]. For the geometric blur

feature, RBF kernel with the average distance of the nearestdescriptor pairs between two images

is used [69].

Table 2.3: Description of the 48 kernels built for the Caltech 101 data set.

Kernel Description Color # levels
indices Space for SPK

1-3 LBP [95] Gray 3
4 LBP (combined histogram) Gray 3

5-8 BoW with dense-SIFT (300 bins) HSV 4
9-12 BoW with dense-SIFT (1000 bins) Gray 4
13-16 BoW with dense-SIFT (1000 bins) HSV 4
17-18 SIFT on 100 sub-windows [40] Gray-HSV 1
19-22 BoW with dense-SIFT (300 bins) Gray 4
23-26 Canny edge detector + histogram of Gray 4

unoriented gradient feature (40 bins)
27-30 Canny edge detector + histogram of Gray 4

oriented gradient feature (40 bins) [96]
31,34, Product of kernels:{20 to 23}, 1
33,34 {24 to 27}, {16 to 19}, and{4 to 7}

35 V1S+ feature [97] Gray 1
36-38 Region covariance [98] Gray 3

39 Product of kernels 4 to 7 1
40 Geometric blur [99] Gray 1

41-43 BoW with dense-SIFT (300 bins) Gray 4
44-46 BoW with dense-SIFT (300 bins) HSV 4
47-48 BoW (300 visual words) [100] Gray 2

with self-similarity features

The Pascal VOC 2007:Similar to the Caltech 101 data set, we vary the number of training

examples, by randomly selecting1%, 25%, 50%, and75% of images to form the training set. Due

36

to the different characteristics of the two data sets, we choose a different set of image features

for VOC 2007, suggested by the participants of the VOC Challenges. In particular, for the MKL

experiments, we follow [101] and create15 sets of features: (i) GIST features [102]; (ii) six sets of

color features generated by two different spatial pooling layouts [103] (1× 1 and3× 1), and three

types of color histograms (i.e. RGB, LAB, and HSV). (iii) eight sets of local features generated

by two key-point detection methods (i.e., dense sampling and Harris-Laplacian [104]), two spatial

layouts (1 × 1 and3 × 1), and two local descriptors (SIFT and robust hue descriptor[105]). An

RBF kernel function withχ2 distance is applied to each of the15 feature sets.

A Subset of ImageNet:Following the protocol in [106], we use81, 738 images from ImageNet

that belong to the 18 (out of 20) categories specified in VOC 2007. This data set is significantly

larger than Caltech 101 and VOC 2007, making it possible to examine the scalability of MKL

methods for image categorization. Both dense sampling and Harris-Laplacian [104] are used for

key-point detection, and SIFT is used as the local descriptor. We create four BoW models by

setting the vocabulary size to be1, 000 and applying two descriptor pooling techniques (i.e. max-

pooling and mean-pooling) for two types of spatial partitioning (i.e.1×1 and2×2). We also create

six color histograms by applying two pooling techniques (i.e. max-pooling and mean-pooling) to

three different color spaces, namely RGB, LAB and HSV. In total, ten kernels are created for the

ImageNet data set. We note that the number of base kernels we construct for the ImageNet data

set is significantly smaller than the other two data sets because of the significantly larger number

of images in the ImageNet data set. The common practice for large scale data sets has been to use

a small number of features/kernels for scalability concerns [106].

2.5.2 MKL Methods Used in Comparison

We divide the MKL baselines into two groups. The first group consists of the two simple base-

lines for kernel combination, i.e., the average kernel method (AVG) and the best performing kernel

selected by the cross validation method (Single). The second group includes seven MKL meth-

37

ods designed for binary classification. These are: GMKL [63], SimpleMKL [53], VSKL [64],

MKL-GL [46], MKL-Level [52], MKL-SIP [56], MKL-SMO [70]. The difference between the

two subgradient descent based methods, SimpleMKL and GMKL,is that SimpleMKL performs

a golden section search to find the optimal step size while GMKL applies a simple backtracking

method.

In addition to different optimization algorithms, we useL1-MKL and Lp-MKL with p = 2

andp = 4. For Lp-MKL, we apply MKL-GL, MKL-SIP, and MKL-SMO to solve the related

optimization problems.

2.5.3 Implementation

To make a fair comparison, we followed [46] and implemented all wrapper MKL methods within

the framework of SimpleMKL using MATLAB, where we used LIBSVM [107] as the SVM solver.

For MKL-SIP and MKL-Level, CVX [108] and MOSEK [89] were usedto solve the related opti-

mization problems, as suggested in [52].

The same stopping criteria were applied to all baselines. The algorithms were stopped when

one of the following criteria is satisfied: (i) the maximum number of iterations (specified as 40 for

wrapper methods) is reached, (ii) the difference in the kernel coefficientsβ between two consecu-

tive iterations is small (i.e.,||βt − βt−1||∞ < 10−4), (iii) the duality gap drops below a threshold

value (10−3).

The regularization parameterC was chosen with a grid search over{10−2, 10−1, . . . , 104}. The

bandwidth of RBF kernels was set to the average pair-wiseχ2 distance of image features.

In our empirical study, all the feature vectors were normalized to have the unitL2 norm before

they are used to construct the base kernels. According to [109] and [56], kernel normalization can

have a significant impact on the performance of MKL. Various normalization methods have been

proposed, including unit trace normalization [109], normalization with respect to the variance of

kernel features [56], and spherical normalization [56]. However, we did not observed significant

38

differences in the classification accuracy when applied theabove normalization techniques.

The experiments with varied numbers of kernels on the ImageNet data set were performed on a

cluster of Sun Fire X4600 M2 nodes, each with 256 GB of RAM and 32 AMD Opteron cores. All

other experiments were run on a different cluster, where each node has two four-core Intel Xeon

E5620s at 2.4 GHz with 24 GB of RAM. We pre-computed all the kernel matrices and loaded

them into the memory. This allowed us to avoid re-computing and loading kernel matrices at each

iteration of optimization.

2.5.4 Classification Performance of MKL

We evaluate the classification performance by the category based mean average precision (MAP)

score. For convenience, we report normalized MAP scores (percentage).

2.5.4.1 Experiment 1: Classification Performance

Table 2.4 summarizes the classification results for the Caltech 101 data set with10, 20, and30

training examples per class. First, we observe that both theMKL algorithms and the average

kernel approach (AVG) outperform the best base kernel (Single). This is consistent with most

of the previous studies [5, 69]. Compared to the average kernel approach, we observe that the

L1-MKL algorithms have the worst performance when the number of training examples per class

is small (n = 10, 20), but significantly outperform the average kernel approachwhenn = 30.

This result explains the seemingly contradictory conclusions reported in the literature. When the

number of training examples is insufficient to determine theappropriate kernel combination, it is

better to assign all the base kernels equal weights. MKL becomes effective only when the number

of training examples is large enough to determine the optimal kernel combination.

Next, we compare the performance ofL1-MKL to that ofLp-MKLs. We observe thatL1-MKL

performs worse thanLp-MKLs (p = 2, 4) when the number of training examples is small (i.e.,

n = 10, 20), but outperformsLp-MKLs whenn = 30. This result again explains why conflicting

39

Table 2.4: Classification results (MAP) for the Caltech 101 data set. We report the average values
over five random splits and the associated standard deviation.

Number of training instances per class
Baseline Norm 10 20 30
Single 45.3± 0.9 55.2± 0.9 70.6± 0.9

Average 59.0± 0.7 69.7± 0.6 77.2± 0.5
GMKL p = 1 54.2± 1.1 64.1± 0.7 84.8± 0.7

SimpleMKL p = 1 53.6± 0.9 63.4± 0.6 84.6± 0.5
VSKL p = 1 53.9± 0.9 64.0± 0.6 85.3± 0.5

level-MKL p = 1 54.7± 1.0 63.4± 0.6 84.4± 0.4
MKL-GL p = 1 54.3± 1.0 64.7± 0.7 85.4± 0.4
MKL-GL p = 2 60.3± 0.6 70.7± 1.0 80.0± 0.6
MKL-GL p = 4 60.1± 0.7 70.7± 1.0 80.0± 0.6
MKL-SIP p = 1 53.8± 0.6 63.8± 0.9 83.9± 0.7
MKL-SIP p = 2 60.1± 0.6 70.7± 1.0 79.1± 0.6
MKL-SIP p = 4 59.4± 0.6 70.0± 1.0 77.5± 0.5

MKL-SMO p = 2 59.8± 0.5 69.7.0± 0.9 79.3± 0.9
MKL-SMO p = 4 59.6± 0.4 69.6± 0.7 79.0± 0.5

results were observed in different MKL studies in the literature. Compared toLp-MKL, L1-MKL

gives a sparser solution for the kernel combination weights, leading to the elimination of irrelevant

kernels. When the number of training examples is small, it isdifficult to determine the subset of

kernels that are irrelevant to a given task. As a result, the sparse solution obtained byL1-MKL

may be inaccurate, leading to a relatively lower classification accuracy thanLp-MKL. L1-MKL

becomes advantageous when the number of training examples is large enough to determine the

subset of relevant kernels.

We observe that there is no significant difference in the classification performance between dif-

ferent MKL optimization techniques. This is not surprisingsince they solve the same optimization

problem. It is interesting to note that although different optimization algorithms converge to the

same solution, they could behave very differently over iterations. In Figures 2.2, 2.3, and 2.4, we

show how the classification performances of theL1-MKL algorithms change over the iterations for

three classes from Caltech101 data set. We observe that,

• SimpleMKL converges in a smaller number of iterations compared to the otherL1-MKL

40

Table 2.5: Classification results (MAP) for the VOC 2007 dataset. We report the average values
over five random splits and the associated standard deviation.

Percentage of the samples used for training
baseline 1% 25% 50% 75%
Single 23.4± 0.1 44.7± 0.8 48.6± 0.8 50.0± 0.8

Average 21.9± 0.5 48.2± 0.8 54.5± 0.8 57.5± 0.8
L1-MKL 23.5± 0.7 51.9± 0.4 57.4± 0.4 59.9± 0.9
L2-MKL 22.7± 0.4 49.8± 0.2 57.3± 0.2 60.6± 0.5

algorithms. Note that convergence in a smaller number of iterations does not necessarily

mean a shorter training time, as SimpleMKL takes significantly longer time to finish one

iteration.

• The classification performance of MKL-SIP fluctuates significantly over iterations. This

is due to the greedy nature of MKL-SIP as it selects the most violated constraints at each

iteration of optimization.

For simplicity, from now on, unless specified, we will only report the results of one representative

method for bothL1-MKL (Level-MKL) and Lp-MKL (MKL-SIP, p = 2).

Table 2.5 shows the classification results for the VOC 2007 data set with1%, 25%, 50%, and

75% of images used for training. These results confirm the conclusions drawn from the Caltech

101 data set: MKL methods do not outperform the simple baseline (i.e., the best single kernel)

when the number of training examples is small (e.g.,1%); the advantage of MKL is clear only

when the number of training examples is sufficiently large.

Finally, we compare in Table 2.6 the performance of MKL to that of the state-of-the-art meth-

ods for image categorization on the Caltech 101 and VOC 2007 data sets. For Caltech 101, we use

the standard splitting formed by randomly selecting30 training examples for each class, and for

VOC 2007, we use the default partitioning. We observe that theL1-MKL achieves similar classifi-

cation performance as the state-of-the-art approaches forthe Caltech 101 data set. However, for the

VOC 2007 data set, the performance of MKL is significantly worse than the best ones [112, 113].

41

Table 2.6: Comparison with the state-of-the-art performance for object classification on the Caltech
101 (measured by classification accuracy) and VOC 2007 data sets (measured by MAP).

Caltech 101(30 per class)
This paper state-of-the-art

AVG : 77.09 [5]: 84.3
L1-MKL : 79.93 [110]: 81.9
L2-MKL : 77.94 [111]: 80.0

VOC 2007
This paper state-of-the-art

AVG: 55.4 [112]: 73.0
L1-MKL: 57.2 [113]: 63.5
L2-MKL: 57.4 [114]: 61.7

The gap in the classification performance is because object detection (localization) methods are

utilized in [112, 113] to boost the recognition accuracy forthe VOC 2007 data set but not in this

dissertation. We also note that the authors of [114] get a better result by using only one strong

and well-designed (Fisher vector) representation compared to the MKL results we report. Inter-

ested readers are referred to [114], which provides an empirical study that shows how the different

steps of the BoW model can affect the classification results.Note that the performance of MKL

techniques can be improved further by using the different and stronger options discussed in [114].

2.5.4.2 Experiment 2: Number of Kernels vs. Classification Accuracy

In this experiment, we examine the performance of MKL methods with increasing numbers of

base kernels. To this end, we rank the kernels in the descending order of their weights computed

by L1-MKL, and measure the performance of MKL and baseline methods by adding kernels se-

quentially. The number of kernels is varied from 2 to 48 for the Caltech 101 data set and from 2

to 15 for the VOC 2007 data set. Figures 2.5 and 2.6 summarizesthe classification performance

of MKL and baseline methods as the number of kernels is increased. We observe that when the

number of kernels is small, all the methods are able to improve their classification performance

with increasing number of kernels. But, the performance of average kernel andL2-MKL starts to

42

drop as more and more weak kernels (i.e., kernels with small weights computed byL1-MKL) are

added. In contrast, we observe a performance saturation forL1-MKL after five to ten kernels have

been added. We thus conclude thatL1-MKL is more resilient to the introduction of weak kernels

than the other kernel combination methods.

2.5.5 Computational Efficiency

To evaluate the learning efficiency of MKL algorithms, we report training time for the experiments

with different numbers of training examples and base kernels. Many studies on the computational

efficiency of MKL algorithms focused on the convergence rate(i.e., number of iterations) [52],

which is not necessarily the deciding factor in determiningthe training time. For instance, ac-

cording to Figure 2.2, although SimpleMKL requires a smaller number of iterations to obtain the

optimal solution than the otherL1-MKL approaches, it is significantly slower in terms of running

time than the other algorithms because of its high computational cost per iteration. Thus, besides

the training time, we also examine the sparseness of the kernel coefficients, which can significantly

affect the efficiency of both training and testing.

2.5.5.1 Experiment 4: Evaluation of Training Time

We first examine how the number of training examples affects the training time of the wrapper

methods. Tables 2.8 and 2.9 summarize the training time of different MKL algorithms for the

Caltech 101 and VOC 2007 data sets, respectively. We also include in the table the number of

iterations and the time for computing the combined kernel matrices. We did not include the time

for computing kernel matrices because it is shared by all themethods. We draw the following

observations from Tables 2.8 and 2.9:

• TheLp-MKL methods require a considerably smaller number of iterations than theL1-MKL

methods, indicating they are computationally more efficient. This is not surprising because

43

Lp-MKL employs a smooth objective function that leads to more efficient optimization [85].

• Since a majority of the training times is spent on computing combined kernel matrices, the

time difference between differentL1-MKL methods is mainly due to the sparseness of their

intermediate solutions. Since MKL-SIP yields sparse solutions throughout its optimization

process, it is the most efficient wrapper algorithm for MKL. Although SimpleMKL con-

verges in a smaller number of iterations than the otherL1-MKL methods, it is not as efficient

as the MKL-SIP method because it does not generate sparse intermediate solutions.

In the second set of experiments, we evaluate the training time as a function of the number of

base kernels. For both the Caltech 101 and VOC 2007 data sets,we choose15 kernels with the best

classification accuracy, and create15, 30, and60 kernels by simply varying the kernel bandwidth

(i.e., from1 times, to1.5 and2 times the averageχ2 distance). The number of training examples

is set to be30 per class for Caltech 101 and50% of images are used for training for VOC 2007.

Tables 2.10 and 2.11 summarize for different MKL algorithms, the training time, the number of

iterations, and the time for computing the combined kernel matrices. Overall, we observe that

Lp-MKL is still more efficient thanL1-MKL, even when the number of base kernels is large. But

the gap in the training time betweenL1-MKL and Lp-MKL becomes significantly smaller for the

MKL-SIP method when the number of combined kernels is large.In fact, for the Caltech 101 data

set with108 base kernels, MKL-SIP forL1-MKL is significantly more efficient than MKL-SIP for

Lp-MKL (p > 1). This is because of the sparse solution obtained by MKL-SIPforL1-MKL, which

leads to less time on computing the combined kernels than MKL-SIP forLp-MKL, as indicated in

Tables 2.10 and 2.11.

As discussed in Section 2.5.3, we cannot compare MKL-SMO directly with the other baselines

in terms of training times since they are not coded in the sameplatform. Instead, we use the code

provided by the authors of MKL-SMO [70] to compare it to the C++ implementation of MKL-SIP,

the fastest wrapper approach, which is available within theShogun package [115]. We fixp = 2,

44

Table 2.7: Comparison of training time between MKL-SMO and MKL-SIP

Number of training samples
Caltech 101 n = 10 n = 20 n = 30

MKL-SIP 3.6±0.2 6.5± 0.3 11.8± 0.7
MKL-SMO 0.2±0.1 2.3± 0.2 3.8± 0.5

VOC 2007 25% 50% 75%
MKL-SIP 15.5± 1.6 145.6± 3.9 360.7± 8.4

MKL-SMO 3.5± 0.7 14.2± 1.8 33.1± 3.0

Number of base kernels
Caltech 101 K = 48 K = 63 K = 108

MKL-SIP 6.5± 0.3 13.6± 2.9 19.8± 3.4
MKL-SMO 2.3± 0.2 3.2± 0.8 6.3± 1.0

VOC 2007 K = 15 K = 30 K = 75
MKL-SIP 145.6± 3.9 542.0± 32.8 1412.1± 63.4

MKL-SMO 14.2± 1.8 29.1± 2.8 77.8± 10.3

vary the number of training samples for a fixed number of kernels (48 for Caltech 101 and 15

for VOC 2007) and the number of base kernels for a fixed number of samples (2,040 for Caltech

101 and 5,011 for VOC 2007). Table 2.7 shows that MKL-SMO is significantly faster than MKL-

SIP on both data sets, demonstrating the advantage of a well-designed direct MKL optimization

method against the wrapper approaches forLp-MKL. We finally note that MKL-SMO cannot be

applied toL1-MKL which often demonstrates better performance with a modest number of training

examples.

2.5.5.2 Experiment 5: Evaluation of Sparseness

We evaluate the sparseness of MKL algorithms by examining the sparsity of the solution for kernel

combination coefficients. In Figures 2.7 and 2.8, we show howthe size of active kernel set (i.e.,

kernels with non-zero combination weights) changes over the iterations for MKL-SIP with three

types of regularizers:L1-MKL, L2-MKL and L4-MKL. Note that it is difficult to distinguish the

45

results ofL2-MKL andL4-MKL from each other as they are identical.

As expected,L1-MKL method produces significantly sparser solutions thanLp-MKL. As a

result, althoughLp-MKL is more efficient for training because it takes a smallernumber of itera-

tions to trainLp-MKL thanL1-MKL, we expectL1-MKL to be computationally more efficient for

testing thanLp-MKL as most of the base kernels are eliminated and need not tobe considered.

2.5.6 Large-scale MKL on ImageNet

To evaluate the scalability of MKL, we perform experiments on the subset of ImageNet consisting

of 81, 738 images. Figure 3.10 shows the classification performance ofMKL and baseline methods

with the number of training images per class varied in powersof 2 (21, 22, ..., 211). Similar to the

experimental results for Caltech 101 and VOC 2007, we observed that the difference betweenL1-

MKL and the average kernel method is significant only when thenumber of training examples per

class is sufficiently large (i.e.≥ 16). We also observed that the difference betweenL1-MKL and

the average kernel method starts to diminish when the numberof training examples is increased

over 256 per class. We believe that the diminishing gap between MKL and the average kernel

method with increasing number of training examples can be attributed to the fact that all the10

base kernels constructed for the ImageNet data set are strong kernels and provide informative

features for image categorization. This is reflected in the kernel combination weights learned by

the MKL method: most of the base kernels received significantnon-zero weights.

Figure 2.10 shows the running time of MKL with a varied numberof training examples. Sim-

ilar to the experimental results for Caltech 101 and VOC 2007, we observe thatL2-MKL is sig-

nificantly more efficient thanL1-MKL. We also observe that the running time for bothL1-MKL

andL2-MKL increases almost quadratically in the size of trainingdata, making it difficult to scale

to millions of training examples. We thus conclude that although MKL is effective in combining

multiple image representations for image categorization,scalability of MKL algorithms is an open

problem.

46

2.6 Summary and Conclusions

In this chapter, we have reviewed different formulations ofmultiple kernel learning and related op-

timization algorithms, with an emphasis on the applicationto image categorization. We highlighted

the conflicting conclusions drawn by published studies on the empirical performance of different

MKL algorithms. We have attempted to resolve these inconsistent conclusions by addressing the

experimental setups in the published studies. Through our extensive experiments on three standard

data sets used for image categorization, we are able to make the following conclusions:

• Overall, MKL is significantly more effective than the simplebaselines for kernel combi-

nation (i.e., selecting the best kernel by cross validationor taking the average of multiple

kernels), particularly when there are a large number of basekernels available, and the num-

ber of training examples is sufficiently large. However, MKLis not recommended for image

categorization when the base kernels are strong, and the number of training examples are

sufficient enough to learn a reliable prediction for each base kernel.

• Compared toLp-MKL, L1-MKL is overall more effective for image categorization andis

significantly more robust to the weaker kernels with low classification performance.

• MKL-SMO, which is not a wrapper method but a direct optimization technique, is the fastest

MKL baseline. However, it does not address theL1-MKL formulation.

• Among various algorithms proposed forL1-MKL, MKL-SIP is overall the most efficient

for image categorization, because it produces sparse intermediate solutions throughout the

optimization process.

• Lp-MKL is significantly more efficient thanL1-MKL because it converges in a significantly

smaller number of iterations. But, neitherL1-MKL nor Lp-MKL scale well to very large

data sets.

47

• L1-MKL can be more efficient thanLp-MKL in terms of prediction time. This is because

L1-MKL generates sparse solutions and, therefore, will only use a small portion of the base

kernels for prediction.

In summary, we conclude that MKL is an extremely useful tool for image categorization be-

cause it provides a principled way to combine the strengths of different image representations.

Although MKL methods have demonstrated significant successfor image categorization, there is

still room for improvement. One of the most important directions for improving the accuracy of

MKL methods is developing MKL algorithms that addresses theneed of multi-label data, such

as image categorization data sets. To this end, we propose a multiple kernel multi-label ranking

method in Chapter 6. It is also very critical to improve the overall computational efficiency of

MKL. The existing algorithms for MKL do not scale to large data sets with millions of images and

thousands of classes. In the next chapter, we discuss our efforts on reducing the computational

load of MKL for large-scale multi-label data sets.

48

Table 2.8: Total training time (seconds), number of iterations, and total time spent on combining
the base kernels (seconds) for different MKL algorithms vs.number of training examples for
Caltech 101.

10 training instances per class
baseline training #iter KerComb

GMKL-L1 34.6± 8.6 38.4± 2.0 27.9± 7.7
SimpleMKL-L1 55.7± 25.3 17.2± 6.8 46.1± 22.0

VSKL-L1 14.1± 2.3 38.3± 4.3 11.1± 1.7
MKL-GL-L1 21.9± 0.8 40.0± 0.0 19.5± 0.8
MKL-GL-L2 5.3± 0.6 8.8± 1.0 4.8± 0.6
MKL-GL-L4 3.5± 0.2 5.9± 0.4 3.2± 0.2

MKL-Level-L1 8.0± 2.3 33.0± 9.5 5.5± 1.4
MKL-SIP-L1 5.4± 0.9 39.4± 2.6 2.1± 0.3
MKL-SIP-L2 3.8±1.2 5.6±0.9 2.4±1.1
MKL-SIP-L4 3.3±0.6 4.4±0.5 1.8±0.6

30 training instances per class
baseline training #iter KerComb

GMKL-L1 256.7± 47.7 38.6± 1.8 212.5± 42.3
SimpleMKL-L1 585.6± 204.7 19.0± 7.5 494.4± 174.7

VSKL-L1 121.9± 22.4 36.6± 5.1 103.5± 17.7
MKL-GL-L1 197.1± 9.1 39.8± 1.0 178.3± 8.5
MKL-GL-L2 50.8± 5.6 9.3± 1.0 46.3± 5.2
MKL-GL-L4 32.5± 1.6 5.9± 0.3 29.6± 1.5

MKL-Level-L1 63.3± 22.1 27.5± 11.1 47.9± 14.9
MKL-SIP-L1 44.3± 6.1 39.7± 2.9 23.2± 2.7
MKL-SIP-L2 30.4±4.2 6.3±1.0 25.2±3.9
MKL-SIP-L4 22.6±2.6 4.7±0.5 18.2±2.1

49

MKL
algorithms

online methodsbatch methods

wrapper methods

direct methods

semi-infinite programming
(SIP)

mirror descent (MD)

level methodsubgradient descent (SD)

alternating update methods

(+) Scales to number of
samples

(-) May require many
iterations to convergence

(-) Might not scale well to
the number of kernels

(+) Fast convergence

(-) High computational
cost per iteration

(-) May not converge to
global optimum

(+) Exploits all gradients
from previous steps and
regularizes the solution via
projection to a level set.

(-) Parameter selection for
level set construction

(+) Generalizes the
subgradient descent

(-) High computational cost
at each iteration

(+) Have closed-form
solution

(-) Solutions obtained may
be unstable

Dual methods

(+) Optimize SVM and MKL
parameters tigether

(-) Not efficient for L1-MKL

Primal methods

Figure 2.1: A summary of representative MKL optimization schemes

50

0 10 20 30 40 50 60 70

35

40

45

50

55

60

65

70

number of iterations

M
A

P
 (

%
)

VSKL
GMKL
SimpleMKL
MKL−SILP
MKL−GL
MKL−Level

Figure 2.2: Mean average precision (MAP) scores of different L1-MKL methods vs. number of
iterations for theanchorclass of the Caltech101 data set.

0 10 20 30 40 50 60 70
86

88

90

92

94

96

98

100

number of iterations

M
A

P
 (

%
)

VSKL
GMKL
SimpleMKL
MKL−SILP
MKL−GL
MKL−Level

Figure 2.3: Mean average precision (MAP) scores of different L1-MKL methods vs. number of
iterations for thebonsaiclass of the Caltech101 data set.

51

0 10 20 30 40 50 60 70
80

82

84

86

88

90

92

94

96

number of iterations

M
A

P
 (

%
)

VSKL
GMKL
SimpleMKL
MKL−SILP
MKL−GL
MKL−Level

Figure 2.4: Mean average precision (MAP) scores of different L1-MKL methods vs. number of
iterations for thecameraclass of the Caltech101 data set.

5 10 15 20 25 30 35 40 45
0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

number of kernels

M
A

P

L

1
−MKL

L
2
−MKL

AVG

Figure 2.5: The change in MAP score with respect to the numberof base kernels for the Caltech
101 data set.

52

2 4 6 8 10 12 14
0.51

0.52

0.53

0.54

0.55

0.56

0.57

number of kernels

M
A

P

L
1
−MKL

L
2
−MKL

AVG

Figure 2.6: The change in MAP score with respect to the numberof base kernels for the VOC 2007
data set.

5 10 15 20 25 30
0

10

20

30

40

50

number of iterations

nu
m

be
r

of
 a

ct
iv

e
ke

rn
el

s

L
1
−MKL

L
2
−MKL

L
4
−MKL

Figure 2.7: Number of active kernels learned by the MKL-SIP algorithm vs. number of iterations
for the Caltech 101 data set. Note that it is difficult to distinguish the results ofL2-MKL and
L4-MKL from each other as they are identical.

53

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

number of iterations

nu
m

be
r

of
 a

ct
iv

e
ke

rn
el

s

L
1
−MKL

L
2
−MKL

L
4
−MKL

Figure 2.8: Number of active kernels learned by the MKL-SIP algorithm vs. number of iterations
for the VOC 2007 data set. Note that it is difficult to distinguish the results ofL2-MKL and L4-
MKL from each other as they are identical.

10
1

10
2

10
3

20

30

40

50

60

70

number of training samples per class

M
A

P
 (

%
)

L

1
−MKL

L
2
−MKL

AVG

Figure 2.9: Classification performance for different training set sizes for the ImageNet data set.

54

10
2

10
3

10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

total number of training samples

tr
ai

ni
ng

 ti
m

e
(s

ec
)

L

1
−MKL

L
2
−MKL

Figure 2.10: Training times forL1-MKL and L2-MKL on different training set sizes for the Ima-
geNet data set.

55

Table 2.9: Total training time (seconds), number of iterations, and total time spent on combining
the base kernels (seconds) for different MKL algorithms vs.number of training examples for the
VOC 2007 data set.

2, 500 training instances
baseline training #iter KerComb

GMKL-L1 117.6± 16.3 39.0± 0.0 67.4± 7.7
SimpleMKL-L1 175.1± 77.4 16.7± 7.3 112.9± 48.3

VSKL-L1 45.2± 6.1 37.0± 3.4 25.3± 2.2
MKL-GL-L1 62.6± 4.7 40.0± 0.0 43.5± 0.6
MKL-GL-L2 14.5± 1.3 9.3± 0.6 10.2± 0.7
MKL-GL-L4 8.0± 0.8 5.2± 0.4 5.6± 0.5

MKL-Level-L1 40.1± 10.8 35.0± 7.7 20.2± 4.0
MKL-SIP-L1 34.6± 6.8 39.9± 0.5 12.7± 1.4
MKL-SIP-L2 9.6±1.9 5.7±0.5 4.9±0.4
MKL-SIP-L4 7.1±1.1 4.0±0.0 3.5±0.1

7, 500 training instances
baseline training #iter KerComb

GMKL-L1 1133.2± 252.8 39.0± 0.0 646.9± 98.2
SimpleMKL-L1 1671.3± 919.1 16.8± 6.4 1019.7± 424.8

VSKL-L1 330.0± 49.2 29.9± 3.8 190.9± 22.8
MKL-GL-L1 549.2± 79.8 40.0± 0.0 373.8± 4.2
MKL-GL-L2 130.1± 17.7 9.5± 0.5 89.4± 6.1
MKL-GL-L4 74.9± 11.1 5.3± 0.5 51.2± 4.5

MKL-Level-L1 297.3± 95.2 31.1± 8.1 151.9± 31.0
MKL-SIP-L1 309.0± 94.5 40.0± 0.0 117.0± 6.4
MKL-SIP-L2 84.3±24.5 6.1±0.3 47.3±3.0
MKL-SIP-L4 56.4±14.7 4.1±0.3 31.5±2.2

56

Table 2.10: Total training time (seconds), number of iterations, and total time spent on combining
the base kernels (seconds) for different MKL algorithms vs.number of base kernels for the Caltech
101 data set.

63 base kernels
baseline training #iter KerComb

GMKL-L1 718.1± 169.8 38.8± 0.8 625.3± 152.9
SimpleMKL-L1 1255.2± 350.9 17.3± 6.5 1047.6± 285.8

VSKL-L1 398.1± 123.7 36.3± 5.2 345.6± 101.5
MKL-GL-L1 397.1± 30.0 39.8± 1.0 351.9± 26.7
MKL-GL-L2 118.8± 14.7 9.3± 1.0 108.5± 13.7
MKL-GL-L4 84.6± 5.8 6.0± 0.0 77.3± 4.8

MKL-Level-L1 204.1± 75.7 27.8± 10.4 167.2± 56.1
MKL-SIP-L1 147.8± 29.8 39.8± 2.4 85.3± 15.0
MKL-SIP-L2 114.7±36.7 7.9±0.7 102.7±33.6
MKL-SIP-L4 111.1±38.8 7.5±0.8 98.3±34.59

108 base kernels
baseline training #iter KerComb

GMKL-L1 1170.5± 208.7 38.9± 0.8 1049.2± 190.7
SimpleMKL-L1 2206.3± 580.1 17.2± 6.4 1960.3± 503.5

VSKL-L1 569.9± 160.3 35.6± 5.9 491.8± 131.2
MKL-GL-L1 604.6± 69.9 39.6± 1.6 546.6± 66.0
MKL-GL-L2 226.3± 24.8 9.5± 1.0 212.0± 23.6
MKL-GL-L4 169.1± 16.0 6.0± 0.1 158.2± 14.5

MKL-Level-L1 405.8± 152.7 29.5± 9.5 343.7± 121.3
MKL-SIP-L1 192.1± 41.3 39.9± 0.9 110.1± 18.1
MKL-SIP-L2 634.1±107.2 6.8±1.3 582.1±106.3
MKL-SIP-L4 407.2±80.2 4.6±0.6 368.4±67.9

57

Table 2.11: Total training time (seconds), number of iterations, and total time spent on combining
the base kernels (seconds) for different MKL algorithms vs.number of base kernels for the VOC
2007 data set.

