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ABSTRACT

Ensuring the security of medical records is becoming an increasingly important prob-

lem as modern technology is integrated into existing medical services. As a consequence

of the adoption of electronic medical records in the health care sector, it is becoming more

and more common for a health professional to edit and view a patient’s record using a

tablet PC. In order to protect the patient’s privacy, as required by governmental regulations

in the United States, a secure authentication system to access patient records must be used.

Biometric-based access is capable of providing the necessary security. On-line signature

and voice modalities seem to be the most convenient for the users in such authentication

systems because a tablet PC comes equipped with the associated sensors/hardware. This

thesis analyzes the performance of combining the use of on-line signature and voice bio-

metrics in order to perform robust user authentication. Signatures are verified using the

dynamic programming technique of string matching. Voice is verified using a commercial,

off the shelf, software development kit. In order to improve the authentication perfor-

mance, we combine information from both on-line signature and voice biometrics. After

suitable normalization of scores, fusion is performed at the matching score level. A proto-

type bimodal authentication system for accessing medical records has been designed and

evaluated on a truly multimodal database of 100 users, resulting in an average equal error

rate of 0.72%.
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CHAPTER 1

Introduction

Every year, billions of patients in the United States visit doctor’s offices, clinics, HMO’s,

hospitals, and other heath care providers [9]. Each of these visits either generates a new

medical record or adds to an existing one, necessitating the retrieval of a particular record.

Medical records contain extremely sensitive and personal information and should be stored

under a high level of security in order to protect the privacy of the patient. In terms of

what type of information is generally recorded in a patient’s record, the regulations differ

depending on the type of medical facility and the “accepted medical practice” [9]. This

record documents the patient’s history, physical findings, treatment, and course of disease.

Health care facilities and hospitals have additional federal requirements that they need to

conform to.

1.1 DNA Data

Another issue that should be brought to attention is that, in the future, our DNA se-

quences are likely to be included in our medical records. Deoxyribonucleic acid (DNA) is

the carrier of genetic information in all cells and many viruses. The development of meth-

ods to isolate and clone large DNA fragments has led to much research pertaining to the

human genome project; a project that intends to map and sequence the human genome. Fa-

cilities have already sequenced numerous basic genomes and a “rough draft” of the human

genome with the finishing touches currently underway [18]. Knowledge of the genomes

may reveal important information about disease, development, neurobiology, aging, and
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many other biological processes. While we do not yet completely understand how to in-

terpret the code hidden in our genes, it is just a matter of time before the code is cracked.

Once broken, holders of a sample of an individual’s DNA will be able to learn more and

more about that individual and his or her family. DNA may be considered unique and sig-

nificantly more personal and private than any other information currently in our medical

records. In the past, people have placed special emphasis on information that is potentially

embarrassing and sensitive (such as sexually transmitted diseases) and uniquely personal

(such as a photograph of one’s face). Genetic information contains both these traits; it is

both potentially embarrassing and uniquely personal. An individual is very sensitive to the

disclosure of such private information because he or she could be discriminated, for ex-

ample, by potential employers. Such a situation can be illustrated by considering a patient

with symptoms for early onset of Alzheimer’s disease. If a potential employer discovers

this in the individual’s medical record, this person’s chances of getting the job might drasti-

cally decrease. A similar situation can be imagined when an individual is applying for life

insurance.

No genetic employment discrimination case has yet been decided in either the U.S. fed-

eral or state court, however, the U.S. Equal Employment Opportunity Commission (EEOC)

recently settled the first lawsuit alleging such discrimination [33]. In the lawsuit, the EEOC

alleged that the Burlington Northern Sante Fe (BNSF) Railroad subjected its employees to

blood testing for a genetic marker linked to carpal tunnel syndrome. BNSF was attempting

to avoid the payment of compensation for the repetitive stress injuries that occurred fre-

quently among its employees. At least one employee was threatened with discipline and

possible termination for refusing to take the genetic test. The EEOC alleged that the tests

were unlawful because they were not job related or consistent with any business necessity

and soon reached a settlement with BNSF.
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1.2 Government Regulations

The federal government has initiated regulations to protect the privacy of patients’

medical data. Automation of health care information management has created increasing

governmental and societal concerns about the security of computerized health care data.

While the health care industry has incorporated electronic medical records, data reposito-

ries, networking, Internet access, and other new technologies into its various processes, the

corresponding security measures have not been enhanced. Many weaknesses have been

identified in existing health care security measures from past operations [6]. The Clin-

ton Health Security Act proposed extensive federal rules regarding the collection and use

of medical data. Although the plan itself was never fully accepted, many of its medical

data provisions were used in the 1996 Health Insurance Portability and Accountability Act

(HIPAA) that took effect April 2003. HIPAA included a mandate for standards that would

ensure the security and integrity of health information that is maintained or transmitted

electronically. The rules are numerous and complicated and most are beyond the scope

of this work. Our work will take into account a subset of these regulations. The specific

rule that is relevant here is that the patients are assured, under the HIPAA regulations, that

their medical records will be used only by individuals directly involved in their medical

treatment, payment of their bills, and health care operations. Any other individual or or-

ganization wishing to access the medical records would require specific authorization by

the patient. This rule attempts to ensure that when medical records are properly disclosed;

only the minimum amount of information necessary shall be accessed. This security rule

focuses both on external and internal security threats. An example of a threat from an ex-

ternal source is someone posing as organization employees to access secure information.

The internal threats are of equal concern and are far more likely to occur according to many

security experts [16]. Facilities maintaining medical records must protect against careless
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staff or others who are unaware of security issues, and curious or malicious personnel who

deliberately take advantage of the vulnerabilities of the system to access personal health in-

formation. It should also be noted that these rules are a minimal requirement and individual

facilities can add additional security measures if desired.

1.3 Accessing Medical Records

Some patient records could span hundreds of pages. Accordingly, health care providers,

in the interests of medical science and good patient care, recommend that medical records

should be retained for as long as possible. These two factors suggest the move toward

electronic records will greatly assist in the storage and management of the patients records.

Consequently, since it is convenient for doctors to have a patient’s record readily available

when prescribing or administering treatment, many facilities have adopted the use of tablet

PCs as access devices to retrieve and edit a patient’s records on-line because of its ease of

use. The widespread deployment of wireless access points presents the security problem

of verifying whether the user of the tablet PC is authorized to view the requested private

medical records. The level of security when accessing medical records on a tablet PC must

be high enough to at least meet HIPAA’s regulations. Patients’ records are extremely pri-

vate and especially with the widespread use of DNA analysis, they must be well protected

from unauthorized users. While maintaining the convenience for doctors to be able to eas-

ily access medical records, it must be ensured that the individual using the tablet PC is

authorized and, if that is the case, then only the minimum amount of information necessary

is released based on his/her access privileges.
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Figure 1.1: The use of a tablet PC by a medical professional.

1.4 Biometrics

Current mainstream authentication techniques to access restricted medical records use

lock and key or password authorization. Many security problems arise when implement-

ing such techniques to protect extremely confidential information. With passwords, most

people set them to something they can easily remember such as family member’s names,

birthdays, famous athlete’s names, etc. Passwords of this type can be easily broken by a

brute force dictionary attack [41]. Because of this, many applications now require users to

have passwords that must exceed a certain length, contain both characters and digits, and

are not easily recognizable. A new problem arises with complicated passwords where users

will write them down, since they can no longer easily remember them, possibly allowing an

unauthorized user to locate and use the password. Another obvious security problem per-

taining to passwords is that many people use the same password for multiple applications

because of the difficulty of remembering multiple passwords and which password corre-

sponds to which application. In such a situation, a breach in security in one application

can compromise the security in many other applications. In lock and key authorization,
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the obvious problem is having the key or token shared, duplicated, lost, or stolen. The

risks mentioned above are not acceptable for medical records; an alternate authentication

protocol must be determined.

