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ABSTRACT

MULTIPLE KERNEL AND MULTI -LABEL LEARNING FOR IMAGE
CATEGORIZATION

By
Serhat Selcuk Bucak

One crucial step in recovering useful information from &igage collections is image cat-
egorization. The goal of image categorization is to find thlevant labels for a given image
from a closed set of labels. Despite the huge interest amifis@nt contributions by the research
community, there remains much room for improvement in thagencategorization task. In this
dissertation, we develop efficient multiple kernel leagnamd multi-label learning algorithms with

high prediction performance for image categorization.

There are many image representation methods availablesifiténature. However, it is not
possible to pick one as the best method for image categionizatince different representations
work better in different scenarios. Multiple kernel learqi(MKL), a natural extension of ker-
nel methods for information fusion, is often used by redeans to improve image representation
by integrating it to the learning step for selecting and commy different image features. MKL
is mostly considered as a binary classification tool, and difficult to scale up MKL when the
number of labels is large. We address this computationdlecitgee by developing a stochastic ap-
proximation based framework for MKL that aims to learn a frigernel combination that benefits

all classes.

Another contribution of this dissertation is to developa@ént multi-label learning algorithms.
Multi-label learning is arguably the most suitable forntida for the image categorization task.
Many researchers have employed decomposition methodgyary one-vs-all framework, with
SVM (support vector machines) as a base classifier for asitigethe image categorization prob-

lem. However, the decomposition methods have several@imimgs, such as their inability to



exploit label correlations. Further, they suffer from indraced data distributions when the num-
ber of labels is large. Our contribution is to address nlaltiel learning via a ranking approach,
termed multi-label ranking. Given a test image, multi-latd@king algorithms aim to order all the
image classes such that the relevant classes are rankeat thgh the irrelevant ones. The advan-
tage of the proposed multi-label ranking approach, termé&®M; (multi-label ranking withZ,
norm), over other multi-label learning methods is its comagional efficiency and high prediction
performance.

Image categorization is a supervised learning task, trqugniag a large set of training images
annotated by humans. Unfortunately, labeling is an expensiocess, and it is often the case that
the annotators provide a limited set of labels, meaningtttegt only give a small subset of relevant
tags for animage. One of the contributions of this dissernas defining the problem of multi-label
learning with incomplete class assignments and preseatingust multi-label ranking algorithm,
termed MLR& L (multi-label ranking with group lasso norm), that addresee challenge of
learning from incompletely labeled data.

Finally, we present a multiple kernel multi-label rankidgaithm to simultaneously address
two essential factors for improving the performance of imegtegorization: Heterogeneous infor-
mation fusion, and exploiting label correlations in mudtbel data. We propose a multiple kernel
multi-label ranking method that learns a shared sparseeskeombination that benefits all image
classes. This way, we not only improve the training and jgtexh efficiency, but also improve the
accuracy, particularly for classes with a small number ofigas, by enabling information shar-
ing between classes. We integrate the proposed ML Rlgorithm with an efficient semi-infinite
linear programming (SILP) based MKL solver and develop a matationally efficient wrapper

algorithm, termed MK-MLR (multiple kernel multi-label riaimg).
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Chapter 1

Introduction

In this dissertation, we develop multiple kernel and miabel learning algorithms for the image
categorization problem. The goal of image categorizatsolalbeling an image with the relevant
categories from a predefined tag set. In other words, imaggaazation requires desinging clas-
sifiers to ask the following type of question: “Does the quiemage have &atin it?” Answering
guestions such as thisdtis one of the possible image labels) is also the goal of viebgct
recognition and automatic image annotation tasks, whiclcamsider as two very closely related
subsets of image categorization. Visual object recogmisadefined as the task of determining if
any of the predefined objects (visible or tangible things) @resent in an image or not. On the
other hand, automatic image annotation task differs frosnali object recognition in that the goal
is not only to look for the existence of tangible objects, &lsb concepts like cologfeen, whité,
place Paris, Ireland, and scenesunset, fight The methods we present in this dissertation are

designed to be used in both of these tasks.

Image categorization is a very good fit as a benchmark to taktpie kernel and multi-label
learning algorithms for several reasons. Firstly, we saerttany state-of-the-art methods for im-
age categorization use information fusion to combine ckfiéimage representations. Therefore,

multiple kernel learning (MKL), which is an information fias technique, is expected to perform
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well in image categorization. Secondly, different clagsdmage categorization data sets require
using similar features (i.e., the scale-invariant feattaesform, SIFT, works well for the majority
of image classes). Therefore, the assumption we use for altiphe kernel learning algorithms
holds, which is a kernel combination that benefits all classa be learned. Thirdly, only a small
number of image representations are needed to obtain tieadplassification performance. This
means that sparseness, one of the goals of the multiplelkeanring algorithms we develop, is
a useful feature in image categorization. Fourthly, simeage classes are often correlated with
each other, multi-label learning is expected to work wellhwmage categorization. Finally, in-
completely labeled data, which is one of the problems weesddin this dissertation, frequently

occur in image categorization applications.

1.1 Multiple Kernel Learning for Image Categorization

Given the variety of alternatives and the large number ofsafay constructing image represen-
tations, one critical issue in developing statistical meder image categorization is how to ef-
fectively combine different image features. MKL preseniwiacipled framework for combining
multiple image representations: It creates a set of baseelsefor each representation and finds
the optimal kernel combination via a linear combination eifriels.

We demonstrate MKL on a simple image categorization probMfa create two kernels: one
based on color histogram and one based on texture distibirtithe image. We choose three
object classescfocodile, snoopy, strawberyyfrom the Caltech 101 data set [3], each with 15
instances, and train one-vs-all support vector machinéslj$or each of the three classes by using
different combinations of these two kernels. To combinekbmels, we vary the combination
coefficients in the sef0,0.2,0.4,0.6,0.8,1}. In Figure 1.1 we generate a heat map to represent
classification performance of different linear combinati@f the two kernels. We observe that the

optimal combination varies from one class to another. Fangd{e, while the texture based kernel
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Figure 1.1: The first column shows the surface graphs thabdstrate the influence of different
kernel combination weights on the mean average precisionre gor three different classes. Four
examples from each class are given in the second column.ntespretation of the references to
color in this and all other figures, the reader is referredhéoalectronic version of this thesis.



is assigned a higher coefficient for crocodile classificatask, the color kernel should be used
with a higher weight for the strawberry class. This simplaraple illustrates the significance of
identifying the appropriate combination of kernels foragurizing a specific class of visual objects.
It also motivates the need for developing automatic apprestor finding the optimal combination
of kernels from training examples, as there is no univershit®n for kernel combination that
works well for all classes.

MKL has been successfully applied to a number of tasks in ctenprision, particularly to
image categorization. For instance, the winning group énRascal VOC 2010 object categoriza-
tion challenge [4] used MKL to combine multiple sets of visteatures. The best performance
reported on the Caltech 101 data set was achieved by leaheraptimal combination of multiple
kernels [5]. Recent studies have also shown promising peence of MKL for object detec-

tion [6].

1.2 Multi-label Learning for Image Categorization

In multi-label learning, more than one class can be assigmad instance. With the increase in the
number of data sets where each image has multiple labets,tage been a vast amount of studies
that focus on developing strong classification methodsrf@age categorization [7-9]. Many re-
searchers employ decomposition methods, particularlyvsral framework, with SVM as a base
classifier. In this setting, a separate classifier is trafioe@ach image label, leading to an inde-
pendent prediction for each label on a query image. Althalggomposition based methods are
frequently used to solve multi-label classification, theyhdive some limitations (see Chapter 4).
To overcome the limitations of decomposition techniquesre have been many direct multi-label
learning methods proposed in the literature that do not m@ose or transform the multi-label
learning problem into a set of binary classification tasks{14]. In this dissertation, we are par-

ticularly interested in multi-label ranking, in which thearning task is formulated as a bipartite
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ranking problem. Multi-label ranking is an example of a dirsulti-label learning approach that
can exploit label correlations. Also, by avoiding a binagcidion, multi-label ranking is usually
more robust than the classification approaches, partlguldren the number of classes is very
large [10, 15].

Ranking has been successfully used in other applicatiorad@msuch as document classifi-
cation and recommender systems. For example, it makes raose $n recommender systems
to provide the user an ordered list of items that she/he nbghinterested in. Also, since the
preference ratings given by the users are not universal {he rating “7” is not same for every
user) ranking results would be easier to obtain compared=igting the exact ratings. Similarly,
ranking labels might be useful for image categorizationesys. Consider an image search system
where the search is based on image labels. Being able tomageilabels can be useful for refin-
ing the search. For example, if a user is interested in finthate shop” images from the internet
to decide where to go, then a system that only focuses on lte¢‘leafe shop” would not help in
refining the search. If the user is looking for images of pigtridly cafe shops where more people
read books than use computers, then ranking labels woulddfelu Such a system would aim to
retrieve images where the labelafe shops, books, cats, dopsyve higher scores than the label
computer This does not mean that the image should not contain any wtamg) but the emphasis

on the other labels is set to be higher.

1.3 Challenges

There are thousands of possible image classes and as seihjgimo optimal image represen-
tation technique that would work best for all of these clasde fact, it is very difficult to find

a salient representation for even a single image class diaeg® variations in the visual appear-
ance of samples within a class, a phenomenon known as tledlaiss variation problem [16, 17].

In addition to intra-class variation, challenges includmslation [18], scale [19], rotation [20],

5



!.‘-‘r

background clutter

viewpoint variation viewpoint occlusion

Figure 1.2: lllustration of some image categorization ldraes: (a) Blue Mosque under two dif-
ferent illumination conditions, (b) two miniatures withdkground clutter and object deformation,
(c) two different views of the Topkapi Palace, (d) two femyages, one being partially occluded.

affine transformation [21], viewpoint variation [22], ouaslon [23], background clutter [24], and
illumination [25]. Figure 1.2 shows example images that destrate some of these challenges.
The problems we have stated above often force recognitgmrithms to utilize complex mod-
els. More specifically, kernel machines, which use nondirfanctions of the features, generally
work better than linear classification models. For instameesee from the image categorization
literature that using SVM with RBF (radial basis functiom)@ kernel gives superior performance
compared to linear SVM [26]. However, there are some chg#erof using kernel machines for
image categorization. We examine these under the followviogopics: (i) challenges of multiple

kernel learning and (ii) challenges of multi-label leagior image categorization.

1.3.1 Challenges in MKL for Image Categorization

e The application of MKL to multi-labeled data, such as in ireagtegorization, is primarily
limited to one-vs-all framework, which fails to exploit labcorrelations. As MKL solvers

for each class operate independently, no interaction ornmdtion transfer between image
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classes takes place, leading to suboptimal performanc@7188].

e The training complexities of MKL algorithms are quadratidérms of the number of train-
ing samples and linear in terms of the number of classes. Mgpertantly, the prediction
is computationally expensive. Once the distance betwearesycgample and the support
vectors is calculated, a different kernel combination setedbe calculated for each class

prior to prediction, which is a costly process.

1.3.2 Challenges in Multi-label Learning for Image Categoization

e Exploiting correlations or dependencies between diffectasses is an important research
problem, and a number of approaches have been developedfivdabel learning that aim
to capture dependencies among classes [10, 12, 13, 29, B@]mgjority of such methods
make strong assumptions regarding the type of relatiosghgt exist between class labels.
Although these methods give promising results when thenlyidg assumptions hold, there

is no guarantee that the assumptions would hold for all tgpesata.

e Formulating a multi-label learning problem as multi-lab&hking methods is an effective
approach that takes advantage of the label correlatiom®utiimaking a strong assumption
about the data structure. However, the bipartite rankingstraints make the computational
complexity quadratic in the number of classes, making ttadgerithms computationally

inefficient when the number of classes is large.

e Itis unclear if strong multi-label learning algorithms wdwvork well in practice. One of the
main concerns for real world systems is that the labelinggss is very expensive and often
inaccurate. In image categorization systems, the imagetations for the training data set
are provided primarily by online users through services lmazon Mechanical Turk [31].

As a result, the retrieved annotations are often incomptetly a subset of the true image
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labels is given by the annotators. Therefore, it is impdrtarbuild robust classifiers that

would work well even when the full label information is nobpided.

1.4 Contributions

We can divide our contributions in this dissertation intmtparts: (i) multiple kernel learning
and (i) multi-label learning for image categorization.aptters 2 and 3 show how multiple kernel
learning can be used to simultaneously improve the reptratsem and learning stages. Chapters 4
and 5 discuss the multi-label learning problem, which isialdy the most appropriate formulation
of the image categorization problem. We present our (sjrigenel based multi-label learning
algorithms in Chapters 4 and 5. Finally, we merge these twectons by developing a multiple
kernel multi-label ranking approach in Chapter 6 and addoes main goal, which is to develop
efficient algorithms that outperform published classifamaimethods when state-of-the-art image

representations are used. We can list our contributionsliasvs:

e Our contribution in Chapter 3 is to improve the computatlaficiency of MKL with re-
spect to the number of classes for both the training and giedisteps. The majority of
MKL methods require executing a binary MKL algorithm indivially for each image class,
see Figure 1.3, making the training and prediction compiinear in terms of the num-
ber of classes. This is the reason that the existing MKL sslde not scale well when the
number of classes is large. We address this computationfiéolye by developing a frame-
work for MKL that learns a single kernel combination benefjtall classes by combining a
worst-case analysis with stochastic approximation (sgar€il.4). Our analysis shows that
the training complexity of our algorithm i8(m'/3 log m) in terms of the number of classes,
m. Moreover, since our algorithm learns a single sparse keorabination for all classes,
the time consumed for the kernel construction step of thdigtien phase is also reduced

significantly.
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e Our contributions in Chapters 4 and 5 are efficient multelalanking algorithms. Given a
test image, a multi-label ranking method aims to order alabject classes such that the
relevant classes are ranked higher than the irrelevargedg&igure 1.5). We present two ef-
ficient algorithms for multi-label ranking based on the idéalock coordinate descent. The
proposed methods are computationally efficient; their astatponal complexity is linear in
the number of classes, while the majority of the multi-latsgiking schemes suffer from
guadratic dependence on the number of classes. Our expegimesults show that the pro-
posed methods outperform state-of-the-art classificatiethods. Table 1.1 gives a compar-
ison between the proposed multi-label ranking methods (MLRnd MLR-G L), and two
state-of-the-art approaches on two benchmark data seesGagie and MIR Flickr25000, in
terms of AUC-ROC score. We use dense-SIFT features to gendearesults in Table 1.1,
however, the proposed methods consistently outperfornbaiselines even when different

features are used.

e In Chapter 5 we present a robust multi-label learning methatiperforms well under the
setting of limited annotations. Specifically, we consideitaation where the training ex-
ample class assignments are incomplete, see Figure 1.Gideom training image whose
true class assignment (s, cs, c3, ¢4), but is only assigned to classesandc,. We refer to
this problem as multi-label learning with incomplete classignments, which has not been
addressed in the multi-label learning literature. Inccetglly labeled data is frequently en-
countered when the number of classes is very large (hundseitlsthe MIR Flickr data set)
or when there is a large ambiguity between classes (e.glslgbandplang. In both cases,

it is difficult for users to provide complete class assigntador objects.

e We propose a ranking based multi-label learning framewbst explicitly addresses the
challenge of learning from incompletely labeled data bylexipg the group lasso technique

to combine the ranking errors. Table 1.2 reports the resultsvo benchmarks data sets,
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Table 1.1: Multi-label ranking performance (AUC-ROC) foetESP Game and MIR Flickr25000
data sets

ESP Game MIRFlickr25000

SVM 79.5 70.2
MLLS 79.4 75.9
MLR-L, 81.5 75.4
MLR-GL 80.5 76.2

ESP Game and MIR Flickr25000, in terms of AUC-ROC score, in sgenarios: (i) the
complete label information is provided, ()% of the training labels are randomly removed.
With performance in Table 1.2 and the experimental resunlt€hapter 5, we claim that
the proposed method, MLR-GL outperforms the state-ofatienulti-label classification
methods on incompletely labeled data, including our othaltiflabel ranking approach

MLR-L;.

e Finally, we propose a multiple kernel multi-label rankingttmod (MK-MLR) by combining
the strengths of the algorithms in Chapters 2, 3, and 4. Wenexthe proposed MLR~
method to multiple kernel setting by integrating it into tBE.P (semi-infinite linear pro-
gramming) based wrapper MKL solver, which is the most effitlKL- L; optimization
method according to our detailed analysis in Chapter 2. W a$e the idea of learning a
shared kernel combination for all image classes to improgebdmputational efficiency. The
MK-MLR method addresses the two essential factors for impigpthe performance of im-
age categorization: (i) heterogeneous information fusaod (ii) exploiting label correlation

of multi-label data.
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Figure 1.5: The difference between the two proposed maiitel ranking approaches MLR
(Chapter 4) and MLR-GL (Chapter 3) is that MKL; strictly addresses the complete class as-
signment problem whereas MLR-GL can handle missing clasg@®ents. For example, the
complete and full annotations are provided with all fourdisbsoccer, referee, field, goalkeeper

for the given image.

Table 1.2: AUC-ROCY:) scores for the ESP Game and MIR Flickr25000 data sets fantbging

label scenario.

ESP Game MIR Flickr25000
complete 60% missing| complete 60% missing
SVM 80.2 75.2 70.2 65.7
MLLS 79.8 75.0 75.9 715
MLR- L, 82.9 79.4 75.4 69.1
MLR-GL 83.8 82.1 76.2 74.1
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Multi-label Incomplete training
ranking label set

Test image
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Figure 1.6: The difference between the two proposed maittel ranking approaches (a) MLR-
(Chapter 4) and (b) MLR-GL (Chapter 3) is that MKIL strictly addresses the complete class
assignment problem whereas MLR-GL can handle missing elssignments. For example, only
two labels §occerandfield, written with bold characters) are given for the above imagereas
two labels oalkeepeandreferee underlined text) are missing.
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1.5 Notation

LetD = {x!,...,x"} be a collection of training instances, whet® C R is a compact domain.
Each training example! is annotated by a set of class labels fr@mndenoted by a binary vector
yi = (yi,...,y1) € {—1,1}™, wherem is the total number of classes, apd= 1 whenx! is
assigned to clasg, and —1, otherwise. In multi-label ranking, we aim to leawn classification
functionsf,(x) : R? — R,k = 1,...,m, one for each class.

We denote by{x,(x,x') : X x X — R, j = 1,...,s} a set ofs base kernels to be com-
bined in multiple kernel learning (MKL). For each kernel @tion «;(-, -), we construct a kernel
matrix K; = [k;(x,X)].xn Dy applyingx;(-,-) to the training instances i®. We denote by
B = (Bi,...,0s)" € R the set of coefficients used to combine the base kernels, emutel by
r(x,x'; B) = >, Bk (x,x) andK(B) = > _7_, B;K; the combined kernel function and kernel
matrix, respectively. We further denote BY; the Reproducing Kernel Hilbert Space (RKHS)
endowed with the combined kernelx, x’; 3). The list of symbols and descriptions are given in
Table 1.3.

The vectors and matrices are denoted by bold lowercase gedagse characters, respectively.
We use superscript to indicate the training instance indebsaibscript to show the class index for
the feature and label vectors. For exampiec R™, with m being the number of labels, denotes
the label vector for multi-labeled the training instande On the other handy, € R”, where
n is the number of training instances, is the label assignmector on all training instances for
classc;,. We use a scalay, € {—1,+1} to indicate the label assignment of instander classcy.
For binary classification tasks, for example Chapter 2, v dne subscript, i.ey’ € {—1,+1},
for simplicity. For a matrixK, K., andK;,. denote theith column and angth row vectors,

respectively. For the multiple kernel learning sectiB,indicates thgth base kernel.
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Table 1.3: The list of symbols used in this dissertation

Definition Symbol
Instance space X € R?
Label set L
Number of dimensions d
Number of instances n
Number of class labels m
Number of base kernels for MKL s

Kernel function

1y

Oy

M:,i

Classification function for clags
Reproducing Kernel Hilbert Space (RKH}{
endowed with the combined kernel
Kernel coefficients for MKL

Training instance

Label vector

k(.,.)
k dimensional vector of all ones
k dimensional vector of all zeros
1th column vector of the matri¥l
fk(l') ‘R R

S s
/3' = (ﬁl_u ce 7ﬁs)—r e Ri—

x' = (2}, 2h,...,2,) € X

yi — (yiv ce vyfn) = {_17 1}m
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Chapter 2

Multiple Kernel Learning for Image

Categorization: A Review

2.1 Introduction

Kernel methods [32] have become popular in computer vigantjcularly for image categoriza-
tion. The key idea of kernel methods is to introduce nonlitgdnto the decision function by
mapping the original features to a higher dimensional speieay studies [4, 33, 34] have shown
that nonlinear kernels, such as radial basis functions [RBEhi-squared kernels, yield signifi-
cantly higher accuracy for image categorization than aliméassification model.

One difficulty in developing kernel classifiers is to designagpropriate kernel function for
a given task. We often have multiple kernel candidates fagencategorization. These kernels
arise either because multiple feature representationdeaneed for images, or because different
kernel functions (e.g., polynomial, RBF, and chi-squaged)used to measure the visual similarity
between two images for a given feature representation. ©tleedkey challenges in image cate-
gorization is to find the optimal combination of these kesrfel a given object class. This is the

central question addressed by Multiple Kernel Learning (1K
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Table 2.1: Comparison of MKL baselines and simple basel(iigagle” for single best performing
kernel and “AVG” for the average of all the base kernels) mmtg of classification accuracy. The
last three columns give the references in which either “eth or “method2” performs better, or
both methods give comparable results, respectively.

methl meth2  dataset #samples #kernels mtdl mtd2 comp.
MKL Single UCI [1-6K] [1-10] [35] [36]
MKL Single UCI [1-2K] [10-200] [37]

L-MKL  AVG Cal-101 [510-3K] [10-1K] [38],[9] [39],[40] [41]

L,-MKL  AVG VOCO07 5011 [10-22] [9], [41] [42]

L,-MKL AVG Oxford 680 [5-65] [43]
Flowers

L,-MKL AVG VOCO07 5011 10 [42]

L,-MKL AVG Cal-101 [1K-3K] [24-1K] [41] [40]

L,-MKL AVG Oxford 680 [5,65] [41]
Flowers

L,-MKL  L,-MKL UCI [1-2K] [1-50] [44] [45], [46] [47]

L,-MKL  L,-MKL VOCO07 5011 [10-22] [42], [41]

Li-MKL  L,-MKL Cal-101 [510-3K] [10-1K] [40] [41]

A lack of comprehensive studies has resulted in differemhetimes conflicting, statements re-
garding the effectiveness of various MKL methods on reatlavproblems, particularly for image
categorization. For instance, some of the studies [5, 4@]Ireported that MKL outperforms the
average kernel baseline while other studies made the dpmusiclusion [40,48,49], see Table 2.1.
Moreover, as Table 2.2 shows, there are also some confluesnifs and statements about the effi-
ciency of different MKL methods. Besides summarizing thesadevelopments in MKL and its
application to image categorization, an important contrdn of this chapter is to resolve the con-
flicting statements by conducting a comprehensive evalnaf state-of-the-art MKL algorithms
under various experimental conditions.

The main contributions of the survey we give in this chapter a

e Areview of a wide range of MKL formulations that use diffeteagularization mechanisms,

and the related optimization algorithms.

e A comprehensive study that evaluates and compares a rapatge set of MKL algorithms
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Table 2.2: Comparison of computational efficiency of MKL im&ds. The last three columns give
the references, where “methodl” is better, “method?2” isdvebr both give similar results.

methl meth2 datasets # samples # kernels mtdl mtd2 cmp.
training time
L,-MKL  L,-MKL MedMill 30,993 3 [50]
MKL-L1  L,-MKL UCl [1-2K] [90-800] [48]
MKL-SD MKL-SIP UCl [1-2K] [50-200] [51], [52]
MKL-SD MKL-SIP UCl [1-2K] [50-200] [53], [46]
MKL-SD MKL-SIP  Oxford 680 [5-65] [43]
Flowers
MKL-SD MKL-MD  Oxford 680 [5-65] [39]
Flowers
MKL-SD MKL-MD Cal-101 3,060 9 [9]
MKL-SD MKL-MD VOCO07 5,011 22 [9]
MKL-SD MKL-Lev UCl [1-2K] [50-200] [52]
MKL-SIP MKL-Lev  UCI [1-2K]  [50-200] [52]
# active kernels
MKL-SD MKL-SIP  UCI [1-2K]  [50-200] [51]
MKL-SD MKL-SIP  UCI [1-2K]  [50-200] [53]
MKL-SD MKL-Lev  UCI [1-2K]  [50-200] [52]
MKL-SIP  MKL-Lev UCl [1-2K] [50-200] [52]

for image categorization under different experimentaisgs.

e An exposition of the conflicting statements regarding thdgmance of different MKL
methods, particularly for image categorization. We attetopunderstand these statements

and determine to what degree and under what conditions gt@ssments are correct.

2.2 Overview

In this section we give an overview of multiple kernel leani
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2.2.1 Overview of Multiple Kernel Learning (MKL)

MKL was first proposed in [54], where it was cast into a Semfulie2 Programming (SDP) prob-
lem. Most studies on MKL are centered around two issues,oi) to improve the classification
accuracy of MKL by exploring different formulations, and) (how to improve the learning effi-
ciency of MKL by exploiting different optimization technigs (see Figure 2.1).

In order to learn an appropriate kernel combination, vari@gularizers have been introduced
for MKL, including L; norm [55], L, norm (p > 1) [56], entropy based [48], and mixed norms
[57]. Among them,L; norm is probably the most popular choice because it resulsparse
solutions and could potentially eliminate irrelevant araisg kernels. In addition, theoretical
studies [58, 59] have shown that norm will result in a small generalization error even whea th
number of kernels is very large.

A number of empirical studies have compared the effect déidifit regularizers used for MKL
[41,46,60]. Unfortunately, different studies arrive ahtradictory conclusions. For instance, while
many studies claim thdt; regularization yields good performance for object recigni[40, 61],
others show that; regularization results in information loss by imposingrspaess over MKL
solutions, thus leading to suboptimal performance [4148650, 62].

In addition to a linear combination of base kernels, sevaigdrithms have been proposed to
find a nonlinear combination of base kernels [39, 45, 63—&&xme of these algorithms try to
find a polynomial combination of the base kernels [45, 63]ilevbthers aim to learn an instance-
dependent linear combination of kernels [5, 66, 67]. Thennshiortcoming of these approaches
is that they have to deal with non-convex optimization peoid, leading to poor computational
efficiency and suboptimal performance. Given these shmitogs, we will not review them in
detail.

Despite significant efforts in improving the effectivene$8/KL, one of the critical questions
remaining is whether MKL is more effective than the populan@e baselines, e.g., taking the

average of the base kernels. While many studies show that klgarithms bring significant
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improvement over the average kernel approach [46, 62, fhsite conclusions have been drawn
by some other studies [40,41,48,49]. Our empirical stuslesv that these conflicting statements
are largely due to the variations in the experimental camast or in other words, the consequence
of a lack of comprehensive studies on MKL.

The second line of research in MKL is to improve the learniffigiency. Many efficient MKL
algorithms [46,48,53,55,64,69, 70] have been proposesdtlyfor L, regularized MKL, based on
the first order optimization methods. We again observe aitimitj statements in the MKL literature
when comparing different optimization algorithms. Fotarme, while some studies [46,51,52] re-
port that the subgradient descent (SD) algorithms [53] ayeerefficient in training MKL than the
semi-infinite linear programming (SILP) based algorithr][7an opposing statement was given
in [61]. It is important to note that besides the trainingdinthe sparseness of the solution also
plays an important role in computational efficiency: botk thumber of active kernels and the
number of support vectors affect the number of kernel ev@ins and, consequentially, computa-
tional times for both training and testing. Unfortunatehgst studies focus on only one aspect of
computational efficiency: some only report the total tnagntime [48, 61] while others focus on
the number of support vectors (support set size) [46,67qther limitation of the previous studies
is that they are mostly constrained to small data sets (ar 000 samples) and limited number of
base kernels (10 to 50), making it difficult to draw meanihgfnclusions on the computational

efficiency.

2.2.2 Relationship to the Other Approaches

Multiple kernel learning is closely related to feature s&ten [72], where the goal is to identify
a subset of features that are optimal for a given predictisi.t This is evidenced by the equiva-
lence between MKL and group lasso [73], a feature selectiethad where features are organized
into groups, and the selection is conducted at the group ilestead of at the level of individual

features.
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Feature selection and feature combination can be given@thermain motivations of multiple
kernel learning, particularly for the image categorizatiask. There is a vast amount of choices of
image representations. Feature selection is related wsatgpthe correct image representation for
the given classification task. In this manner, MKL is clos@lated to feature selection. However,
selecting one type of representation might not be adeqaates image categorization often in-
volves many classification tasks, one for each image classp@ae representation that would work
for some of the classes might not work for others. One waydkl¢athis problem is combining
several features. The early approaches for feature comdmnacludes unweighted combination
of features [34] or employing brute force learning of feataombination parameters [74]. How-
ever, the goal of MKL is to find a more principled way of perfong feature combination. It is
important to note that equivalence between MKL and grougd&ss been proven in [73] building

a formal connection between MKL and feature selection.

MKL is also related to metric learning [75], where the goatasfind a distance metric, or
more generally a distance function, consistent with thescéssignment. MKL generalizes metric
learning by searching for a combination of kernel functitimst gives a larger similarity to any

instance pair from the same class than instance pairs frifenatit classes.

Finally, it is important to note that multiple kernel leangiis a special case of kernel learn-
ing. In addition to MKL, another popular approach for leaga linear combination of multiple
kernels is kernel alignment [76], which finds the optimal camation of kernels by maximizing
the alignment between the combined kernel and the clasgrassnts matrix. More generally,
kernel learning methods can be classified into two groupsarpatric and non-parametric kernel
learning. In parametric kernel learning, a parametric fasrassumed for the combined kernel
function [77, 78]. In contrast, nonparametric kernel l@agndoes not make any parametric as-
sumption about the target kernel function [76, 79, 80]. Nhbldt kernel learning belongs to the
category of parametric kernel learning. Despite its gditgréhe high computational cost of non-

parametric kernel learning limits its applications to realrld problems. Aside from supervised
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kernel learning, both semi-supervised and unsupervisatekéarning have also been investi-
gated [76,78,81]. We do not review them in detail here bezafitheir limited success in practice

and because of their high computational cost.

2.3 Multiple Kernel Learning (MKL): Formulations

In this section, we first review the theory of multiple kerteglrning for binary classification. We
leave the discussion of the MKL methods for multi-class andtirtabel learning to Chapter 3.

Let D = {x!,...,x"} be a collection of: training instances, wher& C R? is a compact
domain. Lety = (¢%,...,y")" € {—1,+1}" be the vector of class assignments for the instances
in D. We denote by{x;(x,x’) : X x X — R, j = 1,...,s} the set ofs base kernels to be
combined. For each kernel functien(-, -), we construct a kernel matri; = [x;(x, x')],x» DY
applyingx;(-, ) to the training instances i®. We denote by3 = (5;,...,5,)" € RS the set
of coefficients used to combine the base kernels, and deyatéxhx’; 3) = 377, B;k;(x, x)
andK(8) = ijl B,K; the combined kernel function and kernel matrix, respebtiw/e further
denote byH; the Reproducing Kernel Hilbert Space (RKHS) endowed withdbmbined kernel
k(x,x’;3). In order to learn the optimal combination of kernels, wet fifsfine the regularized
classification erro(3) for a combined kernet(-,-; 8), i.e.,

£(8) = min 2 /1B, +C Sy Fx)), 2.1)
=1

feHs 2

where/(z) = max(0, 1 — z) is the hinge loss an@' > 0 is a regularization parameter. Given the
regularized classification error, the optimal combinatieator 3 is found by minimizingZ(3),
ie.,

1
min -
BEA,fEHs 2

1f1l5, +C D Uy f(x)) (2.2)
=1
whereA is a convex domain for combination weightiisthat will be discussed later. As in [54],
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the problem in Eq. (2.2) can be written into its dual formdieg to the following convex-concave
optimization problem

minmas (e, 8) = 1"a — S(aoy) K(B)(aoy) (2.3)

whereo denotes the Hadamard (element-wise) produds, a vector of all ones, an@ = {a €
[0,C]"} is the domain for dual variables.

The choice of domain\ for kernel coefficients can have a significant impact on bédbsi-
fication accuracy and efficiency of MKL. One common practiEea restrict3 to a probability

distribution, leading to the following definition of domaix [54, 55],
Ay = {5€Rii 18l =" 18l Sl}- (2.4)
j=1

SinceA; bounds||3||;, we also refer to MKL using\, as theL; regularized MKL, orL,-MKL.
The key advantage of usinl, is that it results in a sparse solution féyleading to the elimination
of irrelevant kernels and consequentially an improvemermomputational efficiency as well as

robustness in classification.