30 base kernels
baseline training #iter KerComb

GMKL-L1 1816.8± 405.8 37.8± 5.4 1186.9± 270.4
SimpleMKL-L1 2335.3± 991.9 11.2± 7.1 1581.6± 626.4

VSKL-L1 880.2± 128.5 30.6± 3.8 525.5± 75.3
MKL-GL-L1 853.5± 206.1 40.0± 0.0 561.8± 107.3
MKL-GL-L2 282.4± 64.2 9.6± 0.5 218.2± 46.3
MKL-GL-L4 190.1± 23.9 6.0± 0.0 147.4± 11.0

MKL-Level-L1 665.4± 114.7 36.8± 5.1 404.7± 40.2
MKL-SIP-L1 460.0± 135.5 40.0± 0.0 170.6± 23.1
MKL-SIP-L2 240.8±62.5 8.7±1.6 154.5±43.5
MKL-SIP-L4 170.1±16.5 6.2±0.4 115.1±15.4

75 base kernels
baseline training #iter KerComb

GMKL-L1 3975.3± 890.0 34.2± 8.8 3072.5± 724.5
SimpleMKL-L1 3416.3± 1299.7 8.3± 7.8 2776.4± 885.7

VSKL-L1 1587.9± 238.8 29.4± 3.7 909.3± 122.2
MKL-GL-L1 1500.4± 239.4 40.0± 0.0 1043.8± 87.6
MKL-GL-L2 629.5± 84.0 9.8± 0.4 520.4± 47.7
MKL-GL-L4 346.2± 45.3 6.0± 0.0 286.2± 31.9

MKL-Level-L1 1136.8± 328.9 36.7± 3.1 702.2± 177.7
MKL-SIP-L1 686.8± 262.9 40.0± 0.0 228.5± 46.0
MKL-SIP-L2 413.9±258.1 3.8±1.7 302.2±135.7
MKL-SIP-L4 566.4±141.9 5.0±0 424.2±81.5

58

Chapter 3

Multi-label Multiple Kernel Learning by

Stochastic Approximation

3.1 Introduction

In Chapter 2, we provided a detailed review of MKL and a set of empirical analyses on image

categorization data sets to demonstrate the effectivenessof MKL. The focus of Chapter 2 was the

MKL methods for the binary classification problem, which constitutes the majority of the MKL

literature. The application of MKL to multi-labeled data, such as image categorization data, is

mostly limited to a use of one-vs-all framework for MKL, which has two main drawbacks. First,

one-vs-all framework requires training a MKL algorithm separately for each class. Considering

that there are thousands of training instances and hundredsof classes in recent image categoriza-

tion data sets, training a one-vs-all MKL solver would be computationally demanding. Second,

one-vs-all framework cannot exploit label correlations, since MKL solvers for each class are op-

erated independently, meaning that no interaction of information transfer is available. It has been

shown in many multi-label learning studies that learning independent classifiers for each class gives

suboptimal performance compared to direct approaches which consider all classes together in the

59

learning process. In this chapter, we present an efficient algorithm for multi-label multiple kernel

learning (ML-MKL). We assume that all the classes under consideration share the same combina-

tion of kernel functions, and the objective is to find the optimal kernel combination that benefits

all the classes. Although several algorithms have been developed for ML-MKL, their computa-

tional cost is linear in the number of classes; therefore, they do not scale well when the number

of classes increases, a challenge frequently encountered image categorization. We address this

computational challenge by developing a framework for ML-MKL that combines the worst-case

analysis with stochastic approximation. Our analysis shows that the complexity of our algorithm

isO(m1/3
√
lnm), wherem is the number of classes.

This Chapter is organized as follows: in Section 3.2, we provide a brief literature review on

MKL for multi-class and multi-label learning. Next, we introduce our multi-label MKL formula-

tion and give an efficient algorithm to solve it. A convergence analysis for the proposed algorithm

is provided in Section 3.3.2. In Section 3.4, we provide empirical analyses that demonstrate the

strength of the proposed framework on benchmark data sets. We end the chapter with the conclud-

ing remarks and future directions in Section 3.5.

3.2 Previous Work

There is a large body of literature on MKL, and we provided a detailed review of binary MKL

methods in Chapter 2. Although most efforts in MKL focus on binary classification problems,

several studies have attempted to extend MKL to multi-classand multi-label learning [5, 68, 87,

116, 117]. Even though studies show that MKL for multi-classand multi-label learning can result

in significant improvement in classification accuracy, the computational cost is often linear in the

number of classes, making it computationally expensive when dealing with a large number of

classes. Since most image categorization problems involvemany image classes, whose number

might go up to hundreds or sometimes even to thousands, it is important to develop an efficient

60

learning algorithm for multi-class and multi-label MKL that is sublinear in the number of classes.

In multi-class and multi-label learning, each instance canbe simultaneously assigned to mul-

tiple classes. A straightforward approach for multi-labelMKL (ML-MKL) is to decompose a

multi-label learning problem into a number of binary classification tasks using either one-vs-all or

one-vs-one approach. Varma et al. discussed and compared one-vs-all and one-vs-one schemes

for MKL [69]. Tang et al. [116] evaluated three different strategies for multi-label MKL based

for the one-vs-all approach: (i) learning one common kernelcombination shared by all classes, (ii)

learning a different kernel combination for each class independently, and (iii) a hybrid approach

that allows partial sharing of kernel combination among different classes. Based on their empiri-

cal study, they concluded that learning one common kernel combination shared by all classes not

only is computationally efficient but also yields classification performance that is comparable to

choosing different kernel combinations for different classes.

One drawback of the decomposition based approaches for multi-label learning is that they are

unable to take into account the dependency between different classes or the correlation between

data points. To overcome this drawback, Ji et al. [68] proposed to encode the instance-class corre-

lation into a hypergraph, which is then used to embed the multi-label data into a lower-dimensional

space. Zien et al. proposed MKL for joint feature mapsΦ(x,y) and learns a single multi-class

classification functionfw,b(x, y) = 〈w,Φ(x, y)〉+ b from training data [87]. They formulated the

problem via several optimization methods including quadratically constrained quadratic program-

ming (QCQP) and SILP.

Mei proposed a multi-label multi-kernel transfer learningmethod, which uses a one-vs-all

classification scheme, for protein subcellular localization [118]. Gehler et al. proposed a two-

step boosting approach that requires solving SVMs separately for each kernel, similar to wrapper

approaches [43]. The method they presented learns nonlinear kernel combinations, which yield

promising classification performance, but also leads to a high computational load. In another non-

linear MKL method [5], group information between the classes has been incorporated to multiple

61

kernel learning framework (GSMKL) in order to improve the classification accuracy. Getting use

of class dependencies has been shown to improve the accuracyin multi-label learning task [13],

and GSMKL also gets benefit of this to yield improved classification performance with a price of

increased computational load. In addition to the high computational load, another limitation of this

approach is that it assumes that there is a group structure within the classes, bringing the need of

effective tools to find the group structure (if exists) within the classes.

In this chapter, we develop an efficient algorithm for Multi-Label MKL (ML-MKL) that as-

sumes all the classifiers share the same linear combination of kernels. We note that although this

assumption significantly constrains the choice of kernel functions for different classes, our empir-

ical studies with image categorization show that the classification performance is not negatively

affected. A naive implementation of ML-MKL with shared kernel combination will lead to a

computational cost linear in the number of classes. We alleviate this computational challenge by

exploring the idea of combining worst case analysis with stochastic approximation. Our analysis

reveals that the convergence rate of the proposed algorithmis O(m1/3
√
lnm), which is signifi-

cantly better than a linear dependence onm, wherem is the number of classes. Our empirical

studies show that the proposed MKL algorithm yields similarperformance as the state-of-the-

art algorithms for ML-MKL, but with a significantly shorter running time, making it suitable for

multi-label learning with a large number of classes.

3.3 Multi-label Multiple Kernel Learning (ML-MKL)

In this chapter, we use the same notation as in Chapter 2 with only a change in the notation of the

label vectory, since the focus of this chapter is multi-label MKL. We introduceβ = (β1, . . . , βs),

a probability distribution, for combining base kernels. Wedenote byK(β) =
∑s

j=1 βaKj the

combined kernel matrices. We use the domain∆1 for the probability distributionβ, i.e.,∆1 =

{β ∈ R
s
+ : β⊤1 = 1}. Our goal is to learn from the training examples the optimal kernel

62

combinationβ for all m classes.

The simplest approach for multi-label multiple kernel learning with a shared kernel combi-

nation is to find the optimal kernel combinationβ by minimizing the sum of regularized loss

functions of allm classes, leading to the following optimization problem:

min
β∈∆1

min
{fk∈H(β)}m

k=1

{
m∑

k=1

Hk =

m∑

k=1

{
1

2
|fk|2H(β) +

n∑

i=1

ℓ
(
yikfk(x

i)
)
}}

, (3.1)

whereℓ(z) = max(0, 1 − z) andH(β) is a Reproducing Kernel Hilbert Space endowed with

kernelκ(x,x′;β) =
∑s

j=1 βjκj(x,x
′). Hk is the regularized loss function for thekth class. It is

straightforward to verify the following dual problem of Eq.(3.1):

min
β∈∆1

max
α∈Q1

{
L(β,α) =

m∑

k=1

{
[αk]

⊤1− 1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk)

}}
, (3.2)

whereQ1 = {α = (α1, . . . , αm) : αk ∈ [0, C]n, k = 1, . . . , m}. To solve the optimization prob-

lem in Eq. (3.2), we can view it as a minimization problem, i.e., minβ∈∆1 A(β), whereA(β) =

maxα∈Q1 L(β,α). We then follow the subgradient descent approach in [53] andcompute the

gradient ofA(β) as

∂βj
A(β) = −1

2

m∑

k=1

(αk(β) ◦ y)⊤Kj(αk(β) ◦ yk),

whereαk(β) = argmaxα∈[0,C]n[αk]
⊤1− (αk ◦ yk)

⊤K(β)(αk ◦ yk). We refer to this approach as

multi-label multiple kernel learning by sum, or ML-MKL-Sum. Note that this approach is similar

to the one proposed in [116]. The main computational problemwith ML-MKL-Sum is that by

treating every class equally, in each iteration of subgradient descent, it requires solvingm kernel

SVMs, making it unscalable to a very large number of classes.Below we present a formulation for

multi-label MKL whose computational cost is sublinear in the number of classes.

63

3.3.1 A Minimax Framework for Multi-label MKL

In order to alleviate the computational difficulty arising from a large number of classes, we search

for the combined kernel matrixK(β) that minimizes the worst classification error amongm

classes, i.e.,

min
β∈∆1

min
{fk∈H(β)}m

k=1

max
1≤k≤m

Hk (3.3)

Eq. (3.3) differs from Eq. (3.1) in that it replaces
∑m

k=1Hk with max1≤k≤mHk. The main compu-

tational advantage of usingmaxkHk instead of
∑

kHk is that by using an appropriately designed

method, we may be able to figure out the most difficult class, the class that yields the worst classi-

fication performance, in a few iterations, and spend most of the computational cycles on learning

the optimal kernel combination for the most difficult class.In this way, we are able to achieve a

running time that is sublinear in the number of classes. Below, we present an optimization strategy

for Eq. (3.3) based on the idea of stochastic approximation.

A direct approach is to solve the optimization problem in Eq.(3.3) by its dual form. It is

straightforward to show that dual problem of Eq. (3.3) is Eq.(3.4) (see Proposition 4 in Section A.3

for the proof).

min
β∈∆1

max
ρ∈B



L(β,ρ) =

{
m∑

k=1

{
[ρk]

⊤1− 1

2
(ρk ◦ yk)

⊤K(β)(ρk ◦ yk)

} 1
2

}2


 , (3.4)

where

B =

{
(ρ1, . . . ,ρm) : ρk ∈ R

n
+, k = 1, . . . , m,ρk ∈ [0, Cλk]

n s.t.
m∑

k=1

λk = 1

}
.

The challenge in solving Eq. (3.4) is that the solutions{ρ1, . . . ,ρm} in domainB are correlated

64

with each other, making it impossible to solve eachρk independently by an off-the-shelf SVM

solver. Although a gradient descent approach can be developed for optimizing Eq. (3.4), it is unable

to explore the sparse structure inρk making it less efficient than state-of-the-art SVM solvers.In

order to effectively explore the power of off-the-shelf SVMsolvers, we rewrite Eq. (3.3) as follows

min
β∈∆1

max
γ∈Γ

{
L(β, γ) = max

α∈Q1

m∑

k=1

γk

{
α⊤

k 1−
1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk)

}}
, (3.5)

whereΓ = {(γ1, . . . , γm) ∈ R
m
+ : γ⊤1 = 1}. In Eq. (3.5), we replacemax1≤k≤m with maxγ∈Γ.

The advantage of using Eq. (3.5) is that we can resort to a SVM solver to efficiently findαk for a

given combination of kernelsK(β).

Given Eq. (3.5), we develop a subgradient descent approach for solving the optimization prob-

lem. In particular, in each iteration of subgradient descent, we compute the gradientL(β,γ) with

respect toβ andγ as follows

∇βj
L(β, γ) = −1

2

m∑

k=1

γk(αk ◦ yk)
⊤Kj(αk ◦ yk),

∇γkL(β, γ) = [αk]
⊤1− 1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk), (3.6)

whereαk = argmaxα∈[0,C]n α
⊤1− (α ◦ yk)

⊤K(β)(α ◦ yk)/2, i.e., a SVM solution to the com-

bined kernelK(β). Following the mirror prox descent method [119], we define potential functions

Φβ =
ηβ
ηγ

∑s
j=1 βj lnβj for β andΦγ =

∑m
k=1 γk ln γk for γ, and have the following equations for

updatingβt andγt

βt+1
j =

βt
j

Zt
β

exp(−ηβ∇βj
L(βt,γt)),

γt+1
k =

γtk
Zt

γ

exp(−ηγ∇γkL(βt,γt)), (3.7)

whereZt
β andZt

γ are normalization factors that ensureβt⊤1 = γt⊤1 = 1. ηβ > 0 andηγ > 0 are

65

the step sizes for optimizingβ andγ, respectively.

Unfortunately, the algorithm described above shares the same shortcoming as the other ap-

proaches for multiple label multiple kernel learning: it requires solvingm SVM problems in each

iteration; therefore, its computational complexity is linear in the number of classes. To alleviate this

problem, we modify the above algorithm by introducing the stochastic approximation method. In

particular, in each iterationt, instead of computing the full gradients that requires solvingmSVMs.

We sample one classification task according to the multinomial distributionMulti(γt1, . . . , γ
t
m).

Let at be the index of the sampled classification task. Using the sampled taskat, we estimate the

gradient ofL(β,γ) with respect toβj andγk, denoted bŷgβj (β
t,γt) andĝγk(β

t,γt), as follows

ĝpj (pt, γt) = −1
2
(αat ◦ yat)⊤Kj(α

at ◦ yat), (3.8)

ĝγk(β
t,γt) =





0 k 6= at

1
γk

(
αk⊤1− 1

2
(αk ◦ yk)⊤K(β)(αk ◦ yk)

)
k = at

. (3.9)

The computation of̂gβj (β
t,γt) andĝγk(β

t,γt) only requiresαat ; therefore, it only needs to solve

one SVM problem, instead ofm SVMs. The key property of the estimated gradients in Eqs. (3.8)

and (3.9) is that their expectations are equal to the true gradients, as summarized by Proposition 1.

This property is the key to the correctness of our algorithm.

Proposition 1. We have

Et[ĝ
β
j (β

t,γt)] = ∇βj
L(βt,γt), Et[ĝ

γ
k(β

t,γt)] = ∇γkL(βt,γt),

whereEt[·] stands for the expectation over the randomly sampled taskat.

Given the estimated gradients, we will follow Eq. (A.12) forupdatingβ andγ in each iteration.

Sinceĝγk(β
t,γt) is proportional to1/γt, to ensure the norm of̂gγk(β

t,γt) to be bounded, we need

to smoothγt+1. In order to have a smoothing effect, without modifyingγt+1, we will sample

66

directly fromγ̂t+1,

∀γ ∈ Γ, ∃γ̂ ∈ Γ̂, s.t. γ̂t+1
k ← γt+1

k (1− δ) + δ

m
, k = 1, . . . , m,

whereδ > 0 is a small probability mass used for smoothing and

Γ̂ =

{
γ̂⊤1 = 1, γ̂k ≥

δ

m
, k = 1, . . . , m

}
.

We refer to this algorithm as multi-label multiple kernel learning by stochastic approximation, or

ML-MKL-SA for short. Algorithm 3 gives the detailed description.

3.3.2 Convergence Analysis

Since Eq. (3.5) is a convex-concave optimization problem, we introduce the following citation for

measuring the quality of a solution(β,γ)

∆̄(β,γ) = max
γ′∈Γ
L(β,γ ′)− min

β′∈∆1

L(β′,γ). (3.11)

We denote by(β∗,γ∗) the optimal solution to Eq. (3.5).

Proposition 2. We have the following properties for̄∆(β,γ)

1. ∆̄(β,γ) ≥ 0 for any solutionβ ∈ ∆1 andγ ∈ Γ

2. ∆̄ (β∗,γ∗) = 0

3. ∆(β,γ) is jointly convex in bothβ andγ

We have the following theorem for the convergence rate for Algorithm 3. The detailed proof

can be found in Section A.3.

Theorem 1. After running Algorithm 3 overT iterations, we have the following inequality for the

67

solutionβ̄ andγ̄ obtained by Algorithm 3

E
[
∆̄
(
β̄, γ̄

)]
≤ 1

ηγT
(lnm+ ln s) + ηγ

(
d
m2

2δ2
λ20n

2C4 + n2C2

)
,

whered is a constant term,E[·] stands for the expectation over the sampled task indices of all

iterations, andλ0 = max
1≤j≤s

λmax(Kj), whereλmax(Z) stands for the maximum eigenvalue of matrix

Z.

Corollary 2. Withδ = m
2
3 andηγ = 1

n
m− 1

3

√
(lnm)/T , after running Algorithm 1 (on the original

paper) overT iterations, we haveE[∆(β̄, γ̄)] ≤ O(nm1/3
√

(lnm)/T) in terms ofm,n andT .

Since we only need to solve one kernel SVM at each iteration, we have the computational com-

plexity for the proposed algorithm on the order ofO(m1/3
√

(lnm)/T), sublinear in the number of

classesm.

3.4 Experimental Results

In this section, we empirically evaluate the proposed multi-label multiple kernel learning algorithm

by demonstrating its efficiency and effectiveness on the image categorization task.

3.4.1 Data Sets

Following the MKL experiments in Chapter 2, we use the same three benchmark data sets and

the same base kernels as in this Chapter: Caltech 101 [3], Pascal VOC 2007 [94], and a subset

of ImageNet. All the experiments conducted in this chapter are repeated five times, each with an

independent random partition of training and testing data.Mean average precision scores along

with the associated standard deviations are reported.

68

3.4.2 Baseline Methods

We compare four MKL methods and the average kernel baseline.The MKL baselines can be

categorized into two groups. The first group is the one-vs-all MKL framework which requires

solving one MKL problem for each class separately. For this group, we use two base MKL solvers

that are shown to be the most efficientL1-MKL methods in Chapter 2 : (i) MKL-SIP, a Semi-

Infinite Programming (SIP) based method for MKL, [71] and (ii) MKL-Level, an extended level

based method for MKL, [52]. We also use MKL-SIP-L2 to include a non-sparse MKL solver

into the comparison. The second group of methods requires learning a single kernel combination

simultaneously for all classes. The two baseline methods that fall into this group are: (i) ML-

MKL-Sum which learns a kernel combination shared by all classes as described in Section 3.3

using the optimization method in [116], (ii) the proposed ML-MKL-SA method.

ant butterfly ceiling fan chair

Figure 3.1: For the 4 classes (ant, butterfly, ceiling fan, chair) taken from the Caltech 101 data
set, the first row gives images which produced false negatives for the single kernel baseline and
true positives for ML-MKL-SA baseline. The second row givesimages which produced false
positives for the single kernel baseline and true negativesfor the ML-MKL-SA baseline for the
corresponding classes.

69

3.4.3 Implementation

The experiments with varied numbers of instances on the ImageNet data set were performed on

a cluster of Sun Fire X4600 M2 nodes, each with 256 GB of RAM and32 AMD Opteron cores,

due to a need of high RAM capacity (over 100 GB). All other experiments were run on a different

cluster, where each node has two four-core Intel Xeon E5620sat 2.4 GHz with 24 GB of RAM.

We pre-compute all the kernel matrices and load the computedkernel matrices into the memory.

This allows us to avoid re-computing and loading kernel matrices at each iteration of optimization.

All the baseline methods are coded in MATLAB For all the wrapper methods for MKL, LIB-

SVM [107] is used as off-the-shelf SVM solver. For MKL-SIP and MKL-Level, MOSEK [89] is

used to solve the related optimization problems, as suggested in [52].

The same stopping criteria is applied to all the MKL algorithms when applicable. All the

algorithms terminate when: (i) the relative change in the duality gap falls below a threshold (1 −
∆t

∆t−1
< 102), (ii) the change in the cost function falls below a threshold (10−3), (iii) the difference in

the kernel coefficientsβ between two consecutive iterations is small (i.e.,||βt−βt−1||∞ < 10−4),

and (iv) the maximum number of iterations is reached. A 2-fold cross-validation is applied to select

the value of the regularization parameterC ∈ {10−2, 10−1, . . . , 104}. The bandwidth of the RBF

kernel is set to the average pair-wiseχ2 distances between image pairs.

Unless stated, the smoothing parameterδ is set to be 0.2 for the proposed method. For sim-

plicity we takeη = ηβ = ηγ in all the following experiments. Step sizeη is chosen as 0.01 for the

Caltech 101 data set, 0.001 for the VOC 2007 and ImageNet datasets in order to achieve the best

computational efficiency.

3.4.4 Classification Performance

To evaluate the effectiveness of different algorithms for multi-label multiple kernel learning, we

report the category based mean averaged precision (MAP) over all the classes. We evaluate the

70

bird potted plant dining table train

Figure 3.2: For the 4 classes (bird, potted plant, dining table, train) taken from the VOC 2007 data
set, the first row gives images which produced false negatives for the single kernel baseline and true
positives by the GMKL baseline. The second row gives images which produced false positives for
the single kernel baseline and true negatives for the ML-MKL-SA method for the corresponding
classes.

efficiency of algorithms by their running times (seconds) for training.

Table 3.1 summarizes the classification accuracies (MAP) ofall the baseline methods over the

Caltech 101 data sets under three settings with 10, 20, and 30training instances per class. MKL-

SIP-L2 and average kernel baselines yield the best performance forthe first two settings, whereas

MKL solvers withL1 norm are superior for the last setting, where the number of training instances

per class is 30. MKL-L1 methods give sparse solutions by eliminating irrelevant base kernels.

Table 3.1: Classification results (MAP) for the Caltech 101 data set. We report the average values
over five random splits and the associated standard deviation.

Number of training instances per class
Baseline 10 20 30
Average 59.0± 0.7 69.7± 0.6 77.2± 0.5

MKL-Level 54.7± 1.0 63.4± 0.6 84.4± 0.4
MKL-SIP-L1 53.8± 0.6 63.8± 0.9 83.9± 0.7
MKL-SIP-L2 60.1± 0.6 70.7± 1.0 79.1± 0.6

ML-MKL-Sum 55.1± 1.3 65.0± 0.7 85.6± 0.7
ML-MKL-SA 54.5± 0.7 66.1± 0.9 85.3± 0.8

71

Table 3.2: Classification results (MAP) for the VOC 2007 dataset. We report the average values
over five random splits and the associated standard deviation.

Percentage of the samples used for training
baseline 1% 5% 25% 50% 75%
Average 21.9± 0.5 42.4± 0.3 48.2± 0.8 54.5± 0.8 57.5± 0.8

MKL-Level 23.4± 0.6 44.4± 0.4 51.5± 0.5 57.1± 0.6 59.6± 0.9
MKL-SIP-L1 22.6± 1.0 44.2± 0.3 51.2± 0.33 56.6± 0.5 59.5± 0.9
MKL-SIP-L2 22.7± 0.4 42.6± 0.2 49.8± 0.2 57.3± 0.2 60.6± 0.5

ML-MKL-Sum 24.1± 0.4 43.5± 0.5 50.1± 0.4 55.8± 0.1 58.8±0.2
ML-MKL-SA 24.6± 0.9 44.1± 0.6 50.6± 0.4 56.1± 0.2 58.9±0.4

However, as discussed in Chapter 2, when the number of training examples is very small, it is

difficult to determine the subset of kernels that are irrelevant to a given task. This is why MKL-L1

methods give better results than MKL-L2 methods on the Caltech 101 data set as the number of

training instances increases.

Although the two multi-label MKL baselines, namely ML-MKL-Sum and ML-MKL-SA, are

originally proposed as efficient approximations to one-versus-all MKL framework, they match

and sometimes even outperform the one-vs-all MKL methods, MKL-SIP and Level-MKL, that

learn one kernel combination for each class. These results justify the assumption of using the

same kernel combination for all the classes for the Caltech 101 data set. Note that the average

kernel baseline (AVG), which is similar in that it uses the same kernel combination for all classes,

yields reasonable performance, although its classification performance is significantly worse than

the proposed approach ML-MKL-SA when there is a sufficient number of training instances (30

instances per class for the Caltech 101 data set).

We provide some example images from the Caltech 101 data set in Figure 3.1 to visualize

the advantage MKL brings over using a single kernel. For the 4classes (ant, butterfly, ceiling fan,

chair) taken from the Caltech 101 data set, the first row givesimages which produced true positives

for the ML-MKL-SA baseline and false negatives when a singlekernel (the best performing base

72

kernel) is used. On the other hand, the second row gives images which produced false positives

for the single kernel case and true negatives for the ML-MKL-SA baseline for the corresponding

classes. Note the level of similarity in the shapes of each image on the same column, which is the

possible cause of the errors for the single kernel case. On the other hand, by using different image

representations, MKL avoids these errors on these sample images.

Table 3.2 summarizes the classification accuracies (MAP) for all the baseline methods on the

VOC 2007 data set under five different settings, where1%, 5%, 25%, 50%, and75% of the whole

data set is used as the training set. Table 3.2 confirms the conclusions that are drawn from Ta-

ble 3.1: all the MKL methods, including ML-MKL-Sum and ML-MKL-SA outperform average

kernel baseline as the number of training instances increase (for all settings except case-1%). The

difference between the Caltech 101 and VOC 2007 results is that we do not see a significant per-

formance difference between MKL-L1 and MKL-L2 methods. As discussed in Chapter 2, this is

because the number of base kernels is smaller for the VOC 2007experiments. Finally, we see

that ML-MKL-Sum and ML-MKL-SA yield very close results compared to other MKL baselines,

despite learning one shared kernel combination for all classes.

We also provide some example images from the VOC 2007 data setin Figure 3.2 to visual-

ize the strength of MKL. We take four object categories and two different test images from each

category to test. The first row gives images which produced true positives for the ML-MKL-SA

baseline and false negatives when a single kernel (the best performing base kernel) is used. The

second row gives images which produced false positives for the single kernel case and true neg-

atives for the ML-MKL-SA baseline for the corresponding classes. These examples demonstrate

that MKL methods are able to avoid false positives and negatives by successfully combine several

image representations.

73

Table 3.3: Training time (seconds) for the Caltech 101 data set. We report the average values over
five random splits and the associated standard deviation.

Number of training instances per class
Baseline 10 20 30

level-MKL 816.1± 125.6 3570± 519.0 6456.6± 664.2
MKL-SIP-L1 550.8±91.8 2233.8±871.5 4518.6± 501.2
MKL-SIP-L2 387.6±72.4 1275.0± 201.6 3100.8± 314.6

ML-MKL-Sum 302.7± 4.8 1053.8± 201.3 3817.9± 308.1
ML-MKL-SA 119.2± 0.9 471.3± 16.9 1140.4± 276.5

3.4.5 Training Time

We provide Tables 3.3 and 3.4 to compare the running times of the MKL baseline methods. Ob-

serve that ML-MKL-SA and ML-MKL-Sum are in general more efficient than the other MKL

methods in the Caltech 101 experiments. This is not surprising as ML-MKL-SA and ML-MKL-

Sum compute a single kernel combination for all classes. However, note that MKL-SIP-L2 is faster

than ML-MKL-Sum when the number of training instances is 30 per class for the Caltech 101 data

set. This is because of the fast convergence of MKL-L2 problem (see Chapter 2 for details). More-

over, we see that MKL-SIP-L2 is faster than ML-MKL-Sum in most of the settings. The main

reason for this is that, in addition to the fast convergence of MKL-SIP-L2, the number of kernels

and classes is smaller in the VOC 2007 data set. However, based on these observations, we expect

ML-MKL-Sum to become faster as the number of classes and the number of kernels increase, since

MKL-L1 formulation often provides sparse solutions, which would significantly cut down the time

spent on kernel computations.

The main advantage of the proposed algorithm is its computational efficiency. From Tables 3.3

and 3.4 we see that the proposed method requires less training time compared to the other baselines

while providing comparable classification performance. Clearly, for the data sets with a high

number of categories, the two methods that learn one shared kernel combination for all labels (ML-

MKL-SA and ML-MKL-Sum) would be computationally more efficient than the methods that

74

Table 3.4: Training time (seconds) for the VOC 2007 data set.We report the average values over
five random splits and the associated standard deviation.

Percentage of the samples used for training
Baseline 1% 5% 25% 50% 75%

level-MKL 4.5±0.5 43.3±7.1 802± 113.2 4332.6± 587.3 5946± 950.1
MKL-SIP-L1 6.4±3.4 47.9±10.6 692± 67.8 4396.8±606.7 6180± 940.2
MKL-SIP-L2 16.4±2.3 34.3±7.4 192±21.3 706± 178.3 1686± 246.5

ML-MKL-Sum 2.5± 0.3 57.4± 9.1 372.3± 26.6 2162.1± 175.3 3983± 402.2
ML-MKL-SA 1.2± 0.3 39.8± 4.8 234.1± 21.1 886.5± 101.7 1224.3± 136.2

learn a kernel combination separately for each class. In addition to this, the proposed method brings

further improvement in efficiency compared to ML-MKL-Sum. The reduction in computation time

is more significant for the Caltech 101 data set compared to the VOC 2007 data set. This is because

the proposed algorithm employs an SVM solver for only one class per an iteration whereas ML-

MKL-Sum has to train SVM solvers separately for all classes at each iteration. Since Caltech 101

has a larger number of classes, the proposed method shows a greater advantage for the Caltech 101

data set.

Figure 3.6 shows the change in the kernel weights over time for the proposed method (ML-

MKL-SA) and Figures 3.3, 3.4, and 3.5 show the change in the kernel weights for three other

baseline methods (ML-MKL-Sum, MKL-Level, and MKL-SIP-L1) on the Caltech 101 data set

with 30 training instances per class. We observe that, overall, ML-MKL-SA shares a similar

pattern as Level-MKL in the evolution curves of kernel weights, but is much faster. We also have

very similar curves when comparing MKL-SIP-L1 and ML-MKL-Sum, as expected, since these

two baselines use the same solver. When comparing ML-MKL-Sum and ML-MKL-SA, which are

significantly more efficient than the other two baselines, wesee that the kernel weights learned by

ML-MKL-Sum vary significantly, particularly at the beginning of the learning process, making it

a less stable algorithm than the proposed algorithm ML-MKL-SA.

75

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

time (sec)

ke
rn

el
 w

ei
gh

ts

Figure 3.3: The evolution of kernel weights computed by the MKL-Level method over time for the
Caltech 101 data set with 30 training instances per class.

76

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (sec)

ke
rn

el
 w

ei
gh

ts

Figure 3.4: The evolution of kernel weights computed by the MKL-SIP-L1 method over time for
the Caltech 101 data set with 30 training instances per class.

77

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

ke
rn

el
 w

ei
gh

ts

Figure 3.5: The evolution of kernel weights computed by the ML-MKL-Sum method over time for
the Caltech 101 data set with 30 training instances per class.

78

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

time (sec)

ke
rn

el
 w

ei
gh

ts

Figure 3.6: The evolution of kernel weights computed by the ML-MKL-SA method over time for
the Caltech 101 data set with 30 training instances per class.

79

3.4.6 Sensitivity to Parameters

To evaluate the sensitivity of the proposed method to parameters δ, ηβ and ηγ, we conducted

experiments with varied values for these three parameters.Figure 3.7 shows how the classification

performance (MAP) of the proposed algorithm changes over iterations on Caltech 101 (30 training

instances per class) using six different values ofδ: {0, 0.2, 0.4, 0.6, 0.8, 1}. We observe that the

final classification accuracy is comparable for different values ofδ, demonstrating the robustness

of the proposed method to the choice ofδ. However, we also note that the extreme case where

δ = 0 gives the worst performance, indicating the importance of adding the uniform sampling

component for an increased stability.

0 50 100 150 200 250 300
0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

iterations

M
A

P
 (

%
)

δ=0
δ=0.2
δ=0.4
δ=0.6
δ=0.8
δ=1

Figure 3.7: Classification performance (MAP) of the proposed algorithm ML-MKL-SA on Caltech
101 with 30 training instances per class using different values ofδ (for ηβ = ηγ = 0.01).

Figure 3.8 shows the change of classification performance (MAP) for three different values of

ηβ for a fixedηγ whereas Figure 3.9 shows the change of classification performance (MAP) for

80

0 20 40 60 80 100 120 140 160 180 200
70

72

74

76

78

80

82

84

86

88

90

iterations

M
A

P
 (

%
)

η
p
=0.01

η
p
=0.001

η
p
=0.0001

Figure 3.8: Classification performance (MAP) of the proposed algorithm ML-MKL-SA on Caltech
101 with 30 training instances per class using different values ofηβ (for ηγ = 0.0001 andδ = 0.2).

three different values ofηγ for a fixedηβ , when 30 samples per class are used from the Caltech

101 data set. Based on these plots we observe that a change in the value ofηβ is more likely to

have a greater impact on the convergence speed than a change in theηγ value. Particularly, we

see thatηγ = 0.01 andηγ = 0.001 produce very similar plots. This result demonstrates that the

proposed algorithm is in general insensitive to the choice of the step sizeηγ. On the other hand, a

more careful selection still needs to be doneηβ in order to avoid slow convergence.

3.4.7 Large-scale MKL on ImageNet

To evaluate the scalability of MKL, we perform experiments on the subset of ImageNet consist-

ing of 81, 738 images. Figure 3.10 shows the classification performance ofML-MKL-SA and

81

0 20 40 60 80 100 120 140 160 180 200
77

78

79

80

81

82

83

84

85

86

87

iterations

M
A

P
 (

%
)

ηγ=0.01

ηγ=0.001

ηγ=0.0001

Figure 3.9: Classification performance (MAP) of the proposed algorithm ML-MKL-SA on Caltech
101 with 30 training instances per class using different values ofηγ (ηβ = 0.0001 andδ = 0.2).