Biometric authentication alleviates many of the risks associated with lock and key or

password authorization. Biometric authentication can be defined as automatic recognition

of a person based on his or her physiological or behavioral characteristics [35]. To recog-

nize an individual, biometrics relies on who you are or what you do instead of what you

know, such as a password, or what you possess, such as an ID card. Biometric systems

run in either identification mode or verification mode. During identification, the system

recognizes an individual by comparing the captured biometric characteristic with all the

biometric templates that are stored in a database for each user. This process will fail if

the individual is not enrolled in the system. This is referred to as a one-to-many match-

ing because the system must compare the input with every template stored in the database.

During verification, the system recognizes an individual by comparing the input charac-

teristics with the individual’s biometric template. This is known as a one-to-one matching

since it is known which user is attempting to be authenticated. Biometric verification is

positive recognition, the same type of recognition used by lock and key and password au-

thentication. The main difference is that biometrics cannot be lost or forgotten and on-line

biometrics systems require the individual that needs to be authenticated to be physically

present.

1.5 Multibiometrics

Having presented that biometric systems have a security edge over traditional methods

in that they cannot be easily stolen or shared, it should be mentioned that these systems also

have their own limitations. Common problems that may occur in biometric systems are
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Figure 1.2: Visualizations of voice and signature biometrics.

noise in sensed data, intra-class variations, distinctiveness, and spoof attacks [24]. Noise

in the sensed data can be caused from noisy inputs (such as a person with a cold speaking

into a microphone), improperly maintained sensors (such as a defective pen for a tablet

PC), and unfavorable ambient conditions (such as a person speaking into a microphone in

a noisy room). Noise in the biometric data may cause a genuine user to be rejected by the

system or an impostor to be recognized as a valid user. Intra-class variations occur when the

biometric data acquired from a person during authentication is very different from the data

used to generate the biometric template during enrollment. These variations will greatly

affect the matching scores produced. This type of error may occur for a user who signs his

or her name in multiple styles. The problem of distinctiveness occurs when the expectation

of biometric traits to vary significantly between individuals is not met. There may be

large similarities in the feature sets used to represent the biometric traits of two different

individuals. Finally, spoof attacks occur when an impostor attempts to spoof the biometric

trait of an authentic, enrolled user in order to gain access to the system. The biometric

security problems presented assume that a unimodal biometric system is being used; i.e.

a biometric system that relies on the evidence of a single biometric trait. Many of these

limitations imposed by unimodal biometric systems can be either overcome or reduced by
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using multiple biometric traits. These systems can expect more accuracy due to the fact that

they use multiple biometric modalities where each modality presents independent evidence

to make a more informed decision. If any of the mentioned limitations is present in one

extracted biometric trait, there will be other traits for the system to use in its decision. In

terms of spoofing attacks, it becomes much more difficult for an intruder to simultaneously

spoof the multiple biometric traits of a legitimate user.

1.5.1 Biometric Fusion

When using multiple biometric traits in an authentication system, it is necessary to

determine a method by which the individual modalities are combined. This is referred to

as biometric fusion and can be performed at three possible levels: fusion at the feature

level, fusion at the matching score level, and fusion at the decision level. Fusion at the

feature level is expected to perform the best but it is not always feasible. One problem is

that most commercial systems do not provide information at this level. Also, the feature

spaces of different biometric traits may not be compatible. Additionally, concatenation

may result in a feature vector with a very large dimensionality leading to the “curse of

dimensionality” [40]. Because of these limitations, we will use fusion at the matching

score level. Three matching score level fusion techniques have been investigated by Ross

and Jain [23]. The first is the sum rule where the weighted average of the scores from the

multiple modalities is used to make the final decision. A second method uses a decision

tree where a sequence of if-then-else rules are derived using the training set in order to

assign a class label to the input data. The third approach is to use a linear discriminant

function where, first, the score vector is transformed into a new subspace that maximizes

the between class separation. The test set vectors are then classified by using the minimum

Mahalanobis distance rule. In their tests, the sum rule provided the best performance.
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When using this rule, user specific weights can be incorporated to improve the accuracy

of the biometric system. Different users tend to adopt differently to individual biometric

indicators; accordingly, if one trait is more consistent (lower intra-class variability) than

the others, it should be given more weight. These weights can be discovered over time

by examining the stored template of the user, the query set provided by the user, and the

matching scores for each of the individual modalities. Such a system should provide the

security and convenience desired for our application.

1.6 Proposed Solution

As mentioned earlier, user names and passwords are not only insufficient for security

reasons but also inconvenient for the user of a tablet PC. This is because the tablet PCs

normally use a stylus or pen for user input instead of a keyboard. Input can be conveniently

obtained from the user either using the pen or the microphone that all tablets are built

with. The types of biometric information that can be gathered unobtrusively from these

devices are a person’s signature and voice. Our solution to this problem will use both of

these biometrics in order to construct a multimodal authentication system for accessing the

patient records.

Several challenges arise when attempting to build a system that uses these biometrics

for user authentication. The first is speaker identification; the system must find out which

doctor or patient is trying to log into the system by what the user is saying. The voice

biometric is more suited for identification compared to signature since a person’s signature

is sometimes very difficult to associate with the actual name. Sometimes, it actually need

not pertain to the person’s name in any apparent way. Also, the error rates associated with

the signature trait are generally higher than those of the voice biometric. Rather, we will use

the spoken name of the user and attempt identification based on the audio signal captured
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using the microphone. The next two challenges are of verification; using both speech and

signature. Speaker verification is different from speaker identification in that it is not trying

to find a speaker out of a group of speakers but trying to use the characteristics of the voice

to make sure that the user matches with the template of the claimed identity. Signature

verification has a similar challenge where the characteristics of the digital ink input by the

user are examined to see if the signature is genuine. The final challenge is to provide a

sufficient level of security so that it is extremely unlikely that an unauthorized user is able

to log in and, at the same time, make it very likely that a genuine user is able to access the

system.

1.7 Performance Evaluation

The performance of biometric verification systems is typically described in terms of

the false accept rate (FAR) and a corresponding false reject rate (FRR). A false acceptance

occurs when the biometric system allows an impostor to access the system. A false reject

occurs when a valid user is rejected from gaining access to the system. These two errors

are directly correlated, where a change in one of the rates will inversely affect the other. A

common alternative to describe the performance of system is to provide the equal error rate

(EER). This value corresponds to the point where the false accept and false reject rates are

equal. In order to visually depict the performance of a biometric system, receiver operating

characteristic (ROC) curves are drawn. Biometric systems generate matching scores that

represent how similar (or dissimilar) the input is compared to the stored template. This

score is compared to a threshold to make the decision of rejecting or accepting the user.

This threshold can be changed in order to obtain various FAR/FRR combinations as shown

in Figure 1.3.
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Figure 1.3: Plot of the genuine an impostor distributions and a decision threshold. The
genuine and impostor distributions are labeled along with a threshold. False acceptances
are impostor users who are accepted by the system and these occurrences are darkly shaded.
False rejections are genuine users who will be rejected by the system and these occurrences
are lightly shaded.
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The ROC curve displays how the FAR changes with respect to the FRR and vice-versa.

An example ROC curve is shown in Figure 1.4. These curves can also be plotted using

the genuine accept rate versus the false accept rate. The genuine accept rate is simply one

minus the FRR.

Figure 1.4: Example of a receiver operating characteristic (ROC) curve.

1.8 System Design

A schematic diagram of the multimodal system is presented in Figure 1.5. A user,

whether it is a doctor or patient, trying to gain access to patient records will first have

to speak his or her name. Next, if the name is correctly recognized by the system, the

user will enter his or her signature. The system will uses the characteristics of both the

voice and the signature to decide if the user is authorized to access the system. The above
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situation assumes that the user is already enrolled in the system. Enrollment requires the

user to input several signatures and speak their name multiple times in order to create a

template for that user. This template, containing the description of the user’s voice and

signature, is stored in the system’s database and later used for matching. During matching,

the first task the system needs to perform is speaker identification; i.e., determine which

user is speaking. This can be done using a simple speech to text recognition engine and

then comparing the resulting text with the stored user names [25]. We use a more robust

technique that acoustically analyzes the voice signal to perform identification and generates

a list of the potential identities. This is done so that the verification process is a one to one

matching as opposed to a one to many matching. If it is known exactly which user is trying

to log into the system, only one template needs to be matched with the user input. This

not only greatly increases the speed of the authentication process, because the matching

algorithms are responsible for the bulk of the processing time, but also the level of security.