2.3.1 Multiple Kernel Learning and Group Lasso

Lasso (least absolute shrinkage and selection operagmiession withl; regularization, is a
popular technique that performs feature selection andhishgie [82]. Shrinkage in this context
means producing sparse solutions, sincelth@orm regularization forces some of the covariates
to shrink to zero. An extension of the lasso technique, ircivithe L, -norm is replaced by a block
Ly-norm, is called the group lasso. In group lasso the coeswiate assumed to be clustered and
the absolute values of each group’s Euclidean norm are agled constructing the regularizer

term. Therefore, the shrinkage is forced at the group lewekning that all covariates within a
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group are forced to be zero altogether.

Let each training instance’ € R? have a block structure withm blocks, such thaki =
(x'1,x12, ... x™), wherex'® € R%, k =1,2,...,mand} ;" dx = d. The group lasso can be

formulated as the optimization problem in Eq. (2.5),

n CY 4 )+ Y A [wE 2.5
N3 Z ) 29
wherew is a linear classifief) is a bias term(' is a constant, and,, k = 1, ..., m are positive

weights. Square of the blodk -norm, (3"7", Ax||[w¥||)?, can also be used as an alternative group

lasso regularizer and would give the same path of soluti®ssr[3].

The group lasso formulation with the squared blégknorm, can be extended to nonlinear case
by using functions and reproducing kernel Hilbert normssaad of linear predictors and Euclidean

norms as expressed in Eq.(2.6),

{frngQZkaHm +OZ€ Z x')), (2.6)

=1
where?,, is thek-th Reproducing Kernel Hilbert Space (RKHS). Note that tbisnulation,
which learns a sparse combination of functions, enablesyusn infinite dimensional space for
each group. By following [46, 73], it is possible to show thiais formulation is equivalent to
learning a convex combination of kernel functions, eaclesponding to one group and endows
the corresponding RKHS. To prove this connection, we wid aa alternative MKL formulation
that is given by Eq. (2.7).

min min Z)‘kakHHk + CZE Zy A fre(x (2.7)
1=1 =

AERT S Me=1 {fe€Hr Iy

We provide the proof of equivalence between Egs. (2.2) ai {2 the Appendix.
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Replacing) f, with f5., we rewrite Eq. (2.7) as Eq. (2.8).

1 m n

min min _Z)\ikang%k +CZ€(Z Y fe(x1). (2.8)
k=1

AERT, S Me=1 {fr M}, 2 — —
It is straightforward to show that the expression in Eq. & %he minimizer of Eq. (2.8),

| fel 124,

= JRI*E 2.9
AT (29)

Substituting the expression in Eq. (2.9) into Eq. (2.8) tetadthe following optimization prob-

lem,

: 1 . - ) = i
 uin QM ll P+ C Yty Y fil(xh), (2.10)
Flk=1 k=1 i=1 =1

which is the same as Eg. (2.10), proving the equivalancedstWIKL and group lasso.

2.3.2 Regularization in MKL

The robustness of;-MKL is verified by the analysis in [58], which states that thgéditional
generalization error caused by combining multiple kerise@(@) when usingA; as the
domain for3, implying that L;-MKL is robust to the number of kernels as long as the number
of training examples is not too small. The advantagd.oMKL is further supported by the
equivalence betweeh,-MKL and feature selection using group Lasso [73]. Sinceugrbasso is
proved to be effective in identifying the groups of irrelavéeatures,.,-MKL is expected to be

resilient to weak kernels.

Despite the advantages @&f-MKL, it was reported in [50] that sparse solutions genetate
by L,-MKL might result in information loss and consequentiallybsptimal performance. As a

result, L, regularized MKL {,-MKL), with p > 1, was proposed in [56, 61] in order to obtain a
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smooth kernel combination, with the following definitiorr lomainA

A, ={Ber;: I8, <1}. (2.11)

Among various choices df,-MKL (p > 1), L,-MKL is probably the most popular one [49,50,56].
Other smooth regularizers proposed for MKL include negagimtropy (i.e.Zj.:1 Bjlog B;) [48]
and Bregman divergence [70]. In addition, hybrid approadm&ve been proposed to combine

different regularizers for MKL [49, 83, 84].

Although many studies comparéd regularization to smooth regularizers for MKL, the results
are inconsistent. While some studies claimed thategularization yields better performance
for image categorization [40, 61], others show tlatregularization may result in suboptimal
performance due to the sparseness of the solutions [418460462]. In addition, some studies
reported that training aih;-MKL is significantly more efficient than training &,-MKL [48],

while others claimed that the training times for both MKLha@ues are comparable [50].

A resolution to these contradictions, as revealed by ourierapstudy, depends on the num-
ber of training examples and the number of kernels. In terhdassification accuracy, smooth
regularizers are more effective for MKL when the number afrting examples is small. Given
a sufficiently large number of training examples, partidylavhen the number of base kernels is

large, L, regularization is likely to outperform the smooth regutars.

In terms of computation time, we found that-MKL methods are generally more efficient
than L,-MKL. This is because the objective function 6f-MKL is smooth while the objective
function of L,;-MKL is not *. As a result,L,-MKL enjoys a significantly faster convergence
rate (O(1/T?)) thanL;-MKL (O(1/T)) according to [85], wherd is the number of iterations.
However, when the number of kernels is sufficiently large kehel combination becomes the

dominant computational cost at each iteratidnsMKL can be as efficient ad,-MKL because

1A function is smooth if its gradient is Lipschitz continuous
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L,-MKL produces sparse solutions.

One critical question that remains to be answered is whéiKeris more effective than simple
approaches for kernel combination, e.g., using the begleskernel (selected by cross validation)
or the average kernel method. Most studies show thaIKL outperforms the best performing
kernel, although there are scenarios where kernel combmaiight not perform as well as the sin-
gle best performing kernel [50]. Regarding the compariddvKL to the average kernel baseline,
the answer is far from conclusive (see Table 2.2). While setudies show thak,-MKL brings
significant improvement over the average kernel approag6p, 68, 86], other studies claim the
opposite [40, 41, 48, 49]. As revealed by the empirical sguicsented in Section 2.5, the answer
to this question depends on the experimental setup. Whenuimder of training examples is
not sufficient to identify the strong kernels, MKL may not feem better than the average kernel
approach. But, with a large number of base kernels and a isulfiz large number of training
examples, MKL is very likely to outperform, or at least yiaihilar performance as, the average

kernel technique.

2.4 Multiple Kernel Learning: Optimization Techniques

A large number of algorithms have been proposed to solve ptienization problems posed in
Egs. (2.2) and (2.3). We can broadly classify them into twegaries. The first group of ap-
proaches directly solve the primal problem in Eq. (2.2) erdinal problem in Eq. (2.3). We refer
to them as thdirect approachesThe methods of the second group solve the convex-concaie op
mization problem in Eq. (2.3) by alternating between twpstee., the step for updating the kernel
combination weights and the step for solving the SVM clagssiéir the given combination weights.
We refer to them as therapper approachedFigure 2.1 summarizes different optimization meth-
ods developed for MKL. We note that due to the scalabilityéssalmost all MKL algorithms are

based on first order methods (i.e., iteratively updatingsthiations which use the gradient of the
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objective function or the most violated constraint). Weerghe readers to [52, 60, 87] for more

discussion about the equivalence or similarities amorfgreift MKL algorithms.

2.4.1 Direct Approaches for MKL

Lanckriet et al. [54] showed that the problem in Eg. (2.2) bartast into Semi-Definite Program-
ming (SDP) problem, i.e.,

min t/2+C Z max(0,1 — y'z")

z€R",BEAt>0 —
1=

s. . - 0. (2.12)

Although general-purpose optimization tools such as Sei)88 and Mosek [89] can be used
to directly solve the optimization problem in Eq. (2.12)eyhare computationally expensive and
are unable to handle more than a few hundred training example

Besides directly solving the primal problem, several athans have been developed to directly
solve the dual problem in Eq. (2.3). Bach et al. [35] proposedolve the dual problem using
sequential minimal optimization (SMO) [90]. In [48], thethars applied the Nesterov’s method
to solve the optimization problem in Eq. (2.3). Althoughlbapproaches are significantly more
efficient than the direct approaches that solve the prin@lpm of MKL, they are generally less

efficient than the wrapper approaches [55].

2.4.1.1 A Sequential Minimum Optimization (SMO) based Appoach for MKL

This approach is designed fdr,-MKL. Instead of constraining 3|/, < 1, Vishwanathan et al.
proposed to solve a regularized version of MKL in [70], andwated it into the following opti-

mization problem,
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2
q

max 1'a — % <Z [(aoy) Kj(aoy)] q) : (2.13)

=1

It can be shown that givedt, the optimal solution fog3 is given by

B = ;—;\ (Z ((a oy) Ki(ao y))q> (2.14)

Q=
D=

k=1

wherey; = ((aoy) K;(ao y))% andg—! + p~! = 1. Since the objective given in Eq. (2.13) is

differentiable, a Sequential Minimum Optimization (SM@)paoach [70] can be used.

2.4.2 Wrapper Approaches for MKL

The main advantage of the wrapper approaches is that thegibdeeto effectively exploit the
off-the-shelf SVM solvers, making them, in general, siguaifitly more efficient than the direct
approaches. Below, we describe several representatiygperapproaches for MKL, including
a semi-infinite programming (SIP) approach, a subgradieatent approach, an extended level
method, an alternating optimization approach, and a séglieninimum optimization (SMO)

based approach.

2.4.2.1 A Semi-infinite Programming Approach for MKL (MKL-S IP)

It was shown in [71] that the dual problem in Eqg. (2.3) can ks g#o the following SIP problem:

min 6 (2.15)
0cR,BeA

> 1
st ) B{e"1- Sleo y) ' K;(aoy)} >0,
j=1
Va € Q
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When the domain\, is used for3, the problem in Eq. (2.15) is reduced to a Semi-Infinite Linea
Programming (SILP) problem. To solve Eq. (2.15), we firstiatize the problem with a small
number of linear constraints. Then the SIP problem in EQ.5@s solved by alternating between
two steps, i.e., (i) finding the optima andé with fixed constraints, and (ii) finding the unsatisfied
constraints with the largest violation under the fix@dnd# and adding them to the system. Note
that in the second step, to find the most violated constraimesfollowing optimization problem,

which is an SVM problem for the combined kernégl, -; 3), needs to be solved:

acQ

- 1
max Zﬁij(a) =a'l— 5(0[ oy) K(B)(aoy).
j=1
2.4.2.2 Subgradient Descent Approaches for MKL (MKL-SD & MKL-MD)

A popular wrapper approach for MKL is SimpleMKL [53], whiclolges the dual problem in
Eq. (2.3) by a subgradient descent approach. The authergharconvex concave optimization
problem in Eqg. (2.3) into a minimization proble%mig J(B), where the objectivd (3) is defined

S
as

J(B) = ma —%(a oy) ' K(B)(aoy)+1"a (2.16)

acQ
Since the partial gradient of(3) is given byds, J(8) = 1 — 3 (a* oy) 'K (a*oy),j =1,...,s,
wherea* is an optimal solution to Eg. (2.16), following the subgeadidescent algorithm, we
update the solutio® by

B ma (B —n0J(B))

wheren > 0 is the step size determined by a line search [53]a0d3) projects3 into the domain

A. Similar approaches were proposed in [62,63].

A generalization of the subgradient descent method for MKlaimirror descent method

(MKL-MD) [39]. Given a proximity functionw(3', 3), the current solutior8’ and the subgra-
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dientd.J(3"), the new solutior'*" is obtained by solving the following optimization problem

BT = argminn(8 — B8)T0J(B") + w(B', B), (2.17)

BeA

wheren > 0 is the step size.

The main shortcoming of SimpleMKL arises from the high comagional cost of line search.
It was indicated in [46] that many iterations may be neededhieyline search to determine the
optimal step size. Since each iteration of the line seamghires solving a kernel SVM, it becomes
computationally expensive when the number of training eplamis large. Another subtle issue of
SimpleMKL, as pointed out in [53], is that it may not convetgehe global optimum if the kernel

SVMs in the intermediate steps are not solved with high greni

2.4.2.3 An Extended Level Method for MKL (MKL-Level)

An extended level method is proposed for-MKL in [52]. To solve the optimization problem
in Eq. (2.3), at each iteration, the level method first cardr a cutting plane modef(3) that
provides a lower bound for the objective functid(3). Given{3“}._,, the solutions obtained for
the first¢ iterations, a cutting plane model is constructed/ds) = max;<.<; L(3, a®), where
a® = argmax,.oL(B°, a). Given the cutting plane model, the level method then caottra

level setS; as
S={BeN :¢"(B) <UI'=AL"+(1-N)L'}, (2.18)

and obtain the new solutioB™ by projecting3’ into S,, whereL! and L, the upper and lower

bounds for the optimal value(3*, a*), are given byL' = gleig ¢'(B) andL! = lrggtL(B“, al).
Compared to the subgradient-based approaches, the maamtage of the extended level

method is that it is able to exploit all the gradients comgutethe past for generating new so-

lutions, leading to a faster convergence to the optimaltsmwiu
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2.4.2.4 An Alternating Optimization Method for MKL (MKL-GL )

This approach was proposed in [53,56] forMKL. It is based on the equivalence between group

Lasso and MKL, and solves the following optimization probleor MKL

s 112 n s
min %Z%+CZ£ (y"ij(xi)> (2.19)

B e A =1
fi €M

The solution requires alternating between two steps the.step of optimizingf; under fixed
B and the step of optimizing given fixedf;. The first step is equivalent to solving a kernel SVM

with a combined kernet(-, -; 3), and the optimal solution in the second step is given by

1 ill,
Bim e =1, s (2.20)
T e el

It was shown in [46] that the above approach can be extendegHkdKL.

2.4.3 Online Learning Algorithms for MKL

Online learning is computationally efficient as it only ne¢alprocess one training example at each
iteration. In [91], the authors proposed several onlinenieg algorithms for MKL that combine
the Perceptron algorithm [92] with the Hedge algorithm [98pre specifically, the authors applied
the Perceptron algorithm to update the classifiers for tise k@rnels and the Hedge algorithm
to learn the combination weights. In [38], Jie et al. presdrdan online learning algorithm for
MKL, based on the follow-the-regularized-leader (FTRIgrfrework. One disadvantage of online
learning for MKL is that it usually yields suboptimal recotjon performance compared to the

batch learning algorithms. As a result, we did not includénenMKL in our empirical study.
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2.4.4 Computational Efficiency

In this section, we review the conflicting statements in Mikerature about the computational ef-
ficiency of different optimization algorithms for MKL. Fitghere is no consensus on the efficiency
of the SIP based approach for MKL (MKL-SIP). While severaldiés show a slow convergence
of MKL-SIP [52,53,68, 70], it was stated in [87] that only af@erations would suffice when the
number of relevant kernels is small. According to our engpirstudy, the SIP based approach can
converge in a few iterations fdr,-MKL. On the other hand, MKL-SIP takes many more iterations

to converge for;-MKL.

Second, several studies evaluated the training time of ISMIKL in comparison to the other
approaches for MKL, but with different conclusions. In [4dKL-SIP was found to be signifi-

cantly slower than SimpleMKL while the studies in [51, 52poeted the opposite.

The main reason behind the conflicting conclusions is thesike of test bed (i.e. the number
of training examples and the number of base kernels) vagaesgisantly from one study to another
(Table 2.2). When the number of kernels and the number afitrgexamples are large, calculation
and combination of the base kernels take a significant amafutite computational load, while
for small data sets, the computational efficiency is mosdgidied by the iteration complexity
of algorithms. In addition, implementation details, indilug the choice of stopping criteria and

programming tricks for calculating the combined kernelnmatan also affect the running time.

Our empirical study for image categorization showed thai@MKL is less efficient than
MKL-SIP. Although SimpleMKL requires a smaller number oéridtions, it takes significantly
longer time to finish one iteration compared to the other @gghes for MKL, due to the high
computational cost of the line search. Overall, we obsetlhatiMKL-SIP is more efficient than
the other wrapper optimization techniques for MKL wheredsLMSMO is the fastest method for

solving L,-MKL.
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2.5 Experiments

Our goal is to evaluate the classification performance dééaiht MKL formulations and the ef-
ficiency of different optimization techniques for MKL. Wedas on MKL algorithms for binary
classification, and apply the one-vs-all strategy to carnaenulti-label learning problem into a
set of binary classification problems. Among various foratiohs for MKL, we only evaluate
algorithms forL, andL, regularized MKL. As stated earlier, we do not consider (ilireMKL
algorithms due to their suboptimal performance and (ii)lm@ar MKL algorithms due to their
high computational costs.

The first objective of this empirical study is to compdreMKL algorithms to the two simple
baselines of kernel combination mentioned in Section 2i21 the single best performing kernel
and the average kernel approach. As already mentioned tio8&c2.1, there are contradictory
statements from different studies regarding the compaas®IKL algorithms to these two base-
lines. The goal of our empirical study is to examine and idigmihe factors that may contribute
to the conflicting statements. The factors we consider herede (i) the number of training ex-
amples and (ii) the number of base kernels. The second olgeaitthis study is to evaluate the
classification performance of different MKL formulatiora image categorization. In particular,
we will compareL;-MKL to L,-MKL with p = 2 andp = 4. The final objective of this study is to
evaluate the computational efficiency of different optiatian algorithms for MKL. To this end,

we choose seven representative MKL algorithms in our st8é (Section 2.5.2).

2.5.1 Data sets, Features and Kernels

Three benchmark data sets for image categorization areimsed study: Caltech 101 [3], Pascal
VOC 2007 [94], and a subset of ImageNet (see Appendix A).hdléxperiments conducted in this
study are repeated five times, each with an independent mapdatition of training and testing

data. Average classification accuracies along with thecéestsal standard deviation are reported.
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The Caltech 101To obtain the full spectrum of classification performanceMiL, we vary
the number of training examples per class €0, 30). We construct8 base kernels (Table 2.3) for
the Caltech 101 data s&9 of them are built by following the procedure in [43] and theneening9
are constructed by following [69]. For all the feature setsept the one that is based on geometric
blur, RBF kernel withy? distance is used as the kernel function [33]. For the gedmehur
feature, RBF kernel with the average distance of the nedessiriptor pairs between two images
is used [69].

Table 2.3: Description of the 48 kernels built for the Caité©1 data set.

Kernel Description Color # levels

indices Space | for SPK
1-3 LBP [95] Gray 3
4 LBP (combined histogram) Gray 3
5-8 BoW with dense-SIFT (300 bins) HSV 4
9-12 BoW with dense-SIFT (1000 bins) Gray 4
13-16 BoW with dense-SIFT (1000 bins) HSV 4
17-18 SIFT on 100 sub-windows [40] | Gray-HSV 1
19-22 BoW with dense-SIFT (300 bins) Gray 4
23-26 | Canny edge detector + histogram of Gray 4

unoriented gradient feature (40 bing)

27-30 | Canny edge detector + histogram of Gray 4
oriented gradient feature (40 bins) [96]
31,34, Product of kernels{20 to 23, 1
33,34 | {24t027,{16t0 19, and{4to 7}
35 V1S+ feature [97] Gray 1
36-38 Region covariance [98] Gray 3
39 Product of kernels 4 to 7 1
40 Geometric blur [99] Gray 1
41-43 BoW with dense-SIFT (300 bins) Gray 4
44-46 BoW with dense-SIFT (300 bins) HSV 4
47-48 BoW (300 visual words) [100] Gray 2

with self-similarity features

The Pascal VOC 2007Similar to the Caltech 101 data set, we vary the number afitrgi

examples, by randomly selectingp, 25%, 50%, and75% of images to form the training set. Due
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to the different characteristics of the two data sets, weosb@ different set of image features
for VOC 2007, suggested by the participants of the VOC Chgis. In particular, for the MKL
experiments, we follow [101] and creatg sets of features: (i) GIST features [102]; (ii) six sets of
color features generated by two different spatial poolayputs [103] { x 1 and3 x 1), and three
types of color histograms (i.e. RGB, LAB, and HSV). (iii) bigsets of local features generated
by two key-point detection methods (i.e., dense samplirbHerris-Laplacian [104]), two spatial
layouts ( x 1 and3 x 1), and two local descriptors (SIFT and robust hue descrii@s]). An
RBF kernel function withy? distance is applied to each of th& feature sets.

A Subset of ImageNeEollowing the protocol in [106], we us&l, 738 images from ImageNet
that belong to the 18 (out of 20) categories specified in VOQ720rhis data set is significantly
larger than Caltech 101 and VOC 2007, making it possible toreme the scalability of MKL
methods for image categorization. Both dense sampling anddd_aplacian [104] are used for
key-point detection, and SIFT is used as the local descripfde create four Bow models by
setting the vocabulary size to he000 and applying two descriptor pooling techniques (i.e. max-
pooling and mean-pooling) for two types of spatial partitig (i.e.1 x 1 and2 x 2). We also create
six color histograms by applying two pooling techniques.(max-pooling and mean-pooling) to
three different color spaces, namely RGB, LAB and HSV. laliden kernels are created for the
ImageNet data set. We note that the number of base kernelsngtract for the ImageNet data
set is significantly smaller than the other two data setsuseraf the significantly larger number
of images in the ImageNet data set. The common practice lige lscale data sets has been to use

a small number of features/kernels for scalability cons¢106].

2.5.2 MKL Methods Used in Comparison

We divide the MKL baselines into two groups. The first groupsists of the two simple base-
lines for kernel combination, i.e., the average kernel m@{®&VG) and the best performing kernel

selected by the cross validation method (Single). The segooup includes seven MKL meth-
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ods designed for binary classification. These are: GMKL ,[&inpleMKL [53], VSKL [64],
MKL-GL [46], MKL-Level [52], MKL-SIP [56], MKL-SMO [70]. The difference between the
two subgradient descent based methods, SimpleMKL and GN&that SimpleMKL performs
a golden section search to find the optimal step size while GMpplies a simple backtracking
method.

In addition to different optimization algorithms, we use-MKL and L,-MKL with p = 2
andp = 4. For L,-MKL, we apply MKL-GL, MKL-SIP, and MKL-SMO to solve the retad

optimization problems.

2.5.3 Implementation

To make a fair comparison, we followed [46] and implementédepper MKL methods within
the framework of SimpleMKL using MATLAB, where we used LIB&8M107] as the SVM solver.
For MKL-SIP and MKL-Level, CVX [108] and MOSEK [89] were used solve the related opti-
mization problems, as suggested in [52].

The same stopping criteria were applied to all baselineg algorithms were stopped when
one of the following criteria is satisfied: (i) the maximunnioer of iterations (specified as 40 for
wrapper methods) is reached, (ii) the difference in the &ecoefficients3 between two consecu-

tive iterations is small (i.e)|3' — B !||. < 10~%), (iii) the duality gap drops below a threshold

value (L0~3).

The regularization parametérwas chosen with a grid search o@0—2,107%,...,10*}. The
bandwidth of RBF kernels was set to the average pair-wisdistance of image features.

In our empirical study, all the feature vectors were norg&lito have the unit, norm before
they are used to construct the base kernels. According & Hrtd [56], kernel normalization can
have a significant impact on the performance of MKL. Varioosmalization methods have been
proposed, including unit trace normalization [109], noliz&tion with respect to the variance of

kernel features [56], and spherical normalization [56].wdger, we did not observed significant
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differences in the classification accuracy when appliecati@/e normalization techniques.

The experiments with varied numbers of kernels on the Imagidiita set were performed on a
cluster of Sun Fire X4600 M2 nodes, each with 256 GB of RAM a2d\81D Opteron cores. All
other experiments were run on a different cluster, wheré eade has two four-core Intel Xeon
E5620s at 2.4 GHz with 24 GB of RAM. We pre-computed all thenkématrices and loaded
them into the memory. This allowed us to avoid re-computing l@aading kernel matrices at each

iteration of optimization.

2.5.4 Classification Performance of MKL

We evaluate the classification performance by the categasgdmean average precision (MAP)

score. For convenience, we report normalized MAP scoresé€peage).

2.5.4.1 Experiment 1: Classification Performance

Table 2.4 summarizes the classification results for theeClalil01 data set with0, 20, and30
training examples per class. First, we observe that botiviKe algorithms and the average
kernel approach (AVG) outperform the best base kernel (8jngThis is consistent with most
of the previous studies [5, 69]. Compared to the averageekeqpmproach, we observe that the
L,-MKL algorithms have the worst performance when the numibéraining examples per class
is small @ = 10, 20), but significantly outperform the average kernel approablenn = 30.
This result explains the seemingly contradictory condusireported in the literature. When the
number of training examples is insufficient to determineappropriate kernel combination, it is
better to assign all the base kernels equal weights. MKL inesceffective only when the number
of training examples is large enough to determine the optmerael combination.

Next, we compare the performancelofMKL to that of L,-MKLs. We observe that,-MKL
performs worse thaih,-MKLs (p = 2,4) when the number of training examples is small (i.e.,

n = 10, 20), but outperformd.,-MKLs whenn = 30. This result again explains why conflicting
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Table 2.4: Classification results (MAP) for the Caltech 1@1adset. We report the average values
over five random splits and the associated standard daviatio

Number of training instances per class

Baseline Norm 10 20 30
Single 453+ 09 55.2+0.9 70.6+£0.9
Average 59.0+ 0.7 69.7+-0.6 77.2+0.5
GMKL p=1|542+11 64.1+0.7 84.8+0.7
SimpleMKL p=1|53.6+0.9 634t06 84.6+05
VSKL p=1]539+09 64.0:00.6 853+05
leve-MKL p=1|54.7+1.0 634+06 84.4+04
MKL-GL p=1|543+1.0 64.7£0.7 854+04
MKL-GL p=2|60.3+0.6 70.7£1.0 80.0+0.6
MKL-GL p=4|60.1+40.7 70.7£1.0 80.0+0.6
MKL-SIP p=1|53.8+0.6 63809 839+0.7
MKL-SIP p=2|60.1+0.6 70.7-1.0 79.1+0.6
MKL-SIP  p=4(594+0.6 70.0+£1.0 77.5+0.5
MKL-SMO p=2|59.8+£05 69.7.0+0.9 79.3+0.9
MKL-SMO p=4|59.6+£04 69.6+0.7 79.0+£0.5

results were observed in different MKL studies in the litera. Compared td,,-MKL, L,-MKL
gives a sparser solution for the kernel combination weidbggling to the elimination of irrelevant
kernels. When the number of training examples is small, diffcult to determine the subset of
kernels that are irrelevant to a given task. As a result, gagse solution obtained bf,-MKL
may be inaccurate, leading to a relatively lower classificaticcuracy tharl,-MKL. L,-MKL
becomes advantageous when the number of training exangplagge enough to determine the
subset of relevant kernels.

We observe that there is no significant difference in thesdiaation performance between dif-
ferent MKL optimization techniques. This is not surprissigce they solve the same optimization
problem. It is interesting to note that although differeptimization algorithms converge to the
same solution, they could behave very differently ovematiens. In Figures 2.2, 2.3, and 2.4, we
show how the classification performances of theMKL algorithms change over the iterations for
three classes from Caltech101 data set. We observe that,

e SimpleMKL converges in a smaller number of iterations coragao the other;-MKL
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Table 2.5: Classification results (MAP) for the VOC 2007 ds#tt We report the average values
over five random splits and the associated standard daviatio

Percentage of the samples used for training
baseline 1% 25% 50% 75%
Single | 23.4+ 0.1 44.7+0.8 48.6+ 0.8 50.0+ 0.8
Average | 21.9+ 0.5 48.2+ 0.8 545+ 0.8 57.5+0.8
L-MKL | 23.5+ 0.7 51.9-0.4 574+ 04 59.9-0.9
Ly-MKL | 22.7+0.4 49.8+ 0.2 57.3+0.2 60.6£0.5

algorithms. Note that convergence in a smaller number odiittns does not necessarily
mean a shorter training time, as SimpleMKL takes signifigalanger time to finish one
iteration.

e The classification performance of MKL-SIP fluctuates sigaifitly over iterations. This
is due to the greedy nature of MKL-SIP as it selects the masdatad constraints at each

iteration of optimization.

For simplicity, from now on, unless specified, we will onlypoat the results of one representative

method for both’,-MKL (Level-MKL) and L,-MKL (MKL-SIP, p = 2).

Table 2.5 shows the classification results for the VOC 20Q& get with1%, 25%, 50%, and
75% of images used for training. These results confirm the caimhs drawn from the Caltech
101 data set: MKL methods do not outperform the simple basdlie., the best single kernel)
when the number of training examples is small (el§); the advantage of MKL is clear only

when the number of training examples is sufficiently large.

Finally, we compare in Table 2.6 the performance of MKL ta tbfethe state-of-the-art meth-
ods for image categorization on the Caltech 101 and VOC 2@@¥skts. For Caltech 101, we use
the standard splitting formed by randomly selectitigtiraining examples for each class, and for
VOC 2007, we use the default partitioning. We observe trat{AMKL achieves similar classifi-
cation performance as the state-of-the-art approachéisd@altech 101 data set. However, for the

VOC 2007 data set, the performance of MKL is significantly seothan the best ones [112,113].
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Table 2.6: Comparison with the state-of-the-art perforcedor object classification on the Caltech
101 (measured by classification accuracy) and VOC 2007 d&gdreeasured by MAP).

Caltech 101(30 per class)

This paper state-of-the-art
AVG : 77.09| [5]: 84.3
L;-MKL: 79.93 || [110]: 81.9
Lo-MKL: 77.94 | [111]: 80.0

VOC 2007
This paper state-of-the-art
AVG: 55.4 || [112]: 73.0

L;-MKL:  57.2 || [113]: 63.5
L,-MKL:  57.4 || [114]: 61.7

The gap in the classification performance is because obgettion (localization) methods are
utilized in [112, 113] to boost the recognition accuracy ttee VOC 2007 data set but not in this
dissertation. We also note that the authors of [114] get tebstsult by using only one strong
and well-designed (Fisher vector) representation conaptréhe MKL results we report. Inter-
ested readers are referred to [114], which provides an eapstudy that shows how the different
steps of the BowW model can affect the classification resitste that the performance of MKL

techniques can be improved further by using the differedtsironger options discussed in [114].

2.5.4.2 Experiment 2: Number of Kernels vs. Classification Acuracy

In this experiment, we examine the performance of MKL methadth increasing numbers of

base kernels. To this end, we rank the kernels in the desugdder of their weights computed
by L,-MKL, and measure the performance of MKL and baseline methmdadding kernels se-

guentially. The number of kernels is varied from 2 to 48 fa @altech 101 data set and from 2
to 15 for the VOC 2007 data set. Figures 2.5 and 2.6 summatheeslassification performance
of MKL and baseline methods as the number of kernels is ise@a\We observe that when the
number of kernels is small, all the methods are able to imgptbeir classification performance

with increasing number of kernels. But, the performancevefage kernel and,-MKL starts to
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drop as more and more weak kernels (i.e., kernels with sn&fjlvis computed by.;-MKL) are
added. In contrast, we observe a performance saturatiadn fMKL after five to ten kernels have
been added. We thus conclude thatMKL is more resilient to the introduction of weak kernels

than the other kernel combination methods.

2.5.5 Computational Efficiency

To evaluate the learning efficiency of MKL algorithms, weaggraining time for the experiments
with different numbers of training examples and base ksrridany studies on the computational
efficiency of MKL algorithms focused on the convergence (at, number of iterations) [52],
which is not necessarily the deciding factor in determiniing training time. For instance, ac-
cording to Figure 2.2, although SimpleMKL requires a snratlember of iterations to obtain the
optimal solution than the othdr,-MKL approaches, it is significantly slower in terms of rungi
time than the other algorithms because of its high compartaticost per iteration. Thus, besides
the training time, we also examine the sparseness of thelkeoefficients, which can significantly

affect the efficiency of both training and testing.

2.5.5.1 Experiment 4. Evaluation of Training Time

We first examine how the number of training examples affdutsttaining time of the wrapper
methods. Tables 2.8 and 2.9 summarize the training timeft#greint MKL algorithms for the

Caltech 101 and VOC 2007 data sets, respectively. We alsodi@an the table the number of
iterations and the time for computing the combined kernetigces. We did not include the time
for computing kernel matrices because it is shared by alhteéhods. We draw the following

observations from Tables 2.8 and 2.9:

e TheL,-MKL methods require a considerably smaller number of ttere than the,-MKL

methods, indicating they are computationally more efficidinis is not surprising because
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L,-MKL employs a smooth objective function that leads to mdfieient optimization [85].

e Since a majority of the training times is spent on computiogbined kernel matrices, the
time difference between differemt,-MKL methods is mainly due to the sparseness of their
intermediate solutions. Since MKL-SIP yields sparse sohs throughout its optimization
process, it is the most efficient wrapper algorithm for MKUthugh SimpleMKL con-
verges in a smaller number of iterations than the ofhelKL methods, it is not as efficient

as the MKL-SIP method because it does not generate spaesmadiate solutions.

In the second set of experiments, we evaluate the training &is a function of the number of
base kernels. For both the Caltech 101 and VOC 2007 datasetfioosd 5 kernels with the best
classification accuracy, and credte 30, and60 kernels by simply varying the kernel bandwidth
(i.e., from1 times, tol.5 and2 times the averagg? distance). The number of training examples
is set to be30 per class for Caltech 101 ars8% of images are used for training for VOC 2007.
Tables 2.10 and 2.11 summarize for different MKL algoriththe training time, the number of
iterations, and the time for computing the combined kernatrites. Overall, we observe that
L,-MKL is still more efficient thanZ,-MKL, even when the number of base kernels is large. But
the gap in the training time betwedn-MKL and L,,-MKL becomes significantly smaller for the
MKL-SIP method when the number of combined kernels is lahgéact, for the Caltech 101 data
set with108 base kernels, MKL-SIP fok;-MKL is significantly more efficient than MKL-SIP for
L,-MKL (p > 1). This is because of the sparse solution obtained by MKL{&I,-MKL, which
leads to less time on computing the combined kernels than 18Kt for L,-MKL, as indicated in
Tables 2.10 and 2.11.