82

10
2

10
3

10
4

10

20

30

40

50

60

70

80

total number of training instances

M
A

P
 (

%
)

MKL−SIP−L

1

MKL−SIP−L
2

ML−MKL−SA
ML−MKL−Sum

Figure 3.10: Comparison of the mean average precision scores for different training set sizes for
the ImageNet data set.

the other baseline methods with the number of training images per class varied in powers of 2:

(21, 22, . . . , 211). We used MKL-SIP for bothL1 andL2 norm MKL. Similar to the experimental

results for Caltech 101 and VOC 2007, we observe that ML-MKL-SA and ML-MKL-Sum give

comparable performance to the MKL solvers that learn a separate kernel combination for each

class. In fact, for the settings with smaller number of instances (100 to 18000) ML-MKL-SA out-

performs MKL-L2 whereas ML-MKL-Sum outperforms both MKL-L1 and MKL-L2. However,

the difference between the baseline performances starts todiminish when the number of training

examples is increased over 256 per class. As discussed in Chapter 2, this is because all the 10

kernels constructed for the ImageNet data set are strong kernels and provide informative features

for image categorization. In other words, the main strengthof MKL-L1, which is being able to

remove irrelevant or weak kernels, does not bring any advantage.

83

10
3

10
4

0

2

4

6

8

10

12

14
x 10

4

total number of training instances

tr
ai

ni
ng

 ti
m

e
(s

ec
)

MKL−SIP−L
1

MKL−SIP−L
2

ML−MKL−SA
ML−MKL−Sum

Figure 3.11: Comparison training times for different training set sizes for the ImageNet data set.

We also compare the training times of the baseline methods onthe ImageNet data set. The com-

parison in Fig. 3.11 confirms our previous results and demonstrates the efficiency of the proposed

ML-MKL-SA method.

3.5 Conclusions and Future Work

In this chapter, we present an efficient optimization framework for multi-label multiple kernel

learning that combines a worst-case analysis with stochastic approximation. Compared to the other

algorithms for ML-MKL, the key advantage of the proposed algorithm is that its computational cost

is sublinear in the number of classes, making it suitable forhandling a large number of classes.

We verify the effectiveness of the proposed algorithm by experiments in image categorization

84

on several benchmark data sets. There are two main directions that we plan to explore in the

future. The first one is improving the classification performance. Our experiments showed that,

for OvA MKL framework, the proposed method improves the computational efficiency without

causing a significant drop in the performance. However, the accuracy in image categorization can

be improved by replacing the OvA framework by a multi-label learning formulation. To address

this issue, we proposes a multiple kernel multi-label ranking method in Chapter 6. The second

future direction is improving the prediction speed, which is in general more crucial than training

speed in real world systems. To be able to cope with the increasing size of the image data sets,

the prediction step needs to use sparse kernel combinationsand classification functions. It is also

desirable to have a sublinear dependency of prediction complexity on the number of classes.

85

Algorithm 1 The proposed Multi-label ranking algorithm
1: Input

• ηβ , ηγ: step sizes
• K: the kernel matrix
• y1, . . . ,ym: the assignments ofm different classes ton training instances
• T : number of iterations
• n, m,s: number of instances, classes, and kernels, respectively
• δ: smoothing parameter

2: Initialization
• γ1 = 1/m andβ1 = 1/s

3: for t = 1, . . . , T do
4: Sample a classification taskat according to the distributionMulti(γt1, . . . , γ

t
m).

5: Computeαat = argmaxα∈[0,C]n α
⊤1−(α◦yat)

⊤K(β)(α◦yat)/2 using an off shelf SVM
solver.

6: Compute the estimated gradientsĝβj (β
t,γt) andĝγk(β

t,γt) using Eqs. (3.8) and (3.9).
7: Updateβt+1, γt+1 andγ̂t+1 as follows

βt+1
j =

βt
j

Zt
β

exp(−ηγ ĝβj (βt,γt)), j = 1, . . . , s.

[
γt+1

]k
=

γtk
Zt

γ

exp(ηγ ĝ
γ
k(β

t,γt)), k = 1, . . . , m

γ̂t+1 = (1− δ)γt+1 +
δ

m
1.

8: end for
9: Compute the final solution̄β andγ̄ as

γ̄ =
1

T

T∑

t=1

γt, β̄ =
1

T

T∑

t=1

βt. (3.10)

86

Chapter 4

Image Categorization by Multi-label

Ranking

4.1 Introduction

Image categorization requires an image to be assigned to a set of multiple classes, chosen from

a large set of class labels. Therefore, image categorization can be cast into multi-label learning,

in which each image can be simultaneously classified into more than one class. The most widely

used approaches divide a multi-label learning problem intomultiple independent binary labeling

tasks. The division usually follows one-vs-all, one-vs-one, or the general error correction code

framework [120, 121]. Most of these approaches suffer from imbalanced data distributions when

constructing binary classifiers. This problem becomes moresevere when the number of classes

is large. Another limitation of these approaches is that they are unable to capture the correlation

among classes [10]. In this chapter, we describe our multi-label ranking method, which addresses

these two issues by simultaneously learning classifiers foreach label.

Our method tackles the multi-label learning problem using amulti-label ranking approach.

For a given example, multi-label ranking aims to rank all relevant classes higher than irrelevant

87

classes. By converting the classification problem into a ranking problem, multi-label ranking

avoids constructing binary classifiers, which operate by distinguishing an individual class from

the rest (one-vs-all) of a pair classes from each other (one-vs-one), thus alleviating the problem of

imbalanced data distribution. In addition, by avoiding thebinary decision regarding which subset

of classes should be assigned to each example, multi-label ranking is usually more robust than the

classification approaches, particularly when the number ofclasses is large.

We propose an efficient algorithm to solve the multi-label ranking problem which is based on a

simple line search. One advantage of our method compared to the majority of the ranking methods

is that the proposed algorithm has a linear dependency on thenumber of classes. On the other

hand, most multi-label ranking methods have quadratic dependency because of the pair-wise class

comparisons.

We show that our kernel based multi-label ranking problem formulation is closely related to

one-vs-all dual SVM objective. However, unlike the one-vs-all formulation, the proposed cost

function cannot be divided into independent components, i.e., one for each class, for optimization.

Instead, two features of the proposed method enables exploiting the relationships between labels

without making explicit assumptions on the structure of correlations. The first one is a balance

constraint, which forces the sum of the dual variables that correspond to positive classes be equal

to that of negative classes. The second feature of the proposed method is the optimization scheme

it employs which solves the problem for all classes togetherand chooses the dual variables from a

closed set.

4.2 Previous Work

The most widely used approach for multi-label learning is dividing the multi-label learning task

into multiple independent binary classification tasks, i.e., learning a binary classifier for each label

and deciding the label assignment of a test sample independently for each class. This method is

88

called binary relevance (BR) or one-vs-all classification.Once a multi-label learning problem is

decomposed into multiple binary classification problems, any binary classification algorithm can

be employed as a base solver. However, this straightforwardapproach has several shortcomings.

Therefore, we see several attempts in the literature to develop algorithms that specifically address

the needs of multi-labeled data, instead of simplifying themulti-label learning task by transforming

the problem into an easier one.

There is a very rich literature on multi-label learning. We review multi-label learning methods

in four subsections, which are not necessarily mutually exclusive. We also discuss related problems

to multi-label learning in Section 4.2.5.

4.2.1 Label Set Transformation Methods

We categorize the methods that fall into this category into two groups: (i) Problem transformation,

and (ii) label set projection methods.

4.2.1.1 Problem Transformation Methods

With binary decomposition techniques like one-vs-all and one-vs-one, label set transformation

methods were the popular choice for early multi-label learning studies [121]. In a binary decompo-

sition framework, a multi-label learning problem is decomposed into a set of binary classification

tasks, which can be easily solved by using well-studied binary classifiers such as SVM or naive

Bayes.

One of the shortcomings of the binary decomposition methodsis that each classifier is trained

independently, meaning that the correlation or dependencies between different classes are not ex-

ploited. Such dependencies can be very handy in many applications. Consider an example from

automatic image annotation: if an image is tagged with the labelssunandclouds, it is very likely

that the labelskyis also a relevant label. Therefore, knowing the existence of the labelsunin the

image should be able to make detecting the labelsky in the image easier. Another problem with

89

converting a multi-label learning problem into a set of binary classification tasks is the imbalanced

(skewed) data distributions, particularly when the numberof classes is large.

Another approach for label set transformation is to consider each possible combination of a

binary label vectoryi = (yi1, . . . , y
i
m) ∈ {0, 1}m as an individual class. This approach, which is

named as the “label powerset” technique leads to a multi-class single label problem with a total

of 2K new labels, which are named as powerset labels. However, label powerset is not a practical

method since the number of classes (powerset labels) in the transformed problem is exponential in

the number of original labels.

Dietterich et al. proposed a technique for encoding classifier outputs in a multi-class single-

label setting to increase the performance and robustness ofthe base learners [120]. The authors

borrowed the idea of error-correcting coding (ECC) from thecommunication theory to create dis-

tributed output representations. Error-correcting coding is a robust coding scheme that makes

detecting and correcting the errors in the output code possible. The main idea in the error correct-

ing output codes (ECOC) scheme is to encode each class by a unique binary string (codeword) of

lengthq. Then, a separate binary classifier is learned to calculate each of theseq bits. Once the

functions for each codeword digit are learned, the outputs of theseq functions are evaluated for

each test instance and an output binary string is constructed, which is then compared to all class

codewords.

4.2.1.2 Label Set Projection Methods

The idea of projecting a label set into a lower dimensional space before the learning step is a

frequently used idea in the multi-label learning literature. The main motivation of using a projected

label set instead of the original assignment vector is to increase the computational efficiency by

decreasing the number of classes.

The overall framework of the label set projection methods isillustrated by Figure 4.1.

We can summarize the overall process in 4 steps:

90

Learn the
mapping/
projection

Project the label set
of each training

sample

Training
classifier/regressor

in the projected
label space

Back-projection of
the outputs to the

original label space

Figure 4.1: A diagram summarizing the label set projection schemes for multi-label learning.

1. Learn or construct the projection operation (matrix) to be used to project the original label

vector into (possibly, but not necessarily) a lower dimensional space.

2. Perform the projections:ψ(·) : Rm → R
m′

, s.t. y̆i = ψ(yi), wherem is the number of

original labels,m′ the projected space dimension,yi the original label vector and̆yi is the

new label vector in the projected space.

3. Learn a classification/regression modelf(·) : Rd → R
m′

, s.t.f(xi) = y̆i.

4. Perform back projection to the original label space from the projected space:ψ′(·) : Rm′ →

R
m, s.t. ŷi = ψ′(y̆i), whereŷi is the final label vector prediction.

Hsu et al. proposed to use the compressed sensing technique as a label set projection algorithm

[122]. With the underlying assumption that label vectors are sparse, their scheme uses random

projections for Step 2 and performs regression in Step 3. They show that if the label vectors are

k-sparse (average number of nonzero entries isk), then the number of projections would be in the

order ofk logm, wherem is the number of classes. One drawback of this method is that Step 4, the

mapping of the predictions back to the original label space,might be complicated since it requires

solving an optimization problem for each test sample. Zhou et al. [123] proposed to use the sign of

the random Gaussian projections instead of the projectionsthemselves, thus making the projected

label matrixY′ binary and allowing the use of binary classification, instead of regression, which

91

is employed by the other methods. The recovery step (Step 4) is also different from the original

compressed based algorithm [122]. Zhou et al. proposed to use a technique they named as the

label set distilling method.

In order to reduce the back-projection step’s complexity, Tai et al. proposed a technique called

principle label space transform (PLST) [124]. PLST differsfrom the compressed sensing approach

in that its projection matrix is constructed by using the singular vectors of the label matrixY.

Since singular vectors are orthonormal, the projection back to the original label space can be

completed simply with a round-based reconstruction: multiplying lower dimensional predictions

by the projection matrix and then performing element-wise rounding.

4.2.2 Supervised Algorithm Adaptation Methods

There are also methods that are specifically designed for multi-label learning by adapting the well-

known supervised binary classification methods for handling multi-label data. For example, Zhang

et al. proposed a maximum a posteriori estimation (MAP) multi-labelK-nearest neighbors method

(ML-KNN) [125]. In ML-KNN, the estimation of the label vector for a query sample depends on

the label prior probability and the probability of assigning a label to an instance conditioned on the

number of neighboring instances with the same label.

Schapire et al. proposed two extensions to the well-known Adaboost method for multi-label

learning. The first one is Adaboost.MH, which minimizes the Hamming loss and uses a binary

decomposition approach, in which each multi-labeled sample is replaced bym new binary sample,

with m being the number of labels. The second extension, Adaboost.MR, enforces a bi-partite

ranking of labels through a set of pair-wise comparisons [126].

Many well-know decision tree algorithms are adapted to multi-label learning with some mod-

ifications. Clare et al. modified the C4.5 decision tree algorithm [127] for multi-label learning

by modifying the entropy definition for the information-gain criterion [128]. Alternating decision

trees (ADT) [129] and predictive clustering trees (PCT) [130] are other methods that are extended

92

to multi-label learning [131, 132]. In their PCT based multi-label learning study, Blockeel et al.

showed that learning one tree for all labels simultaneouslyis better in terms of both speed and

accuracy when compared with learning an independent tree for each label [132].

4.2.2.1 Transfer learning for multi-label classification

Han et al. proposed a transfer learning scheme for multi-label learning that transfers knowledge

between different domains via a linear projection of the data points; this projection is formulated

by the use of Graph Laplacian of a label-induced hypergraph and elastic-net regularizer [133].

Claiming that most of the transfer learning methods focus ontransferring knowledge between

different sources or domains for the same class, Qi et al. presented a multi-label transfer learning

approach that aims to perform inter-class knowledge transfer, which can perform within a single

domain or multiple domains [134]. They defined a transfer function for each class; these functions

depend on two types of similarity measures that are defined for the training samples. One of the

similarities is based on a kernel function that strictly uses the input features. The second similarity

measure involves both the input features and the corresponding label information through a use

of label affinity matrixS. The algorithm described in their study simultaneously optimizes the

transfer function and the label affinity matrix.

4.2.3 Multi-label Ranking Methods

One of the earliest multi-label ranking algorithms was proposed in [27]. Constraints derived from

the multi-labeled instances were used to enforce the relevant classes to be ranked higher than the

irrelevant ones [27]. Crammer et al. [135] improved the computational efficiency of [27] by

exclusively considering the most violated constraint: comparing only two labels per instances,

with one being the positive label with the minimum output score and the other being the negative

label with the maximum output score.

Elisseeff et al. proposed the RankSVM method, which uses pair-wise label ranking loss in the

93

SVM formulation [136]. Dekel et al. [137] and Shalev-Shwartz et al. [11] encoded the ranking

problem using apreference graph. A boosting based algorithm was used in [137] to learn the

classifiers from a set of given instances and the corresponding preference graphs. Although the

described framework in [137] suits any type of ranking task,the multi-label learning problem is

formulated as directed bipartite ranking. In [11] a generalization of the hinge loss function for the

preference graphs was used for multi-label ranking.

In all these approaches, a ranking model is learned from pairwise constraints between the

relevant and irrelevant classes. The number of pair-wise constraints has a quadratic dependence on

the number of classes, making it computationally expensivewhen the number of classes is large.

In contrast, our proposed framework for the multi-label ranking that we discuss in this chapter is

computationally efficient and can handle a large number of classes (order of 100s).

4.2.4 Exploiting Label Correlation in Multi-label Learnin g

A number of approaches have been developed for multi-label learning that aim to capture depen-

dencies among classes. In [10], the authors proposed to model the dependencies among the classes

using a generative model. Ghamrawi et al. [12] tried to capture the dependencies by defining a

conditional random field over all possible combinations of the labels. In [13], a multi-label ma-

trix factorization approach that captures the class correlation via a class co-occurrence matrix was

used. A hierarchical Bayesian approach was introduced in [29] to capture the dependency among

classes.

There are several approaches [30, 138–141] for multi-labellearning that encode the class de-

pendencies under the assumption that some important features are shared among classes. Given the

bag-of-words representation of documents, McCallum proposed an EM based scheme that not only

estimates the source classes for each document, but also tries to find how the classes contribute to

the generation process of the words [138]. By revealing word-class relationship, this method can

benefit from label correlations when classifying a documentbased on its word content.

94

In their algorithm named MAHR, Huang et al. exploit the labelcorrelations automatically by

the hypothesis reuse principle: a hypothesis extracted forone label can be used on other labels

[142]. Guo et al. proposed to use conditional dependency networks to model label correlations

[143]. A hypergraph representation, in which each vertex isa training instance and each hyperedge

for a category is a collection of relevant training samples,was also used to model higher-order label

correlations [144, 145]. There are also stacking techniques (i.e., BR+) [146, 147] and classifier

chains [148,149] as feature set transformation methods that exploits class correlations.

We emphasize that our work does not focus on modeling the class correlations explicitly. While

indirectly benefiting from dependencies between class labels, we do not make any assumptions

regarding the type of relationships that exist between class labels. It should be noted that our

proposed multi-label ranking method can be combined with many of the above approaches to

further improve the classification performance in multi-label learning.

4.2.5 Related Problems

It is important to note that multi-label learning, despite having a similar goal, differs from a related

task, multi-task learning [150]. Multi-task learning can be thought as a bridge between multi-label

learning and binary decomposition methods. Similar to binary decomposition methods, a binary

classifier is trained for each class. However, unlike binarydecomposition methods, the classes are

no longer assumed to be independent; rather they are trainedusing shared information between

classes.

Multi-instance learning [151] is another task that can be confused with multi-label learning.

The sole goal of multi-label learning is to find the relevant labels of an image. In contrast, multi-

instance learning requires locating the concepts/objectsin the image.

In this thesis, our understanding of the image categorization problem requires that all categories

are pre-defined and have at least one corresponding instance(image) for each category in the

training step. In other words, classifiers should be trainedfor all the classes that are going to be

95

used in the prediction/testing phase. However, there is a group of studies that are not restricted to

this definition. For example, in zero-shot learning [152] and transfer learning [29,141] frameworks,

the labels that do not have any corresponding training instances can be used in the prediction stage.

4.3 Maximum Margin Framework for Multi-label Ranking

Let xi, i = 1, . . . , n be the collection of training instances where each examplexi ∈ R
d is a vector

of d dimensions. Each training examplexi is annotated by a set of class labels, denoted by a binary

vectoryi = (yi1, . . . , y
i
K) ∈ {−1, 1}m, wherem is the total number of classes, andyik = 1 whenxi

is assigned to classck and−1 otherwise. In multi-label ranking, we aim to learnm classification

functionsfk(x) : Rd 7→ R, k = 1, . . . , m, one for each class, such that for any examplex, fk(x)

is larger thanfl(x) whenx belongs to classck and does not belong to classcl. We define the

classification errorεk,li for an examplexi with respect to any two classesck andcl, as follows

εik,l = I(yki 6= yli)ℓ

(
yik − yil

2

(
fk(x

i)− fl(xi)
))

, (4.1)

whereI(z) is an indicator function that outputs1 whenz is true and zero, otherwise. The lossℓ(z)

is defined to be the hinge loss, whereℓ(z) = max(0, 1 − z). Note that the above error function

outputs0 whenyik = yil , namely when no classification error is counted, i.e.,xi either belongs to

bothck andcl or xi does not belong to either of the two classes.

Following the maximum margin framework for classification,we aim to search for the classifi-

cation functionsfk(x), k = 1, . . . , m that simultaneously minimize the overall classification error.

This is summarized into the following optimization problem.

min
{fk∈Hκ}mk=1

1

2

m∑

k=1

|fk|2Hκ
+ C

n∑

i=1

m∑

k,l=1

εik,l, (4.2)

whereκ(x,x′) : Rd × R 7→ R is a kernel function,Hκ is a Hilbert space endowed with a kernel

96

functionκ(·, ·) andC is a regularization parameter. Theorem 3 provides the representer theorem

for fk(·), k = 1, . . . , m.

Theorem 3. Classification functionsfk(x), k = 1, . . . , m that optimize Eq. (4.2) are represented

in the following form,

fk(x) =
n∑

i=1

yik[Γ
i]kκ(x

i,x), (4.3)

where[Γi]k =
∑m

l=1 Γ
i
k,l. Note thatΓi ∈ Sm×m, i = 1, . . . , n are symmetric matrices that are

obtained by solving the following optimization problem:

max
n∑

i=1

m∑

k=1

[Γi]k −
1

2

m∑

k=1

n∑

i,j=1

κ(xi,xj)yiky
j
k[Γ

i]k[Γ
j]k

s. t. Γi
k,l =





0 ≤ Γi
k,l ≤ C yik 6= yil

0 otherwise

Γi = [Γi]⊤, i = 1, . . . , n; k, l = 1, . . . , m. (4.4)

Proof. See the proof in Section A.4.1

The constraints in Eq. (4.4) explicitly capture the relationship between the classes. When

an instancexi belongs to classck, but does not belong to classcl, the value ofΓi
k,l is positive,

causingxi to be a support vector. The positive termsΓi
k,l are combined into[Γi]k, which is used in

computing the ranking function for classck.

4.4 Approximate Formulation

A straightforward approach that directly solves Eq. (4.4) by a standard quadratic programming

approach is computationally expensive when the number of classesm is large because the number

97

of constraints isO(m2). We show that the relationship between multi-label rankingand the one-

vs-all approach provides insight for deriving an approximate formulation for Eq. (4.4) that can be

solved efficiently.

4.4.1 Relation to the One-vs-all Approach

Consider constructingfk(x) in Eq. (4.2) by the one-vs-all approach. The resulting representer

theorem forfk(x) is

fk(x) =

n∑

i=1

yikα
i
kκ(x

i,x), k = 1, . . . , m (4.5)

whereαi
k, i = 1 . . . , n; k = 1, . . . , m, are obtained by solving the following optimization problem

max
n∑

i=1

m∑

k=1

αi
k −

1

2

m∑

k=1

n∑

i,j=1

κ(xi,xj)yiky
j
kα

i
kα

j
k

s. t. αi
k ∈ [0, C], i = 1, . . . , n; k = 1, . . . , m. (4.6)

Comparing the above formulation to Eq. (4.4), we clearly seethe mapping, i.e.,[Γi]k ↔ αi
k. Hence,

the first simplification is to relax Eq. (4.4) by treating each[Γi]k as an independent variable, which

approximates Eq. (4.4) into the following optimization problem

max
n∑

i=1

m∑

k=1

αi
k −

1

2

m∑

k=1

n∑

i,j=1

κ(xi,xj)yiky
j
kα

i
kα

j
k

s. t. 0 ≤ αi
k ≤ C

m∑

l=1

I(yik 6= yil),

i = 1, . . . , n; k = 1, . . . , m. (4.7)

98

Note that the constraintαi
k ≤ C

∑m
l=1 I(y

i
k 6= yil) follows

[Γi]k =

m∑

l=1

I(yik 6= yil)Γ
i
k,l ≤ C

m∑

l=1

I(yik 6= yil).

While the problem in Eq. (4.7) can be decomposed intom independent problems, similar to an

OvA SVM, this is not adequate for multi-label ranking as the dependence between the functions

fk(x), k = 1, . . . , m cannot be captured.

4.4.2 Proposed Approximation

In this section, we present a better approximation of Eq. (4.4) compared to the one presented in

Eq. (4.7). Without loss of generality, consider a training examplexi that is assigned to the firsta

classes, and is not assigned to the remainingb = m− a classes. According to the definition ofΓi

in (4.4), we can rewriteΓ as

Γ =




0 Z

Z⊤ 0


 , (4.8)

whereZ ∈ [0, C]a×b. Using this notation, variableτk = [Γi]k is computed as

τk =





∑b
l=1 Zk,l 1 ≤ k ≤ a

∑a
l=1 Zl,k a+ 1 ≤ k ≤ m

whereZk,l is an element inZ that is bounded by 0 andC. According to the above definition, for

each instance,τk is the sum of either thekth column or thekth row of Z depending on whether

the labelk is relevant to that instance or not. Formulatingτk by usingZ brings several advantages.

Firstly, it enables us to derive constraints forτk explicitly in the optimization. Secondly, allτk

variables depend on each other in the optimization since thecomponents of these variables are

99

taken from a closed domainZ. This relationship is in fact a special case of the constraint given

in Eq. (4.4). The constraint in Eq. (4.4) intuitively forcesa balance between the irrelevant and

relevant labels of an instance by requiring the sum of the upper bounds of[Γi]k that correspond

to relevant classes to be equal to that of[Γi]k that correspond to irrelevant classes. Obtainingτk

fromZ as formulated above introduces an additional constraint byforcing the sum of the weights

corresponding to the relevant labels to be equal to the sum ofthe weights that are associated with

irrelevant labels. This constraint is useful in dealing with the imbalance between the number of

relevant and irrelevant labels as well as capturing the dependencies between the classes for that

instance.

In order to convertτk, k = 1, . . . , m into free variables, we need to derive explicit constraints

on τk that will ensure that each solution ofτk will result in a feasible solution forZ. Let us first

consider a simple case in which we only require elements inZ to be non-negative. Theorem 4

provides the constraints onτk.

Theorem 4. The following two domainsQ1 andQ2 for vectorτ = (τ1, . . . , τK) are equivalent

Q1 = {τ ∈ R
m : ∃Z ∈ R

a×b
+ s. t.

τ1:a = Z1b, τa+1:m = Z⊤1a} (4.9)

Q2 =

{
τ ∈ R

m
+ :

a∑

k=1

τk =

m∑

k=a+1

τk

}
(4.10)

Proof. See Section A.4.2 for the proof.

Theorem 4 states that the two domainsQ1 andQ2 are equivalent for vectorτ and leads to the

following corollary:

100

Corollary 5. Consider the following two domainsQ1 andQ2 for vectorτ = (τ1, . . . , τm)

Q1 = {τ ∈ R
m : ∃Z ∈ [0, C]a×b s. t.

τ1:a = Z1b, τa+1:m = Z⊤1a} (4.11)

Q2 =

{
τ ∈ [0, C]m :

a∑

k=1

τk =
m∑

k=a+1

τk

}
(4.12)

We haveτ ∈ Q2 ⇒ τ ∈ Q1.

The above corollary becomes the basis for our approximation. Instead of defining matrix vari-

ablesΓi, i = 1, . . . , n as in (4.4), we introduce the variableαi
k for [Γi]k. We furthermore restrict

αi = (αi
1, . . . , α

i
k) to be in the domainG =

{
τ ∈ [0, C]m :

∑a
k=1 τk =

∑m
k=a+1 τk

}
to ensure that

feasibleΓi can be recovered from a solution ofαi
k. The resulting approximate optimization is

max

n∑

i=1

m∑

k=1

αi
k −

1

2

m∑

k=1

n∑

i,j=1

κ(xi,xj)yiky
j
kα

i
kα

j
k

s. t.
m∑

k=1

I(yik = 1)αi
k =

m∑

k=1

I(yik = −1)αi
k,

αi
k ∈ [0, C], i = 1, . . . , n, k = 1, . . . , m (4.13)

Unlike Eq. (4.7), Eq. (4.13) cannot be solved asm independent problems since for each in-

stancexi, theαi
k from all the classesck, k = 1, . . . , m are involved in the constraint. According

to these constraints, for each instance the sum of the weights corresponding to the relevant labels

should be equal to the sum of the weights that are associated with irrelevant labels. Theorem 4

shows that by adding this constraint to the problem, the relationships between the classes can be

exploited and used without explicitly determining the setZ and the matricesΓi. Another advan-

tage of this formulation is that no assumptions on the form ofthese relationships (e.g., pairwise

relationships between classes) are made.

101

4.5 Efficient Algorithm

We follow the work of Lin et al. [153] and solve Eq. (4.13) by coordinate descent. At each

iteration, we choose one training example(xi,yi) and the related variablesαi = (αi
1, . . . , α

i
m),

while fixing the remaining variables. The resulting optimization problem becomes

max

m∑

k=1

αi
k −

1

2

m∑

k=1

yikf
−i
k (xi)αi

k −
κ(xi,xi)

2

m∑

k=1

(αi
k)

2

s. t. αi ∈ [0, C]m, yi
⊤
αi = 0 (4.15)

where f−i
k (xi) is the leave-one-out prediction that can be computed asf−i

k (x) =
∑

j 6=i y
j
kα

j
kκ(x

j,x).

Theorem 6. The optimal solution to (4.15) is written as

αi
k = π[0,C]

(
1 + λyik − 1

2
yikf

−i
k (xi)

κ(xi,xi)

)
, k = 1, . . . , m (4.16)

whereλ is the solution to the following equation

g(λ) =
m∑

k=1

h

(
yik + λ− 1

2
f−i
k (xi)

κ(xi,xi)
, yikC

)
= 0. (4.17)

Hereh(x, y) = π[0,y](x) if y > 0 andh(x, y) = π[y,0](x) if y ≤ 0. FunctionπG(x) projectsx onto

the regionG.

Proof. See Section A.4.3 for the proof.

The functiong(λ) defined in Eq. (4.17) is a monotonically increasing functionof λ which can

be solved using the bisection search. The lower and upper bounds forλ for the bisection search

are shown in the proposition below.

102

Proposition 3. The value ofλ that satisfies Eq. (4.17) is bounded byλmin and λmax. Define,

κii = κ(xi,xi) andG = [0, C],

η−i
k+ = 1 +

1

2
f−i
k (xi) η−i

k− = 1− 1

2
f−i
k (xi)

∆ =

m∑

k=1

δ(yik, 1)πG

(
η−1
k−

kii

)
−

m∑

k=1

δ(yik,−1)πG
(
η−i
k+

κii

)

amin = −Cκii + min
yi
k
=−1

η−i
k+ bmin = −max

yi
k
=1
η−i
k−

amax = Ckii −min
yi
k
=1
η−i
k− bmax = max

yi
k
=−1

η−i
k+

If ∆ < 0, we haveλmin = 0 andλmax = min(amax, bmax). If ∆ > 0, we haveλmax = 0 and

λmin = max(amin, bmin).

Proof. See Section A.4.4 for the proof.

Onceλ is calculated by applying the bisection search between the boundsλmin andλmax, it is

straightforward to calculate the coefficientsαi
k and finally the ranking functionsfk(x) for any new

instancex.

4.6 Experimental Results

In this section, we empirically evaluate the proposed multi-label ranking algorithm by demonstrat-

ing its efficiency and effectiveness on the image categorization task.

4.6.1 Data Sets

In order to compare our proposed multi-label learning method to state-of-the-art methods, we use

three benchmark data sets: VOC 2007, ESP Game and MIR Flickr25000.

For the VOC 2007 data set, we use the default partitioning suggested by the Pascal VOC Chal-

lenges: 5,011 training images and 4,952 test images. We follow [101] and use dense-SIFT features.

103

Note that the majority of the images in the VOC 2007 data set are labeled by a single class. In

fact, the average number of labels per image is only 1.5. Because of this property, VOC 2007 is

not an ideal data set for evaluating multi-label learning algorithms. Nevertheless, the performance

on the VOC 2007 data set will allow us to examine if the proposed algorithm is effective for image

categorization, since VOC 2007 is the most-widely used image categorization benchmark.

The MIR Flickr25000 [154] data set is a subset of the MIR Flickr-1M data set. The original

data set contains 25,000 images from457 classes. However, to be able to create a better test bed

for multi-label learning, we remove the images that are assigned to fewer than three classes and

take 75% of the instances to form the training set by random sampling. The bag-of-words model

based on dense-SIFT features, provided by [101] and [155], are used for image representation.

We also use a subset of the ESP data set, in which the average number of labels per image is

8.3. To study the influence of the number of training samples and labels on multi-label learning

performance, we vary the number of training samples and number of labels. In total, we have 20

settings: four training sets with 10,000, 20,000, 30,000, and 40,000 images and five different cases

for the number of categories{20, 50, 100, 200, 500}. After ranking the categories in terms of their

frequency (number of images annotated with them) in the dataset, we pick the top 20, 50, 100,

200, and 500 categories to create these five different test settings. The number of test images is

10,000. We use dense-SIFT based BoW representation.

4.6.2 Baseline Methods

The following methods are evaluated:

• SVM: We use LIBSVM [156] implementation of the one-vs-all SVM classifier, which is

shown to outperform other multi-class SVM methods in [121].

• PLATT: We apply Platt’s method to convert SVM scores to posterior probabilities [157].

This conversion makes it easy to compare the output scores ofdifferent SVM classifiers,

104

leading to better performance for multi-label ranking in some cases.

• MLKNN: A nearest neighbor based multi-label classificationmethod [125]. The number of

nearest neighbors is chosen by cross-validation. MLKNN is avery popular baseline in the

multi-label learning literature due to its simplicity.

• Multiple label shared space model with least square loss (MLLS): A direct multi-label learn-

ing method [139] that makes use of the class correlations viaa feature space transformation

under the assumption of a shared subspace between the categories. MLLS is reported to

outperform other state-of-the-art methods that explore class correlations [139].

• MLR-L1: Our proposed multi-label ranking method that is describedin this chapter.

• MLR-GL: Our proposed group lasso based multi-label ranking methodthat is described in

Chapter 5. The approximation parameterη is chosen by cross-validation.

For kernel based methods, we use the RBF kernel withχ2 distance in our experiments, which

has shown to outperform other kernels for image categorization. The regularization parameterC

is chosen with a grid search over{10−2, 10−1, . . . , 104}. The bandwidth of the RBF kernel is set

to the average pair-wiseχ2 distance between the training image pairs.

4.6.3 Multi-label Ranking Performance

We first compare the ranking performance of the baseline methods in terms of the AUC-ROC

and MAP scores. We start by comparing the baselines on the VOC2007 data set. According

to [94, 158], SVM classifier with RBF kernel withχ2 distance, one of the baselines (SVM) used

in our study, yields a comparable performance with the state-of-art methods in the PACAL VOC

evaluations. Table 4.1 shows that the proposed algorithm yields a better performance than the

one-vs-all SVM method in terms of AUC-ROC and MAP, indicating that the proposed method is

effective for image categorization.