If the identification generates at least one potential identity enrolled in the system, the

verification process will begin. Voice verification tries to match the characteristics of the

input from the microphone with the stored voice template of the user [11]. Most matching

algorithms output a score that represents how close the input is to the template. Verification

is performed on each of the potential identities and the identity with the highest score is

used. If this score is greater than some preset threshold then the voice can be accepted as

genuine. The signature verification works in a very similar fashion where the digital ink

is used as input to match with the stored signature template of the identity generated by

the voice recognition system and a matching score is produced [21]. Using both voice and

signature verification will reduce the probability of unauthorized access while maintaining

a desired genuine accept rate. The system will be able to handle variations in the data by

analyzing both the biometric modalities to obtain a decision. A method for combining the
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matching scores of the voice and signature is explored and the result is compared against

a threshold in order to decide if the input is genuine. This threshold can be adjusted such

that the performance of the system will meet the requirements of the domain.

Figure 1.5: Proposed system for tablet PC multimodal authentication.

The database of medical records is partitioned based on access privileges. The billing

department does not need to view a patient’s entire medical record but only the parts re-

garding the patient’s current address, insurance information, etc. This type of information

is included in the top partition. The second partition is for use of medical professionals and

contains information regarding diseases, allergies, medical history, prescriptions, etc. The
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final partition of the database stores information most private to the patient and will only

be released to very few individuals that require access to this information. Accordingly,

only the minimum amount of information is revealed to the individual wishing to access

the records.

1.9 Past Work

As previously mentioned, the HIPAA rules were initially introduced in 1996 and in-

cluded provisions that required the U.S. Department of Health and Human Services (HHS)

to adopt national standards for electronic health care transactions. In 2001, as one of the last

acts of the Clinton Administration, HHS issued “final” regulations entitled ”Standards for

Privacy of Individually Identifiable Health Information.” This sparked much protest among

the health care industry and, in particular, the health insurance companies who caused the

Bush Administration to agree that the regulations were defective and opened them up for

public comment again. Many of the deficiencies had to do with the complexity of the rules

and the financial burdens that it put on the health care industry but they also included a

key deficiency where biometrics was treated as a threat to medical security. Some of the

rules prevented the use of biometrics because of the possibility of de-identification and

re-identification of protected health information. It was thought that biometric templates

could be used to reconstruct a person’s identity and thus should not be used to protect

medical records. The International Biometric Industry Association (IBIA) added its public

comment, asking the Bush Administration to treat biometrics as a strong means to secure

medical privacy. The charter explained that the biometric templates normally use propri-

etary and carefully guarded algorithms to secure a record and protect it from disclosure.

Having access to the template alone is of no use since it cannot be reconstructed to reveal

a person’s identity and thus does not meet the definition of a “personal identifier” [5]. The
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requested changes were adopted, allowing biometrics to be used as an effective security

tool to protect the medical records of patients.

1.9.1 Biometric Systems in Practice

Before the HIPAA rules were finalized, biometrics was already being used to allow

patients to access their medical records, authenticate the identity of patients to reduce med-

ical treatment errors, and prevent unauthorized personnel from accessing a patient’s record.

After the changes were made to the HIPAA rules as a result of the public comments and

the compliance date of April 2003 was set, the appeal of biometrics as a solution to the se-

curity of medical records was more widely recognized. Many facilities such as A4 Health

Systems [1], Blue Cross & Blue Shield of Rhode Island [2], Sharp Health care [7], Inova

Fairfax Hospital [4], and Health Highway [3] have decided to replace insecure passwords

with fingerprint authorization. Others, such as the University of South Alabama Hospi-

tals [8], have switched to iris technology to grant permission to clinicians with appropriate

access to view protected information and associated reports. The biometric systems being

used in the medical industry are primarily unimodal. The fingerprint biometric seems to

be getting the most attention with companies such as SecuGen, Bioscrypt, Identix, and

SAFLINK integrating their solutions with the medical facilities mentioned above. Iris and

signature biometrics are also being utilized in some rare occurrences.
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CHAPTER 2

On-line Signature Verification

Signature verification is a behavioral biometric that is developed over the course of a

person’s lifetime. Many people are very accustomed to the process of signing their name

and having it matched for authentication. This process has been in practice for centuries

and is well accepted among the general public to protect confidential information. The use

of signature is prevalent in the legal, banking, and commercial domains.

Depending on the aquisition process, automatic signature verification systems are di-

vided into two catagories; on-line and off-line. In off-line systems, a signature written on a

piece of paper is captured optically with a camera or scanner. In on-line systems, the data is

captured while the signature is being written. Aquisition is this form requires a special pen

or digitizing tablet. These devices are able to capture both the static and dynamic attributes

of a signature. Static attributes are the visible properties of the signature (e.g. shape, size,

position) while dynamic attributes are the invisible properties (e.g. timing, pressure, speed).

The invisible information gathered by on-line signatures makes them more reliable because

timing and pressure attributes are much harder to imitate than the static information of a

signature. Consequently, on-lines signatures are the focus of this chapter. Examples of

both on-line and off-line signatures are displayed in Figure 2.1.

Work on automating the process of signature verification has been ongoing since the

1970’s. In the following section, we highlight some of the major contributions to the area

and attempt to provide an encompassing view of the various approaches used to solve the

problems of automatic signature verification. A signature verification system must provide

a solution to the problems of preprocessing, feature extraction, matching, and performance
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(a) (b)

Figure 2.1: Examples of an off-line (a) and an on-line (b) signature. The on-line signature
is displayed in an x versus y versus time plot.

evaluation. A diagram of a generic signature verification system is shown in Figure 2.2.

Training signatures are provided to create a template for a user. These signatures are pre-

processed and features are extracted and then stored. When a template is entered into the

system with a claimed identity, the signature is preprocessed and the features are extracted.

The features of the template signatures for the claimed identity are then matched with the

features of the input signature. Finally, a matching score is produced.

2.1 Literature Review

One of the first published works on on-line signature verification was performed by Liu

et al. [19]. In this work, handwriting was modeled as ballistic motions that do not involve

sensory feedback. An example of another action that this model fits is the rapid saccadic

motion of the eye, which consists of small jumps of 10-30 milliseconds in duration. Us-

ing this model, they conclude that forces are produced strictly in terms of magnitude and

duration. Accordingly, a pen was designed that measures the muscle forces in the hand
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Figure 2.2: A typical signature verification system.

by recording the acceleration signal over time. In this study, it was noticed that the time

interval for signing one’s name is remarkably consistent.

To perform verification, the input and template signatures are divided into segments

where the divisions are the points between strokes1. A stroke was further divided if it

consisted of more than two seconds in duration. Next, cross correlation is performed using

the acceleration signals for each segment. A final matching score is computed by summing

the segment correlations, where each is weighted by 1 divided by the number of points in

the segment. A form of majority voting was used when a input signature was compared

against a set of templates in order to make a decision. A total of 1332 genuine signatures

from 70 subjects was collected along with 287 skilled forgeries to be used as the database.

The best results obtained by this system was a FRR of 2.9% with a corresponding FAR of

2.1%.