As discussed in Section 2.5.3, we cannot compare MKL-SMe€xtliy with the other baselines
in terms of training times since they are not coded in the salatéorm. Instead, we use the code
provided by the authors of MKL-SMO [70] to compare it to theddimplementation of MKL-SIP,

the fastest wrapper approach, which is available withinShegun package [115]. We fix= 2,
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Table 2.7: Comparison of training time between MKL-SMO anKIMSIP

Number of training samples

Caltech 101 n =10 n =20 n =30
MKL-SIP 3.6+0.2 6.5t 0.3 11.8+ 0.7
MKL-SMO | 0.2+0.1 2.3+ 0.2 3.8+ 0.5

VOC 2007 25% 50% 5%
MKL-SIP | 15.5+£1.6 145.6£3.9 360.7£8.4
MKL-SMO | 3.5+0.7 14.2:1.8 33.13.0

Number of base kernels

Caltech 101 K =48 K =63 K =108
MKL-SIP 6.5+ 0.3 13.6+ 2.9 19.8+ 3.4
MKL-SMO | 2.3+£0.2 3.2:0.8 6.3: 1.0

VOC 2007 K =15 K = 30 K =175

MKL-SIP | 145.6+ 3.9 542.0+ 32.8 1412.163.4
MKL-SMO | 14.2+1.8 291 2.8 77.810.3

vary the number of training samples for a fixed number of Ker(#8 for Caltech 101 and 15
for VOC 2007) and the number of base kernels for a fixed numbsamples (2,040 for Caltech
101 and 5,011 for VOC 2007). Table 2.7 shows that MKL-SMO gm#icantly faster than MKL-

SIP on both data sets, demonstrating the advantage of adesthhed direct MKL optimization
method against the wrapper approachesigMKL. We finally note that MKL-SMO cannot be
applied toL;-MKL which often demonstrates better performance with a esbdumber of training

examples.

2.5.5.2 Experiment 5: Evaluation of Sparseness

We evaluate the sparseness of MKL algorithms by examiniagplarsity of the solution for kernel
combination coefficients. In Figures 2.7 and 2.8, we show tiensize of active kernel set (i.e.,
kernels with non-zero combination weights) changes oweittdrations for MKL-SIP with three

types of regularizersi,;-MKL, L,-MKL and L,-MKL. Note that it is difficult to distinguish the
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results ofL,-MKL and L,-MKL from each other as they are identical.

As expected,L,-MKL method produces significantly sparser solutions tiigrMKL. As a
result, althoughl,,-MKL is more efficient for training because it takes a smatiember of itera-
tions to trainL,-MKL than L,-MKL, we expectL;-MKL to be computationally more efficient for

testing than’,,-MKL as most of the base kernels are eliminated and need rixg tonsidered.

2.5.6 Large-scale MKL on ImageNet

To evaluate the scalability of MKL, we perform experimentstbe subset of ImageNet consisting
of 81, 738 images. Figure 3.10 shows the classification performanb#af and baseline methods
with the number of training images per class varied in powé (2, 22, ..., 2!1). Similar to the
experimental results for Caltech 101 and VOC 2007, we olesktivat the difference betwedn-
MKL and the average kernel method is significant only whemilmaber of training examples per
class is sufficiently large (i.e> 16). We also observed that the difference betwéeMKL and
the average kernel method starts to diminish when the nuwitteaining examples is increased
over 256 per class. We believe that the diminishing gap between MKd. thre average kernel
method with increasing number of training examples can trated to the fact that all th&o
base kernels constructed for the ImageNet data set aregskernels and provide informative
features for image categorization. This is reflected in #e& combination weights learned by
the MKL method: most of the base kernels received signifinantzero weights.

Figure 2.10 shows the running time of MKL with a varied numbgtraining examples. Sim-
ilar to the experimental results for Caltech 101 and VOC 200 observe that,-MKL is sig-
nificantly more efficient tharl;-MKL. We also observe that the running time for bath-MKL
and L,-MKL increases almost quadratically in the size of traindiaga, making it difficult to scale
to millions of training examples. We thus conclude that@liph MKL is effective in combining
multiple image representations for image categorizagoalability of MKL algorithms is an open

problem.
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2.6 Summary and Conclusions

In this chapter, we have reviewed different formulationsitiple kernel learning and related op-
timization algorithms, with an emphasis on the applicatmimage categorization. We highlighted
the conflicting conclusions drawn by published studies enaifmpirical performance of different
MKL algorithms. We have attempted to resolve these incomsisonclusions by addressing the
experimental setups in the published studies. Throughxdansive experiments on three standard

data sets used for image categorization, we are able to rhaKeltowing conclusions:

e Overall, MKL is significantly more effective than the simpbaselines for kernel combi-
nation (i.e., selecting the best kernel by cross validatiotaking the average of multiple
kernels), particularly when there are a large number of kasgels available, and the num-
ber of training examples is sufficiently large. However, Mislnot recommended for image
categorization when the base kernels are strong, and theeruof training examples are

sufficient enough to learn a reliable prediction for eactedasnel.

e Compared tal,-MKL, L;-MKL is overall more effective for image categorization aisd

significantly more robust to the weaker kernels with low sifasation performance.

e MKL-SMO, which is not a wrapper method but a direct optimiaattechnique, is the fastest

MKL baseline. However, it does not address theMKL formulation.

e Among various algorithms proposed far-MKL, MKL-SIP is overall the most efficient
for image categorization, because it produces sparsermatiate solutions throughout the

optimization process.

e L,-MKL is significantly more efficient thark,-MKL because it converges in a significantly
smaller number of iterations. But, neithey-MKL nor L,-MKL scale well to very large

data sets.
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e [,-MKL can be more efficient thai,,-MKL in terms of prediction time. This is because
L,-MKL generates sparse solutions and, therefore, will osky a small portion of the base

kernels for prediction.

In summary, we conclude that MKL is an extremely useful taslimage categorization be-
cause it provides a principled way to combine the strengfhdifferent image representations.
Although MKL methods have demonstrated significant suctassnage categorization, there is
still room for improvement. One of the most important direcs for improving the accuracy of
MKL methods is developing MKL algorithms that addressesribed of multi-label data, such
as image categorization data sets. To this end, we proposdtiplenkernel multi-label ranking
method in Chapter 6. It is also very critical to improve thee@ll computational efficiency of
MKL. The existing algorithms for MKL do not scale to large daets with millions of images and
thousands of classes. In the next chapter, we discuss aurtsefin reducing the computational

load of MKL for large-scale multi-label data sets.

48



Table 2.8: Total training time (seconds), number of itenasi and total time spent on combining
the base kernels (seconds) for different MKL algorithms wsimber of training examples for

Caltech 101.

10 training instances per class

baseline training Hiter KerComb
GMKL- I 34.6+ 8.6 38.4+ 2.0 27.9+ 7.7
SimpleMKL-L; | 55.7+25.3 17.2+-6.8 46.1+ 22.0
VSKL- L, 141+ 2.3 38.3£4.3 11.1+1.7
MKL-GL- L, 21.9+0.8 40.0+ 0.0 19.5+ 0.8
MKL-GL- L, 53+0.6 8.8+ 1.0 4.8+ 0.6
MKL-GL- L4 3.5+0.2 5.9+ 0.4 3.2+0.2
MKL-Level- 7, 8.0+23 33.0£9.5 55+14
MKL-SIP-L, 54+0.9 39.4+ 2.6 21+0.3
MKL-SIP-L, 3.8+1.2 5.6£0.9 2.4t1.1
MKL-SIP-L, 3.3+0.6 4.4-0.5 1.8+0.6
30 training instances per class
baseline training Hiter KerComb
GMKL- L 256.7+47.7 38.6£1.8 212.5+42.3
SimpleMKL-L; | 585.6+ 204.7 19.0+7.5 494.4+ 174.7
VSKL-L, 121.9+ 224 36.6+5.1 103.5+17.7
MKL-GL- L, 197.1+9.1 39.8+1.0 178.3-85
MKL-GL- L, 50.8+ 5.6 9.3+ 1.0 46.3+ 5.2
MKL-GL- L, 325+ 1.6 5.9+ 0.3 29.6+ 1.5
MKL-Level-L, | 63.3+22.1 27.5+11.1 47.9+14.9
MKL-SIP-L, 44.3+6.1 39.7£ 2.9 23.2+ 2.7
MKL-SIP-L, 30.4£4.2 6.3t1.0 25.2:3.9
MKL-SIP-L, 22.6+2.6 4.40.5 18.2t2.1
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Figure 2.1: A summary of representative MKL optimizatiohames
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Figure 2.6: The change in MAP score with respect to the numtiesse kernels for the VOC 2007
data set.
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Table 2.9: Total training time (seconds), number of itenasi and total time spent on combining
the base kernels (seconds) for different MKL algorithmsmwember of training examples for the

VOC 2007 data set.
2,500 training instances
baseline training Hiter KerComb
GMKL- 4 117.6+16.3 39.0+0.0 67.4+ 7.7
SimpleMKL-L, | 175.1+77.4 16.7£7.3 112.9+48.3
VSKL-L, 452+ 6.1 37.0+£ 3.4 25.3+ 2.2
MKL-GL- L, 62.6+ 4.7 40.0+ 0.0 43.5+ 0.6
MKL-GL- L, 145+ 1.3 9.3+ 0.6 10.2+ 0.7
MKL-GL- L4 8.0+ 0.8 52+04 5.6+ 0.5
MKL-Level- L, 40.1+10.8 35.0+7.7 20.2+ 4.0
MKL-SIP-L, 34.6+ 6.8 39.9+ 0.5 127+ 1.4
MKL-SIP-L, 9.6+1.9 5.7+0.5 4.9-0.4
MKL-SIP-L, 7.141.1 4.0+0.0 3.50.1
7,500 training instances
baseline training Hiter KerComb
GMKL- 4 1133.2+252.8 39.0+ 0.0 646.9+ 98.2
SimpleMKL-L; | 1671.3+919.1 16.8-6.4 1019.7+ 424.8
VSKL-L, 330.0+£49.2 29.9-3.8 190.9t+22.8
MKL-GL- L, 549.2+79.8 40.0£0.0 373.8-4.2
MKL-GL- L, 130.1+17.7 9.5+ 05 89.4+ 6.1
MKL-GL- L, 749+111 53+05 51.2t 4.5
MKL-Level-L, | 297.3+95.2 31.1+8.1 151.94+31.0
MKL-SIP-L, 309.0+94.5 40.0£0.0 117.0+6.4
MKL-SIP-L, 84.3t24.5 6.14+0.3 47.3t3.0
MKL-SIP-L, 56.4+14.7 4.10.3 31.5:2.2
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Table 2.10: Total training time (seconds), number of iieret, and total time spent on combining
the base kernels (seconds) for different MKL algorithmswsnber of base kernels for the Caltech

101 data set.
63 base kernels
baseline training Hiter KerComb
GMKL- I 718.1+169.8 38.8:£0.8 625.3+ 152.9
SimpleMKL-L; | 1255.2+350.9 17.3t6.5 1047.6+ 285.8
VSKL- L, 398.1+ 123.7 36.3:5.2 345.6+101.5
MKL-GL- L, 397.1+30.0 39.8+-1.0 351.9+26.7
MKL-GL- L, 118.84+ 14.7 9.3+ 1.0 108.5+ 13.7
MKL-GL- L4 84.6+ 5.8 6.0+ 0.0 77.3+ 4.8
MKL-Level-L, | 204.1+75.7 27.8-10.4 167.2-56.1
MKL-SIP-L, 147.8429.8 39.8+ 2.4 85.3+ 15.0
MKL-SIP-L, 114.436.7 7.940.7 102.7433.6
MKL-SIP-1, 111.1+38.8 7.5+0.8 98.3+34.59
108 base kernels
baseline training Hiter KerComb
GMKL- L 1170.5+ 208.7 38.9-0.8 1049.2+ 190.7
SimpleMKL-L; | 2206.3+580.1 17.2+ 6.4 1960.3+ 503.5
VSKL-L, 569.9+ 160.3 35.6-5.9 491.8+ 131.2
MKL-GL- L, 604.6+69.9 39.6+1.6 546.6t+ 66.0
MKL-GL- L, 226.3+ 24.8 9.5+ 1.0 212.04+ 23.6
MKL-GL- L4 169.1+16.0 6.0+0.1 158.2+ 14.5
MKL-Level-L, | 405.84152.7 29.5+9.5 343.7+ 121.3
MKL-SIP-L, 192.1+41.3 39.9+09 110.1+18.1
MKL-SIP-L, 634.1£107.2 6.8:1.3 582.1#106.3
MKL-SIP-L, 407.2+80.2 4.6+0.6 368.4+-67.9
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Table 2.11: Total training time (seconds), number of iieret, and total time spent on combining
the base kernels (seconds) for different MKL algorithmsrusmber of base kernels for the VOC

2007 data set.
30 base kernels
baseline training Hiter KerComb
GMKL- I 1816.8+ 405.8 37.8+5.4 1186.9 270.4
SimpleMKL-L; | 2335.3+991.9 11.2+7.1 1581.6+ 626.4
VSKL- L, 880.2+ 1285 30.6-3.8 525.5+75.3
MKL-GL- L, 853.5+206.1 40.0+-0.0 561.8+107.3
MKL-GL- L, 282.4+ 64.2 9.6+ 0.5 218.2+46.3
MKL-GL- L4 190.1+ 23.9 6.0+ 0.0 147.4+11.0
MKL-Level-L, | 665.44+114.7 36.8-5.1 404.7+40.2
MKL-SIP-L, 460.0+ 135.5 40.0-0.0 170.6+23.1
MKL-SIP-L, 240.8+62.5 8.7+1.6 154.5+43.5
MKL-SIP-1, 170.1£16.5 6.2:0.4 115.1%-15.4
75 base kernels
baseline training #iter KerComb
GMKL- L 3975.3+890.0 34.2+8.8 3072.5+ 724.5
SimpleMKL-L; | 3416.3+ 1299.7 8.3+7.8 2776.44+ 885.7
VSKL-L, 1587.9+ 238.8 29.4+ 3.7 909.3t 122.2
MKL-GL- L, 1500.4+ 239.4 40.0+-0.0 1043.8-87.6
MKL-GL- L, 629.5+ 84.0 9.8+ 0.4 520.4+47.7
MKL-GL- L, 346.2+ 453 6.0+£0.0 286.2+ 31.9
MKL-Level-L, | 1136.8+328.9 36.74 3.1 702.2+ 177.7
MKL-SIP-L, 686.8+ 262.9 40.0+ 0.0 228.5+ 46.0
MKL-SIP-L, 413.9+258.1 3.81.7 302.2£135.7
MKL-SIP-L, 566.4+141.9 5.6t0 424.2+81.5
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Chapter 3

Multi-label Multiple Kernel Learning by

Stochastic Approximation

3.1 Introduction

In Chapter 2, we provided a detailed review of MKL and a setropeical analyses on image
categorization data sets to demonstrate the effectiveriddkL. The focus of Chapter 2 was the
MKL methods for the binary classification problem, which stbiutes the majority of the MKL
literature. The application of MKL to multi-labeled datajch as image categorization data, is
mostly limited to a use of one-vs-all framework for MKL, whitas two main drawbacks. First,
one-vs-all framework requires training a MKL algorithm aegitely for each class. Considering
that there are thousands of training instances and hundfediasses in recent image categoriza-
tion data sets, training a one-vs-all MKL solver would be pomationally demanding. Second,
one-vs-all framework cannot exploit label correlatiorisce MKL solvers for each class are op-
erated independently, meaning that no interaction of médron transfer is available. It has been
shown in many multi-label learning studies that learnirdgipendent classifiers for each class gives

suboptimal performance compared to direct approachedwdaiasider all classes together in the
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learning process. In this chapter, we present an efficigaréihm for multi-label multiple kernel
learning (ML-MKL). We assume that all the classes under maration share the same combina-
tion of kernel functions, and the objective is to find the oyl kernel combination that benefits
all the classes. Although several algorithms have beenloje»e for ML-MKL, their computa-
tional cost is linear in the number of classes; thereforey tho not scale well when the number
of classes increases, a challenge frequently encounteraglei categorization. We address this
computational challenge by developing a framework for MkdMthat combines the worst-case
analysis with stochastic approximation. Our analysis shthat the complexity of our algorithm
is O(m!/3/Inm), wherem is the number of classes.

This Chapter is organized as follows: in Section 3.2, we jpl®wa brief literature review on
MKL for multi-class and multi-label learning. Next, we inttuce our multi-label MKL formula-
tion and give an efficient algorithm to solve it. A convergemamalysis for the proposed algorithm
is provided in Section 3.3.2. In Section 3.4, we provide erogi analyses that demonstrate the
strength of the proposed framework on benchmark data setend/the chapter with the conclud-

ing remarks and future directions in Section 3.5.

3.2 Previous Work

There is a large body of literature on MKL, and we provided tailed review of binary MKL
methods in Chapter 2. Although most efforts in MKL focus ondy classification problems,
several studies have attempted to extend MKL to multi-ctas$ multi-label learning [5, 68, 87,
116,117]. Even though studies show that MKL for multi-classl multi-label learning can result
in significant improvement in classification accuracy, tbenputational cost is often linear in the
number of classes, making it computationally expensivenmhealing with a large number of
classes. Since most image categorization problems invobugy image classes, whose number

might go up to hundreds or sometimes even to thousands,ntgsertant to develop an efficient
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learning algorithm for multi-class and multi-label MKL thia sublinear in the number of classes.

In multi-class and multi-label learning, each instance loarsimultaneously assigned to mul-
tiple classes. A straightforward approach for multi-labL (ML-MKL) is to decompose a
multi-label learning problem into a number of binary cléisattion tasks using either one-vs-all or
one-vs-one approach. Varma et al. discussed and compaeedseal| and one-vs-one schemes
for MKL [69]. Tang et al. [116] evaluated three differentagtrgies for multi-label MKL based
for the one-vs-all approach: (i) learning one common kecoatbination shared by all classes, (ii)
learning a different kernel combination for each class pahelently, and (iii) a hybrid approach
that allows partial sharing of kernel combination amondedént classes. Based on their empiri-
cal study, they concluded that learning one common kernabaoation shared by all classes not
only is computationally efficient but also yields classifioa performance that is comparable to

choosing different kernel combinations for different cles.

One drawback of the decomposition based approaches forladdt learning is that they are
unable to take into account the dependency between diffefasses or the correlation between
data points. To overcome this drawback, Ji et al. [68] predds encode the instance-class corre-
lation into a hypergraph, which is then used to embed theifallel data into a lower-dimensional
space. Zien et al. proposed MKL for joint feature mdgs, y) and learns a single multi-class
classification functiorfy ,(x, y) = (w, ®(x,y)) + b from training data [87]. They formulated the
problem via several optimization methods including quadadly constrained quadratic program-

ming (QCQP) and SILP.

Mei proposed a multi-label multi-kernel transfer learnimgthod, which uses a one-vs-all
classification scheme, for protein subcellular localmatjl18]. Gehler et al. proposed a two-
step boosting approach that requires solving SVMs sepwarfateeach kernel, similar to wrapper
approaches [43]. The method they presented learns nonkeeael combinations, which yield
promising classification performance, but also leads t@h bomputational load. In another non-

linear MKL method [5], group information between the clasbas been incorporated to multiple
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kernel learning framework (GSMKL) in order to improve thassification accuracy. Getting use
of class dependencies has been shown to improve the acdaramylti-label learning task [13],
and GSMKL also gets benefit of this to yield improved clasatfan performance with a price of
increased computational load. In addition to the high caiejpenal load, another limitation of this
approach is that it assumes that there is a group structtinenwie classes, bringing the need of
effective tools to find the group structure (if exists) witline classes.

In this chapter, we develop an efficient algorithm for Mlleibel MKL (ML-MKL) that as-
sumes all the classifiers share the same linear combindtierioels. We note that although this
assumption significantly constrains the choice of kernetfiwns for different classes, our empir-
ical studies with image categorization show that the d@&sdion performance is not negatively
affected. A naive implementation of ML-MKL with shared kefrcombination will lead to a
computational cost linear in the number of classes. We ialiethis computational challenge by
exploring the idea of combining worst case analysis witltlséstic approximation. Our analysis
reveals that the convergence rate of the proposed algoiil®m'/3/Inm), which is signifi-
cantly better than a linear dependencermonwherem is the number of classes. Our empirical
studies show that the proposed MKL algorithm yields simparformance as the state-of-the-
art algorithms for ML-MKL, but with a significantly shorteunning time, making it suitable for

multi-label learning with a large number of classes.

3.3 Multi-label Multiple Kernel Learning (ML-MKL)

In this chapter, we use the same notation as in Chapter 2 wiyhaochange in the notation of the
label vectoty, since the focus of this chapter is multi-label MKL. We irdtxe3 = (51, . . ., 8s),
a probability distribution, for combining base kernels. d&note byK(3) = ijl B.K; the
combined kernel matrices. We use the domainfor the probability distribution3, i.e., A; =

{B € Rs : B'1 = 1}. Our goal is to learn from the training examples the optinenkl
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combinationa for all m classes.

The simplest approach for multi-label multiple kernel leag with a shared kernel combi-
nation is to find the optimal kernel combinatighby minimizing the sum of regularized loss

functions of allm classes, leading to the following optimization problem:

NE

" o1 n 4 .
in mi H, = —ful? 3 + 0y fru(X , 3.1
érelhl{fkea<lﬂr§}$_l{k:1 ‘ ;{2%”@ ; (i Sl >)}} &1

where/(z) = max(0,1 — z) and#(3) is a Reproducing Kernel Hilbert Space endowed with
kernelx(x,x'; 8) = >77_, Bjr;(x,x). Hy, is the regularized loss function for ti¢h class. It is
straightforward to verify the following dual problem of E&.1):

min max {E(ﬂ, a) = Z {[ak]Tl — %(ak oyi) K(B)(ay o yk)}} , (3.2)

€A1 aeQ
BeA 1 P

whereQ; = {a = (a1,...,am) : ax € [0,C]", k =1,...,m}. To solve the optimization prob-
lem in Eq. (3.2), we can view it as a minimization problem,, iringca, A(3), where A(3) =
maxqco, £(8,a). We then follow the subgradient descent approach in [53] @rdpute the
gradient ofA(3) as

05, A(B) = —5 Y _(ax(B) o y) "K;(ox(B) o yu),

k=1

whereay (8) = arg max e opn[oa] "1 — (s 0 i) ' K(B) (o o yi). We refer to this approach as
multi-label multiple kernel learning by sum, or ML-MKL-Sunote that this approach is similar
to the one proposed in [116]. The main computational probhth ML-MKL-Sum is that by
treating every class equally, in each iteration of subgnatdilescent, it requires solving kernel
SVMs, making it unscalable to a very large number of clasBekw we present a formulation for

multi-label MKL whose computational cost is sublinear ie tumber of classes.
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3.3.1 A Minimax Framework for Multi-label MKL

In order to alleviate the computational difficulty arisirrgrin a large number of classes, we search
for the combined kernel matri¥x’(3) that minimizes the worst classification error amaing

classes, i.e.,

min  min max Hy, (3.3)
BeA {freM(B)}m, 1<k<m

Eq. (3.3) differs from Eq. (3.1) in that it replac®s,"_, Hy with max; <<, H. The main compu-

tational advantage of usingax;, Hy, instead of) , H, is that by using an appropriately designed
method, we may be able to figure out the most difficult clagscthss that yields the worst classi-
fication performance, in a few iterations, and spend most@tbmputational cycles on learning
the optimal kernel combination for the most difficult clags.this way, we are able to achieve a
running time that is sublinear in the number of classes. \Bel® present an optimization strategy

for Eq. (3.3) based on the idea of stochastic approximation.

A direct approach is to solve the optimization problem in E3) by its dual form. It is
straightforward to show that dual problem of Eq. (3.3) is B¢) (see Proposition 4 in Section A.3

for the proof).

min max {Z { 1-= pk, oyi) 'K(B)(p, o yk)}i} : (3.4)

[STAN c€B
BeAL p P

where

B = {(pla"'apm):pkERivkzlv'“amapke [chAk]nStZ)\kzl}
k=1

The challenge in solving Eg. (3.4) is that the solutidps, . . ., p,,} in domainB are correlated
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with each other, making it impossible to solve egghindependently by an off-the-shelf SVM
solver. Although a gradient descent approach can be desgfopoptimizing Eqg. (3.4), itis unable
to explore the sparse structuregp making it less efficient than state-of-the-art SVM solvérs.

order to effectively explore the power of off-the-shelf S\&dlvers, we rewrite Eq. (3.3) as follows

BeA; ~el

min max {E(ﬁ,y) = OréréaéfZ% {agl - %(ak oyir) K(B)(ay o yk)}} , (3.5)
k=1

wherel' = {(v1,...,7%m) € RT : 471 = 1}. In Eq. (3.5), we replaceiax;<j<,, With maxer.
The advantage of using Eq. (3.5) is that we can resort to a SMisto efficiently finda, for a

given combination of kernelK (3).

Given Eq. (3.5), we develop a subgradient descent approadolving the optimization prob-
lem. In particular, in each iteration of subgradient desoge compute the gradieul(3, ~) with

respect tg3 and~ as follows

m

1
Vs L(B.7) = —5 > law o yir) "Kj(ag o i),
k=1

Vo £(8.7) = lew] 1~ (@0 y1) TK(B) (e o 3. (3.6)

whereay, = arg maxaep,cpn @'l — (aoyy) 'K(B)(aoyy)/2, i.e., a SVM solution to the com-
bined kerneK(3). Following the mirror prox descent method [119], we defineeptial functions
P = Z—f > -1 BiIng; for Bandd, = 371" | 45 In~y, for 4, and have the following equations for
updatingd’ and~*

t

B = b exp(ns Vs, £(8' ),

Z
t
= 2 exp (-, Vo L(B ), &0

whereZ}, and Z! are normalization factors that ensyﬁ‘gl =~T1=1. ng > 0 andn, > 0 are
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the step sizes for optimizing and~, respectively.

Unfortunately, the algorithm described above shares theesshortcoming as the other ap-
proaches for multiple label multiple kernel learning: itjoéres solvingn SVM problems in each
iteration; therefore, its computational complexity isglar in the number of classes. To alleviate this
problem, we modify the above algorithm by introducing theckistic approximation method. In
particular, in each iteratioh) instead of computing the full gradients that requiresisgiv:. SVMs.
We sample one classification task according to the multinbdistribution Multi(~%, ..., 7%).

Let a; be the index of the sampled classification task. Using theptadrtaska,, we estimate the

gradient of£ (3, v) with respect tg3; and~;, denoted bﬁf(ﬁt, ~') andg] (8", ~"), as follows

] 1 a at at at
gf(pt, Vi) = —5(04 ‘oy )TKj(a oy™), (3.8)
0 k ?é Qy

B = : . (9
L (1= Latoy!)TK(B)at oyh)) k=a,

The computation o‘gf(ﬁt, ~*) andg; (B',~") only requiresa; therefore, it only needs to solve
one SVM problem, instead ofi SVMs. The key property of the estimated gradients in Eg8) (3.
and (3.9) is that their expectations are equal to the trugigmss, as summarized by Proposition 1.

This property is the key to the correctness of our algorithm.

Proposition 1. We have

E[g; (8", 7)) = V5, £(8'7"), Edfg) (8", 4] = Vo, L(B". "),

where£,|-] stands for the expectation over the randomly sampleddask

Given the estimated gradients, we will follow Eq. (A.12) fgrdating3 and~y in each iteration.
Sinceg] (8", ~") is proportional tol /~*, to ensure the norm @f (3", +") to be bounded, we need

to smoothy!*!. In order to have a smoothing effect, without modifying!, we will sample
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directly from4'*,

. )
VyeTl, 3y el, sty « /(1 -0)+ — k=1,...,m,
m

whereéd > 0 is a small probability mass used for smoothing and

. )
r:{ﬁT1:1,%2—,k:1,...,m}.

m

We refer to this algorithm as multi-label multiple kernehtaing by stochastic approximation, or

ML-MKL-SA for short. Algorithm 3 gives the detailed desctign.

3.3.2 Convergence Analysis

Since Eqg. (3.5) is a convex-concave optimization problemjmroduce the following citation for

measuring the quality of a solutidys, v)

A(B,7) = max L(8,7') - Jnin £(5',). (3.11)

We denote by3,,~,) the optimal solution to Eq. (3.5).

Proposition 2. We have the following properties fdr(3, )
1. A(B,~) > 0 for any solution3 € A; andy € T

2. A(B,,7.) =0
3. A(B,~) is jointly convex in both8 and~y

We have the following theorem for the convergence rate fgofthm 3. The detailed proof

can be found in Section A.3.

Theorem 1. After running Algorithm 3 ovel iterations, we have the following inequality for the
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solution3 and~ obtained by Algorithm 3

7n2

E [A (B,’?)} < —(lnm+1Ins)+mn, <d252

1
Nn?C* 4+ n2C? ),
T
whered is a constant termE|-] stands for the expectation over the sampled task indiced of a
iterations, and\; = max Amax (K;), wherel,,,«(Z) stands for the maximum eigenvalue of matrix
SYASE)

Z.

Corollary 2. With§ = m3 andn, = %m_% (Inm)/T, after running Algorithm 1 (on the original

paper) overT iterations, we hav&[A(3,7)] < O(nm!/3\/(Inm)/T) in terms ofm,n andT.

Since we only need to solve one kernel SVM at each iteratierhave the computational com-
plexity for the proposed algorithm on the order@fm!/?,/(Inm)/T), sublinear in the number of

classesn.

3.4 Experimental Results

In this section, we empirically evaluate the proposed rdaliel multiple kernel learning algorithm

by demonstrating its efficiency and effectiveness on theyaraategorization task.

3.4.1 Data Sets

Following the MKL experiments in Chapter 2, we use the sameetbbenchmark data sets and
the same base kernels as in this Chapter: Caltech 101 [3jaPd®C 2007 [94], and a subset

of ImageNet. All the experiments conducted in this chapterrapeated five times, each with an
independent random partition of training and testing ddMaan average precision scores along

with the associated standard deviations are reported.
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3.4.2 Baseline Methods

We compare four MKL methods and the average kernel basellime MKL baselines can be
categorized into two groups. The first group is the one-U$4&IL framework which requires
solving one MKL problem for each class separately. For thasig, we use two base MKL solvers
that are shown to be the most efficiehit-MKL methods in Chapter 2 : (i) MKL-SIP, a Semi-
Infinite Programming (SIP) based method for MKL, [71] and KKL-Level, an extended level
based method for MKL, [52]. We also use MKL-SIR-to include a non-sparse MKL solver
into the comparison. The second group of methods requiegsitey a single kernel combination
simultaneously for all classes. The two baseline methoasftl into this group are: (i) ML-
MKL-Sum which learns a kernel combination shared by all sbgsas described in Section 3.3

using the optimization method in [116], (ii) the proposed MIKL-SA method.

4

ant butterfly ceiling fan chair

Figure 3.1: For the 4 classeant, butterfly, ceiling fan, chajrtaken from the Caltech 101 data
set, the first row gives images which produced false negafimethe single kernel baseline and
true positives for ML-MKL-SA baseline. The second row givesges which produced false
positives for the single kernel baseline and true negafmethe ML-MKL-SA baseline for the
corresponding classes.
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3.4.3 Implementation

The experiments with varied numbers of instances on the éidagdata set were performed on
a cluster of Sun Fire X4600 M2 nodes, each with 256 GB of RAM 3AdAMD Opteron cores,
due to a need of high RAM capacity (over 100 GB). All other ekpents were run on a different
cluster, where each node has two four-core Intel Xeon E562@s4 GHz with 24 GB of RAM.
We pre-compute all the kernel matrices and load the comgkegatel matrices into the memory.
This allows us to avoid re-computing and loading kernel roesrat each iteration of optimization.

All the baseline methods are coded in MATLAB For all the wrapmethods for MKL, LIB-
SVM [107] is used as off-the-shelf SVM solver. For MKL-SIPdaMKL-Level, MOSEK [89] is
used to solve the related optimization problems, as sugd&s{52].

The same stopping criteria is applied to all the MKL alganthwhen applicable. All the
algorithms terminate when: (i) the relative change in thalitugap falls below a threshold
ﬁ < 10%), (ii) the change in the cost function falls below a thresh{®b—?), (iii) the difference in
the kernel coefficient® between two consecutive iterations is small (ig3! — 8" || < 107,
and (iv) the maximum number of iterations is reached. A 2Hobss-validation is applied to select
the value of the regularization parametére {102, 107,...,10*}. The bandwidth of the RBF
kernel is set to the average pair-wigedistances between image pairs.

Unless stated, the smoothing parameétés set to be 0.2 for the proposed method. For sim-
plicity we taken = nz = 7, in all the following experiments. Step sizds chosen as 0.01 for the
Caltech 101 data set, 0.001 for the VOC 2007 and ImageNetsétdan order to achieve the best

computational efficiency.