105

Input Image

True objects people, motorbike, car car, people, dog people, motorbike, car car, people, bike
SVM people, car, bus people, car, horse people, cow, motorbike motorbike, people, horse
PLATT people, car, bus people, car, horse people, cow, car motorbike, people, bus
MLKNN people, horse, bus car, people, cat people, car, cat people, motorbike, car
MLLS people, car, bus people, dog, cat people, car, bus bike, people, car
MLR-L1 people, motorbike, car car, people, dog people, motorbike, car car, people, bike
MLR-GL car, people, motorbike people, car, dog people, motorbike, car car, bike, people

Figure 4.2: For four images from the VOC 2007 data set, the original labels are given in addition
to the outputs of baseline methods.

Table 4.1: AUC-ROC and MAP results for the VOC 2007 data set

SVM PLATT MLKNN MLLS MLR-L1 MLR-GL
AUC-ROC 90.7 90.5 89.4 90.7 91.0 91.0

MAP 65.6 65.6 63.7 66.0 67.2 67.2

As an illustration, Figure 4.2 shows examples of test imagesfrom VOC 2007 data set and

the categories predicted by different methods. This figure supports the claim that the categories

identified by the proposed ranking method are more relevant to the visual content of images than

the baseline methods, particularly for the images that contain several objects.

It is important to note that the evaluation measure we are using in this chapter is not the same

as the one used in the VOC competition. In the VOC challenge, the performance is evaluated for

each object class separately (category-based), based on the confidence values obtained by binary

classifiers. This is not applicable for our case, as we propose a label ranking scheme. We rank the

categories for each image in the descending order of their scores, and our AUC measure evaluates

how successful is label-ranking. See Section A.1.5 for a detailed discussion on evaluation measures

we are using in this dissertation.

Tables 4.2 and 4.3 provide the AUC-ROC and MAP results for thebaselines on the ESP Game

106

Table 4.2: AUC-ROC (%) for the ESP Game data set with 10,000 training images

20 50 100 200 500
SVM 79.3 79.5 79.8 80.2 80.4

PLATT 79.1 79.4 79.5 79.9 80.0
MLKNN 78.6 78.8 79.5 81.3 83.5
MLLS 79.7 79.4 79.4 79.8 80.2

MLR-L1 81.7 81.5 82.1 82.9 83.9
MLR-GL 80.2 80.5 81.8 83.8 85.4

data set when 10,000 images are used for training. From the Tables 4.2 and 4.3, we reach the

following conclusions:

• The proposed ranking methods, MLR-L1 and MLR-GL, consistently and significantly out-

performs the other baseline methods.

• Converting SVM scores to posterior probabilities does not improve the performance on this

data set.

• MLLS method performs better than SVM, PLATT, and MLKNN baselines when the number

of categories is small (20, 50, 100). However, this gap decreases as the number of categories

increases, possible because the assumption of a shared subspace that covers all categories is

too restrictive when the number of categories is large.

• The relative performances of MLKNN and MLR-GL against the other baselines are better

when evaluated by AUC-ROC than MAP. This is because these twobaselines do not focus

on optimizing the performance for the top ranks (i.e., rank-1, rank-2, etc.).

• MLKNN, which is a very popular baseline in the multi-label learning literature due to its

simplicity, is significantly outperformed by the other baselines.

• The methods that are specifically designed for multi-label learning, MLLS and the two rank-

ing methods, outperform one-vs-all SVM in majority of the settings.

107

Table 4.3: MAP (%) for the ESP Game data set with 10,000 training images

20 50 100 200 500
SVM 59.3 49.5 43.4 38.0 32.4

PLATT 59.1 49.3 43.4 37.9 32.2
MLKNN 57.0 45.9 39.7 35.2 28.5
MLLS 59.9 48.5 43.3 38.0 32.4

MLR-L1 62.2 52.0 45.5 40.0 34.2
MLR-GL 59.4 48.6 42.9 38.2 32.1

Figure 4.3 plots the change of the AUC-ROC score with respectto the number of training

images (10, 000, 20, 000, 30, 000, and40, 000), when the number of classes is 200. It should be

noted that although increasing the number of samples boost the performance of all the baselines,

the relative performance of the baselines with respect to each other does not change. The only

change in the relative performance is seen for MLLS method. When compared to the one-vs-all

SVM baselines and ML-KNN, MLLS takes a better advantage of the increased number of training

instances and outperforms them for the settings where the number of training instances is greater

than 10,000.

We also check the AUC-ROC and MAP results on the MIR Flickr25000 data set. We see from

Table 4.4 that the proposed ranking methods and MLLS give better results compared to one-vs-all

SVM baselines, showing again the superiority of direct multi-label learning methods compared

to problem transformation approaches like one-vs-all decomposition. Furthermore, the MLR-GL

method, which is another multi-label ranking approach, significantly outperforms the other base-

lines in terms of AUC-ROC score. However, similar to the casein the ESP Game experiments, its

relative performance drops in terms of MAP. The proposed MLR-L1 technique gives comparable

results to MLLS, which seems to perform well for the MIR Flickr25000 data set, indicating that the

shared subspace assumption is valid for this data set. This indicates that the multi-label learning

methods that make strong assumptions when exploiting labelcorrelations have potential to per-

form well when their assumptions hold, as shown by our MIR Flickr25000 experiments. However,

108

1 1.5 2 2.5 3 3.5 4

x 10
4

79

80

81

82

83

84

85

86

number of training samples

A
U

C
−

R
O

C

SVM
PLATT
MLKNN
MLLS
MLR−L

1

MLR−GL

Figure 4.3: Change of the AUC-ROC score with respect to the number of training images.

109

Table 4.4: AUC-ROC and MAP results for the MIR Flickr25000 data set

SVM PLATT MLKNN MLLS MLR-L1 MLR-GL
AUC-ROC 70.2 68.7 68.6 75.9 75.4 76.2

MAP 31.5 31.4 28.9 33.2 33.3 32.8

these methods might not perform well for the data sets where the underlying assumption does not

hold (e.g., ESP Game for the MLLS method).

Finally, we show some example images from the ESP data set andthe predicted labels by each

baseline method in Table 4.5. The first row under the images gives the true image class labels. For

each baseline, we provide the top six returned labels rankedfrom left to right. The hits are written

with bold characters. For example, for the left-most image,SVM provides the following outputs, in

the descending relevance order:ad, computer, screen, book, woman, sign. Among these six labels,

only the labelsad andsignare correct, meanwhile the other four labels, which are irrelevant for

the image, are ranked above the two labels,logoandsign, causing them to become false negatives.

On the other hand, the proposed ranking method MLR-L1 successfully ranks the labelsad, logo,

andsignabove all other labels.

4.6.4 Training Time

Figure 4.4 plots the change of the training time of the three baselines (MLR-L1
1, SVM, and

MLLS) for a fixed number of categories (100) with respect to the number of training samples for

the ESP Game data set. In this experiment, we vary the number of training examples from 10,000 to

40,000. We observe that the MLLS method gets computationally more efficient compared to SVM

and MLR-L1 because of its subspace assumption, which allows learning in a lower dimensional

space. The main bottleneck of the MLLS algorithm is the SVD operation on the data matrix.

However, when the number of samples,n, is large (n >> d), the algorithm only calculatesd

1we will analyse the computational efficiency of the MLR-GL method in Chapter 5

110

Table 4.5: The label predictions by the baselines for four images from the ESP Game data set. The
first row under the images gives the true image class labels. For each baseline, we provide the top
six returned labels (three in the top row, and three in the lower row) ranked from left to right. The
hits are written with bold characters.

labels ad logo sign man sky sky tee cloud
SVM ad computer screen sky window people tee skywater

book womansign light cloud gun building rock light
MLKNN ad logosport hair facesky hair face man

signman screen man tree smile sky girl woman
MLLS logo signocean sky window light sky teewater

sea silver book cloud peopleman light rock cloud
MLR logo sign ad sky manpeople sky tee cloud

woman man paper woman window cloud building water dark
MLR-GL ad sign logo sky manwoman sky cloud tee

man picture computer girl people hair water light dark

1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4
x 10

4

tr
ai

ni
ng

 ti
m

e
(s

ec
)

number of training samples

MLR−L

1

SVM
MLLS

Figure 4.4: Training time of the three baselines for a fixed number of categories (100) with respect
to the number of training samples for the ESP Game data set.

111

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

tr
ai

ni
ng

 ti
m

e
(s

ec
)

number of training samples

MLR−L

1

SVM
MLLS

Figure 4.5: Training time of the three baselines for a fixed number of training samples (10,000)
with respect to the number of categories for the ESP Game dataset.

singular values, whered is the dimension of the feature vectors, and the correspondingd singular

vectors. This is why we see that the computational time of MLLS does not increase significantly

when the number of samples increases. On the other hand, SVM and MLR-L1 have a quadratic

dependency on the number of samples because they are both kernel-based methods. The difference

between the speeds of these two methods increases in favor ofMLR-L1 as the number of samples

increases.

Figure 4.5 plots the change of the training time of the three baselines (MLR-L1, SVM, and

MLLS) for a fixed number of training samples (10,000) with respect to the number of categories

for the ESP Game data set. This time, we vary the number of categories by using 20, 50, 100,

200, and 500 classes. Similar to the previous case, the MLLS method is the most efficient method

among the compared baselines. The training time of the MLR-L1 method has a linear dependency

on the number of categories. Although we would expect SVM to show a very similar characteristic

as well, it actually becomes more efficient than MLR-L1 as the number of categories increase. This

112

is because the SVM optimization terminates early for the classes that cause the long-tail problem:

the classes that have a very small number of positive samples.

To conclude, it is important to note that the proposed ranking method is comparable to, if not

more efficient than, one-vs-all SVM in terms of training time. Considering that many researchers

are employing one-vs-all SVM in their image categorizationstudies, MLR-L1 emerges as a strong

alternative. As our empirical analyses showed, shared subspace methods, or label set projection

methods (i.e., compressed sensing based multi-label learning), which rely on a similar idea, are

computationally more efficient for large scale data sets. However, the proposed baseline can be

combined with such approaches to significantly reduce the training time.

4.7 Conclusions and Future Work

We have introduced an efficient multi-label ranking scheme which offers a direct solution to multi-

label ranking unlike the conventional methods that use a setof binary classifiers for multi-label

learning. Our direct approach enables us to capture the relationships between the class labels

without making any assumptions on how these relationships should be modeled. The strength

of the proposed approach lies in establishing the relationships between the classifiers by treating

them as ranking functions. An efficient algorithm is presented for solving the proposed multi-label

ranking approach. Our empirical study of image categorization with three benchmark data sets

demonstrated that the proposed method outperforms state-of-the-art methods. Yet, there are some

future directions that can be followed to improve the proposed method:

• Improving the computational efficiency: The computational efficiency of the proposed

method can be improved by combining it with label set space projection methods such as

compressed labeling [123] to have a sublinear dependency onthe number of labels.

• Exploiting label correlations: If the data being used have a label structure that can be mod-

eled explicitly, e.g., hierarchical structure or existingpair-wise correlations between classes,

113

such structures can be integrated into the proposed multi-label learning framework.

• Robustness to incomplete label assignments: The label annotations for training images are

often incomplete due to the high cost of the annotation process and the ambiguities between

the class labels. It is important to develop multi-label learning methods that are robust to

incomplete label assignments. One possible solution is themethod we present in Chapter 5.

• Multiple kernel learning for multi-label ranking: The proposed multi-label ranking method

is limited to a single kernel use. We discussed how considering labels together in a mul-

tiple kernel learning task can improve both the computational efficiency and classification

accuracy for multi-label data in Chapter 3. The next step in this direction is to extend the

proposed multi-label ranking method to multiple kernel learning. To address this issue, we

extend the proposed MLR-L1 algorithm to multiple kernel setting in Chapter 6.

114

Algorithm 2 Multi-label ranking algorithm:
1: Input

• x1, . . . ,xn; xi ∈ R
d: Training instances

• y1, . . . ,yn; yi ∈ {−1, 1}m: the assignments ofm different classes ton training in-
stances
• K: n× n kernel matrix
• T : number of iterations

2: Initialization
• αi

k = 0, i = 1, . . . , n, k = 1, . . . , K
3: for t = 1, . . . , T do
4: for i = 1, . . . , n do
5: ∆ = 0
6: Calculate the leave one out prediction:

f−i(xi) = yi⊤αiK:,i − (yi⊤αi)Ki,i

7: Compute∆

η−i
k+ = 1 +

1

2
f−i
k (xi) η−i

k− = 1− 1

2
f−i
k (xi)

∆ =
m∑

k=1

δ(yik, 1)π[0,C]

(
η−1
k−

Kii

)
−

m∑

k=1

δ(yik,−1)π[0,C]

(
η−i
k+

Kii

)

where functionπG(x) projectsx onto the regionG.
8: Calculate the boundsλmax andλmin for the line search

amin = −Cκii + min
yi
k
=−1

η−i
k+ bmin = −max

yi
k
=1
η−i
k−

amax = Ckii −min
yi
k
=1
η−i
k− bmax = max

yi
k
=−1

η−i
k+

if ∆ < 0, we haveλmin = 0 andλmax = min(amax, bmax)
if ∆ > 0, we haveλmax = 0 andλmin = max(amin, bmin)

9: Solve forλ by using a line search and the boundsλmax andλmin

g(λ) =

K∑

k=1

h

(
yik + λ− 1

2
f−i
k (xi)

Ki,i
, yikC

)
= 0.

whereh(x, y) = π[0,y](x) if y > 0 andh(x, y) = π[y,0](x) if y ≤ 0.
10: Compute

αi
k = π[0,C]

(
1 + λyik − 1

2
yikf

−i
k (xi)

Ki,i

)
, k = 1, . . . , m (4.14)

11: end for
12: end for

115

Chapter 5

Multi-label Ranking for Image

Categorization with Incomplete Class

Assignments

5.1 Introduction

In Chapter 4, we have discussed the multi-label learning problem in detail, and presented our

multi-label ranking approach, MLR-L1. Our empirical analyses showed that the proposed MLR-L1

method outperforms the state-of-the-art multi-label learning techniques. The strength of the MLR-

L1 method is its label ranking formulation, which implicitly considers the pair-wise comparisons

between the relevant and irrelevant labels for each training image. Simultaneously solving this

formulation for all class labels enables an exploitation ofthe label correlations, one of the main

research directions in the multi-label learning literature. However, the performance of multi-label

learning techniques, including the MLR-L1 method, depends on the quality of the training set

and the label supervision. It is unclear if strong multi-label learning algorithms would work well

in practice. One of the main concerns about the real world systems is that the labeling process

116

is very expensive and often inaccurate. In image categorization systems, the image annotations

for the training data set are provided mostly by online usersfrom online services like Amazon

Mechanical Turk. As a result, the retrieved annotations areoften incomplete; only a subset of the

true image labels are given by the annotators.

person, horse, grass, tail bus, car, grass, tail

tree, animal, ear, sand, sky blue, pink, cartoon, animal, ear, tail

Figure 5.1: Some example images from the VOC 2007 (top row) and ESP Game (bottom row) data
sets with their annotations. The labels written in italic are provided with the images, whereas the
ones written in bold fonts are the missing labels. These images, with their missing annotations, are
examples of incomplete labeled data.

In this chapter, we consider the image categorization problem from incomplete labeled data.

As an example, an image, whose true class assignment is(c1, c2, c3), is only presented with class

c1 when it is used for training. Our goal is to learn a multi-label learning model from training

examples that have incomplete class assignments. We refer to this problem as multi-label learning

with incomplete class assignments, and the training data asincompletely labeled data. Multi-

117

label learning with incomplete class assignments is frequently encountered in automatic image

annotation when the number of classes is very large, and it isonly feasible for users to provide a

limited number of class labels for a given instance, as seen in Figure 5.1.

Incompletely labeled data also arise when there is a large ambiguity between class labels, mak-

ing it difficult for annotators to decide appropriate class assignments for given training instances.

Figure 5.2 shows two examples of annotated images from the ESP Game data set. Some of the

annotated words used to describe these two images can cause ambiguity. For example, the key-

wordsbaby, kid, andboycan be used interchangeably; therefore, an annotator who picks any of

these labels would probably not include the other two to the annotation set. Also, note that these

annotations are often generated by collapsing annotated words from multiple users. Therefore, it

is very likely that some of the labels that cause the label ambiguity problem might be missing from

the final list of annotations. Both scenarios, missing labels and label ambiguity, are frequently

encountered in the image categorization problem.

It is important to distinguish the learning scenario studied in this work from the related ones in

the previous studies suchpartial labeling [159, 160] andweakly labeled data[161]. We provide

in Table 5.1 some of the related concepts that can be confusedwith themulti-label learning with

incomplete class assignmentstask and briefly highlight the differences.

There is a rich body of literature on multi-label learning, ranging from simple approaches that

divide multi-label learning into a set of binary classification problems [162], to more sophisticated

approaches that explicitly explore the correlation among classes [10–13]. But none of these ap-

proaches directly address the challenge of multi-label learning from incompletely labeled data,

which is a more realistic scenario. To this end, we present a multi-label learning framework based

on the idea of multi-label ranking [11,15,27,137]. Unlike the classification approaches that make a

binary decision about the class assignment for a given instance, multi-label ranking methods rank

classes for a given instance such that the relevant classes are ranked before the irrelevant ones.

In order to handle the problem of incomplete class assignment, we extend multi-label ranking by

118

baby, boy,child, eye, face, girl, hair,
house,kid , mouth, nose, pink, smile

anime, ball, boy, cartoon, drawing, girl,
group, hair, kid, man, people, play, red

Figure 5.2: Example images from the ESP Game data set and their annotations. The annotations
highlighted by bold font, which are used to annotate the sameconcept/object in the corresponding
images, are examples of the label ambiguity problem.

Table 5.1: Some concepts that can be confused with the incomplete label assignment problem

problem bib definition
partial labeling [159,160] Only one of the positive class assignments is correct
weakly labeled data [161] A value indicating correctness of predictions is given
weakly tagged images [164] Some of the class assignments are incorrect
partially labeled data [165] Another name for semi-supervised learning
bandit multi-class learning [166,167] Learner receives partial feedback, e.g., click data.

exploiting the group lasso technique [163] to combine the errors in ranking the assigned and unas-

signed classes for each image. As will be seen in the following discussions, by using group lasso to

combine ranking errors, the proposed framework is able to automatically detect the missing class

assignments in the training set and consequentially improve the classification accuracy.

We present an efficient learning algorithm for the proposed framework. The efficiency of a

multi-label ranking method is important, since a naive implementation would result in performing

a pairwise comparison between all possible image pairs, making it difficult to scale to a large

number of classes and training instances. Our empirical studies on two benchmark data sets for

image categorization indicate that (i) our framework is robust to the missing class assignments

119

problem and performs better than the state-of-the-art multi-label learning approaches in the case of

incompletely labeled data, and (ii) the proposed approach is computationally efficient and scales

well to large numbers of training examples and classes.

5.2 A Framework for Multi-label Learning from Incompletely

Labeled Data

In order to handle incompletely labeled data, we consider exploring the group lasso regularizer

when estimating the error in ranking the assigned classes against the unassigned ones. The key

idea is to selectively penalize the ranking errors. To facilitate our discussion, we follow the nota-

tion in Chapter 4 and consider an instancex that is assigned to classesc1, . . . , ca. Consequently,

classesca+1, . . . , cm are remained as the unassigned classes forx. If examplex is fully labeled,

following [15], the ranking error for the classification functionsfk(x), k ∈ [m] is expressed as

a∑

k=1

m∑

l=a+1

max(0, fl(x)− fk(x) + 1). (5.1)

However, given the data is only partially labeled, some of the unassigned class labels may indeed

be the true classes, and the above loss function forx may overestimate the classification error. To

address this issue, we introduce a slack variable, denoted by εk,l, to account for the error of ranking

an unassigned classl before the assigned classk. This introduces the following constraint

εk,l + fk(x) ≥ 1 + fl(x). (5.2)

120

Now, instead of adding all the errors together for an instancex, i.e.,
∑a

k=1

∑m
l=a+1 εk,l, we combine

the ranking errorsεk,l via a group lasso regularizer, i.e.,

m∑

l=a+1

√√√√
a∑

k=1

ε2k,l (5.3)

The motivation of using group lasso for aggregating rankingerrors is two fold: first, as stated

in the general theory, group lasso is able to select a group ofvariables, which in our case, is to

select the group of ranking errors{εk,l, k = 1, . . . , a} for each unassigned classcl. In particular,

an unassigned classcl is likely to be a missing class assignment for an instancex when many of

its ranking errors{εk,l}ak=1 are non-zero, which coincides with the criterion of group selection by

group lasso. Thus, by using the group lasso regularizer, we may be able to decide which unassigned

classes are indeed the missing correct class assignments. Second, group lasso usually results in a

sparse solution in which most of the group variables are zeroand only a small number of groups

are assigned non-zero values. In our case, the sparse solution implies that most of the unassigned

classes forx are indeed correct, and only a few unassigned classes are thetrue class assignments

for x that are missed during annotation.

Letx1, . . . ,xn be the collection of training instances that are labeled byY1, . . . , Yn, where each

Yi ⊂ Y . For the convenience of presentation, we represent each class assignmentYi by a binary

vectoryi = (yi1, . . . , y
i
m) ∈ {−1,+1}m, whereyik = +1 if k ∈ Yi andyik = −1 if k /∈ Yi. Using

the group lasso regularizer described above, we have the following optimization problem:

min
fk∈Hκ

1

2

m∑

k=1

|fk|2Hκ
+ C

n∑

i=1

∑

l /∈Yi

√∑

k∈Yi

ℓ2(fk(xi)− fl(xi)), (5.4)

whereℓ(z) = max(0, 1−z) is the hinge loss function that assesses the error in rankingtwo classes

ck andcl. In the next section, we discuss the strategy for efficientlyoptimizing Eq. (5.4).

121

5.3 Optimization Algorithm

First, we have the following representer theorem forf(x) that optimizes Eq. (5.4).

Theorem 7. The optimal solution to Eq. (5.4) admits the following expression forf(x), i.e.,

fk(x) =
n∑

i=1

yikα
i
kκ(x,x

i), k = 1, . . . , m,

whereαi
k, i = 1, . . . , n are the combination weights.

It is straightforward to verify the above representer theorem. Next, in order to solve Eq. (5.4)

efficiently, we aim to linearize the objective function in Eq. (5.4) by using the following lemma.

Lemma 1.
∑m

l=a+1

√∑a
k=1 ℓ

2(fk(xi)− fl(xi)) is equivalent to the following expression:

max
γi∈Ra×(m−a)

{
m∑

l=a+1

a∑

k=1

γik,lℓ(fk(x
i)− fl(xi))

}
(5.5)

s.t. max
1≤l≤m−a

|γi
·,l|2 ≤ 1,

whereγ ·,l stands for thelth column vector of matrixγi.

Lemma 1 follows directly from the fact that
∑m

l=a+1

√∑a
k=1 ℓ

2(fk(xi)− fl(xi)) is aL1,2 norm

of the loss functionℓ(fk(x) − fl(x)) and the dual norm ofL1,2 is L∞,2. See Section A.5.1 for a

detailed proof.

Using lemma 1, we turn Eq. (5.4) into a convex-concave optimization problem as revealed in

the following theorem.

Theorem 8. The problem in Eq. (5.4) is equivalent to the following convex-concave optimization

122

problem

max
{γi∈∆i}ni=1

min
{fk∈Hκ}mk=1

L =
1

2

m∑

k=1

|fk|2Hκ
(5.6)

+C

n∑

i=1

∑

l /∈Yi

∑

k∈Yi

γik,lℓ(fk(x
i)− fl(xi)),

whereγi = [γik,l]m×m and

∆i =




γi ∈ R

m×m :

γik,l ≥ 0, k, l = 1, . . . , m,

γik,l = 0 if l ∈ Yi or k /∈ Yi,

max
1≤l≤m

|γi
·,l|2 ≤ 1

,





The above theorem follows by directly plugging the result ofLemma 1 into Eq. (5.4). As

indicated by the above theorem, the introduction of the group lasso is equivalent to introducing a

different weightγik,l for each comparison between an assigned class and an unassigned class. It is

the introduction of these weights that allows us to determine which unassigned class is missed in

the annotation process.

Theorem 9. The optimal solutionf(x) to Eq. (5.6) can be expressed as follows:

fk(x) =
n∑

i=1

yikα
i
kκ(x,x

i),

whereαi = (αi
1, . . . , α

i
m)

⊤, i = 1 . . . n is the optimal solution to the following optimization prob-

lem:

max
{αi∈Ωi}ni=1

m∑

k=1

(
n∑

i=1

αi
k −

n∑

i,j=1

αi
kα

j
ky

i
ky

j
kKi,j

)
, (5.7)

123

where

Ωi =
{
αi ∈ R

m : ∃γi ∈ ∆i s. t.αi = Cγi1+ C[γi]⊤1
}
.

The proof of this theorem can be found in the Section A.5.2. Note that although the objective

function in Eq. (5.7) is similar to that of SVM, it is the constraints specified in domainΩi that

makes this problem computationally more challenging.

Algorithm 3 Multi-label ranking algorithm with Group Lasso
1: Input

• x1, . . . ,xn; xi ∈ R
d: Training instances

• y1, . . . ,yn; yi ∈ {−1, 1}m: the assignments ofm different classes ton training in-
stances
• K: n× n kernel matrix
• T : number of iterations

2: Initialization
• αi

j = 0, i = 1, . . . , n, j = 1, . . . , m
3: for t = 1, . . . , T do
4: for i = 1, . . . , n do
5: ∆ = 0
6: Calculate the leave one out prediction vector:

f−i = yi⊤αiK:,i − (yi⊤αi)Ki,i

7: a =
∑m

j=1 I(y
i
j == 1) & b =

∑m
j=1 I(y

i
j = −1),

whereI(z) is an indicator function that outputs1 whenz is true and zero, otherwise.
8: Constructf−i

a andf−i
b such thatf−i(xi)=f−i

a

⋃
f−i
b

f−i
a : components off−i that corresponds to positive labels, i.e.,yij = 1.
f−i
b : components off−i that corresponds to negative labels, i.e.,yij = −1.

9: Compute matrixH ∈ R
a×b: H = 1

2
((1⊤

b 1a)− f−i
b 1⊤

a − 1bf
−i
a)⊤

10: Construct matrixγ ∈ R
a×b

11: for s = 1, . . . , b do
12: γ:,s =

π+(H:,s)
|π+(H:,s)|2

min(1, |π+(H:,s)|2
ηCKi,i

)

where functionπ+(z) projectsz onto the regionRa
+.

13: end for
14: Calculateα

αa = Cγ1b

αb = Cγ⊤1a

α = αa

⋃
αb

15: end for
16: end for

In order to efficiently solve Eq. (5.7), we consider the blockcoordinate descent method. In

124

particular, we aim to optimizeαi with the other dual variables,{αj , j 6= i}, being fixed. Without

a loss of generality, we assume that examplexi is assigned to the firsta classes and is not assigned

to the remainingb = m− a classes. For the convenience of presentation, we drop the indexi and

writeαi asα. We thus have the following optimization problem forαi.

max
α∈Ω

m∑

k=1

αk −Ki,i

m∑

k=1

α2
k − 2

m∑

k=1

ykαk

∑

j 6=i

αj
ky

j
kKi,j , (5.8)

whereΩ is defined as

Ω =
{
α ∈ R

m : ∃γ ∈ R
a×b
+ , |γ·,l|2 ≤ 1, l ∈ [b]

s.t.α1:a = Cγ1b, αa+1:a+b = Cγ⊤1a}.

In the above, we use the notationαi:j = (αi, . . . , αj) to represent a subset of vectorb whose index

ranges fromi to j. 1a represents a vector ofa dimensions with all its elements being one. We now

aim to simplify the problem in Eq. (5.8). First, we have for any α ∈ Ω

m∑

k=1

αk = 2C(1⊤
a γ1b). (5.9)

Second, we have

m∑

k=1

α2
k =

a∑

k=1

α2
k +

a+b∑

k=a+1

α2
k = C2

(
1⊤b γ

⊤γ1b + 1⊤a γγ
⊤1a

)
. (5.10)

To simplify the last term in Eq. (5.8), we define

f−i
k (xi) = yk

∑

j 6=i

αj
ky

j
kκ(x

i,xj), (5.11)

and vectorf−i = (f−i
1 (xi), . . . , f−i

i (xi)) = (f−i
a , f−i

b). Using these notations, the third term in

125

Eq. (5.8) becomes

m∑

k=1

αkf
−i
k (xi) = α⊤f−i = Ctr

((
1b[f

−i
a]⊤ + f−i

b 1⊤a]
)
γ
)
. (5.12)

Thus, we have the following optimization problem to solve

max
γ∈∆

1⊤
a γ1b −

1

2
CKi,i

(
1⊤
b γ

⊤γ1b + 1⊤
a γγ

⊤1a

)
(5.13)

−tr
((
f−i
b 1⊤

a + 1b[f
−i
a]⊤

)
γ
)
,

where∆ = {γ ∈ R
a×b
+ : |γ ·,l|2 ≤ 1, l = 1, . . . , b}. The problem in Eq. (5.13) is indeed a Second

Order Cone Programming (SOCP) problem [168]. Although a SOCP problem can be solved by

a standard tool like SeDuMi [88], it can still be computationally expensive to solve a large-scale

SOCP problem. We thus further simplify Eq. (5.13) by the following approximation

1⊤b γ
⊤γ1b + 1⊤a γγ

⊤1a ≈ ηtr(γ⊤γ + γγ⊤) = 2ηtr(γ⊤γ), (5.14)

whereη > 1 is a parameter introduced for approximation. Using the approximation in Eq. (5.14),

we have

max
γ∈∆

1⊤a γ1b − CKi,iηtr(γ⊤γ)− tr
((

f−i
b 1⊤a + 1b[f

−i
a]⊤

)
γ
)
, (5.15)

where we define

(
(1b1

⊤
a)− f−i

b 1⊤a − 1b[f
−i
a]⊤

)⊤
= 2H = (2h1, . . . , 2hb). (5.16)

Lemma 2 shows a closed form solution to Eq. (5.15).

126

Lemma 2. The optimal solution to Eq. (5.15) is

γ ·,s =
πG(hs)

|πG(hs)|2
min

(
1,
|πG (hs)|2
CKi,iη

)
, s = 1, . . . , b, (5.17)

whereG = {z : z ∈ R
a
+} andπG(h) projects vectorh into the domainG.

The proof of this lemma can be found in Section A.5.3.

5.4 Experimental Results

5.4.1 Data Sets

In order to evaluate the proposed method for multi-label learning with incomplete class assign-

ments, we use two multi-label data sets that were used in Chapter 4: subsets of the ESP Game and

MIR Flickr25000 data sets.

For MIR Flickr25000, we remove the images that are assigned to fewer than three classes.

This procedure gives us 10,199 images from 457 classes. We take 75% of the examples to form a

training set by random sampling. The bag-of-words model based on dense-SIFT features, provided

by [101] and [155], are used for image representation.

We use a subset of the ESP data set, in which the average numberof labels per image is 8.3.

To study the influence of the number of training samples and labels on multi-label learning perfor-

mance, we vary the number of training samples and labels. We follow the protocol in Chapter 4 to

vary the number of training instances and classes. The number of test images is 10,000. We use

dense-SIFT based BoW representation to construct image features.

To simulate the situation of incomplete class assignment, we conduct experiments in four dif-

ferent settings for the ESP Game and MIR Flickr25000 data sets. In the first setting, termed

case-1, there is no missing class assignment for any training image. In the next three settings,

termedcase-2, case-3, andcase-4, for each training image, we randomly choose20%, 40%, and

127

Table 5.2: AUC-ROC (%) for the ESP Game data set with 10,000 training images and 200classes.

case-1 case-2 case-3 case-4

SVM 80.2 79.2 77.5 75.2
PLATT 80.1 79.5 77.9 75.9

MLKNN 81.3 72.5 72.3 72.1
MLLS 79.8 78.9 77.3 75.0

MLR-L1 82.3 82.2 81.1 79.4
MLR-GL 83.8 83.4 82.8 82.1

Table 5.3: MAP (%) for the ESP Game data set with 10,000 training images and 200classes.

case-1 case-2 case-3 case-4

SVM 38.0 36.2 34.0 31.0
PLATT 37.9 36.5 34.5 31.8

MLKNN 35.2 26.4 25.8 25.6
MLLS 38.0 37.0 35.5 33.1

MLR-L1 40.0 38.0 37.1 35.2
MLR-GL 38.2 37.5 36.8 35.4

60% of the assigned class labels, respectively, and remove themfrom the training data. During the

label removal process, we make sure that each image has at least one positive class label.

5.4.2 Baseline Methods

We use the same baselines as in Chapter 2: SVM [121], PLATT [157], MLKNN [125],

MLLS [139], MLR-L1, and MLR-GL, the proposed group lasso based multi-label ranking method

that is described in this chapter and specifically addressesthe multi-label learning with incomplete

class assignment problem.

When calculating the kernel matrix, a modified chi-squared kernel with d(x,x′) = |x −

x′|22/|x + x′|22, is used for the ESP GAME and MIR Flickr25000 data sets because it yields sig-

nificantly better performance than the standard version.σ is set to be chi-squared kernel is chosen

as the mean of the pair-wise distancesd(x, y) [69]. The optimal values for parametersC and the

128

Table 5.4: The label predictions by the baselines for four images from the ESP Game data set,
when40% of the training labels are missing. The first row under the images gives the true image
class labels. For each baseline, we provide the top nine returned labels (three in the top row, and
three it the lower row) ranked from left to right. The hits arewritten with bold characters.

labels silver circle round sky orange dark tree road wood
SVM silver diamondcircle dark man cloud water sidewalk ride

jewelry metal wrist computer face wave ocean man boat
tree time wood metal space dance wall animal fish

MLKNN man ad woman man hair face ad hair sky
metal face girl girlsky people girl mantree
logo people sky woman water smile water smile screen

MLLS silver circle tree facedark night water sea sky
round dark line sea eyes ocean ocean man cloud

wood hand orange teeth computerorange treewall street
MLR-L1 silver circle round mandark light ocean sky man

dark woman line lights cloudorange water sea wall
orange logo wood shadow night sun men peoplewood

MLR-GL round circle silver light dark man sky water man
ad logo square woman night girl wood sea people

line face woman sky orangepeople tree road woman

Table 5.5: AUC-ROC results for the MIR Flickr data set

case-1 case-2 case-3 case-4

SVM 70.2 69.1 67.6 65.7
PLATT 70.0 68.8 67.3 65.0

MLKNN 68.7 67.6 66.1 64.3
MLLS 75.9 74.6 72.7 71.5

MLR-L1 75.4 72.7 4 71.7 69.1
MLR-GL 76.2 75.7 75.0 74.1

129

approximation parameterη are selected by cross validation.