1A stoke is defined as the points between a pen down and a pen up.
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A subsequent work by Liu et al. [31] used the same regional correlation algorithm

as before but also experimented with the use of pressure information. It is argued that

the full pressure signals provide little discriminatory information between subjects. In

order to extract the most discriminative information from these signals, only the minutiae

of the pressure signals are used. In this context, minutiae are calculated by subtracting

the average pressure waveform from each segment and keeping only the points of zero-

crossings. The pressure waveform consequently becomes 1 dimensional as a function of

time (only the times of each zero crossing are stored). Cross correlation is again used

to compare two pressure waveforms and this result is averaged with the correlation value

from the acceleration signals. Tests were performed with 201 subjects and included more

than 6000 signatures. Ten skilled forgeries2 were collected for 40 of the users. Using a

simple form of template updating, results of 1.7% FRR and 0.4%FAR were reported for

random forgeries3. Only two out of the 400 skilled forgeries were falsely accepted, while

no genuine signature were falsly rejected.

Following many achievements in the area of automatic signature verification and writer

identification, Plamondon et al. presented a survey of the current state of the art in 1989

[34]. This work identified the five problems that need to be addressed in order to create

a signature verification system: data acquisition, preprocessing, feature extraction, com-

parison process, and performance evaluation. By analyzing the literature according to the

solutions to these problems, the authors characterized the current verification methods into

two classes: functional and parametric. In functional approaches complete signals (x(t),

y(t), v(t), etc.) are used directly or indirectly to compose the feature set. The challenges

with this approach is during the matching process where two signals that likely have various

2Skilled forgeries are signature attempts by an impostor where the impostor is able to see how the genuine
signature is signed before attempting the forgery.

3Random forgeries are genuine signatures taken from one user and used as input for another user.
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durations and undergo non-linear distortions have to be compared. The advantages are evi-

dent during the feature selection process because the signals themselves or their derivatives

are used as the features. The other class of verification methods is the parametric approach.

These methods extract a fixed number of parameters from the complete signals. The dif-

ficulty with this approach is selecting the salient parameters that can distinguish between

subjects and are consistent among the same subjects. However, once the parameters are

selected, the matching of the parameters can be done using a variety of simple techniques.

The authors conclude that the functional approaches are normally more computationally

expensive and thus slower but they also provide higher accuracy.

Hidden Markov Models (HMM) are extremely powerful in speech recognition and have

also been used in signature verification. Yang et al. trained HMMs to model the sequence

of normalized angles along the trajectory of a signature [42]. The normalized angles were

computed by extracting the sequence of absolute angles along the points of the signature

and subtracting the starting angle from each absolute angle. This calculation is used to

make the features rotational invariant. Also, size normalization is performed by uniformly

dividing the signature into K segments, where K is the observation length for input to the

HMMs. The actual features that are used as input for a given segment k, consisting of n

samples is calculated using the equation

φ(k) = arctan

[∑i+n
l=i+1 s

(k)
l sin θ

(k)
l∑i+n

l=i+1 s
(k)
l cos θ

(k)
l

]
, (2.1)

wheresk
l is the distance between samplesl andk andθ

(k)

l is the relative angle between

samplesl andk. Next, this angle is quantized into sixteen discrete symbols. The samples

of when the pen is up and when the pen is down are used independently and, accordingly,

there are sixteen symbols for the angles when the pen is down and also sixteen different

symbols when the pen is up. The path of the pen up samples is calculated by interpolating

between pen downs. A form of user dependent thresholding is used, in which the threshold

depends on the output of the models during training. The system was tested on a database
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of 496 signatures from 31 signers. Eight signatures from a subject were used for training

the model and the other 8 were used for testing. In their experiments, only random forgeries

were considered. Several parameters such as the number of states, the observation length,

and various architectures for the HMMs were explored. For the individual HMMs, the

Bauman Welch algorithm was used for both training and classification. Their best result

exhibited a FAR of 6.45% and a corresponding FRR of 1.18%.

Many problems in pattern recognition have used integral transforms to perform feature

extraction (e.g., Hadamard, Hough, Walsh, etc.). This type of feature extraction has also

been attempted for signature verification. A successful signature verification system using

an integral transform was developed by Lam and Kamins [29]. To extract features from

signatures, the Fast Fourier transform (FFT) is performed and the most distinguishing har-

monics are used as the features. These features are selected individually for each user, so

that the most distinguishing harmonics are used pertaining to each specific user. Several

preprocessing steps were performed before the transform is computed to normalize for du-

ration, rotation, position, and size. Also, any stokes whose duration is less than a threshold

are removed to prevent spikes in the transform. Next, the stroke segments are concatenated

together to form one continuous signature, where even the beginning and end points are

connected through linear interpolation (out of the 1024 points in the normalized signature,

the last 25 points are used for this interpolation). The signatures are also normalized for

drift, which the authors define as how the signature moves from one position to another

(e.g., from left to right in the western world). Linear regression is used to eliminate the

drift so that the end points of the signature do not excessively influence the transform. Af-

ter preprocessing, the x and y time functions are transformed into the frequency domain and

a cutoff is applied to remove the unnecessary high and low frequencies. Next, the top 15

harmonics with the highest magnitudes, normalized by the sample variances, are selected
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as the feature set. This algorithm was tested on a dataset of 20 signers, each contributing 8

genuine signatures and 19 other signers provided skilled forgeries. Using the leave one out

method, the system generated an equal error rate of 2.5%.

Neural networks can solve complex functions by attempting to learn what the correct

output should be from training data. In the past, neural networks have been successfully ap-

plied to handwritten character recognition and phoneme recognition. Lee attempted to use

various neural network algorithms to classify a signature as either genuine or impostor [30].

He examined three neural network based approaches: Bayes multilayer perceptrons (BMP),

time delay neural networks (TDNN), and input oriented neural networks (IONN). Prepro-

cessing steps such as linear time normalization and signal resampling were performed. The

input to the neural networks was a sequence of instantaneous absolute velocities extracted

from the spatial coordinate time functions (x and y signals). This absolute velocity was

computed for each point as:

‖v(n)‖ =

√
∆x(n)2 + ∆y(n)2

∆t(n)
, (2.2)

where∆x(n), ∆y(n), and∆t(n) are the change in x, y, and time values at pointn, respec-

tively. The problem with using neural networks for signature verification is that examples

of forgeries are required to train the network for a user. The networks cannot be properly

trained by being given only genuine samples. Accordingly, the database used consisted of

1000 genuine signatures from only one subject and 450 skilled forgeries from 18 trained

forgers. The back propagation algorithm was used for network training. This experiment

misclassified 2.67% of the input (it is not mentioned how many of the misclassifications

were false acceptances and how many were false rejections).

On-line signatures may contain pressure, altitude, and azimuth information of the pen

along with the x and y information. The x,y, and pressure signals have shown to remain
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consistent among the same user and also provide discriminatory information between sepa-

rate users. The altitude and azimuth signals have not been as widely used partially because

they cannot be acquired in many devices and also because they have not been shown to

provide much discriminatory information between subjects. Hangai et al. implemented a

system that compared the pressure, altitude, and azimuth signals [17]. In their work, the

azimuth is referred to as the direction of the pen. The pen altitude, referred to asφ(t), and

the direction, referred to asθ(t), are combined to form a three-dimensional feature vector

in the following fashion:

v(t) =

 sin θ(t) cos φ(t)
− cos θ(t) cos φ(t)
sin φ(t)

 (2.3)

Preprocessing steps, such as size normalization and alignment of the starting points of the

two signatures are performed before matching. The authors use dynamic time warping to

align the two signals. The database used for the experiments was gathered from 24 people

who each contributed 25 signatures, where 5 were used for training and the other 20 for test-

ing. It is also reported that skilled forgeries were generated for each user but the authors do

not specify the size of the skilled forgery data set. Using only the derived altitude/azimuth

feature vector,v(t), yielded an accuracy of 93.3%. With pressure information alone, an

accuracy of 87.8% was obtained. Finally, using the x and y information alone produced an

accuracy of 85.8%. When all the information was combined, every signature was correctly

classified. The results show that if the altitude and azimuth information is used in a correct

fashion, it can sometimes provide as much or even more discriminatory information than

either the pressure or shape information.