3.4.4 Classification Performance

To evaluate the effectiveness of different algorithms faidtidabel multiple kernel learning, we

report the category based mean averaged precision (MAR)ativihe classes. We evaluate the
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potted plant train

bird dining table

Figure 3.2: For the 4 classdsid, potted plant, dining table, traitaken from the VOC 2007 data
set, the first row gives images which produced false negatirdhe single kernel baseline and true
positives by the GMKL baseline. The second row gives imadgasproduced false positives for
the single kernel baseline and true negatives for the ML-M&A. method for the corresponding
classes.

efficiency of algorithms by their running times (seconds)tfaining.

Table 3.1 summarizes the classification accuracies (MAR) difie baseline methods over the
Caltech 101 data sets under three settings with 10, 20, atrdidihg instances per class. MKL-
SIP-L, and average kernel baselines yield the best performandkddirst two settings, whereas
MKL solvers with L,; norm are superior for the last setting, where the numbegafitrg instances
per class is 30. MKLE; methods give sparse solutions by eliminating irrelevasebieernels.

Table 3.1: Classification results (MAP) for the Caltech 1@fadset. We report the average values
over five random splits and the associated standard daviatio

Number of training instances per class

Baseline 10 20 30
Average 59.0+£ 0.7 69.7+-0.6 77.2+0.5
MKL-Level |54.7+1.0 63.4+06 84.4+04
MKL-SIP-L; | 53.8+£0.6 63.8+0.9 83.9+0.7
MKL-SIP-L, | 60.1+0.6 70.7+-1.0 79.1+0.6
ML-MKL-Sum | 55.1+1.3 65.0+ 0.7 85.6+0.7
ML-MKL-SA | 545+ 0.7 66.1+0.9 85.3t0.8
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Table 3.2: Classification results (MAP) for the VOC 2007 ds#t We report the average values
over five random splits and the associated standard daviatio

Percentage of the samples used for training
baseline 1% 5% 25% 50% 75%
Average 219+ 05 424+03 48.2+0.8 545+0.8 57.5+0.8

MKL-Level 234+ 06 444+04 515+05 57.1H0.6 59.6+0.9
MKL-SIP-L; | 22.6+1.0 44.2+0.3 51.2+0.33 56.6+0.5 59.5+0.9
MKL-SIP-L, |22.7+0.4 42.6+0.2 49.8+0.2 57.3+0.2 60.6+0.5

ML-MKL-Sum | 24.1+ 0.4 43.5+05 50.1+04 55.8+0.1 58.8:0.2

ML-MKL-SA | 24.6+0.9 44.1+0.6 50.6+£04 56.1+0.2 58.9-0.4

However, as discussed in Chapter 2, when the number of igpexamples is very small, it is
difficult to determine the subset of kernels that are irr@t\to a given task. This is why MKIL~
methods give better results than MKl methods on the Caltech 101 data set as the number of

training instances increases.

Although the two multi-label MKL baselines, namely ML-MK&um and ML-MKL-SA, are
originally proposed as efficient approximations to onesusrall MKL framework, they match
and sometimes even outperform the one-vs-all MKL methods|.M8IP and Level-MKL, that
learn one kernel combination for each class. These resudt#yj the assumption of using the
same kernel combination for all the classes for the Caltéxhdata set. Note that the average
kernel baseline (AVG), which is similar in that it uses thengskernel combination for all classes,
yields reasonable performance, although its classificgterformance is significantly worse than
the proposed approach ML-MKL-SA when there is a sufficiemhbar of training instances (30

instances per class for the Caltech 101 data set).

We provide some example images from the Caltech 101 data $&gure 3.1 to visualize
the advantage MKL brings over using a single kernel. For thiagses (ant, butterfly, ceiling fan,
chair) taken from the Caltech 101 data set, the first row gimegies which produced true positives

for the ML-MKL-SA baseline and false negatives when a sirkglmel (the best performing base
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kernel) is used. On the other hand, the second row gives snabieh produced false positives
for the single kernel case and true negatives for the ML-MBA baseline for the corresponding
classes. Note the level of similarity in the shapes of ea@dgeron the same column, which is the
possible cause of the errors for the single kernel case. ©attier hand, by using different image

representations, MKL avoids these errors on these samplgam

Table 3.2 summarizes the classification accuracies (MAPalfdhe baseline methods on the
VOC 2007 data set under five different settings, whéte 5%, 25%, 50%, and75% of the whole
data set is used as the training set. Table 3.2 confirms th&ussons that are drawn from Ta-
ble 3.1: all the MKL methods, including ML-MKL-Sum and ML-MkSA outperform average
kernel baseline as the number of training instances inerdasall settings except cadés). The
difference between the Caltech 101 and VOC 2007 resultatsath do not see a significant per-
formance difference between MKL; and MKL-L, methods. As discussed in Chapter 2, this is
because the number of base kernels is smaller for the VOC @g0&riments. Finally, we see
that ML-MKL-Sum and ML-MKL-SA vyield very close results coraped to other MKL baselines,

despite learning one shared kernel combination for alkelss

We also provide some example images from the VOC 2007 data $egure 3.2 to visual-
ize the strength of MKL. We take four object categories and diferent test images from each
category to test. The first row gives images which produceel positives for the ML-MKL-SA
baseline and false negatives when a single kernel (the kesirming base kernel) is used. The
second row gives images which produced false positiveshisingle kernel case and true neg-
atives for the ML-MKL-SA baseline for the correspondingsdas. These examples demonstrate
that MKL methods are able to avoid false positives and negsatly successfully combine several

image representations.
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Table 3.3: Training time (seconds) for the Caltech 101 dettaWe report the average values over
five random splits and the associated standard deviation.

Number of training instances per class
Baseline 10 20 30
level-MKL 816.1 125.6 357@&519.0 6456.6 664.2
MKL-SIP-L; | 550.8491.8 2233.8871.5 4518.6-501.2
MKL-SIP-L, | 387.6+72.4 1275.6-201.6 3100.8 314.6
ML-MKL-Sum | 302.7+4.8 1053.& 201.3 3817.9+ 308.1
ML-MKL-SA 119.2+ 0.9 471.3-16.9 1140.4 276.5

3.4.5 Training Time

We provide Tables 3.3 and 3.4 to compare the running timelseoMKL baseline methods. Ob-
serve that ML-MKL-SA and ML-MKL-Sum are in general more eiist than the other MKL
methods in the Caltech 101 experiments. This is not sungrias ML-MKL-SA and ML-MKL-
Sum compute a single kernel combination for all classes. é¥ew note that MKL-SIPE5, is faster
than ML-MKL-Sum when the number of training instances is 80glass for the Caltech 101 data
set. This is because of the fast convergence of MKlproblem (see Chapter 2 for details). More-
over, we see that MKL-SIF-, is faster than ML-MKL-Sum in most of the settings. The main
reason for this is that, in addition to the fast convergedddiL-SIP- L., the number of kernels
and classes is smaller in the VOC 2007 data set. However lzasthese observations, we expect
ML-MKL-Sum to become faster as the number of classes anduhder of kernels increase, since
MKL- L, formulation often provides sparse solutions, which woidghiicantly cut down the time
spent on kernel computations.

The main advantage of the proposed algorithm is its comipuigtefficiency. From Tables 3.3
and 3.4 we see that the proposed method requires less gramia compared to the other baselines
while providing comparable classification performance.edtly, for the data sets with a high
number of categories, the two methods that learn one sharadllicombination for all labels (ML-

MKL-SA and ML-MKL-Sum) would be computationally more effesit than the methods that
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Table 3.4: Training time (seconds) for the VOC 2007 data\8&t.report the average values over
five random splits and the associated standard deviation.

Percentage of the samples used for training
Baseline 1% 5% 25% 50% 75%

level-MKL 4505 43.3t7.1 802t 113.2 4332.6:587.3 5946 950.1
MKL-SIP-L; | 6.4£3.4 47.910.6 692+67.8 4396.8606.7 6180t 940.2
MKL-SIP-L, | 16.4+:2.3 34.3:7.4  192+21.3 706t 178.3 1686t 246.5

ML-MKL-Sum | 2.5+ 0.3 57.4£9.1 372.326.6 2162.% 175.3 3983+ 402.2
ML-MKL-SA | 1.2+0.3 39.8:4.8 234.1%21.1 886.5%101.7 1224.3 136.2

learn a kernel combination separately for each class. Iitiaddo this, the proposed method brings
further improvement in efficiency compared to ML-MKL-Sumhdreduction in computation time
is more significant for the Caltech 101 data set comparedetty/@C 2007 data set. This is because
the proposed algorithm employs an SVM solver for only onsglger an iteration whereas ML-
MKL-Sum has to train SVM solvers separately for all clasdemagh iteration. Since Caltech 101
has a larger number of classes, the proposed method shoeatargadvantage for the Caltech 101

data set.

Figure 3.6 shows the change in the kernel weights over timéhf® proposed method (ML-
MKL-SA) and Figures 3.3, 3.4, and 3.5 show the change in thradtaveights for three other
baseline methods (ML-MKL-Sum, MKL-Level, and MKL-SIP;) on the Caltech 101 data set
with 30 training instances per class. We observe that, dyéih-MKL-SA shares a similar
pattern as Level-MKL in the evolution curves of kernel weggtbut is much faster. We also have
very similar curves when comparing MKL-SIP- and ML-MKL-Sum, as expected, since these
two baselines use the same solver. When comparing ML-MKin-8aod ML-MKL-SA, which are
significantly more efficient than the other two baselinesse® that the kernel weights learned by
ML-MKL-Sum vary significantly, particularly at the begimmg of the learning process, making it

a less stable algorithm than the proposed algorithm ML-MBA -
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Figure 3.3: The evolution of kernel weights computed by tHelM_evel method over time for the
Caltech 101 data set with 30 training instances per class.
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Figure 3.4: The evolution of kernel weights computed by theLMBIP-L; method over time for
the Caltech 101 data set with 30 training instances per.class
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Figure 3.5: The evolution of kernel weights computed by tHe MKL-Sum method over time for
the Caltech 101 data set with 30 training instances per.class
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Figure 3.6: The evolution of kernel weights computed by tHe MKL-SA method over time for
the Caltech 101 data set with 30 training instances per.class
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3.4.6 Sensitivity to Parameters

To evaluate the sensitivity of the proposed method to patemsié, nz andn,, we conducted
experiments with varied values for these three paramedtagare 3.7 shows how the classification
performance (MAP) of the proposed algorithm changes oreatibns on Caltech 101 (30 training
instances per class) using six different values:0{0,0.2,0.4,0.6,0.8,1}. We observe that the
final classification accuracy is comparable for differeritiga ofd, demonstrating the robustness
of the proposed method to the choicejof However, we also note that the extreme case where
0 = 0 gives the worst performance, indicating the importancedudfireg the uniform sampling

component for an increased stability.
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Figure 3.7: Classification performance (MAP) of the progbaigorithm ML-MKL-SA on Caltech
101 with 30 training instances per class using differenieslofo (for ng = 7, = 0.01).

Figure 3.8 shows the change of classification performan@eRMor three different values of

ng for a fixedn, whereas Figure 3.9 shows the change of classification pesioce (MAP) for
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Figure 3.8: Classification performance (MAP) of the progbaigorithm ML-MKL-SA on Caltech
101 with 30 training instances per class using differemtieslofr; (for n, = 0.0001 andd = 0.2).

three different values af,, for a fixednz, when 30 samples per class are used from the Caltech
101 data set. Based on these plots we observe that a charfgevaltie ofys is more likely to
have a greater impact on the convergence speed than a cimatige)i, value. Particularly, we
see that), = 0.01 andn., = 0.001 produce very similar plots. This result demonstrates that t
proposed algorithm is in general insensitive to the chofde@step size),. On the other hand, a

more careful selection still needs to be dopen order to avoid slow convergence.

3.4.7 Large-scale MKL on ImageNet

To evaluate the scalability of MKL, we perform experimentstbe subset of ImageNet consist-

ing of 81,738 images. Figure 3.10 shows the classification performanddleMKL-SA and
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Figure 3.9: Classification performance (MAP) of the progbaigorithm ML-MKL-SA on Caltech
101 with 30 training instances per class using differentieslofr, (7 = 0.0001 andd = 0.2).
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Figure 3.10: Comparison of the mean average precision s¢orelifferent training set sizes for
the ImageNet data set.

the other baseline methods with the number of training irmgm class varied in powers of 2:
(24,22 ..., 21). We used MKL-SIP for bott.,; and L, norm MKL. Similar to the experimental
results for Caltech 101 and VOC 2007, we observe that ML-M¥A -and ML-MKL-Sum give
comparable performance to the MKL solvers that learn a sépd&ernel combination for each
class. In fact, for the settings with smaller number of ins&s (100 to 18000) ML-MKL-SA out-
performs MKL-L, whereas ML-MKL-Sum outperforms both MKLL; and MKL-L,. However,
the difference between the baseline performances stadisiiaish when the number of training
examples is increased over 256 per class. As discussed pteZha this is because all the 10
kernels constructed for the ImageNet data set are stromglseaind provide informative features
for image categorization. In other words, the main stremgtNKL- L,, which is being able to

remove irrelevant or weak kernels, does not bring any adggmnt
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Figure 3.11: Comparison training times for different tiagset sizes for the ImageNet data set.

We also compare the training times of the baseline methottssdmageNet data set. The com-
parison in Fig. 3.11 confirms our previous results and detnates the efficiency of the proposed

ML-MKL-SA method.

3.5 Conclusions and Future Work

In this chapter, we present an efficient optimization framéwfor multi-label multiple kernel

learning that combines a worst-case analysis with stoicheggproximation. Compared to the other
algorithms for ML-MKL, the key advantage of the proposedaithhm is that its computational cost
is sublinear in the number of classes, making it suitabléhfordling a large number of classes.

We verify the effectiveness of the proposed algorithm byeexpents in image categorization
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on several benchmark data sets. There are two main directiat we plan to explore in the

future. The first one is improving the classification perfamoe. Our experiments showed that,
for OVA MKL framework, the proposed method improves the cobagional efficiency without

causing a significant drop in the performance. However, tliearacy in image categorization can
be improved by replacing the OvA framework by a multi-lakegdrining formulation. To address
this issue, we proposes a multiple kernel multi-label ragkinethod in Chapter 6. The second
future direction is improving the prediction speed, whishn general more crucial than training
speed in real world systems. To be able to cope with the isorgaize of the image data sets,
the prediction step needs to use sparse kernel combinatimhelassification functions. It is also

desirable to have a sublinear dependency of prediction Exitypon the number of classes.
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Algorithm 1 The proposed Multi-label ranking algorithm
1. Input

ng, 1. Step sizes
K: the kernel matrix
vi,--.,Ym: the assignments of. different classes te training instances
T number of iterations
n, m,s: number of instances, classes, and kernels, resggcti
0: smoothing parameter
2: Initialization
e y'=1/mandB' =1/s
:fort=1,...,Tdo
4. Sample a classification tagk according to the distribution/ulti(v4,...,~%).
5. Computen®™ = argmaxaep,cj» @' 1—(aoy,,) K(8)(aoy,,)/2 using an off shelf SVM
solver.
Compute the estimated gradiet§/3', v') andg; (3',v*) using Egs. (3.8) and (3.9).
7:  Updateg'™!, 't and4'™ as follows

@

B; . .
Bt = Z—iexp(—mgf(ﬁt,vt)), j=1,...,s.
B
R - 7_72 37(3 A1) k=
h } - ZteXp(mgk(ﬁ,’Y)), =1,...,m

5
AT =1 =0y + —1
m

8: end for B
9: Compute the final solutio and~ as

3= %Z'rﬁ

t=1

Q!
|
N =

T
> B (3.10)

86



Chapter 4

Image Categorization by Multi-label

Ranking

4.1 Introduction

Image categorization requires an image to be assigned todd saultiple classes, chosen from
a large set of class labels. Therefore, image categorizatio be cast into multi-label learning,
in which each image can be simultaneously classified inteertitan one class. The most widely
used approaches divide a multi-label learning problem mtidtiple independent binary labeling
tasks. The division usually follows one-vs-all, one-vepor the general error correction code
framework [120, 121]. Most of these approaches suffer frotbhalanced data distributions when
constructing binary classifiers. This problem becomes msewere when the number of classes
is large. Another limitation of these approaches is thay tire unable to capture the correlation
among classes [10]. In this chapter, we describe our maliellranking method, which addresses

these two issues by simultaneously learning classifieredoh label.
Our method tackles the multi-label learning problem usingudti-label ranking approach.

For a given example, multi-label ranking aims to rank aleveint classes higher than irrelevant
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classes. By converting the classification problem into &irenproblem, multi-label ranking
avoids constructing binary classifiers, which operate Isfimtjuishing an individual class from
the rest (one-vs-all) of a pair classes from each other yshene), thus alleviating the problem of
imbalanced data distribution. In addition, by avoiding bieary decision regarding which subset
of classes should be assigned to each example, multi-labkiing is usually more robust than the
classification approaches, particularly when the numbelasfses is large.

We propose an efficient algorithm to solve the multi-labakiag problem which is based on a
simple line search. One advantage of our method comparée taajority of the ranking methods
is that the proposed algorithm has a linear dependency onutmber of classes. On the other
hand, most multi-label ranking methods have quadratic nidgecy because of the pair-wise class
comparisons.

We show that our kernel based multi-label ranking problemmfidation is closely related to
one-vs-all dual SVM objective. However, unlike the onealisformulation, the proposed cost
function cannot be divided into independent componerds,ane for each class, for optimization.
Instead, two features of the proposed method enables &érpldine relationships between labels
without making explicit assumptions on the structure ofrelations. The first one is a balance
constraint, which forces the sum of the dual variables thatespond to positive classes be equal
to that of negative classes. The second feature of the pedpusthod is the optimization scheme
it employs which solves the problem for all classes togeginelchooses the dual variables from a

closed set.

4.2 Previous Work

The most widely used approach for multi-label learning \ding the multi-label learning task
into multiple independent binary classification tasks, lesarning a binary classifier for each label

and deciding the label assignment of a test sample indepépder each class. This method is
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called binary relevance (BR) or one-vs-all classificati@nce a multi-label learning problem is
decomposed into multiple binary classification problenms, Binary classification algorithm can
be employed as a base solver. However, this straightforayapdoach has several shortcomings.
Therefore, we see several attempts in the literature tololeadgorithms that specifically address
the needs of multi-labeled data, instead of simplifyingrthaéti-label learning task by transforming
the problem into an easier one.

There is a very rich literature on multi-label learning. V@giew multi-label learning methods
in four subsections, which are not necessarily mutuallyusiee. We also discuss related problems

to multi-label learning in Section 4.2.5.

4.2.1 Label Set Transformation Methods

We categorize the methods that fall into this category wmdroups: (i) Problem transformation,

and (ii) label set projection methods.

4.2.1.1 Problem Transformation Methods

With binary decomposition techniques like one-vs-all amé-@s-one, label set transformation
methods were the popular choice for early multi-label leggstudies [121]. In a binary decompo-
sition framework, a multi-label learning problem is decars@d into a set of binary classification
tasks, which can be easily solved by using well-studiedrigictassifiers such as SVM or naive
Bayes.

One of the shortcomings of the binary decomposition metiwtisat each classifier is trained
independently, meaning that the correlation or dependeri@tween different classes are not ex-
ploited. Such dependencies can be very handy in many apiphsa Consider an example from
automatic image annotation: if an image is tagged with thellsunandclouds it is very likely
that the labekkyis also a relevant label. Therefore, knowing the existeri¢dhelabelsunin the

image should be able to make detecting the lalbgin the image easier. Another problem with
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converting a multi-label learning problem into a set of bynelassification tasks is the imbalanced
(skewed) data distributions, particularly when the nundielasses is large.

Another approach for label set transformation is to consédeh possible combination of a
binary label vectoy® = (yi,...,y! ) € {0,1}™ as an individual class. This approach, which is
named as the “label powerset” technique leads to a mukisctingle label problem with a total
of 25X new labels, which are named as powerset labels. Howevel, palverset is not a practical
method since the number of classes (powerset labels) inghsformed problem is exponential in
the number of original labels.

Dietterich et al. proposed a technique for encoding classifutputs in a multi-class single-
label setting to increase the performance and robustnebe dfase learners [120]. The authors
borrowed the idea of error-correcting coding (ECC) fromd¢benmunication theory to create dis-
tributed output representations. Error-correcting cgdeia robust coding scheme that makes
detecting and correcting the errors in the output code plessThe main idea in the error correct-
ing output codes (ECOC) scheme is to encode each class bgaeuninary string (codeword) of
lengthq. Then, a separate binary classifier is learned to calcutatk ef thesey bits. Once the
functions for each codeword digit are learned, the outptithe@seq functions are evaluated for
each test instance and an output binary string is consttuatieich is then compared to all class

codewords.

4.2.1.2 Label Set Projection Methods

The idea of projecting a label set into a lower dimensionalcepbefore the learning step is a
frequently used idea in the multi-label learning literatufhe main motivation of using a projected
label set instead of the original assignment vector is toeimse the computational efficiency by
decreasing the number of classes.

The overall framework of the label set projection methodBustrated by Figure 4.1.

We can summarize the overall process in 4 steps:
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Training

|| classifier/regressor

in the projected
label space

Learn the Project the label set
mapping/ *  of each training
projection sample

Back-projection of
— the outputs to the
original label space

Figure 4.1: A diagram summarizing the label set projectdreses for multi-label learning.

1. Learn or construct the projection operation (matrix) éoused to project the original label

vector into (possibly, but not necessarily) a lower dimenal space.

2. Perform the projectionsy(-) : R™ — R™, s.t. ¥ = 4(y'), wherem is the number of
original labels,n’ the projected space dimensigr,the original label vector anf! is the

new label vector in the projected space.
3. Learn a classification/regression modg)) : R — R™, s.t. f(x!) = y'.

4. Perform back projection to the original label space fromjirojected spacey(-) : R™ —

R™, s.t.§' = ¢/ (¥'), wherey' is the final label vector prediction.

Hsu et al. proposed to use the compressed sensing techsigualzel set projection algorithm
[122]. With the underlying assumption that label vectors sparse, their scheme uses random
projections for Step 2 and performs regression in Step 3y Ehew that if the label vectors are
k-sparse (average number of nonzero entrié3,ithen the number of projections would be in the
order ofk log m, wherem is the number of classes. One drawback of this method is thpt4 the
mapping of the predictions back to the original label spadght be complicated since it requires
solving an optimization problem for each test sample. Zth@l.¢123] proposed to use the sign of
the random Gaussian projections instead of the projectimmaselves, thus making the projected

label matrixY’ binary and allowing the use of binary classification, indte&regression, which
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is employed by the other methods. The recovery step (Step a&$o different from the original
compressed based algorithm [122]. Zhou et al. proposedd@uschnique they named as the
label set distilling method.

In order to reduce the back-projection step’s complexidy el al. proposed a technique called
principle label space transform (PLST) [124]. PLST diffemn the compressed sensing approach
in that its projection matrix is constructed by using thegsilar vectors of the label matrix .
Since singular vectors are orthonormal, the projectiorkldacthe original label space can be
completed simply with a round-based reconstruction: mlyling lower dimensional predictions

by the projection matrix and then performing element-w@mending.

4.2.2 Supervised Algorithm Adaptation Methods

There are also methods that are specifically designed fdi-fabkl learning by adapting the well-
known supervised binary classification methods for hagdiiulti-label data. For example, Zhang
et al. proposed a maximum a posteriori estimation (MAP) ilaliel ' -nearest neighbors method
(ML-KNN) [125]. In ML-KNN, the estimation of the label vectdor a query sample depends on
the label prior probability and the probability of assigmenlabel to an instance conditioned on the
number of neighboring instances with the same label.

Schapire et al. proposed two extensions to the well-knowab&dst method for multi-label
learning. The first one is Adaboost.MH, which minimizes thentining loss and uses a binary
decomposition approach, in which each multi-labeled sanspieplaced byn new binary sample,
with m being the number of labels. The second extension, AdalddBstenforces a bi-partite
ranking of labels through a set of pair-wise comparison§].12

Many well-know decision tree algorithms are adapted to rhaittel learning with some mod-
ifications. Clare et al. modified the C4.5 decision tree atgor [127] for multi-label learning
by modifying the entropy definition for the information-gairiterion [128]. Alternating decision

trees (ADT) [129] and predictive clustering trees (PCT){(L&e other methods that are extended
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to multi-label learning [131, 132]. In their PCT based midtbel learning study, Blockeel et al.
showed that learning one tree for all labels simultaneoisshyetter in terms of both speed and

accuracy when compared with learning an independent tressafdh label [132].

4.2.2.1 Transfer learning for multi-label classification

Han et al. proposed a transfer learning scheme for mulétkgarning that transfers knowledge
between different domains via a linear projection of theagatints; this projection is formulated
by the use of Graph Laplacian of a label-induced hypergrapghedastic-net regularizer [133].
Claiming that most of the transfer learning methods focudransferring knowledge between
different sources or domains for the same class, Qi et akepted a multi-label transfer learning
approach that aims to perform inter-class knowledge tesingfhich can perform within a single
domain or multiple domains [134]. They defined a transfecfiom for each class; these functions
depend on two types of similarity measures that are definethétraining samples. One of the
similarities is based on a kernel function that strictlysues input features. The second similarity
measure involves both the input features and the correappiabel information through a use
of label affinity matrixS. The algorithm described in their study simultaneouslyirojzies the

transfer function and the label affinity matrix.

4.2.3 Multi-label Ranking Methods

One of the earliest multi-label ranking algorithms was j@sga in [27]. Constraints derived from
the multi-labeled instances were used to enforce the nelelasses to be ranked higher than the
irrelevant ones [27]. Crammer et al. [135] improved the cataponal efficiency of [27] by
exclusively considering the most violated constraint: panng only two labels per instances,
with one being the positive label with the minimum outputrecand the other being the negative
label with the maximum output score.

Elisseeff et al. proposed the RankSVM method, which useswiae label ranking loss in the
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SVM formulation [136]. Dekel et al. [137] and Shalev-Shwaet al. [11] encoded the ranking
problem using greference graph A boosting based algorithm was used in [137] to learn the
classifiers from a set of given instances and the correspgmatieference graphs. Although the
described framework in [137] suits any type of ranking tabkk, multi-label learning problem is
formulated as directed bipartite ranking. In [11] a gerieagion of the hinge loss function for the
preference graphs was used for multi-label ranking.

In all these approaches, a ranking model is learned fronwgssrconstraints between the
relevant and irrelevant classes. The number of pair-wisstcaints has a quadratic dependence on
the number of classes, making it computationally expensiven the number of classes is large.
In contrast, our proposed framework for the multi-labelkiag that we discuss in this chapter is

computationally efficient and can handle a large numberasfsgs (order of 100s).

4.2.4 Exploiting Label Correlation in Multi-label Learnin g

A number of approaches have been developed for multi-l@aehing that aim to capture depen-
dencies among classes. In [10], the authors proposed tol thedependencies among the classes
using a generative model. Ghamrawi et al. [12] tried to cagpthe dependencies by defining a
conditional random field over all possible combinationsia tabels. In [13], a multi-label ma-
trix factorization approach that captures the class catiggl via a class co-occurrence matrix was
used. A hierarchical Bayesian approach was introduceddntf2capture the dependency among
classes.

There are several approaches [30, 138—-141] for multi-ledaehing that encode the class de-
pendencies under the assumption that some importantésate shared among classes. Given the
bag-of-words representation of documents, McCallum psed@n EM based scheme that not only
estimates the source classes for each document, but @&sadriind how the classes contribute to
the generation process of the words [138]. By revealing vabads relationship, this method can

benefit from label correlations when classifying a docuni@sied on its word content.
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In their algorithm named MAHR, Huang et al. exploit the labetrelations automatically by
the hypothesis reuse principle: a hypothesis extractedrierlabel can be used on other labels
[142]. Guo et al. proposed to use conditional dependenayarks to model label correlations
[143]. A hypergraph representation, in which each vertextiaining instance and each hyperedge
for a category is a collection of relevant training sampless also used to model higher-order label
correlations [144, 145]. There are also stacking techrsque., BR+) [146, 147] and classifier
chains [148, 149] as feature set transformation method&imoits class correlations.

We emphasize that our work does not focus on modeling the ctaselations explicitly. While
indirectly benefiting from dependencies between classidabee do not make any assumptions
regarding the type of relationships that exist betweensclakels. It should be noted that our
proposed multi-label ranking method can be combined witimynaf the above approaches to

further improve the classification performance in mulbdélearning.

4.2.5 Related Problems

It is important to note that multi-label learning, despiteimg a similar goal, differs from a related
task, multi-task learning [150]. Multi-task learning camthhought as a bridge between multi-label
learning and binary decomposition methods. Similar to tyiiecomposition methods, a binary
classifier is trained for each class. However, unlike birtlegomposition methods, the classes are
no longer assumed to be independent; rather they are trasied shared information between
classes.

Multi-instance learning [151] is another task that can befesed with multi-label learning.
The sole goal of multi-label learning is to find the relevatidls of an image. In contrast, multi-
instance learning requires locating the concepts/objedtse image.

In this thesis, our understanding of the image categoamatioblem requires that all categories
are pre-defined and have at least one corresponding ins(emage) for each category in the

training step. In other words, classifiers should be trailoeall the classes that are going to be
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used in the prediction/testing phase. However, there i®apgof studies that are not restricted to
this definition. For example, in zero-shot learning [152] &nansfer learning [29,141] frameworks,

the labels that do not have any corresponding trainingmessican be used in the prediction stage.

4.3 Maximum Margin Framework for Multi-label Ranking

Letx',i = 1,...,n be the collection of training instances where each exaxipteR? is a vector

of d dimensions. Each training exampieis annotated by a set of class labels, denoted by a binary
vectory! = (yi,...,y%) € {—1,1}™, wherem is the total number of classes, agjd= 1 whenx!

is assigned to class and—1 otherwise. In multi-label ranking, we aim to leatin classification
functionsf,(x) : RY — R,k = 1,...,m, one for each class, such that for any examglé; (x)

is larger thanf;(x) whenx belongs to class, and does not belong to class We define the

classification errogf’l for an exampler; with respect to any two classesandc;, as follows

et = 10t 20 (B3 () - ). @)

wherel(z) is an indicator function that outputsvhen: is true and zero, otherwise. The ld$s)
is defined to be the hinge loss, whefe) = max(0,1 — z). Note that the above error function
outputs0 wheny! = y¢, namely when no classification error is counted, & either belongs to
bothc;, andc; or x' does not belong to either of the two classes.

Following the maximum margin framework for classificatiare aim to search for the classifi-
cation functionsf(x), k = 1, ..., m that simultaneously minimize the overall classificatiomer

This is summarized into the following optimization problem

{fkergl'llr?” Z | fiel3, + CZ Z €ty (4.2)

i=1 k,l=1

wherers(x,x’) : R x R — R is a kernel function?,, is a Hilbert space endowed with a kernel
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functionk(-,-) andC'is a regularization parameter. Theorem 3 provides the septer theorem

for fr.(:),k=1,...,m.

Theorem 3. Classification functiongy(x), £ = 1, ..., m that optimize Eq. (4.2) are represented

in the following form,
Fr(x) = iMes(, %), (4.3)
=1

where[I"], = >, I'} ;. Note thatl* € S™*™ i = 1,...,n are symmetric matrices that are

obtained by solving the following optimization problem:

S. t. k.l ==
0 otherwise
=[I"i=1,...,n; k,I=1,...,m. (4.4)
Proof. See the proof in Section A.4.1 O

The constraints in Eq. (4.4) explicitly capture the relasbip between the classes. When
an instancex! belongs to class;, but does not belong to class the value oﬂ“;l is positive,
causingx’ to be a support vector. The positive terfijs are combined intdl];, which is used in

computing the ranking function for clasg.

4.4 Approximate Formulation

A straightforward approach that directly solves Eq. (4.4)abstandard quadratic programming

approach is computationally expensive when the numbeliagkelsn is large because the number
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of constraints ig)(m?). We show that the relationship between multi-label rankind the one-
vs-all approach provides insight for deriving an approxirfarmulation for Eq. (4.4) that can be

solved efficiently.

4.4.1 Relation to the One-vs-all Approach

Consider constructingy(x) in Eq. (4.2) by the one-vs-all approach. The resulting regméer

theorem forf,(x) is

fr(®) =Y gragr(d, %) k=1,...,m (4.5)
i=1
whereai,i=1...,n;k =1,...,m, are obtained by solving the following optimization prable

max S0 -5 30 3 sl xyiplated
i=1 k=1 k=1 1i,j=1
s.t. a,€[0,0], i=1,....mk=1,...,m. (4.6)

Comparing the above formulation to Eq. (4.4), we clearlyteeamapping, i.e[I"’], +> ai. Hence,
the first simplification is to relax Eq. (4.4) by treating edEH, as an independent variable, which

approximates Eqg. (4.4) into the following optimization plem

max Z Z al — % Z Z K(x, xj)y,iyiaz,ai

i=1 k=1 k=1 1i,j=1
st 0<a, <CY Iy #),
=1
i=1,....n;k=1,...,m. 4.7)
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Note that the constraint, < C'>"", I(y; # y;) follows

ZI (v # Y1) FZl <CZI (Y% # 1)-
=1

=1

While the problem in Eg. (4.7) can be decomposed intcndependent problems, similar to an
OvVA SVM, this is not adequate for multi-label ranking as tlependence between the functions

fr(x),k=1,...,m cannot be captured.