The parameterη approximates2tr(γ⊤γ)/(1⊤
b γ

⊤γ1b + 1⊤
a γγ

⊤1a), for the matrixγ ∈ Ra×b,

wherea andb are respectively the number or relevant and irrelevant labels for a training image. As

the number of classes increases, we would expect botha andb to increase. Consequently, larger

values ofa andb would require a largerη value for a better approximation. This is confirmed by

the cross validation operation that we performed to choose the η value in our experiments. For

example, the selectedη value was 50 when we set the number of labels 50 in the trainingdata set,

whereasη = 150 gave the best performance among different values ofη tried for the data subset

with 500 image labels (for the experiments in Chapter 4). Therefore, we can conclude that the

optimal value ofη depends on factors like the number of image labels and the nature of the data

set (i.e., the average number of labels per image).

5.4.3 Multi-label Ranking Performance on Incompletely Labeled Data

Tables 5.2 and 5.3 show the results for the ESP Game data set interms of AUC-ROC and MAP,

respectively, for a training set with10, 000 images. We note that the classification results are

consistent among experiments with different training set sizes, and only report the results for the

10, 000 images setting results for brevity. From the tables, we firstobserve that the baseline PLATT,

which converts SVM output scores into probabilistic scores, improves the performance of SVM in

the missing label settings. This is consistent with [169], where the conversion procedure makes

the outputs from different SVM classifiers more comparable and consequently may lead to better

performance for multi-label ranking. On the other hand, both SVM and PLATT are outperformed

by the direct multi-label learning methods, namely MLR-GL,MLR-L1, and MLLS; this stresses

the importance of developing multi-label ranking methods for multi-label learning.

Second, we observe a significant decrease in classification accuracy for all the methods when

moving from case-1 to case-4, proving that the missing classassignment could significantly affect

the classification performance. On the other hand, comparedto the other baseline methods, the

130

proposed method (MLR-GL) is more resilient to the missing class labels: it only experiences a

drop less than2% in terms of AUC-ROC metric when60% of the assigned class labels are removed

(case-4), whereas the other methods experience drops from3% to 5%. Similarly, the performance

drop from case-1 to case-4 is less than3% for MLR-GL, whereas it is more than5% for the other

baselines in terms of MAP score. These results indicate the robustness of the proposed method in

handling missing class assignments.

In Table 5.4, we provide results for sample test images from the ESP Game data set for the

case-3 experiments, where40% of the assigned class labels are missing from the training images.

We give the label predictions by the baselines for four threeimages, and the first row under the

images gives the true image class labels. For each baseline,we provide the top nine returned labels

ranked from left to right and top to bottom. The correct matches are written with bold characters.

In addition to the clear superiority of the proposed method’s predictions over the other baselines,

there is another point that needs to be emphasized. The analysis of the left-most image, whose

labels aresilver, circle, andround, shows how using label correlations help to address the label

ambiguity problem. We see that the three direct multi-labellearning methods, MLR-GL, MLR-

L1, and MLLS, successfully retrieve the labelround in addition tocircle, whereas SVM baselines

cannot. This is because certain label pairs, such ascircle-round, girl-woman and logo-ad, are

mostly retrieved together by the direct multi-label learning methods. This makes these methods

more robust for the label ambiguity problem.

We also report the results on the MIR Flickr25000 data set in terms of AUC-ROC score in

Table 5.5. Similar to the ESP Game data set, we observe (i) a significant drop in AUC-ROC score

for all the methods when some class assignments are missing from training examples, and (ii)

MLR-GL experiences the least degradation, together with the MLLS method, in terms of AUC-

ROC score compared to the other baseline methods. We also notice that unlike the ESP Game data

set, the baseline SVM slightly outperforms the baseline PLATT for the MIR Flickr25000 data set,

showing that the probabilistic score conversion does not improve the SVM outputs for this data

131

set.

To better understand the reasons as to why the proposed MKL-GL is more robust, we observe

the outcomes for the training samples after the training/learning step. Table 5.6 shows how dif-

ferent methods perform in finding the missing true labels fortraining examples, where only the

underlined true labels are provided to the learning algorithms. We observe that MLR-GL is able

to find more missing labels than the other baselines. Unlike the other baselines, when ranking the

label scores for the training images, MLR-GL does not alwaysput the assigned labels at the top

of the ranking. In contrast, it ranks some categories that are initially labeled as irrelevant higher

than the relevant ones, meaning that MKL-GL does not overfit.This is why the proposed method

outperforms the baselines in this task. Table 5.7 shows examples of annotations generated for

test images for case-4, where 60% of the positive labels are removed from the training data set.

These examples confirm that the proposed method gives betterannotation results than the baseline

methods.

Based on the above results, we conclude that the proposed method for multi-label learning (i)

is effective for image categorization, and (ii) is more effective in handling incompletely labeled

data than the state-of-the-art methods for multi-label learning.

5.4.4 Training Time

In Chapter 4, we observed that the MLLS baseline is computationally more efficient than one-vs-

all SVM and the MLR-L1 multi-label ranking method when the number of samples,n, is greater

than the number of feature dimensions,d. Therefore, when comparing the proposed MLR-GL

method to SVM and MLR-L1 in terms of training time, we exclude the MLLS baseline from the

evaluations. Moreover, we are also not including MLKNN algorithm, which is significantly faster

than the other baselines, because it only requires simple and fast operations, such as calculating

label prior probabilities. However, MLKNN’s efficiency comes with a price of lower classification

performance.

132

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

number of training images

tr
ai

ni
ng

 ti
m

e
(s

ec
)

SVM
MLR−L

1

MLR−GL

Figure 5.3: The change in the baseline training times (seconds) with respect to the number of
training images from the ESP Game data set.

Figures 5.3 and 5.4 plot the change in the baseline training times with respect to the number

of training images and labels, respectively. We use the ESP Game data set, and the three baselines

that we are comparing are MLR-GL, MLR-L1, and one-vs-all SVM. All these three methods are

implemented with C. In this experiment, we vary the number oftraining examples from1, 000

to 40, 000 and labels from 10 to 500. Overall, we observe that the methods in comparison have

similar running times. The computational complexity of MLR-L1 and MLR-GL per iteration is

O(mn2), wheren is the number of training examples andm is the number of classes.

Note that the time spent on kernel matrix construction is notincluded in this study because

it is shared by all the three methods in comparison. However,when the RAM capacity is not

large enough to store the whole kernel matrix, using a pre-computed kernel matrix would not be

possible. This would have a larger negative impact on one-vs-all SVM, since the computational

complexity would becomeO(dmn2). This is because the kernel function computations need to

be performed separately for each class. On the other hand, the computational complexity of the

proposed multi-label ranking methods would beO(dn2 +mn2), since the classifiers for all labels

133

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

number of image labels

tr
ai

ni
ng

 ti
m

e
(s

ec
)

SVM
MLR−L

1

MLR−GL

Figure 5.4: The change in the training time (seconds) for theproposed multi-label ranking algo-
rithms and one-vs-all SVM with respect to the number of imagelabels (m).

are learned together by using a single kernel.

5.5 Conclusions and Future Work

In this chapter, we have presented our multi-label ranking approach which addresses the incomplete class

assignment problem. By using the group lasso technique [163] to combine the errors in ranking the assigned

classes and unassigned classes, our method is able to use therelationships between the class labels to detect

the missing class assignments, making it more robust for incompletely labeled data. Our empirical study

of image categorization with two benchmark data sets demonstrated that the proposed method outperforms

state-of-the-art methods, particularly when the number ofmissing label assignments increases in the training

set. We can list our contributions as follows:

• We have proposed a multi-label ranking approach which offers a direct solution to multi-label learning

unlike the conventional methods that use a set of binary classifiers. Our experiments have shown that

the proposed method outperforms the multi-label learning techniques from the literature.

• The proposed method is robust to incomplete class assignment problem. The performance difference

134

between the proposed method and the multi-label learning baselines increases in favor of the proposed

approach as the number of missing class labels in the training set increases.

• We have proposed an efficient algorithm that involves using aclosed form solution. The computa-

tional complexity is linear with respect to the number of class labels. The computational load of

the proposed algorithm is comparable to that of one-vs-all SVM, which is one of the most efficient

multi-label learning algorithms. The proposed algorithm can efficiently handle the majority of the

available image categorization data sets with tens of thousands of images and hundreds of classes.

The proposed algorithm efficiently and effectively tacklesthe incomplete class assignment problem.

However, there are three main issues that need to be addressed to improve this work further. The first

one is extending the proposed framework to multiple kernel learning. Similar to the multi-label ranking

approach presented in Chapter 4, the multi-label ranking method we describe in this chapter is limited

to a single kernel function usage. Extension of this work to multiple kernel learning setting can bring a

significant improvement in classification performance. Thesecond issue is the computational complexity.

The current algorithm can handle tens of thousands of samples and hundreds of classes. However, since the

computational complexity is linear in the number of class labels and quadratic in terms of training instances,

training the proposed algorithm in recent large scale imagecategorization data sets (millions of images and

thousands of class labels) would not be practical. One way toimprove the training efficiency of the proposed

multi-label ranking algorithm would be incorporating label set space projection methods like compressed

labeling [123]. Finally, the proposed method can be extended to the scenario where not only some of the

“true” class assignments are missing, but some of the class labels are incorrectly assigned to the training

instances. This is a more challenging problem in which we need to address the uncertainty arising from

missing class assignment as well as from noisy class assignments. This scenario often encountered in the

problem of image tagging/annotation [155].

135

Table 5.6: Examples of training images from the ESP Game dataset with true labels and anno-
tations generated by different multi-label learning methods. Only the underlined true labels are
provided to the methods for training. For each method, the correct (returned) keywords are high-
lighted by bold font whereas the incorrect ones are highlighted by italic font.

Images

Labels
brown girl grass green blue, building car city cloud
hair picture smile tree sky street white window

MLR-GL

man blackgreenpeople white white mansky blue green red
redwomantree blue sky black woman waterwindow tree

girl hair picture grass brown people grass hair picture house
water light yellow old hat face yellow brown girlcloud building

smilehouse shirt eye mountain smile facecar

LIBSVM+Platt

girl green blue black face hair window city black hair man
woman people white glasses manwhite water yellow smile chinese

group tree grasssky light line treesky lake mountain
pink chinese eye red plant pinkblue computer wood green
dress hand flower forest table woman boy house hat

LIBSVM

green girl space drink sky city window metal truckcar
point face woman shop metal ball lake lakebuilding room fly
family pot machine light truck line wing roof water website

forest star guy sit glasses mountain road helmetwhite tent
white nighthair black usa chinese chair pink silver small

MLR-L1

green girl black tree people window city blacksky water
light hair man white metal metal mountain pink wingcar
dark band leaf star glasses building hair boy computer lake
sky space woman red night truck insect person roof room
truck face street pot group man tree silver road ocean

136

Table 5.7: Examples of test images from the ESP Game data set with annotations generated by
different multi-label learning methods. The correct keywords are highlighted by bold font whereas
the incorrect ones are highlighted by italic font.

Images

Labels
tree water black picture man woman people hair

drawing sea art blue girl picture smile group
boat green city photo kid family

MLR-GL

man whiteblack woman people man womanblack whitepeople
blue greenred tree girl blue green redgirl tree

skywater hair picture old hair sky waterpicture old
brown grass yellow face mountain brown face yellow grasssmile

LIBSVM

book smile gray sun flag man hair black movie face
computer brick man yellow street food fire boysmile lady

machinesealeaf road ocean metal statue dance couple red
couple forest fly purple toy table toy arm bike gold

LIBSVM+Platt

book man smile whiteblue movie foodman hair white
skyblack woman redgreen smile womanblue face black

peopletree water computer girl peoplegreen redgirl fire
face old hair yellow leaf tree sky boy table eye

MLR-L1

tree greenhair movie white hair tree black movie green
black people grass statue leaf man eyewomanwhite hand

orange old bike red flower facegirl people smiledance
mountainpicture dance eye dirt red hat orange statue brown

137

Chapter 6

Multiple Kernel Multi-label Ranking

6.1 Introduction

In this chapter, we present a multiple kernel multi-label ranking (MK-MLR) algorithm for image catego-

rization. The algorithm we propose combines different image representations to make the best multi-label

prediction for a query image, by learning to rank relevant labels over irrelevant labels. To achieve this goal

and build our algorithm, we combine several conclusions drawn in the previous chapters:

• The experimental results in Chapter 2 showed that, given a sufficient number of training samples,

learning a sparse combination of base kernels (MKL-L1) is advantageous for image categorization.

Not only does it often improve accuracy when compared to the average kernel or MKL-L2 frame-

works, but the sparse solutions also lead to a computationally efficient prediction step. Using a

smaller number of base kernels as a result of sparsity bringsa significant time gain in terms of feature

extraction cost; one of the main bottlenecks of the prediction step.

• Among the MKL-L1 baselines we evaluated in Chapter 2, MKL-SILP (Semi-Infinite Linear Program-

ming) [71] is the most computationally efficient method. MKL-SILP is a wrapper approach, meaning

that learning the kernel weights and classification functions can be separated in each iteration. Be-

cause of this, the inner SVM-solver can be replaced by other learning algorithms without modifying

the linear programming solution that is used for updating the kernel weights.

138

• In Chapter 4, we formulated image categorization as a multi-label ranking problem. Our experimental

results showed that learning classification functions for all the classes in a single framework (i.e.,

direct multi-label approaches) gives better prediction results compared to decomposing the problem

into individual binary classification tasks, i.e., one-vs-all SVM. However, the algorithm we presented

in Chapter 4 (MLR-L1) is designed for using a single kernel. In this chapter, our goal is not only

finding the optimal multi-label ranking solution, but also the best linear kernel combination that

would maximize multi-label prediction performance.

• The experimental results provided in Chapter 3 showed that,for image classification, there is not a

significant performance difference between using one shared kernel combination for all classes and

learning a different kernel combination for each class. Therefore, in order to improve the computa-

tional efficiency of training and prediction steps, we propose to learn a single kernel combination that

would benefit all the classes in a multiple kernel multi-label ranking framework.

Based on these stated conclusions, we extend the MLR-L1 method by integrating it into a wrapper SILP

MKL framework. The goal of developing a multiple kernel multi-label ranking method is to address the

two essential factors for improving the performance of image categorization: (i) heterogeneous information

fusion, and (ii) exploiting label correlation of multi-label data. The main difference between the algorithm

proposed in Chapter 3, ML-MKL-SA, and the MK-MLR algorithm we present in this chapter is that the

former aims to improve the training efficiency of MKL for one-vs-all framework. On the other hand, the

goal of the MK-MLR algorithm is to improve the image categorization performance by exploiting label

dependencies in multi-label data and optimizing the use of different image representations.

This Chapter is organized as follows: in Section 6.2, we provide a literature review on MKL methods

that are proposed for multi-label learning. Next, in Section 6.3, we introduce our multiple kernel multi-

label ranking formulation and provide a computationally efficient algorithm, which is based on semi-infinite

linear programming (SILP), to solve it. In Section 6.4, we provide empirical analyses that demonstrate

the strength of the proposed framework on benchmark data sets. We end the chapter with the concluding

remarks and future directions in Section 6.5.

139

6.2 Previous Work

MKL is a very useful tool for the image categorization problem, since an image can be represented in many

ways depending on the methods used for key-point detection,descriptor/feature extraction, and key-point

quantization; each image representation has different strengths and weaknesses. MKL offers a systematic

solution to image feature selection and combination for theimage representation and learning problems.

However, a vast majority of MKL studies in the literature address the binary classification task. Therefore,

the use of MKL for image categorization is mostly limited to one-vs-all framework, which gives suboptimal

performance (see Chapter 4). A detailed survey of binary MKLmethods is presented in Chapter 2.

We presented a multi-label multiple kernel method (ML-MKL-SA) in Chapter 3. Unlike the one-vs-all

scheme, the proposed ML-MKL-SA method does not decompose the multi-label problem into individual

binary problems. By learning a common kernel for all classes, ML-MKL-SA takes advantage of multi-label

data by sharing information between the classes. However, the classification functions for each class are

still trained independently, meaning that label correlations are not used when the classifiers are trained.

One of the main conclusions of Chapter 4 is that direct methods for multi-label learning, which optimize

classification functions together, are superior to decomposition based methods such as one-vs-all and one-

vs-one. However, there is a limited number of works that extend a direct multi-label learning method to

multiple kernel setting in the literature. Kernel multiplelinear regression (KMLR) and canonical correlation

analysis (CCA) are two techniques that are employed in multi-label learning literature to compute a mapping

between data samples and data labels [170]. Yakhnenko et al.extended the kernel regression model and

canonical correlation analysis methods to the multiple kernel setting [171]. The authors proposed a reduced

gradient method to solve for the optimal linear kernel combination for multi-label learning with KMLR

and CCA. Ji et al. [68] proposed a multi-label multiple kernel learning method that can be considered as a

generalization to KCCA. The goal of the method they proposedis to embed the data into a low-dimensional

space by using a hypergraph, which encodes instance-label correlations. In addition to proposing a SILP

solver, they also approximated the problem in order to use Nesterov’s method [85].

Zhang et al. used concept networks to model inter-label dependencies and similarity diversities [172].

Inter-label dependencies exploit the similarity between images that share a common label. For a pair of

140

images that share some common labels but also contain different labels from each other, similarity diversity

is used to measure the dissimilarity between these two images. The authors proposed to learn an optimal

kernel not only for each label, but also for each label pair inorder to utilize the concept networks.

Our method, MK-MLR is the first attempt of extending multi-label ranking to multiple kernel setting.

One of the main advantages of MK-MLR compared to other multi-label MKL methods is that MK-MLR

exploits label correlations without making explicit assumptions on the data. Moreover, learning one shared

kernel combination for all classes is advantageous for classes with small number of positive samples. Since

MKL-L1 methods require a sufficient number of training samples to perform well, sharing a kernel combi-

nation, which also means sharing information among different classes, benefits classes with a small number

of samples. Finally, by imposing sparsity on the kernel combination vector, the proposed method improves

the computational efficiency of training and prediction.

6.3 Multiple Kernel Multi-Label Ranking (MK-MLR)

In this chapter, we use the same notation as in Chapter 3. We introduceβ = (β1, . . . , βs), a probability

distribution, for combining base kernels. We use the domainB1 for the probability distributionβ, i.e.,

B1 = {β ∈ R
s
+ : β⊤1 = 1}. Our goal is to learn from the training examples the optimal kernel combination

β for all m classes while simultaneously optimizing the corresponding ranking functions.

6.3.1 A Minimax Framework for Multiple kernel Multi-label R anking

In multiple kernel multi-label ranking, we aim to learnm classification functionsfk(x;β) : Rd1×d2×...ds 7→

R, k = 1, . . . ,m, one for each class, such that for any examplex, fk(x;β) is larger thanfl(x;β) when

x belongs to classck and does not belong to classcl. Note thatfk(x;β) is computed by using the kernel

functionκ(·, ·;β) =
∑K

s=1 βsκs(·, ·). We define the classification errorεk,li for an examplexi with respect

to any two classesck andcl, as follows

εik,l = I(yki 6= yli)ℓ

(
yik − yil

2

(
fk(x

i;β)− fl(xi;β)
))

, (6.1)

141

whereI(z) is an indicator function that outputs1 whenz is true and zero, otherwise. The lossℓ(z) is defined

to be the hinge loss, whereℓ(z) = max(0, 1− z).

Following the framework in Chapter 4 and the multiple kernellearning problem, we aim to search for

the classification functionsfk(x;β), k = 1, . . . ,m that simultaneously minimize the overall classification

error. This is summarized into the following optimization problem.

min
β∈B1

min
{fk∈Hκ(β)}mk=1

1

2

m∑

k=1

|fk|2Hκ
+ C

n∑

i=1

m∑

k,l=1

εik,l, (6.2)

whereκ(x,x′) : Rd×R 7→ R is a kernel function,Hκ(β) is a Hilbert space endowed with a kernel function

κ(·, ·;β) =
∑K

s=1 βsκs(·, ·). andC is a regularization parameter. The domainB1 is defined in Eq. (6.3).

B1 =



β ∈ R

s
+ : ‖β‖1 =

s∑

j=1

|βj | ≤ 1



 . (6.3)

By using the following definition for∆i
k,l,

∆i
k,l =

yik − yil
2
〈fk − fl, κ(xi, ·)〉Hκ .

We can rewrite the objective function in Eq. (6.2) as follows

h(f ;β) =
1

2

m∑

l=1

〈fl, fl〉HK(β) + C

n∑

i=1

m∑

l,k=1

I(yil 6= yik)ℓ
(
∆i

k,l

)
.

We then rewriteℓ(z) as

ℓ(z) = max
x∈[0,1]

(x− xz).

Using the above expression forℓ(z), the second term inh(f ;β) can be rewritten as,

n∑

i=1

m∑

l,k=1

I(yil 6= yik) max
γi
k,l

∈[0,C]

(
γik,l − γik,l∆i

k,l

)
.

142

Then, the problem in Eq. (6.2) can be rewritten as follows,

max
β∈B1

min
fl∈H(β)m

max
γi
l,k

∈[0,C]
g(f, γ,β),

where

g(f, γ,β) =

n∑

i=1

m∑

l,k=1

I(yil 6= yik)γ
i
l,k +

1

2

m∑

l=1

〈fl, fl〉H(β)K

−
n∑

i=1

m∑

l,k=1

I(yli 6= yik)γ
i
l,k∆

i
k,l.

Next, we switch the order of minimization overf and maximization overγ. By taking the minimization

overfl first, we have

fl(x;β) =

n∑

i=1

yil

(
m∑

k=1

I(yil 6= yik)γ
i
l,k

)
κ(xi,x;β).

In the above derivation, we use the relationI(yil 6= yik)(y
i
l − yik) = 2yil . To simplify our notation, we

introduceΓi ∈ [0, C]m×m whereΓi
l,k = γil,k if yil 6= yik and zero otherwise. Note that sinceγil,k = γik,l, we

haveΓi = [Γi]⊤. We furthermore introduce the notation[Γi]l as the sum of the elements in thelth row, i.e.,

[Γi]l =
∑m

k=1 Γ
i
l,k. Using these notations, we havefl(x;β) expressed as

fl(x) =

n∑

i=1

yil [Γ
i]lκ(x

i,x;β).

Finally, the remaining maximization problem becomes

min
β∈B1

max
Γ

n∑

i=1

m∑

k=1

[Γi]k −
1

2

m∑

k=1

n∑

i,j=1

κ(xi,x;β)yiky
j
k[Γ

i]k[Γ
j]k

s. t. Γi
k,l =





0 ≤ Γi
k,l ≤ C yik 6= yil

0 otherwise

Γi = [Γi]⊤, i = 1, . . . , n; k, l = 1, . . . ,m.

Note that Eq. (6.4) is a generalized version of Eq. (4.4) and also might be expensive to solve, as the number

143

of constraints isO(m2), wherem is the number of classes. Therefore, we propose a similar approximation.

6.3.2 Proposed Approximation

Without a loss of generality, consider a training examplexi that is assigned to the firsta classes, and is not

assigned to the remainingb = m− a classes. According to the definition ofΓi in (6.4), we can rewriteΓ as

Γ =




0 Z

Z⊤ 0


 , (6.4)

whereZ ∈ [0, C]a×b. Using this notation, variableτk = [Γi]k is computed as

τk =





∑b
l=1 Zk,l 1 ≤ k ≤ a

∑a
l=1 Zl,k a+ 1 ≤ k ≤ m,

whereZk,l is an element inZ that is bounded by 0 andC. According to the above definition, for each

instance,τk is the sum of either thekth column or thekth row of Z depending on whether the labelk is

relevant to that instance or not. As discussed in Chapter 4, formulatingτk by usingZ enables us to exploit

label relationships during the optimization process.

Using Theorem 4 and Corollary 5 from Chapter 4, we introduce the variableαi
k for [Γi]k. We further-

more restrictαi = (αi
1, . . . , α

i
k) to be in the domainG =

{
τ ∈ [0, C]m :

∑a
k=1 τk =

∑m
k=a+1 τk

}
to ensure

that feasibleΓi can be recovered from a solution ofαi
k. Then, using the vector notation, we can rewrite the

new optimization problem for multiple kernel multi-label ranking (MK-MLR) as in Eq. (6.5).

minβ∈B1 maxα∈Q1 L̂(α,β) =
m∑

k=1

{
1⊤αk −

1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk)

}
,

s. t.
m∑

k=1

I(yik = 1)αi
k =

m∑

k=1

I(yik = −1)αi
k,

αi
k ∈ [0, C], i = 1, . . . , n, k = 1, . . . ,m, (6.5)

whereκ(x,x′;β) =
∑s

j=1 βjκj(x,x
′) andB1 =

{
β ∈ R

s
+ : ‖β‖1 =

∑s
j=1 |βj | ≤ 1

}
. It is important to

144

note that the only difference between Eq. (6.5) and the optimization problem of ML-MKL-Sum (Eq. (3.2)

in Chapter 3) is the domain defined forα.

6.3.3 Optimization via Semi-infinite Linear Programming

One of the conclusions in Chapter 2 was that MKL-SILP (Semi-Infinite Linear Programming) [71] is the

most efficient method among the MKL-L1 baselines. Therefore we will use SILP to optimize Eq. (6.5).

Let’s defineSs(α) = −
∑m

k=1

{
1⊤αk − 1

2(αk ◦ yk)
⊤Ks(αk ◦ yk)

}
. Then, we can rewrite Eq. (6.5)

as the following min-max problem,

maxβ∈B1 minα∈Q1

K∑

s=1

βsSs(α), (6.6)

For the optimal solutionα∗, θ∗ = S(α∗,β) would be minimal, meaning thatS(α,β) ≥ θ for any

α ∈ Q1. Therefore, as proposed in [71], we need to solve the following SILP problem in order to find a

saddle-point of Eq. (6.6).

min
θ∈R,β∈B1

θ (6.7)

s. t.
s∑

j=1

βj{−α⊤1+
1

2
(αk ◦ yk)

⊤Kj(αk ◦ yk)} ≥ θ,

m∑

k=1

I(yik = 1)αi
k =

m∑

k=1

I(yik = −1)αi
k,

αi
k ∈ [0, C], i = 1, . . . , n, k = 1, . . . ,m.

MKL-SILP is a wrapper method, meaning that learning the kernel weights and classification functions

can be separated in each iteration of the optimization process. In this chapter, we use the MKL-SILP method

with two modifications. Note that, unlike the binary MKL-SILP or ML-MKL-Sum formulations, we cannot

use an off-the-shelf SVM solver to maximize Eq. (6.5) with respect toα because of the domain definition.

Instead, we need to replace the SVM solver with the MLR-L1 method that we proposed in Chapter 4. In

145

addition, compared to binary MKL-SILP, the number of constraints in each step increases since each class

generates its own constraints.

In order to optimize Eq. (6.7), we use the column generation method that is used in [71] and [116] to

solve the MKL-SILP problem: In an alternating optimizationprocess, the optimal(β, θ) are calculated for

a restricted set of constraints. Then, for fixed aβ, new constraints that are determined byαk, k = 1, . . . ,m

are generated. This step corresponds to solving for the optimalα for fixed aβ. Therefore, Eq. (6.7) can be

solved by simply replacing the SVM solver within the off-the-shelf MKL-SIP solvers (Shogun, ML-MKL-

Sum) with the MLR-L1 algorithm, which is presented in Chapter 4.

6.4 Experimental Results

In this section, we empirically evaluate the proposed multiple kernel multi-label ranking algorithm by com-

paring it to other MKL baselines for the image categorization task.

6.4.1 Data Sets

In order to compare our proposed multi-label learning method to state-of-the-art MKL methods, we use two

benchmark multi-label data sets that we have discussed in Section A.1.6.

The MIR Flickr25000 data set [154] is a subset of the MIR Flickr-1M data set that contains 25,000

images and 457 image tags. We followed [101] and created15 sets of low level-features: (i) GIST features

[102]; (ii) six sets of color features generated by two different spatial pooling layouts [103] (1×1 and3×1)

and three types of color histograms (i.e., RGB, LAB, and HSV). (iii) eight sets of local features generated

by two key-point detection methods (i.e., dense sampling and Harris-Laplacian [104]), two spatial layouts

(1× 1 and3× 1), and two local descriptors (SIFT and robust hue descriptor[105]). A RBF kernel function

with χ2 distance was applied to each of the15 feature sets. In addition to these 15 low-level features,

we extracted 177 different kinds of object banks [173], which encode semantic and spatial information

regarding an image. Each object bank is a 256-dimensional vector, which is a collection of response-maps

of pre-trained generic object detectors.

146

In order to test how different baselines perform with respect to the numbers of training images, we

created training subsets with different sizes (%2, %5, %25,and %50 of the whole data set). Also, after

ranking the categories (image tags) in terms of their frequency (number of images annotated with them), we

picked the top 200 categories for multi-label learning evaluation. The number of test samples is12, 500.

ESP Game data setThe second data set we use in this chapter is a subset of the ESPGame data

set. We computed nine base kernels by using low level features. The first kernel is based on dense-SIFT

descriptors and a Bag-of-Words model with1, 000 visual words. In addition to dense sampling, we also

used the Harris-Laplacian (HarLap) [104] method for key-point detection. For HarLap based Bag-of-Words

model, we created two visual dictionaries with sizes250 and1, 000 and used two types of spatial pyramid

kernels (i.e.,1 × 1 and 2 × 2 spatial partitioning), leading to 4 different base kernels. We also created

color histograms, each with4, 096 bins, by using three different color spaces, namely RGB, LABand HSV.

Finally, we constructed a base kernel by using GIST features[102]. In addition to these low level features,

we extracted 177 different kinds of object banks for ESP Gamedata set. In total, we have 186 base kernels

for the ESP Game data set.

To study the influence of the number of training samples and labels on multi-label learning performance,

we varied the number of training samples and number of labelsfor the ESP Game data set as well. We

created four subsets of the training data (with{1, 000, 2, 500, 5, 000, 10, 000} images). Also, after ranking

the categories in terms of their frequency (number of imagesannotated with them) in the data set, we picked

the top{20, 50, 100, 200, 500} categories to create five different test settings in terms ofthe number of

classes. The number of test images is set to 5,000.

6.4.2 Baseline Methods

Following the experiments in Chapter 3, we compare the proposed MK-MLR with four MKL methods, two

single kernel baselines, and two average kernel baselines (AVG-SVM and AVG-MLR). The single kernel

baselines are the single kernel one-vs-all SVM scheme (SK-SVM) and the single-kernel multi-label ranking

method (SK-MLR) that we presented in Chapter 4 (as MLR-L1). We ran these two methods for each base

kernel separately and reported the results for the kernel with the highest score.

147

The MKL baselines can be categorized into two groups. The first group is the one-vs-all MKL frame-

work, which requires solving one MKL problem separately foreach class. For this group, we use two base

MKL solvers that are shown to be the most efficient wrapper MKLmethods in Chapter 2 : (i) SILP (semi-

infinite linear programming) solver for MKL-L1 [71], and (ii) SIP (semi-infinite programming) solver for

MKL-L2. The second group of methods requires learning a single kernel combination simultaneously for

all classes. The two baseline methods that fall into this group are: (i) ML-MKL-Sum, which learns a kernel

combination shared by all classes using the optimization method in [116], and (ii) ML-MKL-SA method: A

stochastic sampling based algorithm we presented in Chapter 3. Note that all the baselines except MK-MLR,

AVG-MLR, and SK-MLR are based on the one-vs-all framework.

6.4.3 Implementation

The experiments were run on a cluster where each node has two four-core Intel Xeon E5620s at 2.4 GHz

with 24 GB of RAM. Since the number of kernels is not small (192for MIR Flickr25000 and 186 for ESP

Game), we did not store and use pre-computed the kernel matrices. Instead, all MKL baselines worked with

on the fly kernel computation.

All the baseline methods were coded in MATLAB. For the SVM based MKL wrapper methods, we used

LIBSVM [107] as the off-the-shelf SVM solver. MOSEK [89] is used for solving the related optimization

problem for MKL-SIP, as suggested in [52].

For kernel based methods, we used the RBF kernel in our experiments. The regularization parameter

C is chosen with a grid search over{10−4, 10−1, . . . , 103}. The bandwidth of the RBF kernel is set to the

average pair-wise Euclidean distance between the trainingimage pairs.

6.4.4 Evaluation Measures

To evaluate the effectiveness of different algorithms for multiple kernel multi-label learning, we first vary

the number of selected categories and report the Area under ROC curve (AUC) over the selected classes.