Dynamic time warping (DTW), a string matching technique, has received much atten-

tion in signature verification. The two main drawbacks of using this technique is that it has

a heavy computational load and forgeries are warped to more closely match the genuine

signatures. Feng and Wah attempted to resolve these issues by warping only what they call
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extreme points [13]. Extreme points are defined as signal peaks and valleys. Specifically,

a peak or valley is marked as an extreme point ifr ≥ h0 andd ≥ h0, wherer is the rise

distance (amplitude from a valley to the following peak),d is the drop distance (ampli-

tude from a peak to the following valley), andh0 is a user defined threshold. Parameter

h0 is used to eliminate small ripples in the signal; this is important because small ripples

in the signal are normally unreliable. The matching of two strings of extreme points uses

DTW but is modified so that only peaks (valleys) are matched to peaks (valleys). In their

experiments, only the x and y features are used to determine the distance between two ex-

treme points, where city-block distance is used as the metric. After the alignment is found

between two sets of extreme points, the input signature is warped to match the reference

signature. This is done by linearly stretching the points in the x direction, while keeping

the y values constant. The final matching score is computed by calculating the correla-

tion coefficient between the reference and the warped input signature. This algorithm was

tested on a database of 25 users with 30 genuine signatures and 10 skilled forgeries for each

user. Tests on this technique versus DTW is performed with equal error rates of 25.4% and

33.0%, respectively. Also the computation time for DTW was 11 times more than using

the extreme points technique.

2.1.1 Human Signature Verification

It is also interesting to compare how automatic signature verification methods com-

pare to performance of humans on the same task. Kam et al. reported results on the

first controlled study comparing the abilities of forensic document examiners (FDEs) and

laypersons in the area of signature verification [26]. A comparison of six known signatures

(genuine) with six unknown signatures (genuine and skilled forgeries) was performed by
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each subject to classify the six unknown signatures as either genuine or impostor. The sub-

jects included 25 forensic document examiners and 50 laypersons where laypersons were

provided with various monetary incentives. In this work, a forensic document examiner is

considered to be a person that must satisfy one of the following:

• certified by the American Board of Forensic Document Examiners,

• member of the American Society of Questioned Document Examiners,

• member of the Southwestern Association of Forensic Document Examiners,

• or member of the questioned document section of the Mid-Atlantic Association of

Forensic Scientists.

The results found that FDEs had a FAR of 0.49% and a corresponding FRR of 7.05%. The

error rates for the laypersons were a FAR of 6.47% and a FRR of 26.1%. Since random

forgeries are very easy for humans to distinguish they were not included in the testing.

These results highlight that automatic signature verification systems rival and even surpass

the abilities of forensic document examiners in terms of classifying skilled forgeries. The

area in which the automatic signature verification systems are lacking is classifying random

forgeries; humans have error rates very close to 0%, while for computers, this accuracy has

not yet been reached.

2.2 Past Work

All of our work regarding signature verification was built on top of the earlier work

performed by Jain, Griess, and Connell [21]. The following sections will give an overview

of the signature verification algorithm that was developed in order to clarify contributions

made in this thesis.
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2.2.1 Preprocessing

In order to eliminate noise from the input signature, whether created by the digitization

process of the input device, the speed of the writing, or the writing itself, the signature

is smoothed by a Gaussian filter. A one-dimensional filter is applied separately to the x

and y directions. The points in the signature are also resampled. This is because if two

signatures are going to be compared with respect to their shape, they must be resampled

in order to extract more reliable shape features. On-line signatures contain both spatial

and temporal data. After resampling the signature, the temporal data will be lost because

the spacing of the points represents the velocity with which they were written. Digitizing

tablets sample at a constant rate, and accordingly, the sampling rate provides a uniform time

unit. Thus, the only information needed to extract the speed of writing is to measure the

distance between two consecutive points. To retain this information, temporal features are

extracted before uniform resampling is performed. The resampling process in performed

by creating equidistant spacing between each point, where the spacing distance is a user

defined parameter. Finally, the authors define some points in the signature as critical points.

These points carry important information about the structure of the signature and should not

be changed throughout the resampling process. Specifically, critical points are endpoints

of strokes and points of trajectory change.

Figure 2.3 displays some instances of critical points. The upper row displays critical

points where the x or y direction of the stroke changes. The lower row shows critical points

where a transition from a vertical or horizontal stroke forms in to a curve. These points are

found before any other preprocessing steps are performed and the speed of writing at each

of these points is stored. During resampling and smoothing, these points are not changed,

ensuring that the important structural aspects of the signature are retained. The last step in

preprocessing is to perform stroke concatenation. The strokes are combined into one long
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stroke in order facilitate the string matching process. Overall, the preprocessing steps are

performed in the following order:

• Extract critical points

• Fine resampling

• One-dimensional Gaussian filtering in the x and y directions

• Coarse resampling

• Stroke concatenation

Figure 2.3: Critical Points [15]: Pointi is the critical point while points (i− 1) and (i + 1)
are the preceding and succeeding points, respectively.

Once the critical points are defined and the corresponding velocities are recorded, the

signature is finely resampled. This is done to ensure that the signature is smoothed uni-

formly. If smoothing was performed before resampling, points of high writing speed will
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be smoothed more than points in low velocity segments. The next step is to perform the

Gaussian filtering in order to eliminate noise. During smoothing, the points will be ad-

justed and thus will no longer be equidistant. Accordingly, resampling is again performed

in a more coarse fashion. There exists a trade-off in this decision; either resample at a very

small distance and pay the cost of high computational load during the matching process or

resample at a larger distance and pay the cost of decreased accuracy. This is a parameter

that needs to be tested in order to find a good balance between matching time and accu-

racy. Finally, the strokes are connected to form one long stroke. The reason for this will be

evident during the matching process.

2.2.2 Feature Extraction

This algorithm fits into the category of functional approaches as described by Planon-

don et al. [34]. One global feature is used throughout the matching process and this is

the number of strokes in the signature. This value is recorded before the strokes are con-

catenated together during preprocessing and stored as a global feature. The rest of the

feature extraction process attempts to retrieve local information about the signature. The

local information can be divided into two categories; spatial (shape) and temporal (speed)

features.

The spatial features investigated by the authors include:

• distance between two consecutive points,δx andδy

• absolute y-coordinate,y

• sine and cosine of the angle with respect to the x-axis between two consecutive

points,sin α andcos α

• curvature,β
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• gray values in a 9x9 pixel neighborhood

Figure 2.4 displays how each feature is computed for pointpi. The two points precedingpi

arepi−1 andpi−2 and the succeeding points arepi+1 andpi+2. Theδx andδy features are

computed with respect to the subsequent pointpi+1. The absolute y-coordinate is just the

y-coordinate of the resampled point. The angleα is the angle between the x-axis and the

line through pointspi andpi+1. This is used to compute thecos α andsin α features. The

angleα is not used as a feature itself because of the nature of its value. An example given

by the authors is that angles 1 and 359 are very similar but if the angle is used as a feature,

they are very far apart using the Euclidean distance as a metric. Accordingly, the cosine

and sine are used to better represent the direction of writing where both are needed to fully

express the angle of writing. The curvature feature,β, is the angle between the linespipi−2

andpipi+2. When this is computed, some points needed at the beginning and end of the

signature may not be present and the closest existing points are used to calculate the two

lines.

Figure 2.5 shows an example of how the 9x9 grid of gray values is calculated. This

space is divided into nine 3x3 squares. For each square, a gray value is computed by

summing the pixel values of that window. In this calculation, a pixel value is either 1 or

0. Accordingly, these 3x3 squares can have values ranging from zero through nine but in

practice normally range from zero through four. Performing this calculation, nine feature

values are computed for each point. Including all the other spatial features, each point can

potentially have its shape described by fifteen feature values.