4.4.2 Proposed Approximation

In this section, we present a better approximation of E¢t)(dompared to the one presented in
Eqg. (4.7). Without loss of generality, consider a trainingmplex! that is assigned to the firat
classes, and is not assigned to the remaihirgm — a classes. According to the definition Bf

in (4.4), we can rewrité' as

0 Z
I'= , (4.8)

ZT 0
whereZ € [0, C]***. Using this notation, variable, = [I’], is computed as

Z?:l ZkJ 1 S k S a
Tk —
E?:lZlJf a+1 S ]{ng
whereZ;; is an element irfZ that is bounded by 0 and. According to the above definition, for
each instancey, is the sum of either thé*” column or thek™ row of Z depending on whether
the labelk is relevant to that instance or not. Formulatindy usingZ brings several advantages.

Firstly, it enables us to derive constraints fqrexplicitly in the optimization. Secondly, at,

variables depend on each other in the optimization sincedhngponents of these variables are
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taken from a closed domair. This relationship is in fact a special case of the condtigiven

in Eq. (4.4). The constraint in Eq. (4.4) intuitively forcasbalance between the irrelevant and
relevant labels of an instance by requiring the sum of theeuppunds ofI], that correspond
to relevant classes to be equal to thatlsf, that correspond to irrelevant classes. Obtainipg
from Z as formulated above introduces an additional constraifibimyng the sum of the weights
corresponding to the relevant labels to be equal to the sutreofieights that are associated with
irrelevant labels. This constraint is useful in dealinghntihe imbalance between the number of
relevant and irrelevant labels as well as capturing the mldgrecies between the classes for that

instance.

In order to convert,, k = 1,...,m into free variables, we need to derive explicit constraints
on 75, that will ensure that each solution af will result in a feasible solution foZ. Let us first
consider a simple case in which we only require elements to be non-negative. Theorem 4

provides the constraints amp.

Theorem 4. The following two domaing®; and @), for vectorr = (ry, ..., 7x) are equivalent

Q = {reR":3ZeRVs.t.

Tia = Z 1y, Tagrom = Z ' 14} (4.9)
Qy = {TERT:ZTk: Z Tk} (4.10)
k=1 k=a+1
Proof. See Section A.4.2 for the proof. O

Theorem 4 states that the two domaipsand(), are equivalent for vectar and leads to the

following corollary:
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Corollary 5. Consider the following two domairig; and @, for vectorr = (1, ..., 7)

Q = {T€R™:3Z€[0,0]""s. t.

Tia = 21y, Tosrm = Z'1,} (4.11)
Qy = {TG[O,C]mZZTk: Z Tk} (4.12)
k=1 k=a+1

We haver € Q; = 7 € Q.

The above corollary becomes the basis for our approximalimtead of defining matrix vari-
ablesl,i = 1,...,n as in (4.4), we introduce the variahi¢ for [I’],. We furthermore restrict
o' = (ai,...,a}) to beinthe domaig = {7 € [0,C]™ : Y}, 7 = > .., 7} to ensure that

feasiblel™ can be recovered from a solution@f. The resulting approximate optimization is

max 03— 5 373w iatajod

i=1 k=1 k=14,j=1

s.t. Y Iyp=Dag =Y Iy, = —1)aj,
k=1 k=1
aLe0,C), i=1,....nk=1,...,m (4.13)

Unlike Eq. (4.7), Eq. (4.13) cannot be solvedrasndependent problems since for each in-
stancex!, thea! from all the classes;, k = 1,...,m are involved in the constraint. According
to these constraints, for each instance the sum of the veeggitesponding to the relevant labels
should be equal to the sum of the weights that are associdatedrmelevant labels. Theorem 4
shows that by adding this constraint to the problem, thdioglahips between the classes can be
exploited and used without explicitly determining the geand the matrice§*. Another advan-
tage of this formulation is that no assumptions on the forrthete relationships (e.g., pairwise

relationships between classes) are made.
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4.5 Efficient Algorithm

We follow the work of Lin et al. [153] and solve Eq. (4.13) byazdinate descent. At each
iteration, we choose one training examgié, y') and the related variableg = (ai,..., a! ),

while fixing the remaining variables. The resulting optiation problem becomes

= i 1 ¢ i op—ifoiy i H(Xi>xi) = i
max Z %5 Zyk k(X))o — 9 Z(ak)2
k=1 k=1 k=1

s.t. o' €]0,C]™, yiT

a'=0 (4.15)

where f,'(x!) is the leave-one-out prediction that can be computed fag(x) =

D i YhOpk (3, X).

Theorem 6. The optimal solution to (4.15) is written as

az:ﬂ‘[o’c]< Yie — 3%k <X)> Jk=1,....m (4.16)

r(xi x1)

where is the solution to the following equation

(YA
= h — : =0. 4.17
9 ; ( ) =0 (4.17)
Hereh(x,y) = moy(x) if y > 0 andh(x,y) = w0 (x) if y < 0. Functionr(x) projectsx onto
the regionG.
Proof. See Section A.4.3 for the proof. O

The functiong()\) defined in Eq. (4.17) is a monotonically increasing functiéns which can
be solved using the bisection search. The lower and upperdsoior \ for the bisection search

are shown in the proposition below.
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Proposition 3. The value of\ that satisfies Eq. (4.17) is bounded by;, and \,.... Define,
Kii = K(Xi,Xi) andG = [0, C],

—i Lo i —i [
77k:+:1+§fk: (x') nk—:1_§fk (x')
m 7]_1 m n—i
i k— i k
S S R o
k=1 w k=1 "
amin = —Cky + I'Illl'l nk_j_ bmin = — max nk_i
yi=—1 yp=1
Amax — Cl{?u — Il’llIl 77/: bmax = max nk_—i

yp=1 yp=-1
If A < 0, we have\,;, = 0 and Aax = min(amax, bmax)- If A > 0, we have),., = 0 and
)\min - maX(a'mina bmin)-
Proof. See Section A.4.4 for the proof. O

Once) is calculated by applying the bisection search betweenaheds),;, and .., it is
straightforward to calculate the coefficiemtsand finally the ranking functiong, (x) for any new

instancex.

4.6 Experimental Results

In this section, we empirically evaluate the proposed aliel ranking algorithm by demonstrat-

ing its efficiency and effectiveness on the image categtoizéask.

4.6.1 Data Sets

In order to compare our proposed multi-label learning mettocstate-of-the-art methods, we use
three benchmark data sets: VOC 2007, ESP Game and MIR FhoRQfR

For the VOC 2007 data set, we use the default partitioningsstgd by the Pascal VOC Chal-
lenges: 5,011 training images and 4,952 test images. Wenf¢1l01] and use dense-SIFT features.
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Note that the majority of the images in the VOC 2007 data sstiabeled by a single class. In
fact, the average number of labels per image is only 1.5. iecaf this property, VOC 2007 is
not an ideal data set for evaluating multi-label learnirgpathms. Nevertheless, the performance
on the VOC 2007 data set will allow us to examine if the proplagorithm is effective for image
categorization, since VOC 2007 is the most-widely used er@gegorization benchmark.

The MIR Flickr25000 [154] data set is a subset of the MIR Ftitk data set. The original
data set contains 25,000 images frdidT classes. However, to be able to create a better test bed
for multi-label learning, we remove the images that aregaesi to fewer than three classes and
take 75% of the instances to form the training set by randanpiag. The bag-of-words model
based on dense-SIFT features, provided by [101] and [185]))sed for image representation.

We also use a subset of the ESP data set, in which the averageenof labels per image is
8.3. To study the influence of the number of training sampheslabels on multi-label learning
performance, we vary the number of training samples and eumiabels. In total, we have 20
settings: four training sets with 10,000, 20,000, 30,00@,40,000 images and five different cases
for the number of categorig0, 50, 100, 200, 500}. After ranking the categories in terms of their
frequency (number of images annotated with them) in the skettawe pick the top 20, 50, 100,
200, and 500 categories to create these five different tdgstg®e The number of test images is

10,000. We use dense-SIFT based BoW representation.

4.6.2 Baseline Methods

The following methods are evaluated:

e SVM: We use LIBSVM [156] implementation of the one-vs-all B\tlassifier, which is

shown to outperform other multi-class SVM methods in [121].

e PLATT: We apply Platt's method to convert SVM scores to posteprobabilities [157].

This conversion makes it easy to compare the output scordgfefent SVM classifiers,
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leading to better performance for multi-label ranking imsocases.

MLKNN: A nearest neighbor based multi-label classificatimathod [125]. The number of
nearest neighbors is chosen by cross-validation. MLKNNverg popular baseline in the

multi-label learning literature due to its simplicity.

Multiple label shared space model with least square losd(®)LA direct multi-label learn-
ing method [139] that makes use of the class correlationa feature space transformation
under the assumption of a shared subspace between thergegeddLLS is reported to

outperform other state-of-the-art methods that explaaesctorrelations [139].
MLR-L;: Our proposed multi-label ranking method that is describatis chapter.

MLR-GL: Our proposed group lasso based multi-label ranking metiwaicis described in

Chapter 5. The approximation paramejes chosen by cross-validation.

For kernel based methods, we use the RBF kernel ydttlistance in our experiments, which

has shown to outperform other kernels for image categasizaf he regularization parametér

is chosen with a grid search ovgr0—2,107%,...,10*}. The bandwidth of the RBF kernel is set

to the average pair-wisg¢? distance between the training image pairs.

4.6.3 Multi-label Ranking Performance

We first compare the ranking performance of the baseline odetin terms of the AUC-ROC

and MAP scores. We start by comparing the baselines on the 2@C data set. According

to [94, 158], SVM classifier with RBF kernel with? distance, one of the baselines (SVM) used

in our study, yields a comparable performance with the siftt methods in the PACAL VOC

evaluations. Table 4.1 shows that the proposed algoritletdyia better performance than the

one-vs-all SVM method in terms of AUC-ROC and MAP, indicatiihat the proposed method is

effective for image categorization.
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people, motorbike, caf

car, people, bike

MLR-GL

car, people, motorbike
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people, motorbike, caf

car, bike, people

Figure 4.2: For four images from the VOC 2007 data set, thgirmal labels are given in addition
to the outputs of baseline methods.

Table 4.1: AUC-ROC and MAP results for the VOC 2007 data set

SVM | PLATT | MLKNN | MLLS | MLR-L; | MLR-GL
AUC-ROC| 90.7 | 90.5 89.4 90.7 91.0 91.0
MAP 65.6 | 65.6 63.7 66.0 67.2 67.2

As an illustration, Figure 4.2 shows examples of test imdgas VOC 2007 data set and

the categories predicted by different methods. This figumperts the claim that the categories

identified by the proposed ranking method are more relewatite visual content of images than

the baseline methods, particularly for the images thatainrseveral objects.

It is important to note that the evaluation measure we amggusi this chapter is not the same

as the one used in the VOC competition. In the VOC challertgeperformance is evaluated for

each object class separately (category-based), base@ aonfidence values obtained by binary

classifiers. This is not applicable for our case, as we pm®pdabel ranking scheme. We rank the

categories for each image in the descending order of thefescand our AUC measure evaluates

how successful is label-ranking. See Section A.1.5 for aildet discussion on evaluation measures

we are using in this dissertation.

Tables 4.2 and 4.3 provide the AUC-ROC and MAP results fobtselines on the ESP Game
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Table 4.2: AUC-ROCY) for the ESP Game data set with 10,000 training images

20 | 50 | 100 | 200 | 500
SVM 79.3| 79.5| 79.8| 80.2| 80.4
PLATT | 79.1| 79.4| 79.5| 79.9| 80.0
MLKNN | 78.6| 78.8| 79.5| 81.3| 83.5
MLLS | 79.7| 79.4| 79.4| 79.8| 80.2
MLR-L, | 81.7| 81.5| 82.1| 82.9| 83.9
MLR-GL | 80.2| 80.5| 81.8| 83.8| 85.4

data set when 10,000 images are used for training. From thiesTd.2 and 4.3, we reach the

following conclusions:

e The proposed ranking methods, MUR-and MLR-GL, consistently and significantly out-

performs the other baseline methods.

e Converting SVM scores to posterior probabilities does nygdrove the performance on this

data set.

e MLLS method performs better than SVM, PLATT, and MLKNN basek when the number
of categories is small (20, 50, 100). However, this gap égemme as the number of categories
increases, possible because the assumption of a shargrhsalikat covers all categories is

too restrictive when the number of categories is large.

e The relative performances of MLKNN and MLR-GL against theestbaselines are better
when evaluated by AUC-ROC than MAP. This is because thesédasgelines do not focus

on optimizing the performance for the top ranks (i.e., rdnkank-2, etc.).

e MLKNN, which is a very popular baseline in the multi-labehtaing literature due to its

simplicity, is significantly outperformed by the other blases.

e The methods that are specifically designed for multi-lag@iring, MLLS and the two rank-

ing methods, outperform one-vs-all SVM in majority of thétisgs.
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Table 4.3: MAP o) for the ESP Game data set with 10,000 training images

20 | 50 | 100 | 200 | 500
SVM 59.3|49.5|43.4| 38.0| 32.4
PLATT | 59.1|49.3|43.4|37.9| 32.2
MLKNN | 57.0| 45.9| 39.7| 35.2| 28.5
MLLS |59.9|48.5|43.3| 38.0| 32.4
MLR-L, | 62.2| 52.0| 45.5| 40.0| 34.2
MLR-GL | 59.4| 48.6| 42.9| 38.2| 32.1

Figure 4.3 plots the change of the AUC-ROC score with respethe number of training
images (0, 000, 20,000, 30,000, and40, 000), when the number of classes is 200. It should be
noted that although increasing the number of samples bbegidrformance of all the baselines,
the relative performance of the baselines with respect ¢b ether does not change. The only
change in the relative performance is seen for MLLS methotieMtompared to the one-vs-all
SVM baselines and ML-KNN, MLLS takes a better advantage efiticreased number of training
instances and outperforms them for the settings where timdeauof training instances is greater

than 10,000.

We also check the AUC-ROC and MAP results on the MIR Flicki@b8ata set. We see from
Table 4.4 that the proposed ranking methods and MLLS giviebegsults compared to one-vs-all
SVM baselines, showing again the superiority of direct iHatel learning methods compared
to problem transformation approaches like one-vs-all dgmmsition. Furthermore, the MLR-GL
method, which is another multi-label ranking approachnidicantly outperforms the other base-
lines in terms of AUC-ROC score. However, similar to the dasihe ESP Game experiments, its
relative performance drops in terms of MAP. The proposed MLRechnique gives comparable
results to MLLS, which seems to perform well for the MIR Fli2k000 data set, indicating that the
shared subspace assumption is valid for this data set. fAthisates that the multi-label learning
methods that make strong assumptions when exploiting adre¢lations have potential to per-

form well when their assumptions hold, as shown by our MIRKR5000 experiments. However,
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Figure 4.3: Change of the AUC-ROC score with respect to timebrar of training images.
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Table 4.4: AUC-ROC and MAP results for the MIR Flickr2500Qalaet

SVM | PLATT | MLKNN | MLLS | MLR-L; | MLR-GL
AUC-ROC| 70.2 | 68.7 68.6 75.9 75.4 76.2
MAP 315 | 314 28.9 33.2 33.3 32.8

these methods might not perform well for the data sets wier@mderlying assumption does not
hold (e.g., ESP Game for the MLLS method).

Finally, we show some example images from the ESP data séhammtedicted labels by each
baseline method in Table 4.5. The first row under the imagessdhe true image class labels. For
each baseline, we provide the top six returned labels rafm&eadleft to right. The hits are written
with bold characters. For example, for the left-most im&)é\ provides the following outputs, in
the descending relevance ordad, computer, screen, book, woman, sigmong these six labels,
only the labelsad andsignare correct, meanwhile the other four labels, which ardewvent for
the image, are ranked above the two lablelgo andsign, causing them to become false negatives.
On the other hand, the proposed ranking method MLRsuccessfully ranks the labedsl, logo,

andsignabove all other labels.

4.6.4 Training Time

Figure 4.4 plots the change of the training time of the thrasebnes (MLRE,; 1, SVM, and

MLLS) for a fixed number of categories (100) with respect ® mlumber of training samples for
the ESP Game data set. In this experiment, we vary the nuritvairong examples from 10,000 to
40,000. We observe that the MLLS method gets computatipnadre efficient compared to SVM
and MLR-L; because of its subspace assumption, which allows learniagawer dimensional
space. The main bottleneck of the MLLS algorithm is the SVI2ragion on the data matrix.

However, when the number of samples,is large ¢ >> d), the algorithm only calculateg

lwe will analyse the computational efficiency of the MLR-GL timed in Chapter 5
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Table 4.5: The label predictions by the baselines for fowrges from the ESP Game data set. The
first row under the images gives the true image class labetse&ch baseline, we provide the top

six returned labels (three in the top row, and three in theelaww) ranked from left to right. The
hits are written with bold characters.

Genetic 2
Ly aialh
labels ad logo sign man sky sky tee cloud
SVM ad computer screen  sky window people tee skywater
book womarsign light cloud gun building rock light
MLKNN ad logosport hair facesky hair face man
signman screen man tree smile sky girl woman
MLLS logo signocean sky window light sky teewater
sea silver book cloud peopiean light rock cloud
MLR logo sign ad sky manpeople sky tee cloud
woman man paper  woman window cloud building water dark
MLR-GL ad sign logo sky marwoman sky cloud tee
man picture computer girl people hair water light dark
x 10*
4 T T T T T
|| — SVM :
g 3 MLLS
\U_‘)/ -
£
= 2 L
(@)]
c
£
S 1t
0 1 1 1 1 1
1 1.5 2 2.5 3 3.5 4

number of training samples x 10%

Figure 4.4: Training time of the three baselines for a fixeohbear of categories (100) with respect
to the number of training samples for the ESP Game data set.
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number of training samples

Figure 4.5: Training time of the three baselines for a fixethhar of training samples (10,000)
with respect to the number of categories for the ESP Gamesdata

singular values, wheré is the dimension of the feature vectors, and the correspgntisingular
vectors. This is why we see that the computational time of Mldoes not increase significantly
when the number of samples increases. On the other hand, $dNAR-L; have a quadratic
dependency on the number of samples because they are botkased methods. The difference
between the speeds of these two methods increases in faMitR{L; as the number of samples

increases.

Figure 4.5 plots the change of the training time of the thragebnes (MLRL,, SVM, and
MLLS) for a fixed number of training samples (10,000) withpest to the number of categories
for the ESP Game data set. This time, we vary the number ofjeaés by using 20, 50, 100,
200, and 500 classes. Similar to the previous case, the ML&iRad is the most efficient method
among the compared baselines. The training time of the Ml Riethod has a linear dependency
on the number of categories. Although we would expect SVMhtwsa very similar characteristic

as well, it actually becomes more efficient than MILRas the number of categories increase. This
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is because the SVM optimization terminates early for thesgla that cause the long-tail problem:
the classes that have a very small number of positive samples

To conclude, it is important to note that the proposed ramkiethod is comparable to, if not
more efficient than, one-vs-all SVM in terms of training tin@@onsidering that many researchers
are employing one-vs-all SVM in their image categorizastudies, MLR{,; emerges as a strong
alternative. As our empirical analyses showed, sharedpsigesmethods, or label set projection
methods (i.e., compressed sensing based multi-labelibggrmwhich rely on a similar idea, are
computationally more efficient for large scale data setswéil@r, the proposed baseline can be

combined with such approaches to significantly reduce Hieitrg time.

4.7 Conclusions and Future Work

We have introduced an efficient multi-label ranking scherhetvoffers a direct solution to multi-
label ranking unlike the conventional methods that use afsbinary classifiers for multi-label
learning. Our direct approach enables us to capture thaameships between the class labels
without making any assumptions on how these relationsHipsild be modeled. The strength
of the proposed approach lies in establishing the relatipssbetween the classifiers by treating
them as ranking functions. An efficient algorithm is presedrfor solving the proposed multi-label
ranking approach. Our empirical study of image categdopatvith three benchmark data sets
demonstrated that the proposed method outperforms dtéite-@art methods. Yet, there are some

future directions that can be followed to improve the praabsethod:

e Improving the computational efficiencyThe computational efficiency of the proposed
method can be improved by combining it with label set spacgeption methods such as

compressed labeling [123] to have a sublinear dependenttyeamumber of labels.

e Exploiting label correlationsif the data being used have a label structure that can be mod-

eled explicitly, e.g., hierarchical structure or existpajr-wise correlations between classes,
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such structures can be integrated into the proposed nabigllearning framework.

Robustness to incomplete label assignmente label annotations for training images are
often incomplete due to the high cost of the annotation m®ead the ambiguities between
the class labels. It is important to develop multi-laberh#ag methods that are robust to

incomplete label assignments. One possible solution iméthod we present in Chapter 5.

Multiple kernel learning for multi-label rankingThe proposed multi-label ranking method
is limited to a single kernel use. We discussed how considddbels together in a mul-
tiple kernel learning task can improve both the computati@&fficiency and classification
accuracy for multi-label data in Chapter 3. The next stephis direction is to extend the
proposed multi-label ranking method to multiple kernektéag. To address this issue, we

extend the proposed MLR+ algorithm to multiple kernel setting in Chapter 6.
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Algorithm 2 Multi-label ranking algorithm:

1. Input

e x!', ..., x"; x' € R Training instances

o yl...,y" ¥y € {—1,1}" the assignments of. different classes ta training in-

stances
e K: n x n kernel matrix
e T number of iterations

2: Initialization

e ai=0,i=1,...,n,k=1,... K

:fort=1,...,Tdo

4. fori=1,...,ndo
5: A=0
6: Calculate the leave one out prediction:
f-i(xl) = yiTaiK;,i — (yiTa")Ki,i
7 ComputeA
—i Lo —i Lo
77k+:1+§fk (x') nk—:1_§fk (x')
m ' n—l m ' 77—2‘
A= (Y. 1)7[0,01 ) — Z (Y. _1>7T[0,C} it
K Ki;
k=1 k=1
where functionr () projectse onto the regiorG.
8: Calculate the bound)smax and\,,;, for the line search
Gmin = _C/fii + mln 771;2_ bmin = —Inax T]k_i
Yp=-1 vi=1
Gmax = Ckn - mln n];i bmax = Inax 77];_1,2_
yp=1 yi=—1
if A <0,we have\,;, = 0and,.x = min(amax, bmax)
if A >0, wehave\,.x = 0and\,i, = max(amin, bmin)
9: Solve for\ by using a line search and the bounds, and\,.;,
K i 1 p—if i
Yy, + A— _f (X ) i
k=1 ’
whereh(x,y) = mo(x) if y > 0 andh(x,y) = m0(x) if y <O0.
10: Compute
- L+ Ay — gt fi (%)
L= k=1,...
(675 T0,C] < K@Z’ ) ’ , T
11:  end for
12: end for

(4.14)
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Chapter 5

Multi-label Ranking for Image
Categorization with Incomplete Class

Assignments

5.1 Introduction

In Chapter 4, we have discussed the multi-label learnindplpro in detail, and presented our
multi-label ranking approach, MLR~. Our empirical analyses showed that the proposed ML R-
method outperforms the state-of-the-art multi-labeln@ay techniques. The strength of the MLR-
L, method is its label ranking formulation, which implicitlpusiders the pair-wise comparisons
between the relevant and irrelevant labels for each trgimmage. Simultaneously solving this
formulation for all class labels enables an exploitatiorthaf label correlations, one of the main
research directions in the multi-label learning literatudowever, the performance of multi-label
learning techniques, including the MLRr method, depends on the quality of the training set
and the label supervision. It is unclear if strong multidalearning algorithms would work well

in practice. One of the main concerns about the real worltesys is that the labeling process
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is very expensive and often inaccurate. In image categaizaystems, the image annotations
for the training data set are provided mostly by online usen® online services like Amazon
Mechanical Turk. As a result, the retrieved annotationsoéten incomplete; only a subset of the

true image labels are given by the annotators.

blue, pink, cartoon, animaekar, tail

tree, animal, ear, sanaky

Figure 5.1: Some example images from the VOC 2007 (top roa 8P Game (bottom row) data

sets with their annotations. The labels written in italie provided with the images, whereas the
ones written in bold fonts are the missing labels. These @sagith their missing annotations, are
examples of incomplete labeled data.

In this chapter, we consider the image categorization praldtfom incomplete labeled data.
As an example, an image, whose true class assignmént is, c3), is only presented with class
¢; when it is used for training. Our goal is to learn a multi-lalsarning model from training
examples that have incomplete class assignments. We odf@stproblem as multi-label learning

with incomplete class assignments, and the training datacasnpletely labeled data. Multi-

117



label learning with incomplete class assignments is fratjyeencountered in automatic image
annotation when the number of classes is very large, anaitlisfeasible for users to provide a

limited number of class labels for a given instance, as seéigure 5.1.

Incompletely labeled data also arise when there is a lardgganty between class labels, mak-
ing it difficult for annotators to decide appropriate classignments for given training instances.
Figure 5.2 shows two examples of annotated images from tiie &8ne data set. Some of the
annotated words used to describe these two images can cabggudy. For example, the key-
wordsbaby kid, andboy can be used interchangeably; therefore, an annotator vaks pny of
these labels would probably not include the other two to tireotation set. Also, note that these
annotations are often generated by collapsing annotatedisviicom multiple users. Therefore, it
is very likely that some of the labels that cause the labeliguaity problem might be missing from
the final list of annotations. Both scenarios, missing lal@ld label ambiguity, are frequently

encountered in the image categorization problem.

It is important to distinguish the learning scenario stddiethis work from the related ones in
the previous studies sugiartial labeling[159, 160] andveakly labeled datfl61]. We provide
in Table 5.1 some of the related concepts that can be confuisedhe multi-label learning with

incomplete class assignmemask and briefly highlight the differences.

There is a rich body of literature on multi-label learningnging from simple approaches that
divide multi-label learning into a set of binary classificatproblems [162], to more sophisticated
approaches that explicitly explore the correlation amdagses [10-13]. But none of these ap-
proaches directly address the challenge of multi-labehieg from incompletely labeled data,
which is a more realistic scenario. To this end, we presentléiabel learning framework based
on the idea of multi-label ranking [11,15,27,137]. Unlike tlassification approaches that make a
binary decision about the class assignment for a givennnstanulti-label ranking methods rank
classes for a given instance such that the relevant classeargked before the irrelevant ones.

In order to handle the problem of incomplete class assighmeanextend multi-label ranking by
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baby, boy,child, eye, face, girl, hair, anime, ball, boy, cartoon, drawing, girl,
housekid, mouth, nose, pink, smile group, hair, kid, man, people, play, red

Figure 5.2: Example images from the ESP Game data set anchtiretations. The annotations
highlighted by bold font, which are used to annotate the seoneept/object in the corresponding
images, are examples of the label ambiguity problem.

Table 5.1: Some concepts that can be confused with the ineteipbel assignment problem

problem bib definition

partial labeling [159,160]| Only one of the positive class assignments is correct
weakly labeled data [161] A value indicating correctness of predictions is given
weakly tagged images [164] Some of the class assignments are incorrect
partially labeled data [165] Another name for semi-supervised learning

bandit multi-class learning [166,167]| Learner receives partial feedback, e.g., click data,

exploiting the group lasso technique [163] to combine thersrin ranking the assigned and unas-
signed classes for each image. As will be seen in the follgwiscussions, by using group lasso to
combine ranking errors, the proposed framework is able tonaatically detect the missing class

assignments in the training set and consequentially ingotlo® classification accuracy.

We present an efficient learning algorithm for the proposathéwork. The efficiency of a
multi-label ranking method is important, since a naive iempéntation would result in performing
a pairwise comparison between all possible image pairsjngak difficult to scale to a large
number of classes and training instances. Our empiricdietlon two benchmark data sets for

image categorization indicate that (i) our framework isustbto the missing class assignments
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problem and performs better than the state-of-the-artiffaldel learning approaches in the case of
incompletely labeled data, and (ii) the proposed approadoimputationally efficient and scales

well to large numbers of training examples and classes.

5.2 A Framework for Multi-label Learning from Incompletely

Labeled Data

In order to handle incompletely labeled data, we considetoeixg the group lasso regularizer
when estimating the error in ranking the assigned class@sstghe unassigned ones. The key
idea is to selectively penalize the ranking errors. To ftaté our discussion, we follow the nota-
tion in Chapter 4 and consider an instancthat is assigned to classes. . ., c,. Consequently,
classes:, .1, ...,c, are remained as the unassigned classes.fdf examplex is fully labeled,

following [15], the ranking error for the classification fttions fi,(x), k € [m] is expressed as
>3 max(0, fi(x) — fi(x) +1). (5.1)
k=1 l=a+1

However, given the data is only partially labeled, some efuhassigned class labels may indeed
be the true classes, and the above loss functior foay overestimate the classification error. To
address this issue, we introduce a slack variable, dengteg; bto account for the error of ranking

an unassigned clag®efore the assigned classThis introduces the following constraint

€kl T fk(X) >1+4+ fl(X). (5.2)
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Now, instead of adding all the errors together for an ingtanée.,> 7, >°" ;. we combine

the ranking errors,,; via a group lasso regularizer, i.e.,

(5.3)

The motivation of using group lasso for aggregating ranlengrs is two fold: first, as stated
in the general theory, group lasso is able to select a growmaridibles, which in our case, is to
select the group of ranking errofs;;, k = 1,...,a} for each unassigned clags In particular,
an unassigned classis likely to be a missing class assignment for an instanedien many of
its ranking errorg¢,,; }¢_, are non-zero, which coincides with the criterion of groufestion by
group lasso. Thus, by using the group lasso regularizer, ayeoa able to decide which unassigned
classes are indeed the missing correct class assignmeatsnd group lasso usually results in a
sparse solution in which most of the group variables are aatbonly a small number of groups
are assigned non-zero values. In our case, the sparseosdiaflies that most of the unassigned
classes fok are indeed correct, and only a few unassigned classes atighelass assignments

for x that are missed during annotation.

Letx!, ... x™ be the collection of training instances that are labeletiy. ., Y,,, where each
Y; C Y. For the convenience of presentation, we represent eash atsignmerit; by a binary
vectory’ = (vi,...,y.,) € {—1,4+1}™, wherey, = +1if k € Y; andy, = —1if k£ ¢ Y;. Using

the group lasso regularizer described above, we have tlosvfoh optimization problem:

min 5 Z|fk|m +cZZ > 2(fr(xi) — filxd)), (5.4)

i=11¢Y; || keY;

wherel(z) = max(0, 1 —z) is the hinge loss function that assesses the error in ramkimglasses

¢, andq. In the next section, we discuss the strategy for efficiempymizing Eq. (5.4).
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5.3 Optimization Algorithm

First, we have the following representer theoremfax) that optimizes Eq. (5.4).

Theorem 7. The optimal solution to Eq. (5.4) admits the following esgien forf(x), i.e.,
i=1
whereal,i = 1,...,n are the combination weights.

It is straightforward to verify the above representer tieeor Next, in order to solve Eq. (5.4)

efficiently, we aim to linearize the objective function in.K§.4) by using the following lemma.

Lemma 1. 3" . v/ >ors, C(fu(x) — fi(x})) is equivalent to the following expression:

max { DO Al(frx) - fz(Xi))} (5.5)

i ax(m—a)
v'eR I—at1 k=1
S.t. max e <1
1<I<m—a g ’l‘ -

where~ ; stands for théth column vector of matrix’.

Lemma 1 follows directly from the fact that," .., /> 7_, C(fr(x') — fi(x}))isaL; > norm
of the loss functiorf( fx(x) — fi(x)) and the dual norm of; , iS L., ». See Section A.5.1 for a

detailed proof.

Using lemma 1, we turn Eq. (5.4) into a convex-concave opttion problem as revealed in

the following theorem.

Theorem 8. The problem in Eq. (5.4) is equivalent to the following corgencave optimization
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problem

1 m
max min L =— 2 5.6
{’Y’iEAi};L:1 {fr€Mr e 2 kZ:; |fk|,HK ( )

+CZ Z Z Vil (fe(x) = fi(x1),

i=1 1¢Y; keY;
wherey! = [%i,l]mxm and

2 OkI= 1 m,

i, <1
lgllgl'y.,zb <

The above theorem follows by directly plugging the resultefmma 1 into Eq. (5.4). As
indicated by the above theorem, the introduction of the gilasso is equivalent to introducing a
different Weightv,ivl for each comparison between an assigned class and an urebslgss. It is
the introduction of these weights that allows us to deteemwhich unassigned class is missed in

the annotation process.

Theorem 9. The optimal solutiorf(x) to Eq. (5.6) can be expressed as follows:
fulx) = 3 yiair(xx),
=1
wherea! = (ai,...,al )",i = 1...nis the optimal solution to the following optimization prob-

o 30 (Sooi 3 ettt ). 7

i=1 i,j=1
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where

Q= {a' €R™: I € A;s.t.al =Cy1+Cly] 1}

The proof of this theorem can be found in the Section A.5.2teNloat although the objective
function in Eq. (5.7) is similar to that of SVM, it is the coraints specified in domaify; that

makes this problem computationally more challenging.