This procedure is named as category based evaluation (see appendix, Section A.1.5 for details), in which

we rank test images for each class and the evaluation is performed on each label independently, before their

148

Table 6.1: The change of category based AUC score (%) withe respect to the number of selected
classes for a subset of the ESP Game data set with 2,500 training images.

number of classes
50 100 200 500

SK-SVM 70.40 70.00 69.85 69.01
SK-MLR 71.84 71.32 70.55 70.04

AVG 75.86 75.61 75.43 73.66
MKL-L1 77.07 76.12 75.60 73.10
MKL-L2 76.43 76.05 75.78 73.19

ML-MKL-Sum 76.86 76.22 76.05 73.62
ML-MKL-SA 77.26 76.53 76.33 73.89

AVG-MLR 76.06 76.02 76.11 73.66
MK-MLR 78.39 77.69 77.58 74.87

average is taken over all classes. We also use image based evaluation, particularly for comparing multi-label

ranking performance. Image based MLR-AUC measures show howaccurate is the ranking of outcomes. In

addition, we evaluate the training efficiency of algorithmsby the level of sparsity, training and prediction

times (seconds).

6.4.5 Multi-label Learning Performance

We list the category and image based AUC results results for the ESP Game data set in Tables 6.1 and 6.2,

respectively. The results in these two tables are obtained by varying the number of classes for the setting in

which 2, 500 images are used for training. For instance, in the setting where the number of classes is 200,

we calculate the AUC score for the top 200 classes (column 3) after ranking them based on the number of

positively labeled images they have. We draw the following conclusions from Table 6.1:

• Multiple kernel algorithms consistently outperform single kernel algorithms.

• Learning a sparse combination of base kernels via MKL-L1 gives better results compared to the

average kernel and MKL-L2 methods.

• Learning one shared kernel combination for all classes doesnot cause a significant performance drop.

149

Table 6.2: The change of image based AUC score (%) withe respect to the number of selected
classes for a subset of the ESP Game data set with 2,500 training images.

number of classes
50 100 200 500

SK-SVM 75.95 76.32 76.68 76.14
SK-MLR 77.73 78.97 80.41 79.90

AVG 80.81 81.44 82.06 81.67
MKL-L1 81.67 81.85 82.06 81.50
MKL-L2 79.09 80.14 81.24 80.82

ML-MKL-Sum 81.51 81.84 82.22 81.78
ML-MKL-SA 81.67 81.99 82.40 81.93

AVG-MLR 81.86 82.97 84.10 83.47
MK-MLR 83.28 84.04 84.93 84.68

Table 6.3: The change of category based AUC score (%) withe respect to the number of selected
classes for a subset of the MIR Flickr data set with 6,250 training images.

number of classes
50 100 200 500

SK-SVM 65.14 64.83 63.75 62.16
SK-MLR 65.67 65.36 64.52 63.20

AVG 70.31 68.45 66.93 64.88
MKL-L1 70.98 69.03 66.96 64.98
MKL-L2 70.83 68.86 67.24 65.31

ML-MKL-Sum 71.00 69.53 67.93 65.97
ML-MKL-SA 71.28 69.83 68.21 66.05

AVG-MLR 72.10 70.16 68.35 66.30
MK-MLR 72.28 70.34 68.25 66.44

150

Table 6.4: The change of image based AUC score (%) withe respect to the number of selected
classes for a subset of the MIR Flickr data set with 6,250 training images.

number of classes
50 100 200 500

SK-SVM 63.82 62.94 62.28 62.01
SK-MLR 64.67 63.96 63.35 62.88

AVG 72.89 71.99 71.10 70.69
MKL-L1 73.57 72.70 71.53 71.08
MKL-L2 73.13 72.35 71.64 70.71

ML-MKL-Sum 73.37 72.58 71.62 70.60
ML-MKL-SA 73.60 72.91 71.95 70.88

AVG-MLR 75.26 74.23 73.71 72.75
MK-MLR 75.26 74.40 73.70 72.91

• Although the proposed multi-label ranking method is not designed to optimize category based evalu-

ation measures, it still gives comparable results to MKL-L1 and outperforms the remaining baselines.

• The proposed MK-MLR method clearly outperforms SK-MLR and AVG-MLR baselines, demon-

strating the effectiveness of multiple kernel learning formulti-label ranking.

The results on Table 6.1 are calculated by performing category based evaluation. A better way to eval-

uate multi-label raking performance is using image based evaluation: ranking each label given a test image.

By increasing the number of retrieved labels per image, we can obtain a sequence of true positive and false

positive rates and calculate AUC values. Since the proposedMK-MLR method optimizes ranking loss,

as expected, it outperforms the other baselines (see Table 6.2). Also note that, compared to the other base-

lines, the relative performance of all the multi-label ranking methods (MK-MLR, SK-MLR, and AVG-MLR)

increases, showing that multi-label ranking methods benefit from a larger number of labels. Another con-

clusion we draw from Table 6.2 is that multiple kernel methods outperform their single kernel counterparts.

Although the proposed method outperforms the other baselines in terms of the AUC score, it might not

be clear how much impact this difference in the AUC score would make in a retrieval system. In order to

get a better understanding of the classification accuracies(recall), we plot the classification accuracies of

different baselines vs. the number of retrieved labels (rank) in Figure 6.1. To generate this plot we increase

the number of retrieved images from 5 to 30 (the maximum number of labels per image is 30 in the subset

151

5 10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

rank

r
e
c
a
l
l

SNG−SVM
AVG−SVM
MKL−L

1

MKL−L
2

AVG−MLR
MK−MLR

Figure 6.1: The plot of recall vs. number of retrieved labelsper image. The number of training
images is2, 500.

we are using).

We see from Figure 6.1 that MLR methods, both AVG-MLR and MK-MLR, yield superior performance

compared to the other baselines. In fact, the accuracy of MK-MLR is 2-3% better than that of AVG-MLR

and at least 4-5% better than the remaining baselines.

In order to see how the image based AUC score changes with respect to number of samples, in Tables 6.5

and 6.6 , we report AUC and MAP scores for the top 200 classes infour settings, with different subsets of

the training data with{1, 000, 2, 500, 5, 000, 10, 000} images.

The following conclusions can be made from Tables 6.5 and 6.6:

• MK-MLR method is not outperformed by any other baseline in any setting. In fact, the proposed

152

Table 6.5: The change of category based AUC score (%) with respect to the number of training
samples for a subset of the ESP Game data set. The AUC score is calculated using the top 200
classes.

number of training samples
1,000 2,500 5,000 10,000

SK-SVM 67.45 69.85 70.13 70.01
SK-MLR 68.14 70.71 71.02 70.85

AVG-SVM 72.09 75.43 77.71 79.11
MKL-L1 72.27 75.60 77.57 79.36
MKL-L2 72.40 75.78 77.92 80.23

ML-MKL-Sum 72.69 76.05 78.03 80.56
ML-MKL-SA 72.85 76.33 78.87 81.02

AVG-MLR 72.62 76.11 78.27 80.90
MK-MLR 74.12 77.58 79.48 81.61

Table 6.6: The change of image based AUC score (%) with respect to the number of training
samples for a subset of the ESP Game data set. The AUC score is calculated using the top 200
classes.

number of training samples
1,000 2,500 5,000 10,000

SK-SVM 75.97 76.68 78.31 78.69
SK-MLR 79.95 80.41 82.49 83.27

AVG-SVM 80.41 82.05 84.21 84.82
MKL-L1 80.52 82.06 84.01 84.99
MKL-L2 80.78 81.23 84.36 85.01

ML-MKL-Sum 80.79 82.21 83.07 83.86
ML-MKL-SA 80.93 82.79 83.82 84.80

AVG-MLR 82.25 84.10 85.35 86.05
MK-MLR 83.08 84.93 85.87 86.45

153

Table 6.7: The change of category based AUC score (%) with respect to the number of training
samples for a subset of the MIR Flickr data set. The AUC score is calculated using the top 200
classes.

number of training samples
500 1,250 6,200 12,500

SK-SVM 59.72 62.23 63.75 64.51
SK-MLR 60.31 62.41 64.19 64.97

AVG-SVM 60.46 64.02 66.93 67.85
MKL-L1 61.14 64.93 66.96 68.34
MKL-L2 60.76 64.32 67.24 68.59

ML-MKL-Sum 62.20 65.71 67.93 69.23
ML-MKL-SA 62.21 65.78 68.21 69.61

AVG-MLR 61.11 65.02 68.35 69.97
MK-MLR 63.06 66.89 68.85 70.33

MK-MLR algorithm significantly outperforms the competing algorithms in the majority of the exper-

imental settings.

• Using multiple kernels improves the performance.

• All baselines experience an increase in their performance when the number of training instances

increases.

We provide the category based and image based AUC scores for the MIR Flickr25000 data set in Ta-

bles 6.7 and 6.8. We vary the number of training samples to seehow the increase in the training data set

size affects the performance. One thing to observe from these two tables is that the performance of the

baselines is overall worse compared to the ESP Game data set experiments, particularly when the number of

training images is small. Because of this reason, the performance gap between the baselines is not as high

as it is for the ESP Game experiments. Further, we can make thefollowing statements based on the results

in Tables 6.7 and 6.8.

• MKL methods that learn a single kernel combination for all classes (ML-MKL-Sum and ML-MKL-

SA) give slightly better results than training MKL for each class separately (MKL-L1 and MKL-L2)

for the MIR Flickr25000 data set.

154

Table 6.8: The change of image based AUC score (%) with respect to the number of training
samples for a subset of the MIR Flickr data set. The AUC score is calculated using the top 200
classes.

number of samples
500 1,250 6,250 12,500

SK-SVM 63.89 64.99 65.57 67.81
SK-MLR 64.76 67.83 68.21 69.12

AVG-SVM 65.06 68.26 71.10 71.80
MKL-L1 66.11 69.29 71.53 71.99
MKL-L2 65.40 68.59 70.94 71.86

ML-MKL-Sum 67.13 70.12 71.62 72.13
ML-MKL-SA 67.16 70.18 71.95 72.54

AVG-MLR 66.40 68.84 73.71 75.26
MK-MLR 68.12 70.93 73.70 75.91

• The performance difference between MK-MLR and AVG-MLR decreases as the number of training

samples increases. As we have previously discussed in Chapter 2, this is because the quality of all the

base kernels increases with an increased number of trainingsamples, and the advantage that a sparse

combination would bring, i.e., eliminating weak kernels, vanishes.

• MLR algorithms always perform better than their OvA counterparts, i.e, SK-MLR performs better

than SK-SVM; AVG-MLR outperforms AVG-SVM.

6.4.6 Training Efficiency

In this section, we compare the computational efficiency of the MK-MLR algorithm to the other MKL

baselines in terms of training times. We group the MKL algorithms into two categories: (i) ML-MKL for

learning individual kernel combination for each class, (ii) ML-MKL for learning shared kernel combination.

We report the training times for each method under various experimental setting with different number of

training samples and classes.

Figure 6.2 and 6.3 compare the training times of the MKL baselines for a fixed number of training

set size,5, 000, under four settings with increasing class numbers:{50, 100, 200, 500}. It is clear from

Figure 6.2 that the proposed method is significantly faster than MKL methods that require learning a separate

155

50 100 200 500
0

2

4

6

8

10

12
x 10

6

Number of classes

T
r
a
i
n
i
n
g

t
i
m
e

MK−MLR
MKL−L

2

MKL−L
1

Figure 6.2: Comparing MK-MLR to ML-MKL methods that learn optimal kernel combination
separately for each class in terms of training time. We use5, 000 training images and create four
different settings by changing the number of classes{50, 100, 200, 500}

156

50 100 200 500
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of classes

T
r
a
i
n
i
n
g

t
i
m
e

MK−MLR
ML−MKL−Sum
ML−MKL−SA

Figure 6.3: Comparing MK-MLR to ML-MKL methods that learn one optimal kernel combination
for all classes in terms of training time. We use5, 000 training images and create four different
settings by changing the number of classes{50, 100, 200, 500}

157

kernel combination for each class (MKL-L1 and MKL-L2). The main advantage of the proposed method

is that it avoids repetitiously performing expensive kernel construction and combining operations for each

class. The computational complexity of kernel construction isO(dn2), whered is the dimension of feature

vectors andn is the number of samples. When the number of classes and base kernels is larger (order of

hundreds), MK-MLR has a significant advantage over these methods.

We also see from Figure 6.3 that MK-MLR is slower than the two MKL baselines which learn one shared

kernel combination for all classes. In Chapter 3, we proved that the computational complexity of ML-MKL-

SA is sublinear,O(m1/3
√
lnm), in terms of the number of classes,m. Therefore, it is not surprising to

see that ML-MKL-SA is the fastest method. Moreover, we can expect the gap between the training times

to increase as the number of classes increases. The reason for the performance gap between MK-MKL and

ML-MKL-Sum, which use the same SILP solver for kernel weights, is the implementation difference of the

dual variable optimizers. Recall from Chapter 4 that our multi-label ranking method and kernel SVM show

very close performance in terms of computational complexity and yield almost equivalent training times

when implemented in the same environment. On the other hand,since we use a MATLAB implementation

for the MLR algorithm, MK-MLR algorithm gives higher training times compared to ML-MKL-Sum, which

uses a very efficient SVM solver that is coded with C. However,note that the performance difference does

not increase as the number of training sample increases, since these two methods have the same complexity.

Figures 6.4 and 6.5, which compare the training times of the baselines over different data set sizes,

{1, 000, 2, 500, 5, 000}, confirm the conclusions we drew from Figures 6.2 and 6.3. MKL-L1 and MKL-L2

methods are significantly slower, since they require expensive kernel computation and combination opera-

tions for each class. In addition, both ML-MKL-SA and ML-MKL-Sum methods are faster than MK-MLR.

However, ML-MKL-SA does not have a computational advantageas it did when the comparison was made

in terms of the change in the number of classes. All the baselines have similar dependency to the number of

samples. Therefore, we see a similar growth in training times for them.

158

1,000 2500 5,000
0

1

2

3

4

5

6

7
x 10

6

Number of training images

T
r
a
i
n
i
n
g

t
i
m
e

MK−MLR
MKL−L

2

MKL−L
1

Figure 6.4: Comparing MK-MLR to ML-MKL methods that learn one optimal kernel combination
separately for each class in terms of training time. We use images from 200 classes and create three
settings by changing the data set size{1, 000, 2, 500, 5, 000}

159

1,000 2500 5,000
0

2

4

6

8

10

12

14

16

18
x 10

4

Number of training images

T
r
a
i
n
i
n
g

t
i
m
e

MK−MLR
ML−MKL−Sum
ML−MKL−SA

Figure 6.5: Comparing MK-MLR to ML-MKL methods that learn one optimal kernel combination
for all classes in terms of training time. We use images from 200 classes and create three settings
by changing the data set size{1, 000, 2, 500, 5, 000}

160

6.4.7 Prediction Efficiency

Prediction speed is in general more crucial than training speed in real word systems. Given a query image, a

multi-label prediction system requires calculating an output score for each class. For multiple kernel setting,

an output score for classk can be computed as,

fk(x) =

n∑

i=1

αi
k.κ(xi,x;βk),

whereκ(., .;βk) is the optimal kernel function (linear combination of the base kernels) for classk. Since

the computation of output function score is standard for allbaselines that use multiple kernels, only the

following three factors affect the prediction speed:

• Multi-label kernel combination: Do output functions for each class require a different kernel combi-

nation, or do they share a single kernel combination function?

• Sparsity of kernel combination weights.

• Sparsity of output functions.

Therefore, in addition to reporting the actual prediction times, we also discuss these factors to get a better

understanding of the prediction efficiency. For a fixed number of training samples (5, 000) and classes (200),

we report the sparsity of kernel weights and dual variables in Table 6.9 for the multiple kernel baselines. We

also compute two types of prediction times, both reported inseconds: (i) Average prediction time per single

class, (ii) Total prediction time. Note that the average prediction time per class is not calculated simply by

dividing the total prediction time by the number of classes,but it is the time to make a prediction if there was

only one class needed (binary prediction). When the prediction scores for all classes need to be computed,

the prediction time does not increase linearly, since feature extraction, which is the most time-consuming

step, can be done once for all classes. An analysis on the sparsity values leads to the following conclusions:

• The main bottleneck for prediction time is the feature extraction step. The time it takes to extract all

186 features that are being used for the ESP Game data set is10.29 seconds per image. Therefore,

161

the level of sparsity in kernel coefficients vector is the major factor determining the prediction time

efficiency.

• The feature extraction time is not uniform among the features we use. Dense-SIFT based BoW

representation is the one that takes the most time with1.08 seconds. On the other hand, the average

time to compute an object bank feature vector is0.04 seconds. Therefore, sparseness by itself is

not the only factor that affects the feature extraction time. For instance a less sparse solution that

excludes dense-SIFT based BoW representation from the finalfeature combination might be more

efficient than a sparser solution that requires using dense-SIFT.

• AVG-SVM and MKL-L2 methods employ all base kernels, meaning that they require extracting all

feature types. Since feature extraction is one of the most expensive steps of prediction, having a

non-sparse kernel coefficient vector makes AVG-SVM and MKL-L2 slower in prediction, compared

to the methods that learn a sparse kernel combination vector.

• The average sparsity of kernel combination weights over allclasses is87.77% for MKL-L1, making

it the method with the fastest prediction step for a single class. However, when the kernel weights

for all classes are considered together, we see that only 21 of the base kernels are not used for any

class prediction function. Therefore, although individual binary classifiers have sparse kernel com-

binations, the overall multi-label prediction sparsity is11.29% for MKL-L1, making it significantly

slower than methods that use a single kernel combination, namely MK-MLR and ML-MKL-Sum,

when all the classes need to be evaluated.

• The average sparsity of kernel combination weights that arelearned throughout the ML-MKL-SA is

51.58% per iteration. However, since the final kernel combination is the mean of all previous kernel

combination weights, the final sparsity becomes11.29%, which is significantly lower compared to

the ML-MKL-Sum and MK-MLR methods.

• MK-MLR outputs a very sparse kernel combination. Because ofthis, MK-MLR enables a fast pre-

diction by avoiding unnecessary feature extraction and kernel construction steps.

162

Table 6.9: Sparsity (%) of kernel weights and dual variablesfor the multiple kernel baselines and
the resulting prediction times. These results are obtainedfrom a subset of the ESP Game data set
with 5, 000 training images and 200 classes.

AVG-SVM MKL MKL ML- ML- MK-MLR
L1 L2 MKLSum MKLSA

Sparsity(β) 0 87.77 0 77.42 11.29 76.88
Sparsity(α) 60.55 61.72 59.53 57.88 60.81 47.11
Avg. pred.

time per class 10.71 3.74 5.31 5.31 10.69 4.94
Total pred.

time 11.38 10.76 11.30 5.58 11.33 5.11

• All OvA based MKL methods produce similar sparsity percentages for dual variables. Although the

sparsity of the proposed MK-MLR method is around10% lower than others, MK-MLR also yields

a sparse support vector set. Sparsity of the support set is crucial for reducing storage requirements,

kernel construction, and output function calculation costs. However, its impact is much smaller com-

pared to the sparsity of the kernel combination weights in our experimental settings.

6.5 Conclusions and Future Work

In this chapter, we presented an efficient multiple kernel multi-label ranking method by putting together

different ideas from the previous chapters. Our experiments in Chapter 4 showed that formulating image

categorization as a multi-label ranking problem leads to superior performance compared to more widely-

used formulations such as binary decomposition (e.g., OvO and OvA). Therefore, we extended multi-label

ranking to multiple kernel setting and proposed the MK-MLR algorithm. Following the conclusions of

Chapter 3, we proposed to learn a shared kernel combination for all classes. This approach improves the

computational efficiency of both the training and prediction steps significantly. MK-MLR algorithm learns

kernel weights and class output functions simultaneously using the semi-infinite linear programming (SILP)

method, which is shown to be the most computationally efficient wrapper MKL solver.

Our experimental results on two multi-label data sets, ESP Game and MIR Flickr25000 demonstrated

163

the superiority of the proposed MK-MLR algorithm. MK-MLR efficiently combines heterogeneous data

sources and exploit label correlations to maximize image categorization performance. In addition to yielding

strong prediction performance, MK-MLR is also faster than OvA MKL formulations, which require solving

MKL for each class. The sparsity of kernel combination weights and dual variables also leads to a much

faster prediction step. However, there is still room for improvement of the prediction speed. One of the

drawbacks of MK-MLR is that the computational complexity ofthe prediction step is linear in the number

of classes. A future direction would be employing label set projection methods, such as compressed sensing,

to make the prediction complexity sublinear in the number ofclasses.

164

Chapter 7

Contributions and Future Work

The main contributions of this thesis are efficient multiplekernel learning (MKL) and multi-label ranking

algorithms that advance the state of the art in kernel learning for image categorization by combining different

image representations and exploiting image label correlations for improved multi-label predictions.

7.1 Contributions

In Chapter 3 we proposed a stochastic approximation based multi-label multiple kernel learning algorithm

that makes the following contributions:

• Developed a multi-label multiple kernel learning method that enables information sharing between

class labels to improve the performance on the classes with asmall number of training samples.

• Demonstrated that learning a shared combination of kernelsfor all classes improves the computational

efficiency significantly without adversely affecting the classification performance.

• Proposed an stochastic optimization algorithm with a computational cost that is sublinear in the num-

ber of classes,O(m1/3
√
lnm), making it suitable for handling a large number of classes,m.

The multi-label ranking method in Chapters 4 offers the following contributions:

165

• Formulated multi-label learning as a multi-label ranking task, which is more flexible than classifica-

tion based on binary decisions because of the ability to provide an ordered list of image labels.

• Developed an approximation that reduces the number of constraints in the optimization problem

and makes it linear in terms of the number of classes as compared to the quadratic dependency in

the original ranking formulation. The approximation also enables class correlations to be implicitly

included into the optimization process for an improved multi-label learning performance.

• Proposed an efficient optimization problem that is based on block coordinate descent and a simple line

search algorithm for which the search boundaries are provided. Experimental results demonstrate that

the computational load of the multi-label ranking algorithm is in the same order as one-vs-all SVM.

• Showed superior performance as compared to state-of-the-art multi-label learning methods on a data

set in which full label information is available.

Studies on multi-label learning with incomplete class assignments in Chapter 5 offer the following

contributions:

• Formally defined the problem of learning from multi-label data with incomplete class assignments.

• Developed a multi-label ranking method (MLR-GL), which explicitly addresses the challenge of

learning from incompletely labeled data by exploiting the group lasso technique to combine the rank-

ing errors.

• Proposed a computationally efficient optimization algorithm that has a closed-form solution. Exper-

imental results demonstrate that the complexity of the multi-label ranking algorithm is in the same

order as one-vs-all SVM.

• Empirically demonstrated the robustness of MLR-GL for incomplete class assignment problem.

We proposed a multiple kernel multi-label ranking method (MK-MLR) in Chapter 6, which is an exten-

sion of the MLR-L1 algorithm in Chapter 4 to the multiple kernel setting and makes the following contribu-

tions:

166

• Proposed a method (MK-MLR) that combines multiple kernel learning and multi-label ranking in a

single framework.

• Developed an efficient semi-infinite linear programming (SILP) algorithm that learns a single kernel

combination for all classes.

• Showed empirically that the MK-MLR algorithm finds the optimal shared sparse kernel combina-

tions of the base kernels for all classes. Sparse solutions improve the computational efficiency and

robustness by eliminating weak or noisy kernels/features.

• Sparseness is particularly important for the prediction step, in which feature extraction is the main

bottleneck. The experimental results showed that sparsityof the kernel combination coefficient vec-

tor reduces the prediction time. Because of its sparse solutions, MK-MLR algorithm reduces the

prediction time significantly (order of seconds) compared to other methods which fail to yield sparse

solutions.

Based on the extensive empirical evaluations made in this dissertation, we make the following recom-

mendations:

• Despite the high computational cost in the training step, multiple kernel learning is useful for image

categorization. It not only optimizes the classification performance by choosing the best kernel com-

bination, but the sparse MKL also decreases the prediction time significantly by minimizing the time

spent for feature extraction.

• MKL is particularly useful when the number of kernels/features is high and there are potentially

weak/noisy kernels, which necessitates kernel selection for an improved classification performance.

In the settings where there is a small number of strong base kernels, using the average of the base

kernels would give comparable results to MKL.

• Learning a shared kernel combination for all classes is a good strategy to follow in multiple kernel

learning for image categorization. Although the assumption of all classes sharing the same kernel

might not work for other application domains, it not only yields good classification performance, but

also reduces the training and prediction times significantly.

167

• Casting multi-label learning as a ranking problem is an effective way to boost the classification perfor-

mance, particularly when the number of classes is high. The multi-label ranking methods presented

in this dissertation are able to exploit the label correlations without making strong assumptions on the

data, proving their effectiveness in classification and in their generalizability.

7.2 Future Work

Despite significant progress in the literature and this dissertation, there are some shortcomings of the current

multiple kernel and multi-label learning methods for imagecategorization. We point out the following

research directions:

• Improving the scalability of multiple kernel learning methods: Although MKL methods have been

shown to be very useful in learning an optimal combination ofdifferent image representations and

corresponding kernel functions, they do not scale well to training sets with millions of images and

thousands of classes. In Chapter 3, we addressed the problemof a large number of classes. However,

handling a large number of training samples is still the biggest challenge in using MKL. One of the

priorities for MKL research should be making MKL methods scalable to data containing millions of

samples.

• Computational efficiency in the prediction phase: In general, computational efficiency in the predic-

tion step is more important than the training efficiency for practical systems, since the training phase

can be done off-line. On the other hand, a server, for instance, might need to make a decision in a

short time, making a fast prediction algorithm necessary. Therefore, it is important to develop effi-

cient multiple kernel multi-label prediction algorithms.However, there are only a few studies in the

machine learning literature that target improving the prediction speed.

168

APPENDIX

169

Appendix A

Supplementary materials

In this chapter, we first discuss the image categorization problem by briefly explaining the image represen-

tations, data sets, and evaluation measures we use in our experiments. Then, we provide the proofs of some

theorems that were not included in the corresponding chapters.

A.1 Image Representation

We start with a brief background on image representations, and then briefly explain the bag-of-words (BoW)

model, which is the most widely used low-level image representation technique. We also discuss the use of

high level (semantic) image representations for image categorization.

A.1.1 A Brief History

The history of the published work on image categorization can be traced back to the 1960s [174]. The ma-

jority of the studies in the 1960s aimed to model and recognize simple geometric objects in an image. Such

techniques are called “model-based recognition methods” [175, 176]. The goal in model-based recognition

is to define or describe models for object categories and find matches between models and the detected

objects in an image.

In the 1990s, we saw a rapid growth in the object recognition literature, probably due to the improve-

170

ments in imaging and processing technologies. Although there were still methods using local shape-based

features, i.e., modeling via small shape parts [177] and polygon approximation of object boundaries [178],

researchers started to use color [179, 180] and texture based representations [181, 182] as well. The early

works on automatic image annotation, which can be considered as a subset of the image categorization

problem, used image segmentation to extract blobs/regionsfrom the image. Once the features are extracted

for each of these regions, the corresponding image labels would be extracted for these regions [183–186].

However, this approach requires a successful segmentationstep, which is a very difficult task.

Interest in extracting key points from an image and describing the local patches around these key points

evolved in the 1990s [187,188]. The popularity of local features/descriptors has increased even more rapidly

with the success of the SIFT algorithm, the seminal work by Lowe [189]. The SIFT approach for local de-

scriptor extraction enabled high accuracy for the image matching problem. The bag-of-words (BoW) model

enabled using key-point descriptors beyond the simple image matching problem by efficiently constructing

a global representation for an entire image, which is necessary for image categorization, based on local

key-point descriptors like SIFT features [190]. Among various approaches developed for image represen-

tation, the bag-of-words (BoW) model is the most popular dueto its simplicity and success in practice.

Most state-of-the-art methods use the bag-of-words model.Therefore, we also use the BoW model in our

experiments.

A.1.2 The Bag-of-Words (BoW) Model

The first step in the BoW model is to detect key points or key-regions from images. Many algorithms have

been developed for key-point/region detection [104,189,191], each having its own strengths and weaknesses.

For instance, although dense sampling is shown to be superior to other techniques for image categorization,

it usually yields a large number of key points and might lead to high computational costs. To have a richer

variety of representations, in our experiments we used Harris-Laplacian [104] and Canny-edge detector

based key-point methods in addition to dense sampling.

The second step is to generate local descriptors for the detected key points/regions. There is a rich

literature on local descriptors, among which scale invariant feature transform (SIFT) [189] is, without doubt,

171

Table A.1: A list of techniques that can be used in each moduleof the Bag-of-Words (BOW) model

Region Detector Dense sampling, random sampling, Harris
points, Harris-Laplace regions, Hessian-Laplace,
Harris-Affine regions, Hessian-Affine regions

Descriptor SIFT, GLOH, Shape context,
PCS-SIFT, spin images, steerable filters, LBP,
cross-correlation, color histograms, HOG

Visual Dictionary k-means, hierarchical k-means, GMM
Encoding/quantization Vector quantization, Salient coding, LLC, LCC,

Fisher vector, Sparse coding
Pooling technique max-pooling, average pooling
Spatial arrangement 1×1, 2×2, 4×4, 1×3, 3×1
Kernel function Linear, RBF, polynomial,χ2

the most popular. Other techniques that we use in our experiments to improve the recognition performance

are local binary patterns (LBP) [95] and histogram of oriented gradients (HOG) [192].

Given the descriptors, the third step of the BoW model is to construct a visual vocabulary. Both the

dictionary size and the technique used to create the dictionary can have a significant impact on the final

recognition accuracy. In our experiments, we use k-means clustering technique to generate the dictionary.

Given the dictionary, the next step is to map each key-point to a visual word in the dictionary, a step that is

often referred to as the encoding module. Recent studies express a vast amount of interest in the encoding

step, resulting in many alternatives to vector quantization (e.g., Fisher kernel representation [193]).

The last step in the BoW model is the pooling step that pools encoded local descriptors into a global

histogram representation. Various pooling strategies have been proposed for the BoW model such as mean

and max-pooling, two techniques that we employ in our experiments. Studies [103] have shown that it is

important to take into account the spatial layout of key points in the pooling step. One common approach is

to divide an image into multiple regions and construct a histogram for each region separately. A well known

example of this approach is spatial pyramid pooling [103] that divides an image into1× 1, 2× 2, and4× 4

grids.

Table A.1 lists different techniques for each module of the BoW model. Besides the BoW model, many

alternative low-level image features have been proposed for object recognition, including GIST [102], color

172

Table A.2: Data set statistics

samples # classes avg. no. of labels/img avg no. of img/label
Caltech 101 8,677 101 1 85.9

ImageNet subset 81,738 101 1 85.9
VOC 2007 9,963 20 1.5 729.9

MIR Flickr subset 10,199 457 2.7 145.4
ESP Game subset 100,000 500 8.5 1691.3

histograms, V1S+ [97], and geometric blur [99].

A.1.3 High-level Image Representations

Although most of the image categorization is based on low-level features, particularly the BoW model, the

use of high-level features is growing. One of the popular high-level image representations tools is the object

banks method [173]. Li et al. defined a total of 177 different pre-computed object detectors using large

object recognition data sets like ImageNet and LabelMe [194]. Each object detector is based on multi-scale,

spatial pyramid representation and linear classifiers. Then, an image can be represented as a set of responses

to these object detectors (classifiers). The object bank method is closely related to the image attributes

method [195]. Attributes are human-designed names, such as{“striped”, “has a tail” } and by using a

separate classifier for each attribute, an image can be described based on the attributes it has. In our multiple

kernel learning experiments, we employ object bank representations in addition to several low level features

to increase the number of base kernels and richness of the representations.

A.1.4 Data Sets

The majority of the data sets we use are multi-labeled data sets. However, in order to compare different mul-

tiple kernel learning solvers, we also use multi-class single-label benchmarks. Table A.2 provides statistics

of the data sets we used in our experiments.

A.1.4.0.1 The Caltech 101 data set has been used in many MKL studies; therefore, we alsouse it in

our MKL experiments. It is comprised of 9,146 images from 101object classes and an additional class of

173

cougar strawberry

snoopy crocodile

Figure A.1: Four example images from the Caltech 101 data setwith their labels.

“background” images. Caltech 101 is a multi-class single-label data set in which each image is assigned to

one object class. As it can be seen from the sample images in Figure A.1, the objects are generally center

aligned, scaled, and are not occluded. Because of these reasons, Caltech 101 is considered as a relatively

easy data set for classification.

A.1.4.0.2 The Pascal VOC 2007data set is comprised of 9,963 images from 20 object classes.Un-

like Caltech 101, more than half of the images in VOC 2007 are assigned to multiple classes. Overall, it is

a more challenging data set than Caltech 101 because of the large variations in object size, orientation, and

shape, as well as the occlusion problem.

A.1.4.0.3 A subset of ImageNet data setis used in [106] for evaluating multiple kernel learning

methods for image categorization. While the ImageNet data set contains 14,197,122 images from 21,841

categories, the data set that is used in the ImageNet Large Scale Visual Recognition Challenges contain 1.2

million training images from1, 000 categories [196]. However, following the protocol in [106], we use

81, 738 images from ImageNet that belong to 18 out of 20 categories specified in VOC 2007; only 18 of the

VOC 2007 categories are available within the ImageNet data set. This is significantly larger than Caltech

174

Figure A.2: Four example images from the ImageNet data set. Acat and acar image are shown
in the top row. The second row has two dog images, one from thedalmatiansynset, and one from
theMexican hairlesssynset

101 and VOC 2007, making it possible to examine the scalability of MKL methods for image categorization.

Like Caltech 101, ImageNet is also a multi-class single-label data set, and we use this data set exclusively

for the MKL experiments. Although the objects in the images are not always well-aligned and scaled, this

data set is not considered challenging for classification because objects are roughly aligned, and there is

only mild object occlusion, as seen in Figure A.2. Therefore, we can still consider the subset of ImageNet

that we are using as a relatively easy data set. Note that, although the ImageNet data set has a hierarchical

label structure, we will not be considering this structure in our experiments. For instance, we label the two

images in the bottom row of Figure A.2 as two instances of dog images, although their synsets, which are

dalmatianandmexican hairless, are different.