On-line signatures not only provide the ordering of the points but also the speed at

which each point is written. This speed information is stored at each critical point and

is then interpolated across the resampled points. In this algorithm, the is speed analyzed

between the critical points and resampled points. Specifically, features are extracted for
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Figure 2.4: Features calculated for pointpi with respect to the shape of the signature [15].

Figure 2.5: Gray values calculated in the 9x9 pixel grid [15].
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• absolute and relative speed at each resampled point

• absolute and relative average speed between two critical points

The absolute speed for each resampled point is already calculated after interpolating the

speed information between two critical points. The absolute average speed between two

critical points also needs minimal computations, where the absolute speed is averaged from

one critical point to the next. Relative speeds are investigated with the hope that although

the absolute signing speeds may vary due to writing conditions, attitude, etc., the relative

signing speed at the points should be more stable. The relative speeds are calculated by

dividing the absolute speed at each point by the average writing speed over the whole

signature.

2.2.3 Matching

After the local features are extracted from two signatures (a template and an input

signature), these signatures need to be compared to find a difference or similarity measure

between them. The algorithm used by the authors is dynamic time warping. This algorithm

finds an alignment between two sets of points such that the sum of the differences between

each pair of aligned points is minimal. To compute this difference value, the Euclidean

distance is used as the metric. The results of this algorithm produce a set of pairings in the

following fashion

{(eT
tT (1), e

I
tI(1)), (e

T
tT (2), e

I
tI(2)), ..., (e

T
tT (N), e

I
tI(N))}

whereeT
tT (n) is thetT (n)th point in the template signatureT , n is the position of the point in

the alignment, and the functiontT (n) returns the position of the point in the original string.

Similar definitions apply for the pointseI
tI(n) of the the input signatureI. The alignment of

these pairings is done under the following constraints:
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• tT (i) = tI(j) if and only if i = j

• tT (1) < tT (2) < ... < tT (NT )

• tI(1) < tI(2) < ... < tI(NI)

The first constraint requires that there is a one to one relationship between matching pairs

of points in the input and template signatures. The second and third constraints make sure

that the alignment obeys the temporal ordering of the points in the signatures. For example,

if point 1 in the input signature is matched with point 5 in the template, point 2 in the input

signature cannot be matched with any of the points 1 through 5 in the template. Finally,

to avoid solutions where a minimum distance of zero is found by not matching any of the

points, spurious and missing point penalties are assigned. A spurious penalty is assigned

if there is an extra point found in the input signature that does not match with any points

in the template. Similarly, a missing penalty is assigned if there is no point in the input

signature that corresponds with a point in the template. To find the alignment between two

signatures, under these constraints, the minimum difference can be defined recursively:

D(i, j) = min


D(i− 1, j − 1) + dE(i, j)
D(i− 1, j) + MissingPenalty
D(i, j − 1) + SpuriousPenalty

 , (2.4)

wheredE(i, j) is the Euclidean distance between the feature vector for pointi and the

feature vector for pointj. The final matching distance measure between a templateT and

an inputI is then defined as

Dist(T, I) = D(NT , NI), (2.5)

whereNT andNI are the number of points in the template and input signatures, respec-

tively. This score must be normalized to account for the number of points in each signa-

ture. Also, the final matching score should include the information from the global feature,
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namely, the number of strokes. Accordingly, the final distance score is

Dist(T, I) =
Dist(T, I)2

Norm Factor(NT , NI)
+ (SP ) |ST − SI | , (2.6)

whereNorm Factor(NT , NI) is the maximum possible distance between two strings of

lengthNT andNI scaled by a constant factor,SP is the stroke penalty, and|ST − SI | is

the difference in the number of strokes between the template and input signature.

2.2.4 Enrollment and Verification

To enroll in the system, three template signatures are necessary. When an input signa-

ture is entered, it is compared against all three templates and either the minimum, maxi-

mum, or average of the three scores is used as the matching distance. Tests found that the

minimum produced the best results. This score is compared against a common threshold

and the input signature is classified as either genuine or impostor.

2.3 Improvements

In this thesis, various methods have been investigated in order to improve the perfor-

mance of the signature verification algorithm in [21]. Enhancements to the preprocessing,

feature selection, and matching modules have been made and some new modules, such as

user-dependent normalization have been investigated. A design of the system is shown in

Figure 2.6. Each of the additions/modifications to the algorithm in [21] will be explained

in detail in the following sections.

2.3.1 Preprocessing

In order to distinguish between skilled forgeries and genuine signatures, a higher weight

must be assigned to the temporal information in an on-line signature. This is because the

shape of a signature can be easily reproduced by a forger but the temporal information
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Figure 2.6: Block diagram of the signature verification system.

regarding timing and pressure is much harder to forge. When resampling is performed, the

shape of signature can be more reliably compared at the expense of losing important timing

information. The previous algorithm took the precaution of extracting critical points and

preserving a subset of the temporal information at these points. This approach still loses

much information when the speed is interpolated for the resampled points between critical

points. It cannot be assumed that the speed is a linear function over time between two

critical points. Accordingly, we no longer perform resampling. This seems like a more

natural approach to match two signatures because handwriting is commonly modeled as

ballistic motions. Using this type of model, one should concentrate on analyzing the forces

in terms of strictly magnitude and duration [19]. This information can be better captured by

analyzing the temporal features of a signature and concentrating less on the shape. When

no resampling is done, all the temporal information is preserved and can be utilized in the

matching process.

When no resampling is performed, this also effects the decision of whether the signature

should be smoothed to eliminate noise. If smoothing is performed without resampling, this
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still preserves the temporal information but, as mentioned earlier, segments of high writing

velocity will be smoothed more than segments written at a low velocity. Accordingly,

smoothing is also no longer used during preprocessing.

A very simple, although useful, preprocessing procedure is to perform position (loca-

tion) normalization. Some techniques normalize the position by transforming the signa-

tures so that they have the same starting point. Another approach is to align the centers of

the two signatures and this approach is used in our system. This is performed by subtracting

the mean x and y coordinates of the signature from each individual point and is formalized

in equations 2.7 and 2.8.

x′ = x−
∑n

i=0 xi

n
(2.7)

y′ = y −
∑n

i=0 yi

n
(2.8)

In the above equations,x andy are the original x and y coordinates, respectively,x′ and

y′ are the transformed coordinates, andn is the number of points. The effect of position

normalization is visually depicted in Figure 2.7.

(a) (b)

Figure 2.7: Position normalization; (a) signatures without position normalization, (b) sig-
natures after position normalization.
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Stroke concatenation is still used as in the original algorithm. This greatly decreases the

overhead during matching. It is not necessary to find which strokes in an input signature

correspond to which strokes in the template signature. If incorrect correspondences are

found, this creates errors on top of any errors made while matching the points of each

stroke. When one long stroke is created for both the input and template signatures, as

shown in Figure 2.8, no correspondences need to be found at the stoke level and the focus

can be placed upon matching the points.

(a) (b)

Figure 2.8: Stroke concatenation; signature before concatenation (a) and after the strokes
are concatenated (b).

2.3.2 Feature Extraction

Feature selection was re-evaluated using the new preprocessing steps. Also, the pres-

sure signal was considered as a feature. Experiments showed that theδx, δy and pressure

features performed the best. In this case, theδx andδy features contain the velocity infor-

mation, as opposed to shape information. Without resampling, the distance between two

points in the signature is equivalent to the speed. This is because the signature is sampled

at a constant rate and if this rate is used as the unit of time, the distance between points is

equivalent to the velocity. Accordingly,δx is the horizontal velocity of the signature and
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δy is the vertical velocity. The raw pressure signal is used without any transformation as a

feature value.

A very important process during feature extraction is to normalize the feature values

before attempting to match the feature vectors. Feature values can have very different

distributions and if each feature is to be given equal weight, these distributions must be

normalized. For example, the distributions of thecos α feature is very different from that

of the δx feature.cos α ranges from -1 to 1 whileδx normally ranges from -500 to 500.