Algorithm 3 Multi-label ranking algorithm with Group Lasso

1. Input
o x'.... X" x' € R% Training instances
oyl ....y" vyt € {—1,1}" the assignments of. different classes ta training in-

stances
e K: n x n kernel matrix
e T number of iterations
2: Initialization
° aé-zO,izl,...,n,jzl,...,m
3:fort=1,...,Tdo
4. fori=1,...,ndo
5: A=0
6: Calculate the leave one out prediction vector:
£ yiTaiK:J - (yiTOéi)Kz,z
£ GIET:1I(Q§:: )&bzzyllf(y;:—l),
where/(z) is an indicator function that outputswhenz is true and zero, otherwise.
8: Constructf; andf,* such thaf—i(x")=f | f,’
f_i: components of‘1 that corresponds to positive labels, |;g = 1
f_': components of ! that corresponds to negative labels, W
o: Compute matridl € R7*: H = 1((1/1,) — f,'1] — 1,£77)7

10: Construct matrixy € R*x?
11: fors=1,...,bdo
12: V. = % min(1, M;(CHTZM)
where functionr (z) projectsz onto the regiorR? .

13: end for
14: Calculatex

oy — C’}/]_b

=Cy'1,

a=ao,Jay
15:  end for
16: end for

In order to efficiently solve Eq. (5.7), we consider the bladordinate descent method. In
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particular, we aim to optimize* with the other dual variablegp’, j # i}, being fixed. Without
a loss of generality, we assume that examplis assigned to the firstclasses and is not assigned
to the remaining = m — a classes. For the convenience of presentation, we drop desirand

write o asa. We thus have the following optimization problem fef.
_ K. 2 e
max ; a — Ki; ]; aj — 2 ]; Yrou, g . Ki j, (5.8)
= = = J7F1

wheref) is defined as

Q={aeR™: Iy e R, |y, [ < 1,1 € [0]

Stay, =Cvly, agitap = C')/Tla}-

In the above, we use the notatiof}; = («, . . ., a;) to represent a subset of vectowhose index
ranges from to j. 1, represents a vector afdimensions with all its elements being one. We now

aim to simplify the problem in Eq. (5.8). First, we have foyanc 2

> =20(1]y1L). (5.9)
k=1
Second, we have
m a a+b
Z az = ai + Z ai =C? (1beyT'ylb + 1277T1a) . (5.10)
k=1 k=1 k=a+1

To simplify the last term in Eq. (5.8), we define

) =k > adyle(x %), (5.11)
JF#i

and vectorf~* = (f;'(x}),..., f"(z;)) = (£ £"). Using these notations, the third term in

7
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Eq. (5.8) becomes

i anfi (@) =a £ = Ctr ((1b[fa—i]T + f;"lj]) 7) . (5.12)
k=1

Thus, we have the following optimization problem to solve

1
max 1,1, — SOk, (L, y YL+ 1vy'1,) (5.13)
~E

—tr (671 + 1,067 7))

whereA = {y € RY*": |y o < 1,0 =1,...,b}. The problem in Eq. (5.13) is indeed a Second
Order Cone Programming (SOCP) problem [168]. Although a B@&blem can be solved by
a standard tool like SeDuMi [88], it can still be computatitiy expensive to solve a large-scale

SOCP problem. We thus further simplify Eq. (5.13) by thedwling approximation
Ly v+ 1,y e gty Ty + 7 T) = 2ntr(v '), (5.14)

wheren > 1 is a parameter introduced for approximation. Using the @ypration in Eq. (5.14),

we have
T _ . TA) —iq T —iT
max 1]yl — CKiatr(y ) —tr (6710 + LlE17) 7). (5.15)
where we define
. . T
((1b1j) — £ - 1b[fa—l]T) — 9H = (2hy, ..., 2hy). (5.16)

Lemma 2 shows a closed form solution to Eq. (5.15).
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Lemma 2. The optimal solution to Eq. (5.15) is

mg(hs) . < 7g (hs)|2)
;o= TO) i (1, 9 ) oy, (5.17)
’ [Tg(hs)l2 CK;n

whereG = {z : z € R} } andng(h) projects vectoh into the domairg.

The proof of this lemma can be found in Section A.5.3.

5.4 Experimental Results

5.4.1 Data Sets

In order to evaluate the proposed method for multi-labelnieg with incomplete class assign-
ments, we use two multi-label data sets that were used int€hdpsubsets of the ESP Game and
MIR Flickr25000 data sets.

For MIR Flickr25000, we remove the images that are assigoddwer than three classes.
This procedure gives us 10,199 images from 457 classes. R&& &6 of the examples to form a
training set by random sampling. The bag-of-words modetthas dense-SIFT features, provided
by [101] and [155], are used for image representation.

We use a subset of the ESP data set, in which the average nofrlbbels per image is 8.3.
To study the influence of the number of training samples abel$son multi-label learning perfor-
mance, we vary the number of training samples and labels oWfthe protocol in Chapter 4 to
vary the number of training instances and classes. The nuaflbest images is 10,000. We use
dense-SIFT based BoW representation to construct imageésa

To simulate the situation of incomplete class assignmeat;enduct experiments in four dif-
ferent settings for the ESP Game and MIR Flickr25000 dats. sét the first setting, termed
case-1 there is no missing class assignment for any training imdgehe next three settings,

termedcase-2 case-3 andcase-4 for each training image, we randomly cho@8&o, 40%, and
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Table 5.2: AUC-ROCY) for the ESP Game data set with 10,000 training images andl286es.

| | case-1] case-2| case-3| case-4]

SVM 80.2 79.2 77.5 75.2
PLATT 80.1 79.5 77.9 75.9
MLKNN 81.3 72.5 72.3 72.1
MLLS 79.8 78.9 77.3 75.0
MLR-L, 82.3 82.2 81.1 79.4
MLR-GL | 83.8 83.4 82.8 82.1

Table 5.3: MAP {%) for the ESP Game data set with 10,000 training images ana286es.

| | case-1| case-2| case-3| case-4|

SVM 38.0 36.2 34.0 31.0
PLATT 37.9 36.5 34.5 31.8
MLKNN 35.2 26.4 25.8 25.6
MLLS 38.0 37.0 35.5 33.1
MLR-L, 40.0 38.0 37.1 35.2
MLR-GL | 38.2 37.5 36.8 35.4

60% of the assigned class labels, respectively, and remove filmanthe training data. During the

label removal process, we make sure that each image hasableapositive class label.

5.4.2 Baseline Methods

We use the same baselines as in Chapter 2. SVM [121], PLATT][16ILKNN [125],
MLLS [139], MLR-L,, and MLR<L, the proposed group lasso based multi-label ranking method
that is described in this chapter and specifically addrabsasulti-label learning with incomplete
class assignment problem.

When calculating the kernel matrix, a modified chi-squaredh&l with d(x,x’) = |x —
x'|2/|x + x'|3, is used for the ESP GAME and MIR Flickr25000 data sets bex#uselds sig-
nificantly better performance than the standard versias.set to be chi-squared kernel is chosen

as the mean of the pair-wise distandés, y) [69]. The optimal values for parametetsand the
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Table 5.4: The label predictions by the baselines for fourges from the ESP Game data set,
when40% of the training labels are missing. The first row under thegesagives the true image

class labels. For each baseline, we provide the top ninenexdduabels (three in the top row, and
three it the lower row) ranked from left to right. The hits aratten with bold characters.

labels silver circle round sky orange dark tree road wood
SVM silver diamondcircle dark man cloud water sidewalk ride
jewelry metal wrist computer face wave ocean man boat
tree time wood metal space dance wall animal figh
MLKNN man ad woman man hair face ad hair sky
metal face girl girlsky people girl mariree
logo people sky woman water smile water smile screen
MLLS silver circle tree facedark night water sea sky
round dark line sea eyes ocean ocean man cloud
wood hand orange teeth computeange treewall street
MLR-L; | silver circle round mandark light ocean sky man
dark woman line lights cloudrange water sea wall
orange logo wood shadow night sun men peapded
MLR-GL | round circle silver light dark man sky water man
ad logo square woman night girl wood sea people
line face woman sky orangepeople tree road woman

Table 5.5: AUC-ROC results for the MIR Flickr data set

| | case-1| case-2| case-3| case-4|

SVM 70.2 | 69.1 | 67.6 | 65.7
PLATT 70.0 | 68.8 | 67.3 | 65.0
MLKNN | 68.7 | 67.6 | 66.1 | 64.3
MLLS 759 | 746 | 727 | 715
MLR-L, | 754 | 72.74| 71.7 | 69.1
MLR-GL | 76.2 | 75.7 | 75.0 74.1
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approximation parameterare selected by cross validation.

The parameten approximatetr(~'~) /(1) v v1, + 1]y~ 1,), for the matrixy € R**®,
wherea andb are respectively the number or relevant and irrelevantddbea training image. As
the number of classes increases, we would expectdatidb to increase. Consequently, larger
values ofa andb would require a largen value for a better approximation. This is confirmed by
the cross validation operation that we performed to chobee tvalue in our experiments. For
example, the selectegvalue was 50 when we set the number of labels 50 in the traohatg set,
whereas) = 150 gave the best performance among different valuegtaid for the data subset
with 500 image labels (for the experiments in Chapter 4). rétoee, we can conclude that the

optimal value ofy depends on factors like the number of image labels and theenat the data

set (i.e., the average number of labels per image).

5.4.3 Multi-label Ranking Performance on Incompletely Lakeled Data

Tables 5.2 and 5.3 show the results for the ESP Game data teetria of AUC-ROC and MAP,
respectively, for a training set with0, 000 images. We note that the classification results are
consistent among experiments with different training sgtss and only report the results for the
10, 000 images setting results for brevity. From the tables, wedioserve that the baseline PLATT,
which converts SVM output scores into probabilistic scpmaproves the performance of SVM in
the missing label settings. This is consistent with [169%¢eve the conversion procedure makes
the outputs from different SVM classifiers more comparalblé eonsequently may lead to better
performance for multi-label ranking. On the other handhl#®¥M and PLATT are outperformed
by the direct multi-label learning methods, namely MLR-GU,.R- L, and MLLS; this stresses
the importance of developing multi-label ranking methaatsiulti-label learning.

Second, we observe a significant decrease in classificatmuracy for all the methods when
moving from case-1 to case-4, proving that the missing @dasgynment could significantly affect

the classification performance. On the other hand, comparéte other baseline methods, the
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proposed method (MLR-GL) is more resilient to the missirggsllabels: it only experiences a
drop less thag% in terms of AUC-ROC metric whe60% of the assigned class labels are removed
(case-4), whereas the other methods experience drops3ffota 5%. Similarly, the performance
drop from case-1 to case-4 is less tt3&h for MLR-GL, whereas it is more thabf’; for the other
baselines in terms of MAP score. These results indicatedinstness of the proposed method in

handling missing class assignments.

In Table 5.4, we provide results for sample test images fioenESP Game data set for the
case-3 experiments, whet8% of the assigned class labels are missing from the trainirages.
We give the label predictions by the baselines for four thnegges, and the first row under the
images gives the true image class labels. For each basgbr@ovide the top nine returned labels
ranked from left to right and top to bottom. The correct magchre written with bold characters.
In addition to the clear superiority of the proposed methqutedictions over the other baselines,
there is another point that needs to be emphasized. Thes@alythe left-most image, whose
labels aresilver, circle andround, shows how using label correlations help to address thd labe
ambiguity problem. We see that the three direct multi-ldeatning methods, MLR-GL, MLR-
Ly, and MLLS, successfully retrieve the lalvelindin addition tocircle, whereas SVM baselines
cannot. This is because certain label pairs, suchirate-round girl-womanandlogo-ad are
mostly retrieved together by the direct multi-label leagnmethods. This makes these methods

more robust for the label ambiguity problem.

We also report the results on the MIR Flickr25000 data seerm$ of AUC-ROC score in
Table 5.5. Similar to the ESP Game data set, we observe (@néisant drop in AUC-ROC score
for all the methods when some class assignments are missingtfaining examples, and (ii)
MLR-GL experiences the least degradation, together wighMiL.LS method, in terms of AUC-
ROC score compared to the other baseline methods. We alse tiwdt unlike the ESP Game data
set, the baseline SVM slightly outperforms the baseline PLfor the MIR Flickr25000 data set,

showing that the probabilistic score conversion does nprave the SVM outputs for this data
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set.

To better understand the reasons as to why the proposed MKils-@ore robust, we observe
the outcomes for the training samples after the trainiagiieg step. Table 5.6 shows how dif-
ferent methods perform in finding the missing true labelstfaining examples, where only the
underlined true labels are provided to the learning algord. We observe that MLR-GL is able
to find more missing labels than the other baselines. Unlikeother baselines, when ranking the
label scores for the training images, MLR-GL does not alwayisthe assigned labels at the top
of the ranking. In contrast, it ranks some categories thairatially labeled as irrelevant higher
than the relevant ones, meaning that MKL-GL does not ovérfits is why the proposed method
outperforms the baselines in this task. Table 5.7 shows pkenof annotations generated for
test images for case-4, where 60% of the positive labelseam®ved from the training data set.
These examples confirm that the proposed method gives bhettetation results than the baseline
methods.

Based on the above results, we conclude that the proposémbdiietr multi-label learning (i)
is effective for image categorization, and (ii) is more efiee in handling incompletely labeled

data than the state-of-the-art methods for multi-labehlieg.

5.4.4 Training Time

In Chapter 4, we observed that the MLLS baseline is compmurtaliy more efficient than one-vs-
all SVM and the MLR{,; multi-label ranking method when the number of sampiess greater
than the number of feature dimensiods, Therefore, when comparing the proposed MLR-GL
method to SVM and MLRE; in terms of training time, we exclude the MLLS baseline frdm t
evaluations. Moreover, we are also not including MLKNN altfon, which is significantly faster
than the other baselines, because it only requires simpldaat operations, such as calculating
label prior probabilities. However, MLKNN'’s efficiency caa with a price of lower classification

performance.
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Figure 5.3: The change in the baseline training times (s#owith respect to the number of
training images from the ESP Game data set.

Figures 5.3 and 5.4 plot the change in the baseline traimingstwith respect to the number
of training images and labels, respectively. We use the E&ReZlata set, and the three baselines
that we are comparing are MLR-GL, MLR:, and one-vs-all SVM. All these three methods are
implemented with C. In this experiment, we vary the numbetraiing examples froni, 000
to 40,000 and labels from 10 to 500. Overall, we observe that the matiodomparison have
similar running times. The computational complexity of MLIR and MLR-GL per iteration is

O(mn?), wheren is the number of training examples andis the number of classes.

Note that the time spent on kernel matrix construction isinoluded in this study because
it is shared by all the three methods in comparison. Howenvken the RAM capacity is not
large enough to store the whole kernel matrix, using a prepeded kernel matrix would not be
possible. This would have a larger negative impact on oraHVSVM, since the computational
complexity would becom® (dmn?). This is because the kernel function computations need to
be performed separately for each class. On the other hamaotihputational complexity of the

proposed multi-label ranking methods would®é&in? + mn?), since the classifiers for all labels
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Figure 5.4: The change in the training time (seconds) fomptioposed multi-label ranking algo-
rithms and one-vs-all SVM with respect to the number of imiapels (»).

are learned together by using a single kernel.

5.5 Conclusions and Future Work

In this chapter, we have presented our multi-label rankimgr@ach which addresses the incomplete class
assignment problem. By using the group lasso techniqud f@@®mbine the errors in ranking the assigned
classes and unassigned classes, our method is able to usatlmnships between the class labels to detect
the missing class assignments, making it more robust famiptetely labeled data. Our empirical study
of image categorization with two benchmark data sets detraind that the proposed method outperforms
state-of-the-art methods, particularly when the numbeniging label assignments increases in the training

set. We can list our contributions as follows:

e \We have proposed a multi-label ranking approach which g#iatirect solution to multi-label learning
unlike the conventional methods that use a set of binangifies. Our experiments have shown that

the proposed method outperforms the multi-label learr@edriiques from the literature.

e The proposed method is robust to incomplete class assigrpranem. The performance difference
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between the proposed method and the multi-label learnisglipas increases in favor of the proposed

approach as the number of missing class labels in the tgpgghincreases.

e We have proposed an efficient algorithm that involves usietpsed form solution. The computa-
tional complexity is linear with respect to the number ofseldabels. The computational load of
the proposed algorithm is comparable to that of one-vs¥dMSwhich is one of the most efficient
multi-label learning algorithms. The proposed algoritham @fficiently handle the majority of the

available image categorization data sets with tens of @il of images and hundreds of classes.

The proposed algorithm efficiently and effectively tacktee incomplete class assignment problem.
However, there are three main issues that need to be addressmprove this work further. The first
one is extending the proposed framework to multiple kereatring. Similar to the multi-label ranking
approach presented in Chapter 4, the multi-label rankinthodewe describe in this chapter is limited
to a single kernel function usage. Extension of this work tdtiple kernel learning setting can bring a
significant improvement in classification performance. $heond issue is the computational complexity.
The current algorithm can handle tens of thousands of sanapié hundreds of classes. However, since the
computational complexity is linear in the number of claggela and quadratic in terms of training instances,
training the proposed algorithm in recent large scale intagegorization data sets (millions of images and
thousands of class labels) would not be practical. One wiagpioove the training efficiency of the proposed
multi-label ranking algorithm would be incorporating lalset space projection methods like compressed
labeling [123]. Finally, the proposed method can be extdridehe scenario where not only some of the
“true” class assignments are missing, but some of the cimad are incorrectly assigned to the training
instances. This is a more challenging problem in which welrieeaddress the uncertainty arising from
missing class assignment as well as from noisy class assigismThis scenario often encountered in the

problem of image tagging/annotation [155].
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Table 5.6: Examples of training images from the ESP Game sidtaith true labels and anno-
tations generated by different multi-label learning mehoOnly the underlined true labels are

provided to the methods for training. For each method, tlmeeco(returned) keywords are high-
lighted by bold font whereas the incorrect ones are highdidtby italic font.

Images
brown girl grass green blue, building car city cloud
Labels = . o
hair picture smile tree sky street white window
man blackgreenpeople white | white mansky blue green red
redwomantree blue sky black woman watewindow tree
MLR-GL : L o
girl hair picture grass brown people grass hair picture house
water light yellow old hat face | yellow brown girlcloud building
smile house shirt eye mountain smile facear

girl green blue black face hair window city black hair man
LIBSVM+Platt woman people white glasses manvhite water yellow smile chinesg

D

group tree grasssky light line treesky lake mountain
pink chinese eye red plant pink blue computer wood green
dress hand flower forest table woman boy house hat
green girl space drink sky city window metal truckcar
point face woman shop metal| ball lake lakebuilding room fly
LIBSVM . T : . .
family pot machine light truck line wing roof water website
forest star guy sit glasses | mountain road helmethite tent
white nighthair black usa chinese chair pink silver small
green girl black tree people window city blacksky water
MLR-L1 light hair man white metal metal mountain pink wingar

dark band leaf star glasses | building hair boy computer lake
sky space woman red night truck insect person roof room
truck face street pot group man tree silver road ocean
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Table 5.7: Examples of test images from the ESP Game dataitbemnotations generated by
different multi-label learning methods. The correct keysgare highlighted by bold font whereas
the incorrect ones are highlighted by italic font.

Images
tree water black picture man woman people hair
Labels drawing sea art blue girl picture smile group
boat green city photo kid family
man whiteblack woman people | man womanblack whitepeople
MLR-GL blue greenredtree girl blue green redyirl tree
skywater hair picture old hair sky waterpicture old
brown grass yellow face mountajn brown face yellow grassmile
book smile gray sun flag man hair black movie face
computer brick man yellow street food fire boysmile lady
LIBSVM )
machinesealeaf road ocean metal statue dance couple red
couple forest fly purple toy table toy arm bike gold
book man smile whitblue movie foodnan hair white
LIBSVM<+Platt skyblack woman redgreen . smile womanblue fa}ce .black
peopletree water computer girl peoplegreen redgirl fire
face old hair yellow leaf tree sky boy table eye
tree greenhair movie white hair tree black movie green
black people grass statue leaf| man eyewoman white hand
MLR-L1 . . .
orange old bike red flower facegirl people smiledance
mountainpicture dance eye dirt| red hat orange statue brown
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Chapter 6

Multiple Kernel Multi-label Ranking

6.1 Introduction

In this chapter, we present a multiple kernel multi-labelking (MK-MLR) algorithm for image catego-
rization. The algorithm we propose combines different isnegpresentations to make the best multi-label
prediction for a query image, by learning to rank relevabtla over irrelevant labels. To achieve this goal

and build our algorithm, we combine several conclusionsvdra the previous chapters:

e The experimental results in Chapter 2 showed that, giverffecisat number of training samples,
learning a sparse combination of base kernels (MKl-s advantageous for image categorization.
Not only does it often improve accuracy when compared to Weeage kernel or MKLE, frame-
works, but the sparse solutions also lead to a computalyoe#ficient prediction step. Using a
smaller number of base kernels as a result of sparsity barmsggnificant time gain in terms of feature

extraction cost; one of the main bottlenecks of the preafictitep.

¢ Among the MKL-L baselines we evaluated in Chapter 2, MKL-SILP (Semi-Irdihinear Program-
ming) [71] is the most computationally efficient method. MVHELLP is a wrapper approach, meaning
that learning the kernel weights and classification fumstioan be separated in each iteration. Be-
cause of this, the inner SVM-solver can be replaced by o#@ning algorithms without modifying

the linear programming solution that is used for updatiregkdrnel weights.
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e In Chapter 4, we formulated image categorization as a rfabdél ranking problem. Our experimental
results showed that learning classification functions fbthe classes in a single framework (i.e.,
direct multi-label approaches) gives better predictisuls compared to decomposing the problem
into individual binary classification tasks, i.e., onealsSVM. However, the algorithm we presented
in Chapter 4 (MLR4.,) is designed for using a single kernel. In this chapter, mal gs not only
finding the optimal multi-label ranking solution, but aldwetbest linear kernel combination that

would maximize multi-label prediction performance.

e The experimental results provided in Chapter 3 showed fbatmage classification, there is not a
significant performance difference between using one gdhieemel combination for all classes and
learning a different kernel combination for each class. réfuge, in order to improve the computa-
tional efficiency of training and prediction steps, we prepto learn a single kernel combination that

would benefit all the classes in a multiple kernel multi-lataaking framework.

Based on these stated conclusions, we extend the ML Rethod by integrating it into a wrapper SILP
MKL framework. The goal of developing a multiple kernel nuliétbel ranking method is to address the
two essential factors for improving the performance of imeagtegorization: (i) heterogeneous information
fusion, and (ii) exploiting label correlation of multi-labdata. The main difference between the algorithm
proposed in Chapter 3, ML-MKL-SA, and the MK-MLR algorithmevpresent in this chapter is that the
former aims to improve the training efficiency of MKL for one-all framework. On the other hand, the
goal of the MK-MLR algorithm is to improve the image categation performance by exploiting label

dependencies in multi-label data and optimizing the useffdrdnt image representations.

This Chapter is organized as follows: in Section 6.2, we idewa literature review on MKL methods
that are proposed for multi-label learning. Next, in Settt3, we introduce our multiple kernel multi-
label ranking formulation and provide a computationallijogdnt algorithm, which is based on semi-infinite
linear programming (SILP), to solve it. In Section 6.4, wevpde empirical analyses that demonstrate
the strength of the proposed framework on benchmark dasa ¥¢¢ end the chapter with the concluding

remarks and future directions in Section 6.5.
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6.2 Previous Work

MKL is a very useful tool for the image categorization prahlesince an image can be represented in many
ways depending on the methods used for key-point detediesgriptor/feature extraction, and key-point
guantization; each image representation has differeahgths and weaknesses. MKL offers a systematic
solution to image feature selection and combination forithage representation and learning problems.
However, a vast majority of MKL studies in the literature eelkt the binary classification task. Therefore,
the use of MKL for image categorization is mostly limited tweevs-all framework, which gives suboptimal

performance (see Chapter 4). A detailed survey of binary Midthods is presented in Chapter 2.

We presented a multi-label multiple kernel method (ML-MIG4A) in Chapter 3. Unlike the one-vs-all
scheme, the proposed ML-MKL-SA method does not decompasentiiti-label problem into individual
binary problems. By learning a common kernel for all clasbisMKL-SA takes advantage of multi-label
data by sharing information between the classes. Howdwerglassification functions for each class are

still trained independently, meaning that label correlagi are not used when the classifiers are trained.

One of the main conclusions of Chapter 4 is that direct metfimdmulti-label learning, which optimize
classification functions together, are superior to decatipn based methods such as one-vs-all and one-
vs-one. However, there is a limited number of works that rkte direct multi-label learning method to
multiple kernel setting in the literature. Kernel multipileear regression (KMLR) and canonical correlation
analysis (CCA) are two techniques that are employed in Arabel learning literature to compute a mapping
between data samples and data labels [170]. Yakhnenko eki#dnded the kernel regression model and
canonical correlation analysis methods to the multiple&esetting [171]. The authors proposed a reduced
gradient method to solve for the optimal linear kernel camabion for multi-label learning with KMLR
and CCA. Ji et al. [68] proposed a multi-label multiple kérdearning method that can be considered as a
generalization to KCCA. The goal of the method they propdséd embed the data into a low-dimensional
space by using a hypergraph, which encodes instance-lab@lations. In addition to proposing a SILP

solver, they also approximated the problem in order to ussd¥ev’'s method [85].

Zhang et al. used concept networks to model inter-label migrecies and similarity diversities [172].

Inter-label dependencies exploit the similarity betwemages that share a common label. For a pair of
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images that share some common labels but also containafiffibels from each other, similarity diversity
is used to measure the dissimilarity between these two imagee authors proposed to learn an optimal
kernel not only for each label, but also for each label paoriter to utilize the concept networks.

Our method, MK-MLR is the first attempt of extending multb&l ranking to multiple kernel setting.
One of the main advantages of MK-MLR compared to other naliel MKL methods is that MK-MLR
exploits label correlations without making explicit asqiions on the data. Moreover, learning one shared
kernel combination for all classes is advantageous foselmwith small number of positive samples. Since
MKL- L; methods require a sufficient number of training samples tiopa well, sharing a kernel combi-
nation, which also means sharing information among diffecéasses, benefits classes with a small number
of samples. Finally, by imposing sparsity on the kernel ciaion vector, the proposed method improves

the computational efficiency of training and prediction.

6.3 Multiple Kernel Multi-Label Ranking (MK-MLR)

In this chapter, we use the same notation as in Chapter 3. Welite3 = (54,...,5s), a probability
distribution, for combining base kernels. We use the donfirfor the probability distributiona, i.e.,
B ={BeR:: g1 = 1}. Our goal is to learn from the training examples the optinesthkel combination

3 for all m classes while simultaneously optimizing the correspampdamking functions.

6.3.1 A Minimax Framework for Multiple kernel Multi-label R anking

In multiple kernel multi-label ranking, we aim to leann classification functiongy (x; 3) : Réxdzxds
R,k = 1,...,m, one for each class, such that for any examplg;(x; 3) is larger thanf;(x; 3) when
x belongs to class; and does not belong to clags Note thatf;(x;3) is computed by using the kernel
functionk(-,-; 8) = Zle Bsks(+,+). We define the classification erra?’l for an examplex' with respect

to any two classeg, andc;, as follows

eho = 100} # )¢ (yff U (i 8) - ﬁ(xi;ﬂ))) , (6.1)
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wherel(z) is an indicator function that outputsvhenz is true and zero, otherwise. The Id§s) is defined

to be the hinge loss, whef¢z) = max (0,1 — z).

Following the framework in Chapter 4 and the multiple kereairning problem, we aim to search for
the classification functiong, (x; 3),k = 1,...,m that simultaneously minimize the overall classification

error. This is summarized into the following optimizatioroblem.

m n m

2 i
s +C €k i 6.2
BeBy {fk G’HR m kz ’fk’Hh Z Z k,l ( )

i=1 k,l=1

wherex(x, x') : R x R — R is a kernel functionH,.(3) is a Hilbert space endowed with a kernel function

k(5 B) = Zﬁil Bsks(+,-). andC is a regularization parameter. The dom&inis defined in Eq. (6.3).

- {BeRi 8 =181 < 1}. (6.3)
j=1

By using the following definition foﬁk e

ki = T e = S s (e D

We can rewrite the objective function in Eqg. (6.2) as follows

Zfbfl )Hi (8) +CZZ (v # yi)l (ALy) -

=1 i=1 [,k=1

l\DI»—\

We then rewrite/(z) as

0z) = — xz).
(2) = mae (x — )

Using the above expression fé(z), the second term ih(f; 3) can be rewritten as,

Z Z I(y; # yp) max (v, — YiiAh) -

=1 Lk=1 Yk, €00,C1

142



Then, the problem in Eq. (6.2) can be rewritten as follows,

max min max  g(f,v,8),
BEB fLEH(/B)'m 'le’ke[ovc] ( )

where

n

9(f,7.B > Iy #yk)%k*'iZ(fl,fﬁH(ﬁ)K
=1

=1 1,k=1

.

D DR (RTINS
1=1 k=1
Next, we switch the order of minimization ovérand maximization ovety. By taking the minimization

over f; first, we have
Zyz (ZI Y # i k) r(x,%; ).
=1

In the above derivation, we use the relatibfy; # v;)(y; — yi.) = 2y;. To simplify our notation, we
introducer’; € [0, C]™*"™ wherel] , = 7, if y # y} and zero otherwise. Note that sing, = v} ;, we
havel = [I']". We furthermore introduce the notatififf]; as the sum of the elements in thk row, i.e.,

[T%]; = >"j=, T} ;.- Using these notations, we haygx; 3) expressed as

Zyl mx x; 3).

Finally, the remaining maximization problem becomes

,BI%B% max Z Z Ik — %Z Z ;{(xi,x;,@)y,iy%[lﬂi]k[lﬂj]k

i=1 k=1 k=14,j=1

. . JoSTL <0y Ay
. L k,l —
0 otherwise

r=mq", i=1,....mkl=1,...,m

Note that Eq. (6.4) is a generalized version of Eq. (4.4) dsal might be expensive to solve, as the number
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of constraints i%)(m?), wherem is the number of classes. Therefore, we propose a similapzipgation.

6.3.2 Proposed Approximation

Without a loss of generality, consider a training examyl¢hat is assigned to the firgtclasses, and is not

assigned to the remainirig= m — a classes. According to the definition Bf in (6.4), we can rewrit& as

r= : (6.4)

whereZ < [0, 0]**®. Using this notation, variable, = [I'!]; is computed as

S Z,  1<k<a
T =

S Ziky a+1<k<m,
where 7, ; is an element inZ that is bounded by 0 and'. According to the above definition, for each
instance,r;, is the sum of either thé*" column or thek row of Z depending on whether the labelis
relevant to that instance or not. As discussed in Chapteordhlatingr;, by usingZ enables us to exploit
label relationships during the optimization process.

Using Theorem 4 and Corollary 5 from Chapter 4, we introdlhreevariableag for [T],. We further-

more restricky’ = (o, ..., o) to be in the domaig = {7 € [0,C]™ : >0 7o = >, T} tO €nsure
that feasible™ can be recovered from a solution@f. Then, using the vector notation, we can rewrite the

new optimization problem for multiple kernel multi-laba@nking (MK-MLR) as in Eq. (6.5).

: > % 1
minges, maxaco, Lle8) = {1 an - Han oy K(B)awoyh)}.
k=1
s t. Y Iy =Dag = > Iy = —1)a,
k=1 k=1
ol €0,C], i=1,...,n,k=1,...,m, (6.5)

wherer(x,x’; 8) = >75_, Bjr;j(x,x’) andB; = {,3 ERS Bl =252, 1651 < 1}. It is important to
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note that the only difference between Eq. (6.5) and the apition problem of ML-MKL-Sum (Eq. (3.2)

in Chapter 3) is the domain defined fat

6.3.3 Optimization via Semi-infinite Linear Programming

One of the conclusions in Chapter 2 was that MKL-SILP (Semfinlte Linear Programming) [71] is the
most efficient method among the MKL; baselines. Therefore we will use SILP to optimize Eg. (6.5).
Let's defineS,(c) = — Y1, {17y, — 3(ay o yi) " Ks(ay o yx) }. Then, we can rewrite Eq. (6.5)

as the following min-max problem,

K
maxgep, Milaeo, Z BsSs(av), (6.6)

s=1

For the optimal solutionx*, 6* = S(a*, 3) would be minimal, meaning thai(a, 3) > 6 for any
a € Q,. Therefore, as proposed in [71], we need to solve the folgw8ILP problem in order to find a

saddle-point of Eq. (6.6).

min 0 (6.7)
0eR, BB

1
st Y Bif{-al1+ Sl o i) ' Kj(og o yi)} > 6,

MKL-SILP is a wrapper method, meaning that learning the &kweights and classification functions
can be separated in each iteration of the optimization grode this chapter, we use the MKL-SILP method
with two modifications. Note that, unlike the binary MKL-S?Lor ML-MKL-Sum formulations, we cannot
use an off-the-shelf SVM solver to maximize Eq. (6.5) witbpect too because of the domain definition.