A.1.4.0.4 MIR Flickr25000 is a subset of the MIR Flickr-1M data set [154] that is used forclas-

sification challenges. It was created to be used for the visual concept detection and annotation tasks in

the IMAGECLEF Challenge [197]. The data set contains 25,000images with457 types of tags. MIR

175

Figure A.3: Two example images from the MIR Flickr data set. Left image (reflection effect) is by
Szymczak [1] and the right image (fish eye effect) is by Wild. [2]

Flickr25000 can be considered as a more difficult data set forclassification compared to VOC 2007 and

Caltech 101 because it is multi-labeled and it has a larger number of classes. In addition to all the challenges

we have listed for the VOC 2007 data set, the MIR Flickr25000 data set poses extra difficulties because of

the camera effects used by the photographers who took the photos, such as tilt shifting, post-processing,

cinematic effects, etc. Figure A.3 shows two images with such effects.

A.1.4.0.5 ESP Game is an online game that involves comparing the annotations ofmultiple users

(competitors) for an image to retrieve the relevant labels [198]. The labels that are agreed on by multiple

annotators are treated as true labels, and the annotators who provide these true labels acquire points for

each correct annotation they provide. The ESP Game data set,which contains100, 000 images with26, 449

annotations, is also one of the more difficult data sets for multi-label learning. As it can be seen from Figure

A.4, the types of images (e.g., cartoon, video games, portrait, etc.) show an immense variety, and images are

not always of high quality (low resolution, occlusion). We pick 500 of the most frequent labels and use the

images that contain at least one of these 500 labels. Although most of the labels describe concrete objects,

there are also abstract image labels such asfight, sale, view, andsymbol.

A.1.5 Evaluation Measures

We use two approaches to evaluate an algorithm for image categorization. Given an image, the first ap-

proach is to rank the labels and measure the ability of an algorithm to rank the relevant labels higher than

176

Figure A.4: Four example images from the ESP Game data set.

irrelevant ones. In the second approach, given a category (label), the goal is to measure the performance of

an algorithm in separating positive-labeled images from negative-labeled ones. The first approach is image

based evaluation, whereas the second one is category based evaluation.

A.1.5.1 Image Based Evaluation:

Since we focus on multi-label ranking, we rank the classes inthe descending order of their scores for a given

image. The true label assignments (provided by human annotators) of an image are called relevant labels

and the remaining labels are called irrelevant labels. For each image, we predict its categories by retrieving

the firstk labels with the largest scores. We varyk, i.e., the number of retrieved labels, from1 to the total

number of categories, and compute the following scores for an image indexed withi:

• True Positive (TPi): The number of correctly retrieved relevant labels

• False Positive (FPi): The number of retrieved labels which are not relevant

• False Negative (FNi): The number of relevant labels which are not retrieved

• True Negative (TNi): The number of rejected irrelevant labels per image

177

• True Positive Rate:TPRi =
TPi

TPi+FNi

• False Positive Rate:FPRi =
FPi

FPi+TNi

• Recall= TPi

TPi+FNi

• Precision= TPi

TPi+FPi

Once the above scores are calculated for an image, we can obtain the AUC-ROC (area under the curve

for Receiver operating characteristic graph) and AP (average precision) measures. ROC curve plots TPR

(y-axis) against FPR (x-axis), and the area under the curve (%), which is a value between 0 and 100, mea-

sures the ranking performance of an algorithm: higher scores are better. Following PASCAL Visual Object

Classes (VOC) challenge, we calculate the precision valuescorresponding to a set of evenly spaced recall

levels{0, 0.1, ... ,1.0}, and calculate the mean of these precision values to get the AP score. Once AUC-

ROC and AP scores are calculated for each image, we take the mean of these scores over all test images

(micro-averaging).

A.1.5.2 Category Based Evaluation:

We use category based evaluation for the multiple kernel learning experiments, which involves comparing

binary MKL algorithms. Note that, unlike the previous case,we rank images for each label. Let us redefine

the measures we use for the classification performance:

• Category-based True Positive (TPc): The number of images that are correctly assigned a positive

label for a category

• Category-based False Positive (TPc): The number of images that are falsely assigned a positive label

for a category

• Category-based False Negative (FNc): The number of images that are falsely assigned a negative

label for a category

• Category-based Recall:= TPc

TPc+FNc

178

• Category-based Precision:= TPc

TPc+FPc

By using the category based precision and recall values, we can calculate the average precision (AP)

score for each category.

As suggested in the PASCAL Visual Object Classes challenge,we only use the MAP score. The reason

for this is that the three data sets we use for the MKL experiments, namely Caltech 101, VOC 2007, and a

subset of ImageNet, give fairly high classification performance in terms of AUC-ROC, making it difficult

to distinguish the performance difference between the baselines. Therefore, we will be using only the MAP

score for the MKL experiments.

A.1.6 State-of-the-art Performance in Image Categorization

The winner of the ILSVRC (ImageNet) 2012 and 2013 Challengesused deep convolutional networks on

raw pixel data [199]. For example, the winner of ILSVRC (ImageNet) 2012 uses a trained neural network

that has 60 million parameters and 650,000 neurons, consisting of five convolutional layers. The deep

convolutional neural network algorithm yielded an error rate of 0.15 for rank-5 predictions, improving over

the second best method in the competition by 10%. The performance was further improved in ILSVRC by

combining several CNNs and an error rate of11.74% was achieved. Deep convolutional networks produce

very promising results both for classification and detection when the number of images is high (in the order

of millions). In this dissertation, we are interested in developing classification algorithms that would work

on any image representation. In contrast, convolutional neural networks learn their own features.

The method ranked second in the ILSVRC 2012 Challenge used a set of different BoW representations,

including SIFT, LBP, and GIST based Fisher vector features.This approach, which produces an error rate

of 0.26 for rank-5 predictions, learns a separate classifierfor each feature, which are 262,144 dimensional

vectors. It then calculates a weighted sum of these individual classifiers for the final predictions.

Similar to ILSVRC 2012 Challenge, we see that the top performing methods in the Pascal VOC catego-

rization challenge combine different representations (mostly Fisher vector representation based) and build

features that are over 300,000 dimensional. The winner group includes additional modules such as object

detection/localization and subclass modeling. While we see that the winner method in the VOC 2012 chal-

179

lenge, which utilizes object detection, yields a MAP score of 82%, the reported result on the VOC 2007 data

set using a single feature is 61.7% (only classification). Itis important to note that we are interested in de-

veloping methods that perform only categorization, meaning that our algorithms only require a single global

descriptor for each image and do not need localization (i.e., bounding boxes) information in the training

process.

When very high dimensional feature vectors are used, linearSVMs yield results similar to kernel SVMs.

Although linear SVMs are more efficient than kernel SVMs, themain bottleneck for them in the prediction

step is feature extraction. On the other hand, our goal in this dissertation is to optimize the classification

performance for features that are relatively low dimensional (1,000 to 10,000) by using kernel classifiers.

A.2 Proofs for Chapter 2

In this section we prove the equivalance between Eqs. (A.1) and (A.2) (originally Eqs. (2.2) and (2.7) in

Chapter 2).

min
β∈∆,f∈Hβ

1

2
||f ||2Hβ

+ C
n∑

i=1

ℓ(yif(xi)) (A.1)

min
λ∈Rs

+,
∑

j λj=1
min

{fj∈Hj}sj=1

1

2

s∑

j=1

λj||fj ||2Hj
+ C

n∑

i=1

ℓ




s∑

j=1

yiλjfj(x
i)


 (A.2)

We first rewriteCℓ(z) asmaxα∈[0,C] α(1− z) and place it into Eq. (A.2) to get Eq. (A.3),

min
λ∈Rs

+,
∑

j λj=1
min

{fj∈Hj}sj=1

max
α∈[0,C]n

1

2

s∑

j=1

λj ||fj||2Hj
+

n∑

i=1

αi


1−

s∑

j=1

yiλjfj(x
i)


. (A.3)

The problem in Eq. (A.3) becomes a convex-concave optimization problem and, according to von New-

man’s lemma, we can switch minimization with respect tofj and maximization with respect toα. It is

straightforward to show thatfj(x) =
∑n

i=1 αiy
iκj(x,x

i) is the minimizer. Using this expression, the opti-

mization problem can be rewritten as in Eq. (A.4), which is exactly the same as the dual form of Eq. (2.2).

180

min
β∈∆

max
α∈Q
L̂(α,β) = 1⊤α− 1

2
(α ◦ y)⊤K(β)(α ◦ y). (A.4)

This is an evidence that Eqs. (A.2) and (A.1) are equivalent and concludes the proof.

A.3 Proofs for Chapter 3

Proposition 4. Eq. (A.6) is the dual problem of Eq. (A.5).

min
β∈∆

min
{fk∈H(β)}m

k=1

{
m∑

k=1

Hk =

m∑

k=1

{
1

2
|fk|2H(β) +

n∑

i=1

ℓ
(
yikfk(x

i)
)}}

, (A.5)

whereℓ(z) = max(0, 1 − z) andH(β) is a Reproducing Kernel Hilbert Space endowed with kernel

κ(x,x′;β) =
∑s

j=1 βjκj(x,x
′).

min
β∈∆

max
α∈Q1

{
L(β,α) =

m∑

k=1

{
[αk]

⊤1− 1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk)

}}
, (A.6)

whereQ1 = {α = (α1, . . . ,αm) : αk ∈ [0, C]n, k = 1, . . . ,m}.

Proof. We first rewriteℓ(z) as

ℓ(z) = max
x∈[0,1]

(x− xz),

Using the above expression forℓ(z), the second term ofHk can be rewritten as,

n∑

i=1

max
αi
k
∈[0,C]

(
αi
k − αi

ky
i
kfk(x

i)
)
,

According to von Newman’s lemma, we can switch minimization(over fk) with maximization (over

α). By taking the minimization overfk first, we have

fk(x) =

n∑

i=1

yikα
i
kκ(x

i,x).

181

Finally the problem becomes

min
β∈∆

max
α∈[0,C]

{
L(β,α) =

m∑

k=1

{
[αk]

⊤1− 1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk)

}}
.

Proposition 5. Eq. (A.8) is the dual problem of Eq. (A.7).

min
β∈∆

min
{fk∈H(β)}m

k=1

max
1≤k≤m

Hk, (A.7)

min
β∈∆

max
ρ∈B



L(β,ρ) =

{
m∑

k=1

{
[ρk]

⊤1− 1

2
(ρk ◦ yk)

⊤K(β)(ρk ◦ yk)

} 1
2

}2


 . (A.8)

where

B =

{
(ρ1, . . . ,ρm) : ρk ∈ R

n
+, k = 1, . . . ,m,ρk ∈ [0, Cλk]

n s.t.
m∑

k=1

λk = 1

}
.

Proof. We start by formulating Eq. (A.7) as,

min
β∈∆

min
{fk∈H(β)}m

k=1

min t (A.9)

subject toHk ≤ t, k = 1, . . . ,m, (A.10)

with extra variablet ∈ R. Introducing the multiplierλk for Hk ≤ t, and using Proposition 1, the

Lagrangian is

t+
m∑

k=1

λk

{
[αk]⊤1− 1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk)− t
}

= (1− 1Tλ)t+
m∑

k=1

λk

{
[αk]

⊤1− 1

2
(αk ◦ yk)

⊤K(p)(αk ◦ yk)

}
, (A.11)

182

whereα ∈ [0, C]n. So, the dual function is

g(β,ρ,λ) =





∑m
k=1

{
[ρk]

⊤1− 1
2 (ρk ◦ yk)

⊤K(β)
λk

(ρk ◦ yk)− t
}

1⊤λ = 1

−∞ otherwise

,

whereρk = αkλk. Then the dual problem is

min
β∈∆

max
ρ∈B

max
λ∈Λ

{
L(β,ρ,λ) =

m∑

k=1

{
[ρk]

⊤1− 1

2
(ρk ◦ yk)

⊤K(β)

λk
(ρk ◦ yk)

}}
,

where

B =
{
(ρ1, . . . ,ρm) : ρk ∈ R

n
+, k = 1, . . . ,m,ρk ∈ [0, Cλk]

n
}
.

Let min
β∈∆1

max
ρ∈B

(ρk ◦ yk)
⊤K(β)(ρk ◦ yk) = ψk. To eliminateλ, we rewrite the dual problem as maxi-

mization overλ for optimalψk. Then, the Lagrangian becomes

max
λ∈Λ
−1

2

m∑

k=1

ψk

λk
+ υ

(
m∑

k=1

λk − 1

)
.

Maximizing overλ, we get

υ =
1

2

{
m∑

k=1

√
ψk

}2

λk =

√
ψk∑m

j=1

√
ψj

By eliminatingλ, we obtain the following dual of (A.7):

min
β∈∆1

max
ρ∈B



L(β,ρ) =

{
m∑

k=1

{
[ρk]

⊤1− 1

2
(ρk ◦ yk)

⊤K(β)(ρk ◦ yk)

} 1
2

}2


 .

Proposition 6. We define potential functionsΦβ =
ηβ
ηγ

∑s
j=1 βj ln βj for β andΦγ =

∑m
i=1 γ

i ln γi for γ,

183

and have the following equations for updatingβt andγt as

βt+1
j =

βtj
Zt
β

exp(−ηβ∇βj
L(βt,γt)), γt+1

k =
γtk
Zt
γ

exp(−ηγ∇γkL(βt,γt)), (A.12)

whereZt
β andZt

γ are normalization factors that ensureβt⊤1 = γt⊤1 = 1.

Proof. We denote byDΦβ
(β,β′) : ∆ × ∆ 7→ R+ andDΦγ (γ,γ

′) : Γ × Γ 7→ R+ the Bregman distance

functions forβ andγ that are induced byΦβ andΦγ , respectively. Note that the Bregman distance between

z andz′ induced by the strictly convex functionΦ, denoted byDΦ(z, z
′), is defined as

DΦ(z, z
′) = Φ(z)− Φ(z′)−∇Φ(z′)⊤(z − z′)

Using the Bregman distance function, we introduce two projection operators:Aβ(gβ;∆) that projects

solutionβ into domain∆ along the directiongβ ∈ R
s andBγ(gγ ; Γ) that projects solutionγ into domain

Γ along the directiongγ ∈ R
m. These two operators are defined as follows:

Aβ(gβ) = min
β′∈∆

g⊤
β β

′ +DΦβ
(β′,β), Bγ(gγ) = min

γ′∈Γ
g⊤
γ γ

′ +DΦγ (γ
′,γ)

Based on the mirror prox method, we can solve the optimization problem in Eq. (3.3) iteratively. Given

the solutionβt andγt of the current iteration, the new solution, denoted byβt+1 andγt+1, is computed as

βt+1 = Aβt

(
ηβ∇βL(βt,γt,αt)

)
, γt+1 = Cγt

(
−ηγ∇γL(βt,γt,αt)

)
, (A.13)

whereηβ > 0 andηγ > 0 are the step sizes. The two gradients are computed as

gj(β) =
∂L(β,γ,α)

∂βj
= −1

2

m∑

k=1

γk(αk ◦ yk)
⊤Kj(αk ◦ yk), j = 1, . . . , s (A.14)

gk(γ) =
∂L(β,γ,α)

∂γk
= [αk]

⊤1− 1

2
(αk ◦ yk)

⊤K(β)(αk ◦ yk), k = 1, . . . ,m (A.15)

(A.16)

184

By choosing the potential functions as

Φβ =
ηβ
ηγ

s∑

j=1

βj ln βj , Φγ =

m∑

k=1

γk ln γk, (A.17)

we have the following updating rules forβt+1 = (βt+1
1 , . . . , βt+1

s) andγt+1 = (γt+1
1 , . . . , γt+1

m)

βt+1
j =

βtj
Zt
β

exp
(
−ηγgj(βt)

)
, j = 1, . . . , s (A.18)

γt+1
k =

γkt
Zt
γ

exp (ηγgk(γt)) , k = 1, . . . ,m (A.19)

whereZt
β andZt

γ are defined as

Zt
β =

s∑

j=1

βtj exp
(
−ηγgj(βt)

)
Zt
γ =

m∑

k=1

γtk exp
(
ηγgk(γ

t)
)

Theorem 10. After running Algorithm 3 overT iterations, we have the following inequality for the solution

p̂ and γ̂ obtained by Algorithm 3

E
[
∆
(
β̂, γ̂

)]
≤ 1

ηγT
(lnm+ ln s) + ηγ

(
d
m2

2δ2
λ20n

2C4 + n2C2

)
,

whered is a constant term andE[·] stands for the expectation over the sampled task indices of all

iterations.

Proof. Define

ĝβ(βt,γt) = (ĝβ1 (β
t,γt), . . . , ĝβs (β

t,γt)), ĝγ(βt,γt) = (ĝγ1 (β
t,γt), . . . , ĝγm(βt,γt)).

Using the result of variation inequality [119], we have the following inequality for anyβ ∈ ∆ and

185

γ ∈ Γ

∆
(
βt,γt

)
≤ (βt − β)⊤∇βL(βt,γt)− (γt − γ)⊤∇γL(βt,γt). (A.20)

According to Proposition 1, we have

Et

[
ĝβ(βt,γt)

]
= ∇βL(βt,γt), Et

[
ĝγ(βt,γt)

]
= ∇γL(βt,γt).

We therefore can rewrite Eq. (A.20) as

Et

[
∆
(
βt,γt

)]
≤ Et

[
(βt − β)⊤ĝβ(βt,γt)− (γt − γ)⊤ĝγ(βt,γt)

]
.

From [200] (chapter 11), we know that

ηγ(β
t − β)⊤ĝβ(βt,γt) ≤ KL(β‖βt)− KL(β‖βt+1) + KL(βt‖βt+1),

and

−ηγ(γt − γ)⊤ĝγ(βt,γt) ≤ KL(γ‖γt)− KL(γ‖γt+1) + KL(γt‖γt+1).

Therefore, we have

ηγ

T∑

t=1

∆
(
βt,γt

)
≤ KL(β‖β1) + KL(γ‖γ1) +

T∑

t=1

{
KL(βt‖βt+1) + KL(γt‖γt+1)

}
.

We are going to bound each of the three terms on the right hand side of the inequality. First, it is obvious

that KL(β‖β1) ≤ ln s and KL(γ‖γ1) ≤ lnm given bothγ1 andβ1 are uniform distributions. Second, we

bound KL(βt‖βt+1) as follows

186

KL(βt|βt+1) =
ηβ
ηγ





s∑

j=1

βtj ln

(
βtj

βt+1
j

)
 =

ηβ
ηγ





s∑

j=1

βtj ln
(
Zt
β exp{ηγ ĝβj }

)




=
ηβ
ηγ





s∑

j=1

βtjηγ ĝ
β
j (β

t,γt) +

s∑

j=1

βtj ln(Z
t
p)





=
ηβ
ηγ





s∑

j=1

βtjηγ ĝ
β
j (β

t,γt) +

s∑

j=1

βtj ln




s∑

j=1

βtj exp
[
−ηγ ĝβj (βt,γt)

]






=
ηβ
ηγ

{
−
(
−ηγE

[
ĝβj

])
+ ln

(
E
[
exp

(
−ηγ ĝβj (βt,γt)

)])}

≤ ηβ
ηγ

{
η2γ
2

max
1≤j≤s

[ĝβj (β
t,γt)]2

}
=
cη2γ
2
|ĝβ(βt,γt)|2∞,

where the inequality follows directly from the Hoeffiding inequality, andc is a constant such thatηp =

cηγ . Similarly, we have KL(γt‖γt+1) ≤ η2γ
2 |ĝγ(βt,γt)|2∞.

By combining the above results together, we have

ηγE

[
T∑

t=1

∆
(
βt,γt

)
]
≤ lnm+ ln s+ η2γ

T∑

t=1

E
[
c|ĝβ(βt,γt)|2∞ + |ĝγ(βt,γt)|2∞

]

Using Eq. (A.14), we can bound|ĝβ(βt,γt)|∞ as follows

|ĝβ(βt,γt)|∞ = max
1≤j≤s

ĝβj (β
t,γt)

= max
1≤j≤s

∣∣∣∣−
1

2
(αat ◦ yat)⊤Ka(αat ◦ yat)

∣∣∣∣

≤ 1

2
(C1)⊤VDV−1(C1)] ≤ λ0

2
(C1)⊤VIV−1(C1) =

λ0
2
(C1)⊤I(C1)

≤ 1

2
nC2λ0,

whereK = VDV−1 is the eigendecomposition of the PSD matrixK, λ0 = max
1≤j≤s

λmax(Kj), and

λmax(Z) stands for the maximum eigenvalue of matrixZ. Similarly, by using Eq. (A.15) we can bound

187

|ĝγ(βt,γt)|∞ as

|ĝγ(βt,γt)|∞ = max
1≤k≤m

{ĝγk (βt,γt) ≤ m

δ
max

(
nC,

λ0
2
nC2

)
.

Next, we have the bound simplified as

E

[
T∑

t=1

∆
(
βt,γt

)
]
≤ 1

ηγ
(lnm+ ln s) + ηγT

(
d
m2

2δ2
λ20n

2C4 + n2C2

)
,

whered is a constant. We complete the proof by using the fact∆(β,γ) is jointly convex in bothβ and

γ; therefore,
∑T

t=1 ∆
(
βt,γt

)
≥ T∆

(
β̂, γ̂

)
.

Corollary 11. Withδ = m
2
3 andηγ = 1

nm
− 1

3

√
(lnm)/T , after running Algorithm 3 overT iterations, we

haveE[∆(β̂, γ̂)] ≤ O(m1/3
√

(lnm)/T) in terms ofm andT .

A.4 Proofs for Chapter 4

A.4.1 Proof of Theorem 3

For notational convenience, let us define

∆i
k,l =

yik − yil
2
〈fk − fl, κ(xi, ·)〉Hκ

Using this, the objective function in Eq. (4.2) can be rewritten as follows

h(f) =
1

2

m∑

l=1

〈fl, fl〉HK
+ C

n∑

i=1

m∑

l,k=1

I(yil 6= yik)ℓ
(
∆i

k,l

)

We then rewriteℓ(z) as

ℓ(z) = max
x∈[0,1]

(x− xz)

188

Using the above expression forℓ(z), the second term inh(f) can be rewritten as,

n∑

i=1

m∑

l,k=1

I(yil 6= yik) max
γi
k,l

∈[0,C]

(
γik,l − γik,l∆i

k,l

)

The problem in Eq. (4.2) now becomes a convex-concave optimization problem as

min
fl∈Hm

max
γi
l,k

∈[0,C]
g(f, γ)

where

g(f, γ) =
n∑

i=1

m∑

l,k=1

I(yil 6= yik)γ
i
l,k +

1

2

m∑

l=1

〈fl, fl〉HK

−
n∑

i=1

m∑

l,k=1

I(yli 6= yik)γ
i
l,k∆

i
k,l

According to von Newman’s lemma, we can switch minimizationwith maximization. By taking the

minimization overfl first, we have

fl(x) =

n∑

i=1

yil

(
m∑

k=1

I(yil 6= yik)γ
i
l,k

)
κ(xi,x)

In the above derivation, we use the relationI(yil 6= yik)(y
i
l − yik) = 2yil . To simplify our notation, we

introduceΓi ∈ [0, C]m×m whereΓi
l,k = γil,k if yil 6= yik and zero otherwise. Note that sinceγil,k = γik,l, we

haveΓi = [Γi]⊤. We furthermore introduce the notation[Γi]l as the sum of the elements in thelth row, i.e.,

[Γi]l =
∑m

k=1 Γ
i
l,k. Using these notations, we havefl(x) expressed as

fl(x) =

n∑

i=1

yil [Γ
i]lκ(x

i,x)

189

Finally, the remaining maximization problem becomes

max

n∑

i=1

m∑

k=1

[Γi]k −
1

2

m∑

k=1

n∑

i,j=1

κ(xi,x)yiky
j
k[Γ

i]k[Γ
j]k

s. t. Γi
k,l =





0 ≤ Γi
k,l ≤ C yik 6= yil

0 otherwise

Γi = [Γi]⊤, i = 1, . . . , n; k, l = 1, . . . ,m

A.4.2 Proof of Theorem 4 .

It is straightforward to shownτ ∈ Q1 → τ ∈ Q2. The main challenge is to show the other direction, i.e.,

τ ∈ Q2 → τ ∈ Q1. For a givenτ , in order to check if there existsZ ∈ [0, C]a×b such thatτ1 : a = Z1b

andτa+1:m = Z⊤1a, we need show that the following optimization problem is feasible

min 0 (A.21)

s. t. Z ∈ R
a×b
+ , τ1 : a = Z1b, τa+1:m = Z⊤1a

For the convenience of presentation, we denote byµa = τ1:a ∈ R
a, and byµb = τa+1:K ∈ R

b, and rewrite

the above feasibility problem as

min 0 (A.22)

s. t. Z ∈ [0, C]a×b, µa = Z1b, µb = Z⊤1a

It is important to note that, for the above optimization problem, its optimal value is 0 when the solution is

feasible, and+∞ when no feasible solution satisfies the condition. By introducing the Lagrangian multipli-

ersλa ∈ R
a for µa = Z1b andλb ∈ R

b for µb = Z⊤1b, we have

min
Z�0

max
λa,λb

λ⊤a (µa − Z1b) + λ⊤b (µb − Z⊤1a) (A.23)

190

By taking the minimization overZ, we have

max
λa,λb

λ⊤a µa + λ⊤b µb (A.24)

s. t. λa1
⊤
b + 1aλ

⊤
b � 0

To decide if there is a feasible solution to Eq. (A.22), the necessary and sufficient condition is that the optimal

value for Eq. (A.24) is zero. First, we show that the objective function of Eq. (A.24) is upper bounded by

zero under the constraintλa1⊤b + 1aλ
⊤
b � 0. We denote byλ+a andλ+b the maximum elements in vector

λa andλb, respectively, i.e,λ+a = max
1≤i≤a

[λa]
i andλ+b = max

1≤i≤b
[λb]

i. Evidently, according to the constraint

λa1
⊤
b + 1aλ

⊤
b � 0, we haveλ+a + λ+b ≤ 0. We then have the objective function bounded as

λ⊤a µa + λ⊤b µb ≤ λ+a 1⊤a µa + λ+b 1
⊤
b µb = (λ+a + λ+b)1

⊤
a µa ≤ 0

Second, it is straightforward to verify that zero optimal value is obtainable by settingλa = 0a andλb = 0b.

Combining the above two arguments, we have the optimal valuefor Eq. (A.24) is zero, which therefore

indicates that there is a feasible solution to Eq. (A.22). Bythis, we prove thatτ ∈ Q2 → τ ∈ Q1.

A.4.3 Proof of Theorem 6

We first turn the problem in Eq. (4.15) into the following min-max problem

max
αi∈[0,C]m

min
λ

m∑

l=1

αi
l −

1

2

m∑

k=1

yikf
−i
k (xi)αi

k −

κ(xi,xi)

2

m∑

k=1

[αi
k]

2 + λyi⊤αi (A.25)

Since the objective function in Eq. (A.25) is convex inλ and concave inαi, therefore according von New-

man’s lemma, switching minimization with maximization will not affect the final solution. Thus, we could

191

obtain the solution by maximizing overα, i.e.,

αi
k = π[0,C]

(
1 + λyik − 1

2y
i
kf

−i
k (xi)

κ(xi,xi)

)

whereπ[0,C](x) projectsx onto the region[0, C]. To computeλ, we aim to solve the following equation

m∑

k=1

yikπ[0,C]

(
1 + λyik − 1

2y
i
kf

−i
k (xi)

κ(xi,xi)

)
= 0 (A.26)

Since whenyik = 1, the projection in Eq. (A.26) isπ[0,C] and whenyik = −1, it is π[−C,0], we could represent

yikπ[0,C]

(
1+λyi

k
− 1

2
yi
k
f−i
k

(xi)

κ(xi,xi)

)
by h(

yi
k
+λ− 1

2
f−i
k

(xi)

κ(xi,xi)
, yikC) whereh(x,y) is already defined in the theorem.

Sinceyi⊤αi = 0, we have the following equation forλ

g(λ) =

m∑

k=1

h

(
yik + λ− 1

2f
−i
k (xi)

κ(xi,xi)
, yikC

)
= 0 (A.27)

A.4.4 Proof of Proposition 3

To estimateλmin, we rewriteg(λ) as

g(λ) =

m∑

k=1

I(yik = 1)π[0,C]

(
1 + λ− 1

2f
−i
k (xi)

κ(xi,xi)

)
−

m∑

k=1

I(yik = −1)π[0,C]

(
1− λ+ 1

2f
−i
k (xi)

κ(xi,xi)

)

To estimateλmin, we search forλmin such thatg(λmin) ≤ 0. To this end, we define the following quantity

∆ =

m∑

k=1

I(yik = 1)π[0,C]

(
1− 1

2f
−i
k (xi)

κ(xi,xi)

)
−

m∑

k=1

I(yik = −1)π[0,C]

(
1 + 1

2f
−i
k (xi)

κ(xi,xi)

)

If ∆ ≤ 0, we haveλmin = 0. Otherwise, we setλmin as the maximum of the following two quantities

amin = −Cκ(xi,xi) + min
yi
k
=−1

(
1 +

1

2
f−1
k (xi)

)
, bmin = −max

yi
k
=1

(
1− 1

2
f−i
k (xi)

)

It is evidently that one of the solutions will result into thenegative value forg(λ) since (a) by setting

λmin = bmin, we ensure that everyπ[0,C](1 + λ − 1
2f

−i
k (xi)) is zero, (b) by settingλmin = amin, we have

192

that everyπ[0,C](1− λ+ 1
2f

−i
k (xi)) beingC.

To obtainλmax, we again check∆ ≥ 0. If so, λmax = 0. Otherwise, the solution forλmax should be

the minimum of the following two quantities

amax = Cκ(xi,xi)− min
yi
k
=1

(
1− 1

2
f−i
k (xi)

)
, bmax = max

yi
k
=−1

(
1 +

1

2
f−i
k (xi)

)

A.5 Proofs for Chapter 5

A.5.1 Proof of Lemma 1

We start proving Lemma 1 by writing the dual function of Eq. (5.5), which is as follows:

g(λ) = sup
γi

L(γ, λ) = sup
γi

∑

l /∈Yi

∑

k∈Yi

γik,lℓ(fk(x
i)− fl(xi)) +

∑

l /∈Yi

λl(1−
∑

k∈Yi

γ2k,l)

SinceL(γ, λ) is a concave function, the upper bound is found by setting∂L(γ,λ)
∂γ = 0.

g(λ) =
∑

l /∈Yi

∑

k∈Yi

ℓ2(fk(x
i)− fl(xi))

4λl
+
∑

l /∈Yi

λl

The Lagrange dual is to minimizeg over all λ ≥ 0. The optimal λl can easily be found as
√∑

k∈Yi
ℓ2(fk(xi)− fl(xi))/2. Therefore, the Lagrange dual form becomes

∑

l /∈Yi

√∑

k∈Yi

ℓ2(fk(xi)− fl(xi)).

This concludes the proof.

A.5.2 Proof of Theorem 9

We can rewriteℓ(z) as

ℓ(z) = max
x∈[0,1]

(x− xz)

193

Using the above expression forℓ(z), the objection function can be rewritten as

min
fk∈HK

max
γi
k,l

∈∆i

max
βi
k,l

∈[0,1]

1

2

m∑

k=1

|fk|2HK
(A.28)

+C

n∑

i=1

∑

k∈Y i

∑

l /∈Y i

γik,lβ
i
k,l (1− fk(xi) + fl(xi))

The problem now becomes a convex-concave optimization. By defining new variableΓi
k,l as

Γi
k,l = γik,lβ

i
k,l + γil,kβ

i
l,k,

we rewrite Eq. (A.29) as

min
fk∈HK

max
Γi
k,l

∈∆i

1

2

m∑

k=1

|fk|2HK
(A.29)

+
n∑

i=1

m∑

k,l=1

Γi
k,l (1− fk(xi) + fl(xi))

Since Eq. (A.30) is a convex-concave optimization problem,according to von Newman’s lemma, we can

switch minimization with maximization. By taking the minimization with respect tofk, we have

fk(x) = C

n∑

i=1

(
m∑

l=1

Γi
k,l −

m∑

l=1

Γi
l,k

)
κ(x, xi) (A.30)

According to the definition of∆i, Γi
k,l is nonzero only whenk ∈ Y i (i.e., yik = 1) and l /∈ Y i (i.e.,

yik = −1). We thus can rewritefk(x) in Eq. (A.30) as

fk(x) = C
n∑

i=1

(
m∑

l=1

Γi
k,l +

m∑

l=1

Γi
l,k

)
yki κ(x,x

i)

By definingαi
k =

∑m
l=1 Γ

i
k,l +

∑m
l=1 Γ

i
l,k, we have the result in the theorem.

194

A.5.3 Proof of Lemma 2

First, using the notation ofhk, we rewrite the objective function in Eq. (5.15) as

max
γ∈∆
−CKi,iη

b∑

s=1

|γ ·,s|22 + 2

b∑

s=1

h⊤
s γ ·,s

Since allγ·,s, s = 1, . . . , b are decoupled in both the domain∆ and the objective function, we can decompose

the above problem intob independent optimization problems,

max
γ
·,s∈R

a
+

{
−CKi,iη|γ ·,s|22 + 2h⊤

s γ ·,s : |γ·,s|2 ≤ 1
}

, (A.31)

wheres = 1, . . . , b. For each independent optimization problem, we introduce aLagrangian multiplier

λs ≥ 0 for constraint|γ ·,s|2 ≤ 1, and have

min
λs≥0

max
γ
·,s∈R

a
+

−(CKi,iη + λs)|γ·,s|22 + 2h⊤
s γ ·,s + λs

The optimal solution to the maximization ofγ is

γ·,s = πG

(
hs

λs + CKi,iη

)

In order to decide the value forλs, we use the complementary slackness condition, i.e.,λs(|γ ·,s|22− 1) = 0.

There are two cases:λ = 0 implies|γ ·,s|22 ≤ 1, andλ > 0 implies|γ ·,s|22 = 1. This leads to the result stated

in the Lemma.