If both were provided to the matcher without normalization,δx would be given a higher

weight because differences between this feature will result in a higher Euclidean distance

than differences incos α. A number of techniques have been proposed to perform normal-

ization of this type such as min-max, decimal scaling, median absolute deviation, and tan-h

estimators. In our work, we decided to utilize the most common normalization technique,

called the z-score. The z-score is calculated using the arithmetic mean and standard devi-

ation of the data, and is described in detail in Section 4.2.2. Here, we calculate the mean

and standard deviation values according to each individual stroke. Because the mean and

standard deviation are sensitive to outliers, computing the statistics within each stroke will

limit the effect of the outlier strokes on the overall signature. This normalization technique

does not guarantee a common range for the normalized scores but does ensure that the dis-

tributions of each feature will have a mean of zero and a standard deviation of 1. This effect

is displayed in Figure 2.9. As can be noticed, this transformation only preserves the orig-

inal distribution if it is Gaussian, due to the fact that the mean and standard deviation are

the optimal location and scale parameters for Gaussians [22]. The assumption that features

have Gaussian distributions is acceptable with our application.
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(a) (b)

Figure 2.9: Feature normalization; (a) and (b) display the feature values before and after
normalization, respectively.

2.3.3 User Dependent Normalization

As with other biometrics, especially behavorial biometrics, a small subset of the sub-

jects may account for a large number of the observed errors. This phenomenon is normally

due to these subjects’ high intra-class variability (Figure 2.10). Some users may not be

able to sign their name consistently or may sign their name in multiple fashions. When

a common threshold on matching scores is used, subjects with high intra-class variability

will often be falsely rejected because the input that they provide does not match closely

with any of the signatures that they had enrolled with. Using a common threshold, both

types of subjects, consistent and inconsistent, are penalized. This is because the inconsis-

tent subjects drive up the threshold, making it easier than it should be to for a consistent

user’s signature to be forged. Also, the consistent users keep the threshold low, creating

many false rejections for the inconsistent users. Accordingly some type of user depen-

dent thresholding should be incorporated into the system to solve this problem. We use an

approach proposed by Kholmatov and Yanikoglu [27]. To extract user dependent informa-

tion, a sufficient amount of training data must be provided. In our system, 3-5 signatures
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are given to form the template for a user. When a user is enrolled, the pairwise distances be-

tween each of the template signatures is calculated using dynamic time warping, as will be

described in the following section. After the pairwise distances of all the training signatures

are computed, three normalizing statistics are stored:

• Average distance to the closest sample (Imin)

• Average distance to the farthest sample (Imax)

• Average distance to the template (Itemplate)

To compute the closest average distance, the distances between each sample and the sample

closest to it are averaged over all the training data. To compute the farthest average distance,

the same procedure is followed with the exception that the distance to the sample farthest

from each training sample is averaged. The template is defined as the sample that has the

minimum average distance from all other samples. This can be calculated by averaging the

distances for each sample and selecting the sample with the lowest average as the template.

This template sample is recorded along with its corresponding average distance. These

statistics are store along with each training signature to create a profile for a user.

(a) (b) (c)

Figure 2.10: Signature intra-class variability. (a), (b), and (c) are three signatures from a
single user.

When a is signature given as an input to the system along with a claimed identity, the

input signature is matched with with each training signature stored in the profile for that
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identity. The minimum (Pmin) and the maximum (Pmax) distance scores from the input

and training signatures comparisons are stored. Also, the distance score from the input to

the preselected template is also recorded (Ptemplate). These scores are normalized by their

corresponding statistics that were previously discussed. This is calculated as follows:

Nmax = Imax/Pmax (2.9)

Nmin = Imin/Pmin (2.10)

Ntemplate = Itemplate/Ptemplate, (2.11)

whereNmax, Nmin, andNtemplate are the normalized scores of the maximum, minimum,

and template distances, respectively. This results in a three dimensional vector of the form Nmax

Nmin

Ntemplate

 . (2.12)

A visualization of the comparisons made and statistics computed is shown in Figure 2.11.

This normalization performs the same task as that of using user specific thresholds. User

specific thresholds are an alternative to using a common threshold. Each user is assigned a

threshold that depends on the variability of that user’s signature. Users with high variabil-

ity will be assigned a more lenient threshold while users with consistent signatures will be

assigned a stricter threshold. This normalization works in the same fashion except that the

scores are changed instead of the threshold. If a user has high variability in his signature,

as evident from the training data, then the statistics calculated about the average distances

will contain this information. The averages will be higher than that of a user with low vari-

ability. Accordingly, when an input signature is given that is not closely matched with any

of the template signatures, resulting in high maximum, minimum, and template distances,

these distances will be divided by the normalizing statistics that are also high. A similar sit-

uation occurs with a user with low variability, except that the resulting scores and statistics

will now be lower. This normalization will then result in genuine score vectors clustering
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around the vector[1 1 1]T . A common threshold can now be used when comparing the

matching scores.

Figure 2.11: User-dependent normalization.I is the input signature andTi, i = {1, ..., 5}
are the 5 stored templates for the claimed identity. The distancesImin, Imax, andItemplateare
used to construct the three-dimensional score vector.T5 is selected as the template because
it has the smallest average distance to all the other samples.

2.3.4 Dimensionality Reduction

The next step in the matching process is to transform the three-dimensional score vector

down to one dimension. The first reason this is done is because the scores are highly

correlated. If the maximum distance is high, then it is also likely that the minimum and

template distances are also high. Accordingly, a large amount of the data’s variance can

be retained if a proper dimension reduction transformation is used. A second reason this

is performed is so that a single, one-dimensional, threshold can be applied to the matching

scores.
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PCA

One of the most common dimension reduction techniques is Principle Component

Analysis (PCA), also known as the Karhunen-Loeve Transformation. This algorithm at-

tempts to find a linear transformation (W ) that maps the original vector (X) to the projec-

tion vector (Y ). Mathematically, this can be stated as

Y = W T X. (2.13)

The solution (W ) consists of three steps. The first is to compute the average vector;u,

µ =
1

N

N∑
i=1

xi, (2.14)

whereN is the number of data points, andxi is theith feature vector. Using this average

vector, the scatter matrix of the data can be calculated in the following fashion

ST =
N∑

i=1

(xi − µ)(xi − µ)T . (2.15)

This scatter matrix is simply the product ofN −1 times the sample covariance matrix. The

direction of projection is an eigenvector of this scatter matrix. To extract the eigenvectors,

the following equation must be solved to find the eigenvectors;e,

ST e = λe, (2.16)

whereλ is is an undetermined multiplier called the eigenvalue. The eigenvectors are ranked

in order of their corresponding eigenvalues. Only a subset of the eigenvectors with the

highest eigenvalues are used in dimensionality reduction. In our system, we selected the

eigenvector with the highest eigenvalue as the direction of one-dimensional projection.

PCA requires training data in order to determine the projection vector(s). This presents

the need of a validation set; an independent set of data that will not be used for either

training the system (e.g. creation of templates) or testing the system. Consequently, our
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approach required the available data to be partitioned into three independent subsets: train-

ing, validation, and testing. The validation set must consist of both genuine signatures

and skilled or random forgeries. This is because both genuine and impostor samples will

be projected on the principal component axis during testing and in order to well separate

the samples, both types of signatures must be provided during validation. As mentioned,

genuine samples will cluster around the vector[1 1 1]T and will not produce a meaning-

ful projection axis, where much of the variance will not be retained. If available, skilled

forgeries are preferable over random forgeries to use while training PCA. If we can well

separate genuine signatures from skilled forgeries along the principal axis, then it is very

likely that the random forgeries will also be well separated from the genuine signatures.

To calculate this projection vector, templates for each user must be created, as described

in Section 2.3.3. Then, genuine and impostor scores must be calculated by comparing the

remaining signatures of the validation set against the templates. These scores are given as

the data to train PCA, in their original three-dimensional form. We then use the eigenvector

with the highest eigenvalue to project the test samples down to one dimension. The results

of this process are shown in Figure 2.12.