Instead, we need to replace the SVM solver with the MLRmethod that we proposed in Chapter 4. In
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addition, compared to binary MKL-SILP, the number of coastis in each step increases since each class
generates its own constraints.

In order to optimize Eq. (6.7), we use the column generatiethod that is used in [71] and [116] to
solve the MKL-SILP problem: In an alternating optimizatiprocess, the optima|3, ) are calculated for
a restricted set of constraints. Then, for fixel,anew constraints that are determinedday, k = 1,...,m
are generated. This step corresponds to solving for thenaptt for fixed a3. Therefore, Eq. (6.7) can be
solved by simply replacing the SVM solver within the off-thieelf MKL-SIP solvers (Shogun, ML-MKL-

Sum) with the MLR4; algorithm, which is presented in Chapter 4.

6.4 Experimental Results

In this section, we empirically evaluate the proposed mldtkernel multi-label ranking algorithm by com-

paring it to other MKL baselines for the image categorizatiask.

6.4.1 Data Sets

In order to compare our proposed multi-label learning metiocstate-of-the-art MKL methods, we use two
benchmark multi-label data sets that we have discussedctin8eA.1.6.

The MIR Flickr25000 data set [154] is a subset of the MIR Flickr-1M data set that contaibg0R0
images and 457 image tags. We followed [101] and cregliesbts of low level-features: (i) GIST features
[102]; (ii) six sets of color features generated by two défg spatial pooling layouts [103] & 1 and3 x 1)
and three types of color histograms (i.e., RGB, LAB, and H3M) eight sets of local features generated
by two key-point detection methods (i.e., dense samplirdytdarris-Laplacian [104]), two spatial layouts
(1 x 1 and3 x 1), and two local descriptors (SIFT and robust hue descrij@s]). A RBF kernel function
with y? distance was applied to each of the feature sets. In addition to these 15 low-level features,
we extracted 177 different kinds of object banks [173], whémcode semantic and spatial information
regarding an image. Each object bank is a 256-dimensiomabravhich is a collection of response-maps

of pre-trained generic object detectors.
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In order to test how different baselines perform with resgeche numbers of training images, we
created training subsets with different sizes (%2, %5, %26, %50 of the whole data set). Also, after
ranking the categories (image tags) in terms of their fraquénumber of images annotated with them), we
picked the top 200 categories for multi-label learning eatibn. The number of test sampled & 500.

ESP Game data sefThe second data set we use in this chapter is a subset of the&GE®IR data
set. We computed nine base kernels by using low level featufFge first kernel is based on dense-SIFT
descriptors and a Bag-of-Words model witi)00 visual words. In addition to dense sampling, we also
used the Harris-Laplacian (HarLap) [104] method for keyapdetection. For HarLap based Bag-of-Words
model, we created two visual dictionaries with si268 and1, 000 and used two types of spatial pyramid
kernels (i.e.,l1 x 1 and2 x 2 spatial partitioning), leading to 4 different base kernelde also created
color histograms, each with 096 bins, by using three different color spaces, namely RGB, lahB HSV.
Finally, we constructed a base kernel by using GIST featjii@2]. In addition to these low level features,
we extracted 177 different kinds of object banks for ESP Gdata set. In total, we have 186 base kernels
for the ESP Game data set.

To study the influence of the number of training samples aoel$son multi-label learning performance,
we varied the number of training samples and number of ldbelthe ESP Game data set as well. We
created four subsets of the training data (with000, 2, 500, 5,000, 10,000} images). Also, after ranking
the categories in terms of their frequency (number of image®tated with them) in the data set, we picked
the top {20, 50, 100, 200,500} categories to create five different test settings in termthefnumber of

classes. The number of test images is set to 5,000.

6.4.2 Baseline Methods

Following the experiments in Chapter 3, we compare the mepdK-MLR with four MKL methods, two
single kernel baselines, and two average kernel basell&5-GVM and AVG-MLR). The single kernel
baselines are the single kernel one-vs-all SVM scheme (8Kh%&nd the single-kernel multi-label ranking
method (SK-MLR) that we presented in Chapter 4 (as MLB- We ran these two methods for each base

kernel separately and reported the results for the kerriblttve highest score.
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The MKL baselines can be categorized into two groups. Thedimup is the one-vs-all MKL frame-
work, which requires solving one MKL problem separatelydach class. For this group, we use two base
MKL solvers that are shown to be the most efficient wrapper Mié&thods in Chapter 2 : (i) SILP (semi-
infinite linear programming) solver for MKLZ; [71], and (ii) SIP (semi-infinite programming) solver for
MKL- L,. The second group of methods requires learning a singleekeambination simultaneously for
all classes. The two baseline methods that fall into thisigiare: (i) ML-MKL-Sum, which learns a kernel
combination shared by all classes using the optimizatiotihatkin [116], and (i) ML-MKL-SA method: A
stochastic sampling based algorithm we presented in Ghapiéote that all the baselines except MK-MLR,

AVG-MLR, and SK-MLR are based on the one-vs-all framework.

6.4.3 Implementation

The experiments were run on a cluster where each node haouradre Intel Xeon E5620s at 2.4 GHz
with 24 GB of RAM. Since the number of kernels is not small (I82MIR Flickr25000 and 186 for ESP
Game), we did not store and use pre-computed the kerneloestiinstead, all MKL baselines worked with
on the fly kernel computation.

All the baseline methods were coded in MATLAB. For the SVMdzhMKL wrapper methods, we used
LIBSVM [107] as the off-the-shelf SVM solver. MOSEK [89] isead for solving the related optimization
problem for MKL-SIP, as suggested in [52].

For kernel based methods, we used the RBF kernel in our emeets. The regularization parameter
C'is chosen with a grid search ovgr0—*,1071,...,103}. The bandwidth of the RBF kernel is set to the

average pair-wise Euclidean distance between the traimiage pairs.

6.4.4 Evaluation Measures

To evaluate the effectiveness of different algorithms faitiple kernel multi-label learning, we first vary
the number of selected categories and report the Area urder drirve (AUC) over the selected classes.
This procedure is hamed as category based evaluation (peadip, Section A.1.5 for details), in which

we rank test images for each class and the evaluation isrpetbon each label independently, before their
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Table 6.1: The change of category based AUC score (%) wiigert to the number of selected
classes for a subset of the ESP Game data set with 2,50gamages.

number of classes

50 100 | 200 | 500
SK-SVM 70.40| 70.00| 69.85| 69.01
SK-MLR 71.84| 71.32| 70.55| 70.04
AVG 75.86| 75.61| 75.43| 73.66
MKL- L, 77.07| 76.12| 75.60| 73.10
MKL- L, 76.43| 76.05| 75.78| 73.19
ML-MKL-Sum | 76.86| 76.22| 76.05| 73.62
ML-MKL-SA | 77.26| 76.53| 76.33| 73.89
AVG-MLR 76.06| 76.02| 76.11| 73.66
MK-MLR 78.39| 77.69| 77.58| 74.87

average is taken over all classes. We also use image badedtmrg particularly for comparing multi-label
ranking performance. Image based MLR-AUC measures showegowrate is the ranking of outcomes. In
addition, we evaluate the training efficiency of algorithiysthe level of sparsity, training and prediction

times (seconds).

6.4.5 Multi-label Learning Performance

We list the category and image based AUC results resulth®ESP Game data set in Tables 6.1 and 6.2,
respectively. The results in these two tables are obtaigeditying the number of classes for the setting in
which 2,500 images are used for training. For instance, in the settingrevthe number of classes is 200,
we calculate the AUC score for the top 200 classes (columifit&) @nking them based on the number of

positively labeled images they have. We draw the followingatusions from Table 6.1:
e Multiple kernel algorithms consistently outperform siadgernel algorithms.

e Learning a sparse combination of base kernels via MKLgives better results compared to the

average kernel and MKIZ» methods.

e Learning one shared kernel combination for all classes doesause a significant performance drop.
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Table 6.2: The change of image based AUC score (%) withe cespehe number of selected
classes for a subset of the ESP Game data set with 2,500gamages.

number of classes

50 100 | 200 | 500
SK-SVM 75.95| 76.32| 76.68| 76.14
SK-MLR 77.73| 78.97| 80.41| 79.90
AVG 80.81| 81.44| 82.06| 81.67
MKL- L, 81.67| 81.85| 82.06| 81.50
MKL- Ly 79.09| 80.14| 81.24| 80.82
ML-MKL-Sum | 81.51| 81.84| 82.22| 81.78
ML-MKL-SA | 81.67| 81.99| 82.40| 81.93
AVG-MLR 81.86| 82.97| 84.10| 83.47
MK-MLR 83.28| 84.04| 84.93| 84.68

Table 6.3: The change of category based AUC score (%) wiigert to the number of selected
classes for a subset of the MIR Flickr data set with 6,250imgiimages.

number of classes

50 100 | 200 | 500
SK-SVM 65.14| 64.83| 63.75| 62.16
SK-MLR 65.67| 65.36| 64.52| 63.20
AVG 70.31| 68.45| 66.93| 64.88
MKL- L, 70.98| 69.03| 66.96| 64.98
MKL- L, 70.83| 68.86| 67.24| 65.31
ML-MKL-Sum | 71.00| 69.53| 67.93| 65.97
ML-MKL-SA | 71.28| 69.83| 68.21| 66.05
AVG-MLR 72.10| 70.16| 68.35| 66.30
MK-MLR 72.28| 70.34| 68.25| 66.44
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Table 6.4: The change of image based AUC score (%) withe cespehe number of selected
classes for a subset of the MIR Flickr data set with 6,250imgiimages.

number of classes

50 100 | 200 | 500
SK-SVM 63.82| 62.94| 62.28| 62.01
SK-MLR 64.67| 63.96| 63.35| 62.88
AVG 72.89| 71.99| 71.10| 70.69
MKL- L, 73.57| 72.70| 71.53| 71.08
MKL- L, 73.13| 72.35| 71.64| 70.71
ML-MKL-Sum | 73.37| 72.58| 71.62| 70.60
ML-MKL-SA | 73.60| 72.91| 71.95| 70.88
AVG-MLR 75.26| 74.23| 73.71| 72.75
MK-MLR 75.26| 74.40| 73.70| 72.91

¢ Although the proposed multi-label ranking method is noiglesd to optimize category based evalu-

ation measures, it still gives comparable results to MKLand outperforms the remaining baselines.

e The proposed MK-MLR method clearly outperforms SK-MLR and@GMLR baselines, demon-

strating the effectiveness of multiple kernel learningrfailti-label ranking.

The results on Table 6.1 are calculated by performing caydgmsed evaluation. A better way to eval-
uate multi-label raking performance is using image baseatuation: ranking each label given a test image.
By increasing the number of retrieved labels per image, weotdain a sequence of true positive and false
positive rates and calculate AUC values. Since the propdsi€eMLR method optimizes ranking loss,
as expected, it outperforms the other baselines (see TableAso note that, compared to the other base-
lines, the relative performance of all the multi-label reagkmethods (MK-MLR, SK-MLR, and AVG-MLR)
increases, showing that multi-label ranking methods befrefin a larger number of labels. Another con-
clusion we draw from Table 6.2 is that multiple kernel methodtperform their single kernel counterparts.

Although the proposed method outperforms the other baselimterms of the AUC score, it might not
be clear how much impact this difference in the AUC score dauabke in a retrieval system. In order to
get a better understanding of the classification accurdoeesill), we plot the classification accuracies of
different baselines vs. the number of retrieved labelskjranFigure 6.1. To generate this plot we increase

the number of retrieved images from 5 to 30 (the maximum nurobkabels per image is 30 in the subset
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Figure 6.1: The plot of recall vs. number of retrieved lalpds image. The number of training
images i, 500.

we are using).

We see from Figure 6.1 that MLR methods, both AVG-MLR and MK/ yield superior performance
compared to the other baselines. In fact, the accuracy of IR is 2-3% better than that of AVG-MLR
and at least 4-5% better than the remaining baselines.

In order to see how the image based AUC score changes withatdsgpnumber of samples, in Tables 6.5
and 6.6 , we report AUC and MAP scores for the top 200 classémumsettings, with different subsets of
the training data witH 1, 000, 2, 500, 5,000, 10, 000} images.

The following conclusions can be made from Tables 6.5 and 6.6
¢ MK-MLR method is not outperformed by any other baseline iy aatting. In fact, the proposed
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Table 6.5: The change of category based AUC score (%) witrerdgo the number of training
samples for a subset of the ESP Game data set. The AUC scakugated using the top 200
classes.

number of training samples
1,000| 2,500 5,000| 10,000
SK-SVM 67.45| 69.85| 70.13| 70.01
SK-MLR 68.14| 70.71| 71.02| 70.85
AVG-SVM 72.09| 75.43| 77.71| 79.11
MKL- L, 72.27| 75.60| 77.57| 79.36
MKL- Ly 72.40| 75.78| 77.92| 80.23
ML-MKL-Sum | 72.69| 76.05| 78.03| 80.56
ML-MKL-SA | 72.85| 76.33| 78.87| 81.02
AVG-MLR 72.62| 76.11| 78.27| 80.90
MK-MLR 74.12| 77.58| 79.48| 81.61

Table 6.6: The change of image based AUC score (%) with réspabe number of training
samples for a subset of the ESP Game data set. The AUC scakusated using the top 200
classes.

number of training samples
1,000 2,500| 5,000 10,000
SK-SVM 75.97| 76.68| 78.31| 78.69
SK-MLR 79.95| 80.41| 82.49| 83.27
AVG-SVM 80.41| 82.05| 84.21| 84.82
MKL- L, 80.52| 82.06| 84.01| 84.99
MKL- Lo 80.78| 81.23| 84.36| 85.01
ML-MKL-Sum | 80.79| 82.21| 83.07| 83.86
ML-MKL-SA | 80.93| 82.79| 83.82| 84.80
AVG-MLR 82.25| 84.10| 85.35| 86.05
MK-MLR 83.08| 84.93| 85.87| 86.45
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Table 6.7: The change of category based AUC score (%) witredgo the number of training
samples for a subset of the MIR Flickr data set. The AUC scoalculated using the top 200
classes.

number of training samples
500 | 1,250| 6,200| 12,500
SK-SVM 59.72| 62.23| 63.75| 64.51
SK-MLR 60.31| 62.41| 64.19| 64.97
AVG-SVM 60.46 | 64.02| 66.93| 67.85
MKL- L, 61.14| 64.93| 66.96| 68.34
MKL- Lo 60.76| 64.32| 67.24| 68.59
ML-MKL-Sum | 62.20| 65.71| 67.93| 69.23
ML-MKL-SA | 62.21| 65.78| 68.21| 69.61
AVG-MLR 61.11| 65.02| 68.35| 69.97
MK-MLR 63.06 | 66.89| 68.85| 70.33

MK-MLR algorithm significantly outperforms the competintgarithms in the majority of the exper-

imental settings.

e Using multiple kernels improves the performance.

e All baselines experience an increase in their performanicemwthe number of training instances

increases.

We provide the category based and image based AUC scordsefdlIR Flickr25000 data set in Ta-
bles 6.7 and 6.8. We vary the number of training samples tdeeethe increase in the training data set
size affects the performance. One thing to observe fronmethee tables is that the performance of the
baselines is overall worse compared to the ESP Game dategsgireents, particularly when the number of
training images is small. Because of this reason, the paeoce gap between the baselines is not as high
as it is for the ESP Game experiments. Further, we can makleltbeing statements based on the results

in Tables 6.7 and 6.8.

e MKL methods that learn a single kernel combination for afissles (ML-MKL-Sum and ML-MKL-
SA) give slightly better results than training MKL for eadass separately (MKLE; and MKL-Lo)
for the MIR Flickr25000 data set.

154



Table 6.8: The change of image based AUC score (%) with réspabe number of training
samples for a subset of the MIR Flickr data set. The AUC scoalculated using the top 200
classes.

number of samples
500 | 1,250/ 6,250 12,500
SK-SVM 63.89| 64.99| 65.57| 67.81
SK-MLR 64.76| 67.83| 68.21| 69.12
AVG-SVM 65.06| 68.26| 71.10| 71.80
MKL- L, 66.11| 69.29| 71.53| 71.99
MKL- L, 65.40| 68.59| 70.94| 71.86
ML-MKL-Sum | 67.13| 70.12| 71.62| 72.13
ML-MKL-SA | 67.16| 70.18| 71.95| 72.54
AVG-MLR 66.40| 68.84| 73.71| 75.26
MK-MLR 68.12| 70.93| 73.70| 75.91

e The performance difference between MK-MLR and AVG-MLR dsges as the number of training
samples increases. As we have previously discussed in &@tythis is because the quality of all the
base kernels increases with an increased number of trasaimgles, and the advantage that a sparse

combination would bring, i.e., eliminating weak kernelanishes.

e MLR algorithms always perform better than their OvA couptets, i.e, SK-MLR performs better

than SK-SVM; AVG-MLR outperforms AVG-SVM.

6.4.6 Training Efficiency

In this section, we compare the computational efficiencyhef MK-MLR algorithm to the other MKL
baselines in terms of training times. We group the MKL altjoris into two categories: (i) ML-MKL for
learning individual kernel combination for each clas9,NIL-MKL for learning shared kernel combination.
We report the training times for each method under varioge®emental setting with different number of
training samples and classes.

Figure 6.2 and 6.3 compare the training times of the MKL basslfor a fixed number of training
set size,5,000, under four settings with increasing class numbdrs0, 100, 200, 500}. It is clear from

Figure 6.2 that the proposed method is significantly fasim MKL methods that require learning a separate
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Figure 6.2: Comparing MK-MLR to ML-MKL methods that learntopal kernel combination
separately for each class in terms of training time. Wei$860 training images and create four
different settings by changing the number of clagg#s 100, 200, 500}
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kernel combination for each class (MKL; and MKL-L5). The main advantage of the proposed method
is that it avoids repetitiously performing expensive kéwanstruction and combining operations for each
class. The computational complexity of kernel construrct®O (dn?), whered is the dimension of feature
vectors andh is the number of samples. When the number of classes and basglis larger (order of

hundreds), MK-MLR has a significant advantage over thes@oast

We also see from Figure 6.3 that MK-MLR is slower than the twidl\Mbaselines which learn one shared
kernel combination for all classes. In Chapter 3, we probhatithe computational complexity of ML-MKL-
SAis sublinear,O(ml/?’\/m—m), in terms of the number of classes, Therefore, it is not surprising to
see that ML-MKL-SA is the fastest method. Moreover, we capeex the gap between the training times
to increase as the number of classes increases. The reasba fierformance gap between MK-MKL and
ML-MKL-Sum, which use the same SILP solver for kernel wegjl$ the implementation difference of the
dual variable optimizers. Recall from Chapter 4 that ourtiabel ranking method and kernel SVM show
very close performance in terms of computational compfeaitd yield almost equivalent training times
when implemented in the same environment. On the other Isamzk we use a MATLAB implementation
for the MLR algorithm, MK-MLR algorithm gives higher traimj times compared to ML-MKL-Sum, which
uses a very efficient SVM solver that is coded with C. Howenrete that the performance difference does

not increase as the number of training sample increases #iase two methods have the same complexity.

Figures 6.4 and 6.5, which compare the training times of teelines over different data set sizes,
{1,000, 2,500, 5,000}, confirm the conclusions we drew from Figures 6.2 and 6.3. Misland MKL-L,
methods are significantly slower, since they require experkernel computation and combination opera-
tions for each class. In addition, both ML-MKL-SA and ML-MK&um methods are faster than MK-MLR.
However, ML-MKL-SA does not have a computational advantagé did when the comparison was made
in terms of the change in the number of classes. All the baselave similar dependency to the number of

samples. Therefore, we see a similar growth in training ¢ifoe them.
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Figure 6.4: Comparing MK-MLR to ML-MKL methods that learn@optimal kernel combination
separately for each class in terms of training time. We usgyes from 200 classes and create three
settings by changing the data set sf2e000, 2, 500, 5,000}
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6.4.7 Prediction Efficiency

Prediction speed is in general more crucial than trainireggedpn real word systems. Given a query image, a
multi-label prediction system requires calculating arpatiscore for each class. For multiple kernel setting,

an output score for clagscan be computed as,

fk(x) = Z O/l;v‘li(xiv X ﬂk)?

i=1
wherex(., .; 3;) is the optimal kernel function (linear combination of thesb&ernels) for clask. Since

the computation of output function score is standard foba#ielines that use multiple kernels, only the

following three factors affect the prediction speed:

e Multi-label kernel combination: Do output functions forabeclass require a different kernel combi-

nation, or do they share a single kernel combination fungtio
e Sparsity of kernel combination weights.
e Sparsity of output functions.

Therefore, in addition to reporting the actual predictiomets, we also discuss these factors to get a better
understanding of the prediction efficiency. For a fixed nunabéraining samplesy; 000) and classe=22(0),
we report the sparsity of kernel weights and dual varialiégble 6.9 for the multiple kernel baselines. We
also compute two types of prediction times, both reporteskzonds: (i) Average prediction time per single
class, (ii) Total prediction time. Note that the averagedfmtion time per class is not calculated simply by
dividing the total prediction time by the number of clasd®s,it is the time to make a prediction if there was
only one class needed (binary prediction). When the priedicticores for all classes need to be computed,
the prediction time does not increase linearly, since feagxtraction, which is the most time-consuming

step, can be done once for all classes. An analysis on thsitypalues leads to the following conclusions:

e The main bottleneck for prediction time is the feature ettam step. The time it takes to extract all

186 features that are being used for the ESP Game data s@Ris seconds per image. Therefore,
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the level of sparsity in kernel coefficients vector is the andfictor determining the prediction time

efficiency.

The feature extraction time is not uniform among the feastwe use. Dense-SIFT based BowW
representation is the one that takes the most time With seconds. On the other hand, the average
time to compute an object bank feature vectof.i3 seconds. Therefore, sparseness by itself is
not the only factor that affects the feature extraction tirker instance a less sparse solution that
excludes dense-SIFT based BoW representation from theféatlre combination might be more

efficient than a sparser solution that requires using d&hs&-

AVG-SVM and MKL-L, methods employ all base kernels, meaning that they requiracting all
feature types. Since feature extraction is one of the mastresive steps of prediction, having a
non-sparse kernel coefficient vector makes AVG-SVM and MKJdslower in prediction, compared

to the methods that learn a sparse kernel combination vector

The average sparsity of kernel combination weights overladises i87.77% for MKL- L, making
it the method with the fastest prediction step for a singéessl However, when the kernel weights
for all classes are considered together, we see that only e doase kernels are not used for any
class prediction function. Therefore, although individomary classifiers have sparse kernel com-
binations, the overall multi-label prediction sparsitylis29% for MKL- L, making it significantly
slower than methods that use a single kernel combinatiomelaMK-MLR and ML-MKL-Sum,

when all the classes need to be evaluated.

The average sparsity of kernel combination weights thatesmmed throughout the ML-MKL-SA is
51.58% per iteration. However, since the final kernel combinat®the mean of all previous kernel
combination weights, the final sparsity becom&9%, which is significantly lower compared to

the ML-MKL-Sum and MK-MLR methods.

MK-MLR outputs a very sparse kernel combination. Becaustnisf MK-MLR enables a fast pre-

diction by avoiding unnecessary feature extraction andédezonstruction steps.

162



Table 6.9: Sparsity (%) of kernel weights and dual variabdeshe multiple kernel baselines and
the resulting prediction times. These results are obtdireed a subset of the ESP Game data set
with 5, 000 training images and 200 classes.

AVG-SVM | MKL | MKL ML- ML- MK-MLR
Ly Ly | MKLSum | MKLSA

Sparsity(3) 0 87.77) O 77.42 11.29 76.88

Sparsityx) 60.55 61.72| 59.53| 57.88 60.81 47.11
Avg. pred.

time perclass 10.71 3.74 | 5.31 5.31 10.69 4.94
Total pred.

time 11.38 10.76| 11.30 5.58 11.33 5.11

e All OvVA based MKL methods produce similar sparsity percgetafor dual variables. Although the
sparsity of the proposed MK-MLR method is arounws lower than others, MK-MLR also yields
a sparse support vector set. Sparsity of the support satiég@tifor reducing storage requirements,
kernel construction, and output function calculation soktowever, its impact is much smaller com-

pared to the sparsity of the kernel combination weights mesperimental settings.

6.5 Conclusions and Future Work

In this chapter, we presented an efficient multiple kerneltifabel ranking method by putting together
different ideas from the previous chapters. Our experisi@nChapter 4 showed that formulating image
categorization as a multi-label ranking problem leads fmesor performance compared to more widely-
used formulations such as binary decomposition (e.g., QuDQvA). Therefore, we extended multi-label
ranking to multiple kernel setting and proposed the MK-MLUBagithm. Following the conclusions of
Chapter 3, we proposed to learn a shared kernel combinairoallfclasses. This approach improves the
computational efficiency of both the training and predictsteps significantly. MK-MLR algorithm learns
kernel weights and class output functions simultaneousilygthe semi-infinite linear programming (SILP)
method, which is shown to be the most computationally efficierapper MKL solver.

Our experimental results on two multi-label data sets, E@mM&and MIR Flickr25000 demonstrated
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the superiority of the proposed MK-MLR algorithm. MK-MLRfefiently combines heterogeneous data
sources and exploit label correlations to maximize imagegmaization performance. In addition to yielding
strong prediction performance, MK-MLR is also faster tharAQMKL formulations, which require solving
MKL for each class. The sparsity of kernel combination w&gind dual variables also leads to a much
faster prediction step. However, there is still room for im@ment of the prediction speed. One of the
drawbacks of MK-MLR is that the computational complexityté prediction step is linear in the number
of classes. A future direction would be employing label sejgrtion methods, such as compressed sensing,

to make the prediction complexity sublinear in the numbeslagses.
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Chapter 7

Contributions and Future Work

The main contributions of this thesis are efficient multikéenel learning (MKL) and multi-label ranking
algorithms that advance the state of the art in kernel lagrfar image categorization by combining different

image representations and exploiting image label coiogisitfor improved multi-label predictions.

7.1 Contributions

In Chapter 3 we proposed a stochastic approximation basédlabnel multiple kernel learning algorithm

that makes the following contributions:

e Developed a multi-label multiple kernel learning methodttbnables information sharing between

class labels to improve the performance on the classes wsitiiedl number of training samples.

e Demonstrated that learning a shared combination of kefoedd| classes improves the computational

efficiency significantly without adversely affecting thassification performance.

e Proposed an stochastic optimization algorithm with a caatmnal cost that is sublinear in the num-

ber of cIassesO(ml/?’\/lnm), making it suitable for handling a large number of classes,

The multi-label ranking method in Chapters 4 offers thedfelhg contributions:
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e Formulated multi-label learning as a multi-label rankiagk, which is more flexible than classifica-

tion based on binary decisions because of the ability toigeo&n ordered list of image labels.

e Developed an approximation that reduces the number of i@ntst in the optimization problem
and makes it linear in terms of the number of classes as cadparthe quadratic dependency in
the original ranking formulation. The approximation als@kles class correlations to be implicitly

included into the optimization process for an improved ivlaliel learning performance.

e Proposed an efficient optimization problem that is basedarklroordinate descent and a simple line
search algorithm for which the search boundaries are pedviEixperimental results demonstrate that

the computational load of the multi-label ranking algaritis in the same order as one-vs-all SVM.

e Showed superior performance as compared to state-ofrtimetdii-label learning methods on a data

set in which full label information is available.

Studies on multi-label learning with incomplete class @ssients in Chapter 5 offer the following

contributions:
e Formally defined the problem of learning from multi-labetalaith incomplete class assignments.

e Developed a multi-label ranking method (MLR-GL), which égily addresses the challenge of
learning from incompletely labeled data by exploiting theugp lasso technique to combine the rank-

ing errors.

e Proposed a computationally efficient optimization aldworitthat has a closed-form solution. Exper-
imental results demonstrate that the complexity of the irfalteel ranking algorithm is in the same

order as one-vs-all SVM.

e Empirically demonstrated the robustness of MLR-GL for inlgxbete class assignment problem.

We proposed a multiple kernel multi-label ranking methoK@MLR) in Chapter 6, which is an exten-
sion of the MLR4.; algorithm in Chapter 4 to the multiple kernel setting and esathe following contribu-

tions:
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e Proposed a method (MK-MLR) that combines multiple kernatméng and multi-label ranking in a

single framework.

e Developed an efficient semi-infinite linear programming_ Sl algorithm that learns a single kernel

combination for all classes.

e Showed empirically that the MK-MLR algorithm finds the optihshared sparse kernel combina-
tions of the base kernels for all classes. Sparse solutiopsoive the computational efficiency and

robustness by eliminating weak or noisy kernels/features.

e Sparseness is particularly important for the predictiapsin which feature extraction is the main
bottleneck. The experimental results showed that spaskitye kernel combination coefficient vec-
tor reduces the prediction time. Because of its sparseigofjtMK-MLR algorithm reduces the
prediction time significantly (order of seconds) comparedther methods which fail to yield sparse

solutions.

Based on the extensive empirical evaluations made in teisediation, we make the following recom-

mendations:

e Despite the high computational cost in the training steptipie kernel learning is useful for image
categorization. It not only optimizes the classificationfpgnance by choosing the best kernel com-
bination, but the sparse MKL also decreases the predidtiom significantly by minimizing the time

spent for feature extraction.

e MKL is particularly useful when the number of kernels/faatu is high and there are potentially
weak/noisy kernels, which necessitates kernel selectioarf improved classification performance.
In the settings where there is a small number of strong baselse using the average of the base

kernels would give comparable results to MKL.

e Learning a shared kernel combination for all classes is @ gtrategy to follow in multiple kernel
learning for image categorization. Although the assummptidall classes sharing the same kernel
might not work for other application domains, it not only Igie good classification performance, but

also reduces the training and prediction times signifigantl
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e Casting multi-label learning as a ranking problem is anatiffe way to boost the classification perfor-
mance, particularly when the number of classes is high. Thié-tabel ranking methods presented
in this dissertation are able to exploit the label correlaiwithout making strong assumptions on the

data, proving their effectiveness in classification andh&irtgeneralizability.

7.2 Future Work

Despite significant progress in the literature and thisadtasion, there are some shortcomings of the current
multiple kernel and multi-label learning methods for imaggtegorization. We point out the following

research directions:

e Improving the scalability of multiple kernel learning metts: Although MKL methods have been
shown to be very useful in learning an optimal combinatiomifferent image representations and
corresponding kernel functions, they do not scale well aming sets with millions of images and
thousands of classes. In Chapter 3, we addressed the probketarge number of classes. However,
handling a large number of training samples is still the bgighallenge in using MKL. One of the
priorities for MKL research should be making MKL methodslabée to data containing millions of

samples.

e Computational efficiency in the prediction phase: In gehe@mputational efficiency in the predic-
tion step is more important than the training efficiency fragtical systems, since the training phase
can be done off-line. On the other hand, a server, for instamight need to make a decision in a
short time, making a fast prediction algorithm necessatheré&fore, it is important to develop effi-
cient multiple kernel multi-label prediction algorithmidowever, there are only a few studies in the

machine learning literature that target improving the mtash speed.
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Appendix A

Supplementary materials

In this chapter, we first discuss the image categorizatioblpm by briefly explaining the image represen-
tations, data sets, and evaluation measures we use in ceniregnts. Then, we provide the proofs of some

theorems that were not included in the corresponding chapte

A.1 Image Representation

We start with a brief background on image representatiam${tzen briefly explain the bag-of-words (BoW)
model, which is the most widely used low-level image repnést@on technique. We also discuss the use of

high level (semantic) image representations for imagegoaitzation.

A.1.1 A Brief History

The history of the published work on image categorizatiom lmatraced back to the 1960s [174]. The ma-

jority of the studies in the 1960s aimed to model and recagsimple geometric objects in an image. Such
techniques are called “model-based recognition methdd&3,[176]. The goal in model-based recognition

is to define or describe models for object categories and fiattmes between models and the detected
objects in an image.

In the 1990s, we saw a rapid growth in the object recogniti@ndture, probably due to the improve-
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ments in imaging and processing technologies. Althougtethere still methods using local shape-based
features, i.e., modeling via small shape parts [177] andgool approximation of object boundaries [178],

researchers started to use color [179, 180] and texturalbapeesentations [181, 182] as well. The early
works on automatic image annotation, which can be congidasea subset of the image categorization
problem, used image segmentation to extract blobs/redgionsthe image. Once the features are extracted
for each of these regions, the corresponding image labealddwa® extracted for these regions [183-186].
However, this approach requires a successful segmenttgpnwhich is a very difficult task.

Interest in extracting key points from an image and desgilthe local patches around these key points
evolved in the 1990s [187,188]. The popularity of local feas/descriptors has increased even more rapidly
with the success of the SIFT algorithm, the seminal work bywé&$189]. The SIFT approach for local de-
scriptor extraction enabled high accuracy for the imageciat) problem. The bag-of-words (BoW) model
enabled using key-point descriptors beyond the simple é@magtching problem by efficiently constructing
a global representation for an entire image, which is nergder image categorization, based on local
key-point descriptors like SIFT features [190]. Among was approaches developed for image represen-
tation, the bag-of-words (BoW) model is the most popular thués simplicity and success in practice.
Most state-of-the-art methods use the bag-of-words modebrefore, we also use the Bow model in our

experiments.