195

BIBLIOGRAPHY

196

BIBLIOGRAPHY

[1] M. P. Szymczak, Flickr photo, http://www.flickr.com/photos/marooned/.

[2] D. Wild, Flickr photo, http://www.flickr.com/people/publicenergy/.

[3] L. Fei-fei, R. Fergus, S. Member, and P. Perona, “One-shot learning of object categories,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594 – 611, 2006.

[4] Q. Chen, Z. Song, S. Liu, X. Chen, X. Yuan, T.-S. Chua, S. Yan, Y. Hua, Z. Huang, and S. Shen,
“Boosting classification with exclusive context,” inIn PASCAL Visual Object Classes Challenge
Workshop, 2010.

[5] J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao, “Group-sensitive multiple kernel learning for object
categorization,” inIEEE Int. Conference on Computer Vision, 2009, pp. 436–443.

[6] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels for object detection,” in
IEEE Int. Conference on Computer Vision, 2009, pp. 606–613.

[7] A. Jiang, C. Wang, and Y. Zhu, “Calibrated rank-svm for multi-label image categorization,” inProc.
of IEEE Int. Joint Conference on Neural Networks, 2008, pp. 1450–1455.

[8] A. Znaidia, H. Le Borgne, and C. Hudelot, “Belief theory for large-scale multi-label image classifi-
cation,” inBelief Functions: Theory and Applications. Springer, 2012, vol. 164, pp. 205–212.

[9] S. S. Bucak, R. Jin, and A. Jain, “Multi-label multiple kernel learning by stochastic approximation:
Application to visual object recognition,” inProc. of Neural Information Processing Systems, 2010,
pp. 325–333.

[10] N. Ueda and K. Saito, “Parametric mixture models for multi-labeled text,” inProc. of Neural Infor-
mation Processing Systems, 2002, pp. 721–728.

[11] S. Shalev-Shwartz and Y. Singer, “Efficient learning oflabel ranking by soft projections onto polyhe-
dra,” Journal of Machine Learning Research, vol. 7, pp. 1567–1599, 2006.

[12] N. Ghamrawi and A. McCallum, “Collective multi-label classification,” inProc. of ACM Int. Confer-
ence on Information and Knowledge Management, 2005, pp. 195–200.

[13] Y. Liu, R. Jin, and L. Yang, “Semi-supervised multi-label learning by constrained non-negative matrix
factorization,” inProc. of Conference on Artificial Intelligence, 2006, pp. 421–426.

[14] F. Sun, J. Tang, H. Li, G.-J. Qi, and T. Huang, “Multi-label image categorization with sparse factor
representation,”IEEE Transactions on Image Processing, vol. 23, no. 3, pp. 1028–1037, 2014.

[15] S. S. Bucak, P. K. Mallapragada, R. Jin, and A. K. Jain, “Efficient multi-label ranking for multi-class
learning: Application to object recognition,” inProc. of IEEE Int. Conference on Computer Vision,
2009, pp. 2098–2105.

197

[16] Y.-Y. Lin, J.-F. Tsai, and T.-L. Liu, “Efficient discriminative local learning for object recognition,” in
Proc. of IEEE Int. Conference on Computer Vision, 2009, pp. 598–605.

[17] D. Hall, “A system for object class detection,” inCognitive Vision Systems. Springer, 2006, pp.
73–85.

[18] B. M. Sadler and G. B. Giannakis, “Shift-and rotation-invariant object reconstruction using the bis-
pectrum,”Journal of the Optical Society of America A, vol. 9, no. 1, pp. 57–69, 1992.

[19] R. Fergus, P. Perona, and A. Zisserman, “Weakly supervised scale-invariant learning of models for
visual recognition,”International Journal of Computer Vision, vol. 71, no. 3, pp. 273–303, 2007.

[20] L. Spirkovska and M. B. Reid, “Robust position, scale, and rotation invariant object recognition using
higher-order neural networks,”Pattern Recognition, vol. 25, no. 9, pp. 975–985, 1992.

[21] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region detector,” inComputer
Vision–ECCV. Springer, 2004, pp. 228–241.

[22] A. Diplaros, T. Gevers, and I. Patras, “Combining colorand shape information for illumination-
viewpoint invariant object recognition,”IEEE Transactions on Image Processing, vol. 15, no. 1, pp.
1–11, 2006.

[23] E. Hsiao and M. Hebert, “Occlusion reasoning for objectdetection under arbitrary viewpoint,” in
Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3146–3153.

[24] A. Selinger and R. C. Nelson, “Improving appearance-based object recognition in cluttered back-
grounds,” inProc. of Int. Conference on Pattern Recognition, 2000, pp. 46–50.

[25] S. Dickinson, “The evolution of object categorizationand the challenge of image abstraction,” in
Object Categorization: Computer and Human Vision Perspectives. Cambridge University Press,
2009, pp. 1–37.

[26] S. Maji, A. C. Berg, and J. Malik, “Efficient classification for additive kernel SVMs,”IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 66–77, 2013.

[27] S. Har-Peled, D. Roth, and D. Zimak, “Constraint classification for multiclass classification and rank-
ing,” in Proc. of Neural Information Processing Systems, 2002, pp. 809–816.

[28] S. S. Bucak, R. Jin, and A. K. Jain, “Multi-label learning with incomplete class assignments,” inProc.
of IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 2801–2808.

[29] K. Yu and W. Chu, “Gaussian process models for link analysis and transfer learning,” inProc. of
European Symp. on Artificial Neural Networks, 2008, pp. 1657–1664.

[30] N. Loeff and A. Farhadi, “Scene discovery by matrix factorization,” in Computer Vision–ECCV.
Springer, 2008, pp. 451–464.

[31] Amazon Mechanical Turk, https://www.mturk.com/mturk.

[32] B. Scholkopf and A. J. Smola,Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.

198

[33] J. Zhang, S. Lazebnik, and C. Schmid, “Local features and kernels for classification of texture and
object categories: a comprehensive study,”International Journal of Computer Vision, vol. 73, no. 2,
pp. 213–238, 2007.

[34] M. A. Tahir, K. van de Sande, J. Uijlings, F. Yan, X. Li, K.Mikolajczyk, J. Kittler, T. Gevers, and
A. Smeulders, “SurreyUVASRKDA method,” inPASCAL Visual Object Classes Challenge Work-
shop, 2008.

[35] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic duality, and the
SMO algorithm,” inProc. of Int. Conference on Machine Learning, 2004, pp. 6–13.

[36] Z. Wang, S. Chen, and T. Sun, “MultiK-MHKS: A novel multiple kernel learning algorithm,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 348–353, 2008.

[37] D. P. Lewis, T. Jebara, and W. S. Noble, “Nonstationary kernel combination,” inProc. of Int. Confer-
ence on Machine Learning, 2006, pp. 553–560.

[38] L. Jie, F. Orabona, M. Fornoni, B. Caputo, and N. Cesa-bianchi, “OM-2: An online multi-class multi-
kernel learning algorithm,” inProc. of IEEE Online Learning for Computer Vision Workshop, 2010,
pp. 43–50.

[39] J. Saketha Nath, G. Dinesh, S. Raman, C. Bhattacharyya,A. Ben-Tal, and K. Ramakrishan, “On the
algorithmics and applications of a mixed-norm based kernellearning formulation,” inProc. of Neural
Information Processing Systems, 2009, pp. 844–852.

[40] P. V. Gehler and S. Nowozin, “Let the kernel figure it out:Principled learning of pre-processing for
kernel classifiers,” inProc. of IEEE Int. Conference on Computer Vision, 2009, pp. 2836 – 2843.

[41] F. Yan, K. Mikolajczyk, M. Barnard, H. Cai, and J. Kittler, “Lp norm multiple kernel fisher discrimi-
nant analysis for object and image categorisation,” inProc. of IEEE Conference on Computer Vision
and Pattern Recognition, 2010, pp. 3626–3632.

[42] S. Nakajima, A. Binder, C. Mller, W. Wojcikiewicz, M. Kloft, U. Brefeld, K.-R. Mller, and
M. Kawanabe, “Multiple kernel learning for object classification,” inWorkshop on Information-based
Induction Sciences, 2009.

[43] P. V. Gehler and S.Nowozin, “On feature combination formulticlass object classification,” inProc.
of Int. Conference on Machine Learning, 2009, pp. 221–228.

[44] J. Ren, Z. Liang, and S. Hu, “Multiple kernel learning improved by MMD,” inProc. of Int. Conference
on Advanced Data Mining and Applications, 2010, pp. 63–74.

[45] C. Cortes, M. Mohri, and A. Rostamizadeh, “Learning non-linear combinations of kernels,” inProc.
of Neural Information Processing Systems, 2009, pp. 396–404.

[46] Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu, “Simple and efficient multiple kernel learning by
group lasso,” inProc. of Int. Conference on Machine Learning, 2010, pp. 1175–1182.

[47] C. Cortes, M. Mohri, and A. Rostamizadeh, “L2 regularization for learning kernels,” inProc. of
Conference on Uncertainty in Artificial Intelligence, 2009, pp. 109–116.

199

[48] Z. Xu, R. Jin, S. Zhu, M. Lyu, and I. King, “Smooth optimization for effective multiple kernel learn-
ing,” in Proc. of Conference on Artificial Intelligence, 2010, pp. 637–642.

[49] R. Tomioka and T. Suzuki, “Sparsity-accuracy trade-off in MKL,” in NIPS Workshop on Understand-
ing Multiple Kernel Learning Methods, 2009.

[50] F. Yan, K. Mikolajczyk, J. Kittler, and A. Tahir, “A comparison of L1 norm and L2 norm multiple
kernel SVMs in image and video classification,” inInt. Workshop on Content-Based Multimedia
Indexing, 2009.

[51] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “More efficiency in multiple kernel learn-
ing,” in Proc. of Int. Conference on Machine Learning, 2007, pp. 775–782.

[52] Z. Xu, R. Jin, I. King, and M. R. Lyu, “An extended level method for efficient multiple kernel learn-
ing,” in Proc. of Neural Information Processing Systems, 2009, pp. 1825–1832.

[53] A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu, “SimpleMKL,” Journal of Machine Learn-
ing Research, vol. 9, no. 11, pp. 2491–2521, 2008.

[54] G. Lanckriet, N. Cristianini, P. Bartlett, and L. E. Ghaoui, “Learning the kernel matrix with semi-
definite programming,”Journal of Machine Learning Research, vol. 5, pp. 27–72, 2004.

[55] S. Sonnenburg, G. Rätsch, and C. Schäfer, “A general and efficient multiple kernel learning algo-
rithm,” in Proc. of Neural Information Processing Systems, 2006, pp. 1273–1280.

[56] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “Lp-norm multiple kernel learning,”Journal of
Machine Learning Research, vol. 12, pp. 953–997, 2011.

[57] M. Kowalski, M. Szafranski, and L. Ralaivola, “Multiple indefinite kernel learning with mixed norm
regularization,” inProc. of Int. Conference on Machine Learning, 2009, pp. 545–552.

[58] C. Cortes, M. Mohri, and A. Rostamizadeh, “Generalization bounds for learning kernels,” inProc. of
Int. Conference on Machine Learning, 2010, pp. 247–254.

[59] Z. Hussain and J. Shawe-Taylor, “A note on improved lossbounds for multiple kernel learning,”arXiv
preprint arXiv:1106.6258, 2011.

[60] M. Kloft, U. Rückert, and P. L. Bartlett, “A unifying view of multiple kernel learning,” inProc.
of European Conference on Machine Learning and Knowledge Discovery in Databases, 2010, pp.
66–81.

[61] M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. M¨uller, and A. Zien, “Efficient and accurate
lp-norm multiple kernel learning,” inProc. of Neural Information Processing Systems, 2009, pp.
997–1005.

[62] K. Gai, G. Chen, and C. Zhang, “Learning kernels with radiuses of minimum enclosing balls,” in
Proc. of Neural Information Processing Systems, 2010, pp. 649–657.

[63] M. Varma and B. R. Babu, “More generality in efficient multiple kernel learning,” inProc. of Int.
Conference on Machine Learning, 2009, pp. 1065–1072.

200

[64] J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. S. Nath, and S. Raman, “Variable sparsity kernel learning,”
Journal of Machine Learning Research, vol. 12, pp. 565–592, 2011.

[65] F. Bach, “Exploring large feature spaces with hierarchical multiple kernel learning,” inProc. of Neu-
ral Information Processing Systems, 2009, pp. 105–112.

[66] J. Yang, Y. Li, Y. Tian, L.-Y. Duan, and W. Gao, “Per-sample multiple kernel approach for visual
concept learning,”EURASIP Journal on Image and Video Processing, vol. 2010, no. 2, pp. 1–13,
January 2010.

[67] M. Gnen and E. Alpaydin, “Localized multiple kernel learning,” in Proc. of Int. Conference on Ma-
chine Learning, 2008, pp. 352–359.

[68] S. Ji, L. Sun, R. Jin, and J. Ye, “Multi-label multiple kernel learning,” inProc. of Neural Information
Processing Systems, 2009, pp. 777–784.

[69] M. Varma and D. Ray, “Learning the discriminative power-invariance trade-off,” inProc. of IEEE Int.
Conference on Computer Vision, 2007, pp. 1–8.

[70] S. Vishwanathan, Z. Sun, N. Ampornpunt, and M. Varma, “Multiple kernel learning and the SMO
algorithm,” inProc. of Neural Information Processing Systems, 2010, pp. 2361–2369.

[71] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large scale multiple kernel learning,”
Journal of Machine Learning Research, vol. 7, pp. 1531–1565, 2006.

[72] H. Liu and L. Yu, “Toward integrating feature selectionalgorithms for classification and clustering,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[73] F. Bach, “Consistency of the group lasso and multiple kernel learning,”Journal of Machine Learning
Research, vol. 9, pp. 1179–1225, 2008.

[74] A. Bosch, A. Zisserman, and X. Munoz, “Representing shape with a spatial pyramid kernel,” inProc.
of ACM Int. Conference on Image and Video Retrieval, 2007, pp. 401–408.

[75] T. Hertz, “Learning distance functions: Algorithms and applications,” Ph.D. dissertation, The Hebrew
University of Jerusalem, 2006.

[76] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor, “On kernel-target alignment,” inProc.
of Neural Information Processing Systems, 2002, pp. 367–373.

[77] O. Chapelle, J. Weston, and B. Schlkopf, “Cluster kernels for semi-supervised learning,” inProc. of
Neural Information Processing Systems, 2003, pp. 585–592.

[78] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete structures,” inProc. of
Int. Conference on Machine Learning, 2002, pp. 315–322.

[79] J. Zhuang, I. W. Tsang, and S. C. H. Hoi, “SimpleNPKL: Simple non-parametric kernel learning,” in
Proc. of Int. Conference on Machine Learning, 2009, pp. 1273–1280.

[80] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rankkernel matrices,” inProc. of Int. Conference
on Machine Learning, 2006, pp. 505–512.

201

[81] S. C. H. Hoi and R. Jin, “Active kernel learning,” inProc. of Int. Conference on Machine Learning,
2008, pp. 400–407.

[82] R. Tibshirani, “Regression shrinkage and selection via the lasso,”J. Royal. Statist. Soc B., vol. 58,
no. 1, pp. 267–288, 1996.

[83] C. Longworth and M. J. Gales, “Multiple kernel learningfor speaker verification,” inProc. of IEEE
Int. Conference on Acoustics, Speech and Signal Processing, 2008, pp. 1581–1584.

[84] V. Sindhwani and A. C. Lozano, “Non-parametric group orthogonal matching pursuit for sparse learn-
ing with multiple kernels,” inProc. of Neural Information Processing Systems, 2011, pp. 414–431.

[85] Y. Nesterov,Introductory Lectures on Convex Optimization: A Basic Course. Springer, 1998.

[86] A. Martins, N. Smith, E. Xing, P. Aguiar, and M. Figueiredo, “Online multiple kernel learning for
structured prediction,” inNIPS Workshop on New Directions in Multiple Kernel Learning, 2010.

[87] A. Zien and S. Cheng, “Multiclass multiple kernel learning,” in Proc. of Int. Conference on Machine
Learning, 2007, pp. 1191–1198.

[88] J. F. Sturm, “Using sedumi 1. 02, a matlab toolbox for optimization over symmetric cones,”Opti-
mization Methods and Software, vol. 11-12, pp. 625–653, 1999.

[89] “The MOSEK optimization software.” [Online]. Available: http://www.mosek.com/

[90] J. C. Platt,Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Cam-
bridge, MA, USA: MIT Press, 1999, pp. 185–208.

[91] R. Jin, S. C. H. Hoi, and T. Yang, “Online multiple kernellearning: Algorithms and mistake bounds,”
in Proc. of Int. Conference on Algorithmic Learning Theory, 2010, pp. 390–404.

[92] F. Rosenblatt, “The perceptron: A probabilistic modelfor information storage and organization in the
brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[93] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an appli-
cation to boosting,”Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[94] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[95] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution grayscale and rotation invariant texture
classification with local binary patterns,”IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, no. 7, pp. 971–987, 2002.

[96] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[97] N. Pinto, D. D. Cox, and J. J. Dicarlo, “Why is real-worldvisual object recognition hard?”PLoS
Computational Biology, vol. 4, no. 1, 2008.

202

[98] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: Afast descriptor for detection and classifica-
tion,” in Computer Vision–ECCV. Springer, 2006, pp. 589–600.

[99] A. Berg and J. Malik, “Geometric blur for template matching,” in Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, 2001, pp. 607–614.

[100] E. Shechtman and M. Irani, “Matching local self-similarities across images and videos,” inProc. of
IEEE conference on Computer Vision and Pattern Recognition, 2007, pp. 607–614.

[101] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “TagProp: Discriminative metric learning in
nearest neighbor models for image auto-annotation,” inProc. of IEEE Int. Conference on Computer
Vision, 2009, pp. 309–316.

[102] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the spatial
envelope,”International Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

[103] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories,” inProc. of IEEE Conference on Computer Vision and Pattern
Recognition, 2006, pp. 2169 – 2178.

[104] K. Mikolajczyk and C. Schmid, “Indexing based on scaleinvariant interest points,” inProc. of IEEE
Int. Conference on Computer Vision, 2001, pp. 525–531.

[105] J. van de Weijer and C. Schmid, “Coloring local featureextraction,” inComputer Vision–ECCV.
Springer, 2006, pp. 334–348.

[106] F. Perronnin, J. Sanchez, and Y. Liu, “Large-scale image categorization with explicit data embed-
ding,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 2297
–2304.

[107] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”ACM Transactions on
Intelligent Systems and Technology, vol. 2, pp. 21–27, 2011.

[108] M. Grant and S. Boyd., “CVX: Matlab software for disciplined convex programming, version 1.21,”
http://cvxr.com/cvx, april 2011.

[109] F. Bach, R. Thibaux, and M. I. Jordan, “Computing regularization paths for learning multiple kernels,”
in Proc. of Neural Information Processing Systems, 2005, pp. 73–80.

[110] F. Li, J. Carreira, and C. Sminchisescu, “Object recognition as ranking holistic figure-ground hy-
potheses,” inProc. of IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 1712
– 1719.

[111] G. L. Oliveira, E. R. Nascimento, A. W. Vieira, and M. F.M. Campos, “Sparse spatial coding: A
novel approach for efficient and accurate object recognition,” in Proc. of IEEE Int. Conference on
Robotics and Automation, 2012, pp. 2592–2598.

[112] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, “Contextualizing object detection and classifica-
tion,” in Proc of IEEE Int. Conference on Computer Vision and Pattern Recognition, 2011, pp. 1585
– 1592.

203

[113] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient object localization and image classifica-
tion,” in Proc. of Int. Conference on Computer Vision, 2009, pp. 237–244.

[114] K. Chatfield, V. Lemtexpitsky, A. Vedaldi, and A. Zisserman, “The devil is in the details: an evalu-
ation of recent feature encoding methods,” inProc. of the British Machine Vision Conference, 2011,
pp. 1–12.

[115] S. Sonnenburg, G. Ratsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. d. Bona, A. Binder, C. Gehl,
and V. Franc, “The shogun machine learning toolbox,”The Journal of Machine Learning Research,
vol. 99, pp. 1799–1802, 2010.

[116] L. Tang, J. Chen, and J. Ye, “On multiple kernel learning with multiple labels,” inProc. of Int. Joint
Conference on Artifical Intelligence, 2009, pp. 1255–1260.

[117] F. Orabona, L. Jie, and B. Caputo, “Online-batch strongly convex multi kernel learning,” inProc. of
IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 787–794.

[118] S. Mei, “Multi-kernel transfer learning based on chou’s pseaac formulation for protein submitochon-
dria localization,”Journal of Theoretical Biology, vol. 293, pp. 121–130, 2012.

[119] A. Nemirovski, “Prox-method with rate of convergenceo(1/t) for variational inequalities with lip-
schitz continuous monotone operators and smooth convex-concave saddle point problems,”SIAM
Journal on Optimization, vol. 15, no. 1, pp. 229–251, 2004.

[120] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-correcting output
codes,”Journal of Artificial Intelligence Research, vol. 2, no. 1, pp. 263–286, 1995.

[121] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multi-class support vector machines,”IEEE
Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.

[122] D. Hsu, S. M. Kakade, J. Langford, and T. Zhang, “Multi-label prediction via compressed sensing,”
in Proc. of Neural Information Processing Systems, 2009, pp. 772–780.

[123] T. Zhou, D. Tao, and X. Wu, “Compressed labeling on distilled labelsets for multi-label learning,”
Machine Learning, vol. 88, no. 1-2, pp. 69–126, 2012.

[124] F. Tai and H.-T. Lin, “Multilabel classification with principal label space transformation,”Neural
Computation, vol. 24, no. 9, pp. 2508–2542, 2012.

[125] M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learning approach to multi-label learning,”Pattern
Recognition, vol. 40, no. 7, pp. 2038–2048, 2007.

[126] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,”
Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[127] J. R. Quinlan,C4.5: programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1993.

[128] A. Clare and R. D. King, “Knowledge discovery in multi-label phenotype data,” inPrinciples of Data
Mining and Knowledge Discovery. Springer, 2001, pp. 42–53.

204

[129] Y. Freund and L. Mason, “The alternating decision treelearning algorithm,” inProc. of Int. Confer-
ence on Machine Learning, 1999, pp. 124–133.

[130] H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramon, andJ. Struyf, “Hierarchical multi-
classification,” inACM SIGKDD Workshop on Multi-Relational Data Mining, 2002.

[131] F. De Comité, R. Gilleron, and M. Tommasi, “Learning multi-label alternating decision trees from
texts and data,” inMachine Learning and Data Mining in Pattern Recognition. Springer, 2003, pp.
35–49.

[132] J. Struyf, S. Dzeroski, H. Blockeel, and A. Clare, “Hierarchical multi-classification with predictive
clustering trees in functional genomics,” ser. EPIA. Springer-Verlag, 2005, pp. 272–285.

[133] Y. Han, F. Wu, Y. Zhuang, and X. He, “Multi-label transfer learning with sparse representation,”IEEE
Transactions on Circuits and Systems for Video Technology, vol. 20, no. 8, pp. 1110–1121, 2010.

[134] G.-J. Qi, C. Aggarwal, Y. Rui, Q. Tian, S. Chang, and T. Huang, “Towards cross-category knowledge
propagation for learning visual concepts,” inProc. of IEEE Conference on Computer Vision and
Pattern Recognition, 2011, pp. 897–904.

[135] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “Online passive-aggressive
algorithms,”Journal of Machine Learning Research, vol. 7, pp. 551–585, 2006.

[136] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classification,” inProc. of Neural
Information Processing Systems, 2001, pp. 681–687.

[137] O. Dekel, C. D. Manning, and Y. Singer, “Log-linear models for label ranking,” inProc. of Neural
Information Processing Systems, 2003.

[138] A. McCallum, “Multi-label text classification with a mixture model trained by EM,” inAAAI Work-
shop on Text Learning, 1999.

[139] S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for multi-label classification,” inProc.
of ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining, 2008, pp. 381–389.

[140] K. Yu, S. Yu, and V. Tresp, “Multi-label informed latent semantic indexing,” inProc. of Annual ACM
SIGIR Conference on Research and Development in Information Retrieval, 2005, pp. 258–265.

[141] A. Quattoni, M. Collins, and T. Darrell, “Transfer learning for image classification with sparse pro-
totype representations,” inProc. of IEEE Conference on Computer Vision and Pattern Recognition,
2008, pp. 1–8.

[142] S.-J. Huang, Y. Yu, and Z.-H. Zhou, “Multi-label hypothesis reuse,” inProc. of ACM SIGKDD Int.
Conference on Knowledge Discovery and Data Mining, 2012, pp. 525–533.

[143] Y. Guo and S. Gu, “Multi-label classification using conditional dependency networks,” inProc. of
Int. Joint Conference on Artificial Intelligence, 2011, pp. 1300–1305.

[144] G. Chen, J. Zhang, F. Wang, C. Zhang, and Y. Gao, “Efficient multi-label classification with hy-
pergraph regularization,” inProc. of IEEE conference on Computer Vision and Pattern Recognition,
2009, pp. 1658–1665.

205

[145] L. Sun, S. Ji, and J. Ye, “Hypergraph spectral learningfor multi-label classification,” inProc. of ACM
SIGKDD Int. Conference on Knowledge Discovery and Data Mining. ACM, 2008, pp. 668–676.

[146] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled classification,” inAdvances
in Knowledge Discovery and Data Mining. Springer, 2004, pp. 22–30.

[147] N. Alaydie, C. K. Reddy, and F. Fotouhi, “Exploiting label dependency for hierarchical multi-label
classification,” inAdvances in Knowledge Discovery and Data Mining. Springer, 2012, pp. 294–305.

[148] A. Veloso, W. Meira Jr, M. Gonçalves, and M. Zaki, “Multi-label lazy associative classification,” in
Knowledge Discovery in Databases. Springer, 2007, pp. 605–612.

[149] J. Read, L. Martino, and D. Luengo, “Efficient Monte Carlo optimization for multi-dimensional clas-
sifier chains,”arXiv preprint arXiv:1211.2190, 2012.

[150] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, andJ. Attenberg, “Feature hashing for large
scale multitask learning,” inProc. of Int. Conference on Machine Learning, 2009, pp. 1113–1120.

[151] R. A. Amar, D. R. Dooly, S. A. Goldman, and Q. Zhang, “Multiple-instance learning of real-valued
data,” inProc. of Int. Conference on Machine Learning, 2001, pp. 3–10.

[152] M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell, “Zero-shot learning with semantic output
codes,” inProc. of Neural Information Processing Systems, 2009, pp. 1410–1418.

[153] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Keerthi, and S.Sundararajan, “A dual coordinate descent
method for large-scale linear svm,” inProc. of Int. Conference on Machine Learning, 2008, pp. 408–
415.

[154] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” inProc. of ACM Int. Conf. on
Multimedia Information Retrieval, 2008, pp. 39–43.

[155] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodalsemi-supervised learning for image clas-
sification,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp.
902–909.

[156] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using second order information for
training svm,”Journal of Machine Learning Research, vol. 6, pp. 1889–1918, 2005.

[157] J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likeli-
hood methods,”Advances in Large Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[158] M. Marszalek and C. Schmid, “Semantic hierarchies forvisual object recognition,” inProc. of IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2007, pp. 1–7.

[159] N. Nguyen and R. Caruana, “Classification with partiallabels,” inProc. of ACM SIGKDD Int. Con-
ference on Knowledge Discovery and Data Mining, 2008, pp. 551–559.

[160] R. Jin and Z. Ghahramani, “Learning with multiple labels,” in Proc. of Neural Information Processing
Systems, 2002, pp. 897–904.

[161] A. Pentland, “Expectation maximization for weakly labeled data,” inProc. of Int. Conference on
Machine Learning, 2001, pp. 218–225.

206

[162] K. Crammer and Y. Singer, “On the learnability and design of output codes for multiclass problems,”
Machine Learning, vol. 47, no. 2, pp. 201–233, 2002.

[163] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,”J. Royal.
Statist. Soc B., vol. 68, no. 1, pp. 49–67, 2006.

[164] J. Fan, Y. Shen, N. Zhou, and Y. Gao, “Harvesting large-scale weakly-tagged image databases from
the web,” inProc. of IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 802–
809.

[165] M. Szummer, “Learning from partially labeled data,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2002.

[166] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, “Efficient bandit algorithms for online multiclass
prediction,” inProc. of Int. Conference on Machine Learning, 2008, pp. 440–447.

[167] S. Wang, R. Jin, and H. Valizadegan, “A potential-based framework for online multi-class learning
with partial feedback,” inProc. of Int. Conference on Artificial Intelligence and Statistics, 2010, pp.
900–907.

[168] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathematical Programming,
vol. 95, no. 1, pp. 3–51, 2003.

[169] M. Petrovskiy, “Paired comparisons method for solving multi-label learning problem,” inProc. of
Conference of Hybrid Intelligent Systems, 2006, pp. 42–42.

[170] L. Sun, S. Ji, and J. Ye, “Canonical correlation analysis for multilabel classification: a least-squares
formulation, extensions, and analysis,”IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 1, pp. 194–200, 2011.

[171] O. Yakhnenko and V. Honavar, “Multiple label prediction for image annotation with multiple kernel
correlation models,” inIEEE Computer Vision and Pattern Recognition Workshops, 2009.

[172] W. Zhang, X. Xue, J. Fan, X. Huang, B. Wu, and M. Liu, “Multi-kernel multi-label learning with
max-margin concept network,” inProc. of Int. Joint Conference on Artificial Intelligence, 2011, pp.
1615–1620.

[173] L.-J. Li, H. Su, E. P. Xing, and F.-F. Li, “Object bank: Ahigh-level image representation for scene
classification & semantic feature sparsification.” inProc. of Neural Information Processing Systems,
2010, p. 5.

[174] L. G. Roberts, “Machine perception of three-dimensional solids,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2007.

[175] T. O. Binford, “Survey of model-based image analysis systems,” The International Journal of
Robotics Research, vol. 1, no. 1, pp. 18–64, 1982.

[176] R. T. Chin and C. R. Dyer, “Model-based recognition in robot vision,” ACM Computing Surveys,
vol. 18, no. 1, pp. 67–108, 1986.

207

[177] R. Bergevin and M. Levine, “Generic object recognition: building and matching coarse descriptions
from line drawings,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 1,
pp. 19 –36, 1993.

[178] F. Stein and G. Medioni, “Structural indexing: efficient 2d object recognition,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 14, no. 12, pp. 1198 –1204, 1992.

[179] E. Saber, A. M. Tekalp, R. Eschbach, and K. Knox, “Automatic image annotation using adaptive
color classification,”Graphical Models and Image Processing, vol. 58, no. 2, pp. 115 – 126, 1996.

[180] M. J. Swain and D. H. Ballard, “Color indexing,”Int. Journal of Compututer Vision, vol. 7, no. 1, pp.
11–32, 1991.

[181] J. Mao and A. K. Jain, “Texture classification and segmentation using multiresolution simultaneous
autoregressive models,”Pattern Recognition, vol. 25, no. 2, pp. 173 – 188, 1992.

[182] B. S. Manjunath and W.-Y. Ma, “Texture features for browsing and retrieval of image data,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 837 –842, 1996.

[183] P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth, “Object recognition as machine translation:
Learning a lexicon for a fixed image vocabulary,” inComputer Vision–ECCV. Springer, 2002, pp.
97–112.

[184] J. Jeon, V. Lavrenko, and R. Manmatha, “Automatic image annotation and retrieval using crossmedia
relevance models,” inProc. of Int. ACM SIGIR conference on Research and development in infor-
maion retrieval, 2003, pp. 119–126.

[185] F. Monay and D. Gatica-Perez, “On image auto-annotation with latent space models,” inProc. of
ACM Int. Conference on Multimedia, 2003, pp. 275–278.

[186] J.-Y. Pan, H.-J. Yang, P. Duygulu, and C. Faloutsos, “Automatic image captioning,” inProc. of IEEE
Int. Conference on Multimedia and Expo, 2004, pp. 1987–1990.

[187] C. Schmid and R. Mohr, “Matching by local invariants,”INRIA, Tech. Rep. RR-2644, 1995.

[188] C. Schmid, R. Mohr, and C. Bauckhage, “Comparing and evaluating interest points,” inProc. of Int.
Conference on Computer Vision, 1998, pp. 230 –235.

[189] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”International Journal of
Computer Vision, vol. 60, pp. 91–110, 2004.

[190] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags of
keypoints,” inECCV Workshop on Statistical Learning in Computer Vision, 2004.

[191] C. Harris and M. Stephens, “A combined corner and edge detector,” inProc. of Alvey Vision Confer-
ence, 1988, pp. 50–50.

[192] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” inProc. of IEEE
Conference on Computer Vision and Pattern Recognition, 2005, pp. 886–893.

[193] F. Perronnin, J. Snchez, and T. Mensink, “Improving the fisher kernel for large-scale image classifi-
cation,” inComputer Vision–ECCV. Springer, 2010, pp. 143–156.

208

[194] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “LabelMe: a database and web-based
tool for image annotation,”International Journal of Computer Vision, vol. 77, no. 1-3, pp. 157–173,
2008.

[195] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their attributes,” inProc. of
IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1778–1785.

[196] LSVRC Challenge, http://www.image-net.org/challenges/LSVRC/2013/.

[197] S. Nowak and M. J. Huiskes, “New strategies for image annotation: Overview of the photo annotation
task at ImageCLEF 2010,” inCLEF (Notebook Papers/LABs/Workshops), vol. 1, no. 3, 2010, p. 4.

[198] L. von Ahn and L. Dabbish, “Labeling images with a computer game,” inProc. of the Conference on
Human Factors in Computing Systems, 2004, pp. 319–326.

[199] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNetclassification with deep convolutional neural
networks,” inProc. of Neural Information Processing Systems, 2012, pp. 1106–1114.

[200] N. Cesa-Bianchi and G. Lugosi,Prediction, Learning, and Games. Cambridge University Press,
2006.

209