A.1.2 The Bag-of-Words (BoW) Model

The first step in the BoW model is to detect key points or keyenes from images. Many algorithms have
been developed for key-point/region detection [104,189],leach having its own strengths and weaknesses.
For instance, although dense sampling is shown to be superither techniques for image categorization,
it usually yields a large number of key points and might leatligh computational costs. To have a richer
variety of representations, in our experiments we usedi$thaplacian [104] and Canny-edge detector
based key-point methods in addition to dense sampling.

The second step is to generate local descriptors for theteetdey points/regions. There is a rich

literature on local descriptors, among which scale invari@ature transform (SIFT) [189] is, without doubt,
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Table A.1: Alist of techniques that can be used in each maafiilee Bag-of-Words (BOW) model

Region Detector Dense sampling, random sampling, Harris
points, Harris-Laplace regions, Hessian-Laplace,
Harris-Affine regions, Hessian-Affine regions
Descriptor SIFT, GLOH, Shape context,

PCS-SIFT, spin images, steerable filters, LBP,
cross-correlation, color histograms, HOG

Visual Dictionary k-means, hierarchical k-means, GMM
Encoding/quantization | Vector quantization, Salient coding, LLC, LCC,
Fisher vector, Sparse coding

Pooling technique max-pooling, average pooling
Spatial arrangement | 1x1, 2x2, 4x4, 1x3, 3x1
Kernel function Linear, RBF, polynomialy?

the most popular. Other techniques that we use in our expatsrio improve the recognition performance
are local binary patterns (LBP) [95] and histogram of oehgradients (HOG) [192].

Given the descriptors, the third step of the BowW model is tastmict a visual vocabulary. Both the
dictionary size and the technique used to create the dayooan have a significant impact on the final
recognition accuracy. In our experiments, we use k-meargasing technique to generate the dictionary.
Given the dictionary, the next step is to map each key-poiiat ¥isual word in the dictionary, a step that is
often referred to as the encoding module. Recent studieggxja vast amount of interest in the encoding
step, resulting in many alternatives to vector quantizafeg., Fisher kernel representation [193]).

The last step in the BoW model is the pooling step that pooteded local descriptors into a global
histogram representation. Various pooling strategie® een proposed for the Bow model such as mean
and max-pooling, two techniques that we employ in our expenits. Studies [103] have shown that it is
important to take into account the spatial layout of key f®in the pooling step. One common approach is
to divide an image into multiple regions and construct edgisgm for each region separately. A well known
example of this approach is spatial pyramid pooling [103} tfivides an image intb x 1,2 x 2, and4 x 4
grids.

Table A.1 lists different techniques for each module of tm¥Bmodel. Besides the BoW model, many

alternative low-level image features have been proposeabiect recognition, including GIST [102], color
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Table A.2: Data set statistics

# samples # classeg avg. no. of labels/img avg no. of img/label
Caltech 101 8,677 101 1 85.9
ImageNet subset 81,738 101 1 85.9
VOC 2007 9,963 20 15 729.9
MIR Flickr subset| 10,199 457 2.7 145.4
ESP Game subset 100,000 500 8.5 1691.3

histograms, V1S+ [97], and geometric blur [99].

A.1.3 High-level Image Representations

Although most of the image categorization is based on lagtlgeatures, particularly the Bow model, the
use of high-level features is growing. One of the populahHayel image representations tools is the object
banks method [173]. Li et al. defined a total of 177 differeré-pomputed object detectors using large
object recognition data sets like ImageNet and LabelMe][1R4ch object detector is based on multi-scale,
spatial pyramid representation and linear classifiersnTae image can be represented as a set of responses
to these object detectors (classifiers). The object bankadeis closely related to the image attributes
method [195]. Attributes are human-designed names, sudlistgped”, “has a tail” } and by using a
separate classifier for each attribute, an image can bellbeddrased on the attributes it has. In our multiple
kernel learning experiments, we employ object bank reptaiens in addition to several low level features

to increase the number of base kernels and richness of thesespiations.

A.1.4 Data Sets

The majority of the data sets we use are multi-labeled désa Bewever, in order to compare different mul-
tiple kernel learning solvers, we also use multi-classlsitggpoel benchmarks. Table A.2 provides statistics

of the data sets we used in our experiments.

A.1.4.0.1 The Caltech 101 data set has been used in many MKL studies; therefore, wauabsi in

our MKL experiments. It is comprised of 9,146 images from bbject classes and an additional class of
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strawberry

=45

snoopy crocodile

Figure A.1: Four example images from the Caltech 101 dataitletheir labels.

“background” images. Caltech 101 is a multi-class singleel data set in which each image is assigned to
one object class. As it can be seen from the sample imagegime=A.1, the objects are generally center
aligned, scaled, and are not occluded. Because of thesensed3altech 101 is considered as a relatively

easy data set for classification.

A.1.4.0.2 The Pascal VOC 2007 data set is comprised of 9,963 images from 20 object classes.
like Caltech 101, more than half of the images in VOC 2007 asigaed to multiple classes. Overall, it is
a more challenging data set than Caltech 101 because ofrtfeeMariations in object size, orientation, and

shape, as well as the occlusion problem.

A.1.4.0.3 A subset of ImageNet data setis used in [106] for evaluating multiple kernel learning
methods for image categorization. While the ImageNet deta@ntains 14,197,122 images from 21,841
categories, the data set that is used in the ImageNet Laae Bisual Recognition Challenges contain 1.2
million training images froml, 000 categories [196]. However, following the protocol in [108le use
81, 738 images from ImageNet that belong to 18 out of 20 categoriesipd in VOC 2007; only 18 of the

VOC 2007 categories are available within the ImageNet dettaEhis is significantly larger than Caltech
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Figure A.2: Four example images from the ImageNet data s&atAnd acar image are shown
in the top row. The second row has two dog images, one frordaheatiansynset, and one from
the Mexican hairlessynset

101 and VOC 2007, making it possible to examine the scatglofiMKL methods for image categorization.
Like Caltech 101, ImageNet is also a multi-class singlelalata set, and we use this data set exclusively
for the MKL experiments. Although the objects in the images ot always well-aligned and scaled, this
data set is not considered challenging for classificaticzaiyge objects are roughly aligned, and there is
only mild object occlusion, as seen in Figure A.2. Therefare can still consider the subset of ImageNet
that we are using as a relatively easy data set. Note thagualh the ImageNet data set has a hierarchical
label structure, we will not be considering this structur@iir experiments. For instance, we label the two
images in the bottom row of Figure A.2 as two instances of doggies, although their synsets, which are

dalmatianandmexican hairlessare different.

A.1.4.0.4 MIR Flickr25000 is a subset of the MIR Flickr-1M data set [154] that is useddas-
sification challenges. It was created to be used for the Vismacept detection and annotation tasks in

the IMAGECLEF Challenge [197]. The data set contains 25,008ges with457 types of tags. MIR
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Figure A.3: Two example images from the MIR Flickr data sedftiimage (reflection effect) is by
Szymczak [1] and the right image (fish eye effect) is by WiR]. [

Flickr25000 can be considered as a more difficult data setl&ssification compared to VOC 2007 and
Caltech 101 because it is multi-labeled and it has a largereu of classes. In addition to all the challenges
we have listed for the VOC 2007 data set, the MIR Flickr2508tadet poses extra difficulties because of
the camera effects used by the photographers who took thegtsuch as tilt shifting, post-processing,

cinematic effects, etc. Figure A.3 shows two images witthseftects.

A.1.4.0.5 ESP Game is an online game that involves comparing the annotationswdfiple users
(competitors) for an image to retrieve the relevant lab&88]. The labels that are agreed on by multiple
annotators are treated as true labels, and the annotatarpretide these true labels acquire points for
each correct annotation they provide. The ESP Game datatset contains 00, 000 images with26, 449
annotations, is also one of the more difficult data sets fdtiftael learning. As it can be seen from Figure
A.4, the types of images (e.g., cartoon, video games, fiipreta.) show an immense variety, and images are
not always of high quality (low resolution, occlusion). Wekp500 of the most frequent labels and use the
images that contain at least one of these 500 labels. Althougst of the labels describe concrete objects,

there are also abstract image labels suctigh$ sale view, andsymbol

A.1.5 Evaluation Measures

We use two approaches to evaluate an algorithm for imaggadétation. Given an image, the first ap-

proach is to rank the labels and measure the ability of arritthgo to rank the relevant labels higher than
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Figure A.4: Four example images from the ESP Game data set.

irrelevant ones. In the second approach, given a categaingljl the goal is to measure the performance of
an algorithm in separating positive-labeled images frogatiee-labeled ones. The first approach is image

based evaluation, whereas the second one is category hadedtion.

A.1.5.1 Image Based Evaluation:

Since we focus on multi-label ranking, we rank the classéisdardescending order of their scores for a given
image. The true label assignments (provided by human atoms)eof an image are called relevant labels
and the remaining labels are called irrelevant labels. Boh@&mage, we predict its categories by retrieving
the firstk labels with the largest scores. We varyi.e., the number of retrieved labels, framo the total

number of categories, and compute the following scoresrfamage indexed with:
e True Positive T P;): The number of correctly retrieved relevant labels
e False Positive £ P;): The number of retrieved labels which are not relevant
e False Negative{' N;): The number of relevant labels which are not retrieved

e True Negative T N;): The number of rejected irrelevant labels per image
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True Positive Ratel PR; = 7p-tix-

False Positive Ratef PR; = zp—ix-

TPh;

TP,

Precision= TE D

Once the above scores are calculated for an image, we can ti#aAUC-ROC (area under the curve
for Receiver operating characteristic graph) and AP (@emecision) measures. ROC curve plots TPR
(y-axis) against FPR (x-axis), and the area under the cyewhich is a value between 0 and 100, mea-
sures the ranking performance of an algorithm: higher scare better. Following PASCAL Visual Object
Classes (VOC) challenge, we calculate the precision valoggsponding to a set of evenly spaced recall
levels{0, 0.1, ... ,1.0, and calculate the mean of these precision values to getRhscare. Once AUC-
ROC and AP scores are calculated for each image, we take the afighese scores over all test images

(micro-averaging).

A.1.5.2 Category Based Evaluation:

We use category based evaluation for the multiple kernehieg experiments, which involves comparing
binary MKL algorithms. Note that, unlike the previous case,rank images for each label. Let us redefine

the measures we use for the classification performance:

Category-based True Positivé' P.): The number of images that are correctly assigned a pesitiv

label for a category

Category-based False Positiie/.): The number of images that are falsely assigned a posihe |

for a category

Category-based False Negative/X.): The number of images that are falsely assigned a negative

label for a category

Category-based Recalt: - e
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TP,

e Category-based Precisios: 755

By using the category based precision and recall values,anecalculate the average precision (AP)
score for each category.

As suggested in the PASCAL Visual Object Classes challemganly use the MAP score. The reason
for this is that the three data sets we use for the MKL expartgjgnamely Caltech 101, VOC 2007, and a
subset of ImageNet, give fairly high classification perfarce in terms of AUC-ROC, making it difficult
to distinguish the performance difference between thelinase Therefore, we will be using only the MAP

score for the MKL experiments.

A.1.6 State-of-the-art Performance in Image Categorizatn

The winner of the ILSVRC (ImageNet) 2012 and 2013 Challengsd deep convolutional networks on
raw pixel data [199]. For example, the winner of ILSVRC (Ire&lpt) 2012 uses a trained neural network
that has 60 million parameters and 650,000 neurons, comgsisf five convolutional layers. The deep
convolutional neural network algorithm yielded an errderaf 0.15 for rank-5 predictions, improving over
the second best method in the competition by 10%. The pedocmwas further improved in ILSVRC by
combining several CNNs and an error ratel 9f74% was achieved. Deep convolutional networks produce
very promising results both for classification and detectidnen the number of images is high (in the order
of millions). In this dissertation, we are interested in @eping classification algorithms that would work
on any image representation. In contrast, convolutionatalenetworks learn their own features.

The method ranked second in the ILSVRC 2012 Challenge usetdd different BoW representations,
including SIFT, LBP, and GIST based Fisher vector featuidss approach, which produces an error rate
of 0.26 for rank-5 predictions, learns a separate class$direeach feature, which are 262,144 dimensional
vectors. It then calculates a weighted sum of these indatidiassifiers for the final predictions.

Similar to ILSVRC 2012 Challenge, we see that the top perfiogrmethods in the Pascal VOC catego-
rization challenge combine different representationsstiyd-isher vector representation based) and build
features that are over 300,000 dimensional. The winnerpgimeludes additional modules such as object

detection/localization and subclass modeling. While weetkat the winner method in the VOC 2012 chal-
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lenge, which utilizes object detection, yields a MAP scdr@2%o, the reported result on the VOC 2007 data
set using a single feature is 61.7% (only classificationis itnportant to note that we are interested in de-
veloping methods that perform only categorization, megiiat our algorithms only require a single global
descriptor for each image and do not need localization, (h@unding boxes) information in the training
process.

When very high dimensional feature vectors are used, li8®dis yield results similar to kernel SVMs.
Although linear SVMs are more efficient than kernel SVMs, ithgin bottleneck for them in the prediction
step is feature extraction. On the other hand, our goal mdhssertation is to optimize the classification

performance for features that are relatively low dimensigf,000 to 10,000) by using kernel classifiers.

A.2 Proofs for Chapter 2

In this section we prove the equivalance between Eqgs. (Ad)(A.2) (originally Egs. (2.2) and (2.7) in
Chapter 2).

BB, 2||f||HB+OZ€yf (A1)
Aj C 4 A A.2
)\ERS Z )\J—l{fJEH } Z ||f]||'H + Z Zy f] ( )

We first rewriteC'¢(2) asmax,¢p,c) (1 — 2) and place it into Eq. (A.2) to get Eq. (A.3),

min - max —Z MlIfill3, +Za 1= ' fi(x) . (A.3)
j=1

min
AERS D Aj=1{f;€H;};_, a€[0,CI"

The problem in Eg. (A.3) becomes a convex-concave optimizgtroblem and, according to von New-
man’s lemma, we can switch minimization with respectffoand maximization with respect ta. It is
straightforward to show thatj (x) = """ | a;y'k;(x, x1) is the minimizer. Using this expression, the opti-

mization problem can be rewritten as in Eq. (A.4), which iaaly the same as the dual form of Eqg. (2.2).
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min ma £e ) = 17— a0 y) K(B)(aoy) (A.4)

This is an evidence that Egs. (A.2) and (A.1) are equivaladta@ncludes the proof.

A.3 Proofs for Chapter 3

Proposition 4. Eq. (A.6) is the dual problem of Eq. (A.5).

m ™ o(q n . .
. . H, = - 2 + ¢ ? 1 , A.5
BEA {1et(B) ;y_l{k:l ' {Q‘fk‘ﬂ(m ; (it ))}} Y

k=1

where/(z) = max(0,1 — z) and H(3) is a Reproducing Kernel Hilbert Space endowed with kernel

R(%, X5 B8) = 3251 Bjr; (%, X))

min max {E(ﬁ, o) = Z {[ak]Tl - %(ak oyr) ' K(B)(ay o yk)}} , (A.6)
k=

BeEA o€, 1
whereQ; = {a = (a1,..., ) 1 € [0,C]" k=1,...,m}.

Proof. We first rewritel(z) as

0(z) = —z2),
(2) x?[%ﬁ](w zz)

Using the above expression fé(z), the second term aff;, can be rewritten as,
> max (o}~ alyl fil(x))

According to von Newman’s lemma, we can switch minimizat{omer f;.) with maximization (over

«a). By taking the minimization ovef;, first, we have

fr(x) = Zy};azm(xi,x).
i=1
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Finally the problem becomes

min max {ﬁ(,@, o) = Z {[ak]Tl — %(ak o Yk)TK(B)(ak o Yk)}} .
k=1

BEA ael0,0]

Proposition 5. Eq. (A.8) is the dual problem of Eq. (A.7).

min min max Hy, (A.7)
BEA {freH(B)}y, 1<k<m

m % 2
gleiﬂ?eaé({ {Z{ - Pk o yk) ' K(B)(py OYk)} } } : (A.8)

k=1

where

B = {(pl,...,pm):pkE]R’fr,kzl,...,m,pke [0, C A" s.t. Z)\kzl}.
k=1

Proof. We start by formulating Eq. (A.7) as,

min min min ¢ (A.9)
BEA {freH(B)}i,
subjecttoH, <t, k=1,...,m, (A.10)

with extra variablet € R. Introducing the multiplier\; for H; < t, and using Proposition 1, the

Lagrangian is

t+ Z Ak {[ak]Tl - %(ak oyx) K(B)(ax oyy) — t}
k=1

ST Y N {[akfl (oo yi) TK () (oo yk>} , (A11)
k=1
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wherea € [0, C]™. So, the dual function is

(8. p. ) 2 k=1 {[Pk]Tl —3(pxc 0 Yk)TKA(f) (Px o yK) — t} 1"TA=1
g\P; p, = ,

—00 otherwise

wherep, = ax);. Then the dual problem is

min max max {ﬁ(,@,p, A) = Z {[pk]Tl — %(pk o yk)T@(Pk o Yk)}} )

BEA peB XeA P A

where

B={(p1,-...pm) i P ER} k=1,....,m,p €[0,CN]"}.

Let éniAn maé((pk oyk) K(B)(py o yk) = x. To eliminateX, we rewrite the dual problem as maxi-
€A1 pE

mization overA for optimali. Then, the Lagrangian becomes
—— ) = —1].
w3 3 (o
k=1 k=1
Maximizing over\, we get

2

1 m
o= 33w

k=1

Vi

A= S =
Zj:l V;

By eliminating A, we obtain the following dual of (A.7):

k=1

m N2
Jain max {ﬁ(ﬂ,p) = {Z {[pk]Tl - %(pk oyi) ' K(B)(py 0 Yk)} } } :

Proposition 6. We define potential functiorg = Z—f > j=1BInp;for Band®, = >71", 7 In~* for ~,

183



and have the following equations for updatiBgand~* as

t

Bt Vi
Bt = —F exp(—ns Vs, L(B' AN, T = L exp(—n, T, L(B' 1)), (A.12)
Jéj Y

whereZ}; and Z are normalization factors that ensu'1=~'"1=1.

Proof. We denote byDq (8,8") : Ax A~ Ry andDg. (v,7) : T x T — R, the Bregman distance
functions for@ and~ that are induced bz and®.,, respectively. Note that the Bregman distance between

z andz’ induced by the strictly convex functioh, denoted byD4 (2, 2’), is defined as
Dy (z,2') = ®(z) — ®(z) — VO(2) " (z — 2)

Using the Bregman distance function, we introduce two ptae operators:Ag(gg; A) that projects
solution 3 into domainA along the directiorgg € R* and B, (g; I') that projects solutiory into domain

I' along the directiorg, € R™. These two operators are defined as follows:
— i T 3/ / I T /
As(gp) = min gs8 + Da,(B',8), By(gy) = min g, 5’ + Do, (v's7)

Based on the mirror prox method, we can solve the optimiagiroblem in Eq. (3.3) iteratively. Given

the solution3’ and~* of the current iteration, the new solution, denoted®y' and~‘t!, is computed as
BT = Ag (npVpL(B', 4 ah)), AT =C (-0, V,L(B8,4", ah)), (A.13)

whereng > 0 andn, > 0 are the step sizes. The two gradients are computed as

oL "

9;(B) = % = —% > ok oyi) Kjlawoyk),j=1,....5 (A.14)
J k=1

a(y) = %ﬁj’a) = [ak]Tl — %(ak oyk)TK(,B)(ak oyk),k=1,...,m (A.15)

(A.16)
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By choosing the potential functions as

77 S m
Pg=-"3" BB, y=Y oy, (A.17)
Th = k=1
we have the following updating rules fe#* = (5141, ... gi+1) andyt! = (4111 45+
t
ﬁ;“ = Z_jtg exp (—n,9;(B)),i=1,....,s (A.18)
t+1 %k
no= 70 (mge(ne)) b =1,....m (A.19)

whereZg andZ,ty are defined as

Zh =Y Biexp (—mg;(B") 2= Ahexp (1,9:("))

j=1 k=1

Theorem 10. After running Algorithm 3 ovel iterations, we have the following inequality for the sabuti

p and~ obtained by Algorithm 3

m2

E [A (B,’?)] < (Inm+1Ins) +n, <d252 Xp2ct 4+ n2C2> ’

1
77'yT
whered is a constant term andt|-] stands for the expectation over the sampled task indicedl of a

iterations.

Proof. Define
g’ (8.4 = @ (B,7").....32(8",7Y), & (B',7") = (@ (B4, ... gn(B ).

Using the result of variation inequality [119], we have tledwing inequality for any3 € A and
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vyel

A(BLAY) < (8- B) VLB A — (v —v) TV, L(BLAY). (A.20)

According to Proposition 1, we have

B [§7(8',91)] = VaL(8' 7)., B [8(8'7)] = V,£(8% ).

We therefore can rewrite Eg. (A.20) as

E[A (8] <E[(8'-8) 8B ) - (v - 8784

From [200] (chapter 11), we know that

(B - B) 8% (B, ~") <KL(B|B") — KL(B]|B"™) + KL(B'| 8",

and

(v = 7) T8 (8%, ") < KL(v[|7") — KL(v[+"*) + KL (v [|[v"T).

Therefore, we have

T T
1 YA (87 < KL(BIBY + KLrlly!) + 37 {KL(B8™ ) + KLy 7))
t=1

t=1

We are going to bound each of the three terms on the right hdaasthe inequality. First, it is obvious
that KL(3||8") < Ins and KL(v||y") < Inm given both! and@* are uniform distributions. Second, we

bound KL(3!||3"*!) as follows
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s
Uat

™

S t S
KL(8!8) = Bt n ( f&) } =2 {Zﬂﬁ In (25 exp{m,g; }>}
- /Bj Ty 1

J]=

Bimyg; (B'~") + Zﬁt In(Z}) }

3
Uat

— Z/j{ : ﬁmg] +Zi:ﬁ§1n (iﬁ;fexp[ nygy(ﬁ vt)])}
{-

<.
Il
-
<
|
-

j=1
Z_f —n,E |§ D +In (E {GXP (‘”v@\y@(ﬁt"yt))})}
UEl
Ty

IN

Ny
max [@f(ﬂt,‘yt)]Q} = 27°(8" )%,
where the inequality follows directly from the Hoeffidingeiquality, and: is a constant such thaf =
ey, Similarly, we have Kiy! ') < %87(8",4") 2.

By combining the above results together, we have

T T
E[} A (ﬂt,'yt)] <tm+Ins+n2 Y B [dlg’ (8,7 + 887 X

t=1

Using Eq. (A.14), we can bouni@? (8", v)| as follows
~Brat .t _ ~Brat t

= max —%(a‘“ oy™) K% o y™)

1<5<s (

< %(Cl)TVDV‘l(Cl)] < %(Cl)TVIV‘l(Cl) _ %(Cl)TI(Cl)
1

< 571(72)\0,

whereK = VDV ™! is the eigendecomposition of the PSD mafix \qg = max Amax(Kj), and
S)sS

Amax(Z) stands for the maximum eigenvalue of matdx Similarly, by using Eqg. (A.15) we can bound
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87(8",7")| as

1<k<m

@87 e = max (G(8'7) < " max (nc ﬁncz)

Next, we have the bound simplified as

T

E Z A (Bt, ’yt)

1
< 1 d—)\ 2Ct + n?C?
_m(nm—l— ns)+n,T < 552 C*+n=C* |,

whered is a constant. We complete the proof by using the fag8, +) is jointly convex in both3 and

~; therefore>"[_ A (8,4') > TA (ﬂﬁ) -

Corollary 11. Withé = ms andn, = %m_% V/(Inm) /T, after running Algorithm 3 oveT’ iterations, we
haveE[A(B,4)] < O(m!'/3/(Inm)/T) in terms ofm andT.

A.4 Proofs for Chapter 4

A.4.1 Proof of Theorem 3

For notational convenience, let us define

=k 5 L(fx = fi 5(x, ) m,

Using this, the objective function in Eq. (4.2) can be reteritas follows

Z fus i) g +CZ Z (U7 # vl (A%

1=1 [,k=1

l\')lr—t

We then rewrite/(z) as



Using the above expression foz), the second term ih(f) can be rewritten as,

n m
Z Z Iy #yi) max (Vi — A%
i=1 Lk=1 Vi1 €10.C]

The problem in Eqg. (4.2) now becomes a convex-concave ggtion problem as

min  max ,
Si€Hm A/li’ke[O,C] g(f fY)

where
Do I A v+ 3 > (fi )i
i=1 Lk=1 =1
n m . . .
=D I # v Ak
=1 1,k=1

According to von Newman'’s lemma, we can switch minimizatwith maximization. By taking the

minimization overf; first, we have

Zyz (nyz#yk %k) r(x!,x)

=1

In the above derivation, we use the relatibfy! # yi)(yi — yi) = 2y!. To simplify our notation, we
introducel’; € [0, C]™ ™ whereI; , =~ , if yi # yi and zero otherwise. Note that singg, = 7}, ,, we
havel” = [I']". We furthermore introduce the notatififf]; as the sum of the elements in thk row, i.e.,

[T, = >, ', . Using these notations, we haygx) expressed as

Zyl Jik(xt, %)
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Finally, the remaining maximization problem becomes
max Y Y [k 5 >0 D R Xy [T
i=1 k=1 k=11i,j=1
0<T},<C yp#y,

S. t 7i€,l =
0 otherwise

=", i=1,...,.nkl=1,....m

A.4.2 Proof of Theorem 4 .

It is straightforward to shown € Q1 — 7 € Q2. The main challenge is to show the other direction, i.e.,
T € Qy — T € Q1. For a givenr, in order to check if there existg € [0, C]**? such thatrl : a = Z1,

and7,41.m = Z ' 1,, we need show that the following optimization problem issfbke

min 0 (A.22)

st ZERY 1l:a=21, Tasim =2 1,

For the convenience of presentation, we denotgpy= 1., € R, and byu, = 7.41.x € R?, and rewrite

the above feasibility problem as

min 0 (A.22)

s.t. Zel0,01 g =21y, iy =2 1,4

It is important to note that, for the above optimization gewb, its optimal value is 0 when the solution is
feasible, and-oo when no feasible solution satisfies the condition. By inficdg the Lagrangian multipli-
ers\, € R®for pu, = Z1, and), € R? for i, = Z'1,, we have

i A (g — 21 N (y — 271, A.23
min max A, (u b) + Ay (1o ) (A.23)
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By taking the minimization ovef, we have

max A, fg + A\j o (A.24)

>\a7 b

s.t A1) +1.0 <0

To decide if there is a feasible solution to Eq. (A.22), theassary and sufficient condition is that the optimal
value for Eq. (A.24) is zero. First, we show that the objecfiunction of Eq. (A.24) is upper bounded by
zero under the constrainy, 1, + 1,A] < 0. We denote by\" and \; the maximum elements in vector
A\, and ), respectively, i.ept = max M) and A = fg?écb[/\b]". Evidently, according to the constraint

Al] + 1,7 <0, we haver] + A\ < 0. We then have the objective function bounded as
Ao tta+ N o S AT pra + A1)y = (AT + A1) pta < 0

Second, itis straightforward to verify that zero optimaiueais obtainable by setting, = 0, and; = 0.
Combining the above two arguments, we have the optimal vialu&q. (A.24) is zero, which therefore

indicates that there is a feasible solution to Eq. (A.22) 1By, we prove that € Q2 — 7 € Q1.

A.4.3 Proof of Theorem 6

We first turn the problem in Eq. (4.15) into the following mimax problem
o1 ,
max  min Z aj — 3 Z Yt (x)ay —

i m
e A
aleg0,C] -1 —1

Rx,x) Y lag? + oy o (A.25)

Since the objective function in Eq. (A.25) is convexirand concave im!, therefore according von New-

man’s lemma, switching minimization with maximization bt affect the final solution. Thus, we could
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obtain the solution by maximizing ovex, i.e.,

; L+ My — gupfi (%)
ap = 7T[07c} ( k .2 k k

K(x1, x1)

wheremy ¢)(z) projectsz onto the regiorj0, C]. To compute), we aim to solve the following equation

1 1
= k(x1,x1)

Zyk ro <1+Ayk zyif_z(x‘)> 0 A.26)

Since wheny; = 1, the projection in Eq. (A.26) is}y ¢ and wheny;, = —1, itis m;_¢(j, we could represent

K(x?,x?)

, i1 iy il pmid)y . i )
Yimo,c] <1+Aykﬁ()§f§f;’ﬁ ( )> by h(M,y,@C) whereh(x,y) is already defined in the theorem.

Sincey' ' ol = 0, we have the following equation for

m i 1
g(A)th(yk+)\ 31 (x),y,gc> —0 (A.27)

A.4.4 Proof of Proposition 3

To estimate),i,, we rewriteg(\) as

m L= m 4 _ 1p—i(yd
g(>\) = Zl(y}c = 1)71‘[070} (1 + i;(xile;) ( )> - Zl(yllﬁ = —I)W[O,C} (1 i;(—:(ile;) ( )>

k=1
To estimate),,i,, we search fol,;, such thayy (i) < 0. To this end, we define the following quantity
AN 1— 157 ; 14+ 57 (x)
= Z I(yk: = 1)71-[070} I{(Xl Xl Z I Y = 0 C} K/(Xi, Xi)

k=1

If A <0, we have\,;, = 0. Otherwise, we set i, as the maximum of the following two quantities

Omin = —C’/{(xi,xi) + min <1 + %fk_l(xl)> , bmin = maX <1 — —fk “x )>

yi=—1 =1

It is evidently that one of the solutions will result into thegative value fo(\) since (a) by setting

Amin = Omin, W€ ensure that eveny[ovc}(l + A — %f,j(xi)) is zero, (b) by settind\nin = amin, We have
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that everyrg c1(1 — A + 3 . *(x)) beingC.
To obtain\.,.x, Wwe again checlkh\ > 0. If so, \,.x = 0. Otherwise, the solution fok,,.x should be

the minimum of the following two quantities

o 1 .. 1 . .
Omax = C/{(Xl,xl) — min <1 — §fk_l(xl)> , bmax = max <1 + §fk_l(xl)>

yp=1 Yp=—

A.5 Proofs for Chapter 5

A.5.1 Proof of Lemma 1

We start proving Lemma 1 by writing the dual function of Eq5(5which is as follows:
g =sup L(y, ) =sup > > i l{fi(x) = i) + 3 M1 =D i)
vt 7 1Y keY; 1¢Y; keY;

SinceL(~, \) is a concave function, the upper bound is found by se@ﬁiﬁﬁ =0.

-y PUED A 5,

1Y; keY; 12Y;

The Lagrange dual is to minimizg over all A > 0. The optimal \; can easily be found as

\/Zkeyi 2(fr(x') — fi(x1))/2. Therefore, the Lagrange dual form becomes

S D k) = A1),

1¢v; \| key;

This concludes the proof.

A.5.2 Proof of Theorem 9

We can rewrite(z) as



Using the above expression foz), the objection function can be rewritten as

min max max & A.28
fr€HK ~f €A B €[0,1] 2 Z el (A-28)

+Cz Z Z ’Yi,lﬁii,l (1= fr(ai) + fi(x:)

i=1 keYilgyi
The problem now becomes a convex-concave optimization.dinidg new variablel“?C ; as
Fi,l = ’Yii,lﬂ/i,l + ’Yli,kﬂli,m
we rewrite Eq. (A.29) as

min max — A.29
Fr€HK T (€A, 2Z‘fk’HK ( )

n m

+Z Z Fkl 1 _fk xz)_‘_fl(l'z))

i=1 k=1

Since Eq. (A.30) is a convex-concave optimization problagtording to von Newman’s lemma, we can

switch minimization with maximization. By taking the minimation with respect tg},, we have

C’Z (ZFM - Zrl k) k(z, x;) (A.30)
=1 \Il=1

According to the definition of\;, T ; is nonzero only wherk € Y” (i.e,, y;, = 1) andl ¢ Y” (i.e.,

y,"g = —1). We thus can rewrit¢y.(x) in Eq. (A.30) as

C;(ZFZlJrZPM) x')

By defininga, = >, T4, + >°/%, I} ., we have the result in the theorem.
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A.5.3 Proof of Lemma 2

First, using the notation di,, we rewrite the objective function in Eq. (5.15) as
b b
max ~CKign Y1753 +23 B v.s
s=1 s=1

Sinceally. 5,s =1, ..., bare decoupled in both the domakand the objective function, we can decompose

the above problem intbindependent optimization problems,

max {—CKz‘,mh. s +2hly iyl < 1} : (A.31)
’Y-,seRi ’ ’ I
wheres = 1,...,b. For each independent optimization problem, we introdut@agrangian multiplier

As > 0 for constrainty. 4> < 1, and have

. T
juin_max, —(CK;m+ As)|7.sl3 + 2 7. o + A

The optimal solution to the maximization ofis

h,
Ve TG <As + OKi,m>

In order to decide the value for,, we use the complementary slackness condition, X.&y. ;3 — 1) = 0.
There are two cases: = 0 implies|y. ;|3 < 1, andX > 0 implies|y. |3 = 1. This leads to the result stated

in the Lemma.
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