LDA

The PCA algorithm treats all the data (genuine and impostor) equally when performing

dimension reduction, finding principal components that are useful for representing the data.

A drawback of this technique is that these components may not be useful for discriminating

between data in different classes (i.e. genuine and impostors). Exploiting class information

can be helpful when performing dimension reduction. Linear discriminant analysis (LDA),

also known as Fisher linear discriminant (FLD), uses the class information. PCA attempts

to find projection directions that are useful for representation, while discriminant analysis

attempts to discover projections directions that are useful for discrimination.
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Figure 2.12: Principal Component Analysis: The genuine and impostor three-dimensional
score values are plotted along with the first principal component calculated by PCA. The
genuine scores are drawn as circles and impostor scores are as x’s. These values were used
as input to the PCA algorithm in order to produce the projection axis.

The LDA algorithm finds a transformation matrixW that maximizes the ratio of the

between-class scatter matrix to the within-class scatter matrix. The between-class scatter

matrix,SB, and within-class scatter matrix,SW , are defined as

SB =
c∑

i=1

Ni(xi − µ)(xi − µ)T (2.17)

SW =
c∑

i=1

∑
xk∈Xi

(xk − µi)(xk − µi)
T . (2.18)
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In the above equations,Ni is the number of training samples in classi, c is the number

of distinct classes,µi is the mean vector of the samples belonging to classi, andxi repre-

sents the set of samples belonging to classi [32]. Next, the transformation matrixW that

maximizes the following ratio is estimated.∣∣W T SBW
∣∣

|W T SW W |
(2.19)

To calculate the optimalW that maximizes this ratio, eigenvectors and eigenvalues of the

following equation are found

SBwi = λiSW wi, (2.20)

whereλi is the eigenvalues andwi is the eigenvectors. The columns of the optimalW are

the eigenvectors corresponding to the largest eigen values of the above equation [12].

In our application, we have only two classes, genuine,wg, and impostor,wi, soc = 2.

The training data for dimension reduction is created in the same fashion as described for

PCA except that class labels are also attached to each score vector. It is already known

which samples are genuine and which are forgeries (random or skilled) in the validation

set, so we are able to give all genuine scores a class label of 0 and all forgery scores

a class label of 1. This data is then used as input to LDA to find a projection vector

that best distinguishes between the two classes. Again, we used only the eigenvector that

corresponds to the largest eigenvalue in order to reduce the dimensionality down to one.

Results of this algorithm are shown in Figure 2.13.

In general PCA performed better than LDA in our experiments for two apparent rea-

sons. First, because of the limited number of training samples that were available, LDA

tended to over fit the training data and did not generalize enough to perform well on the

testing data. The training data was not always linearly separable, in terms of the class la-

bels, leading LDA to produce a projection vector that worked well for the training data but
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Figure 2.13: Linear Discriminant Analysis: The genuine and impostor three-dimensional
score values are plotted along with the first principal component calculated by LDA. The
genuine scores are drawn as circles and impostor scores are as x’s. These values were used
as input to the PCA algorithm in order to produce the projection axis.

not for the unseen signatures. The second reason is that the projection direction that best

represented the data (by PCA) was also the same vector that best discriminated the data.

As mentioned, the score vectors are highly correlated, where an increase of a feature value

results in around the same order of increase in the other feature values. Genuine signatures

will normally have values around 1 but will increase and decrease, depending on the consis-

tency of the writer. Forgeries will generally have values larger than 1 and will span a wide

range of values, depending on the accuracy of the forgery. If the projection axis followed

the proposed pattern, then the two classes will be best separated on the axis that keeps the
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maximum variance among all the points. Accordingly, when PCA found the basis that best

represented the data, it also found the most discriminating vector. Another important dif-

ference when using these two algorithms is that while PCA needed only skilled forgeries

for training, LDA needs both skilled and random forgeries. Over fitting the data with just

one type of forgery will lead to poor performance on the other.

2.3.5 Matching

The overall dynamic time warping algorithm remained, for the most part, unchanged

from the algorithm in [21]. Only slight modifications were done to the parameters of the

algorithm. To reiterate, the distance score for the dynamic time warping is calculated by

solving the recursive formula

D(i, j) = min


D(i− 1, j − 1) + dE(i, j)
D(i− 1, j) + MissingPenalty
D(i, j − 1) + SpuriousPenalty

 . (2.21)

The Missing Penalty and Spurious Penalty parameters are very important to the perfor-

mance of the algorithm. Normally, these two parameters take on the same values because

usually the cost of a missing point in the template or in the input signature is considered the

same and can then be represented by a single parameter, called the gap cost. If the gap cost

is selected too high, then the algorithm will be very rigid, resulting in low false accept rates

but very high false rejects rates. If the gap cost is set too low, forgeries will be warped to

closely fit the templates and many forged signatures will have low scores. This will result

in low false reject rates but high false accept rates. Kholmatov suggests several strategies

that can be followed in the selection of the gap cost [28]:

• Constant gap cost regardless of gap length

• Larger gap opening penalty followed by a much smaller gap extension penalty

• Gap cost increasing rapidly with gap length
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• Different gap cost for reference and test signatures

The algorithm in [21] followed the third strategy. The gap cost increased linearly with the

gap length. Here, we follow a different approach where the gap cost is more dynamic. It is

calculated as follows:

GapCost = dE(i, j) ∗ c, (2.22)

wheredE(i, j) is the Euclidean distance between two feature vectorsi andj, andc is a

user defined parameter. The intuition behind this gap cost is that if the two points are very

close, in terms of Euclidean distance, the cost of their mismatch (either a point is missing

in the input signature or the template) should also be small. This allows the algorithm to

find solutions, where if consecutive points are all very similar, that align these points in

the best fashion and not enforce strict penalties if one of these points is missing. Also, if

two points are very different, then an important part of the signature is missing and a high

penalty should be enforced. The constantc, must be greater than one and its value should

be estimated empirically. In our case, we setc equal to 1.5.

Another change that was made in the original algorithm was removing the missing

stroke penalty in the final distance score calculation. The final distance score is now calcu-

lated by a more simpler equation:

Dist(T, I) =
Dist(T, I)2

NT NI

. (2.23)

The distance score is normalized by the number of points in both signatures,NT andNI .

This was done because the stroke penalty will be incorporated into the global feature system

described in the following section.
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2.3.6 Global Feature System

The dynamic time warping algorithm takes the functional approach to signature verifi-

cation and concentrates mainly on the local information. We took a parametric approach

and combined this with the local information of the DTW algorithm. Global information

can quickly increase performance by calculating simple features about the overall signa-

ture. For example, the duration of signatures is very discriminating between subjects. Al-

though the calculations (local and global features) are being derived from the same data,

we will show that the two approaches provide complementary information. Consequently,

when the scores from local and global approaches are combined, the performance can be

expected to increase.

Our global feature system calculates twenty features. These features are gathered from

the list described in [14]. In [14], the authors calculated 100 global features and ranked

them in terms of performance. We selected the top twenty of these features to use in our

algorithm. The features that we use are displayed in Table 2.1.

Mahalanobis Distance

To match an input signature with a set of templates for a user, the Mahalanobis distance

is used. This is a distance measure that utilizes the correlation between features. The

Mahalanobis distance (dM ) between a samplex and a sampley is calculated using the

following equation:

dM(x, y)2 = (x− y)′S−1(x− y), (2.24)

whereS is the within-group covariance matrix. In this thesis, we assume a diagonal covari-

ance matrix. This allows us to calculate the distance using only the mean and the variance
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Table 2.1: Set of global features ordered by their individual discriminative ability. In the
labels for the features,T denotes the time interval,t denotes the time instance, andN
denotes a number of events. Other symbols are described in Table 2.2

Number Feature Description Number Feature Description
1 signature total durationTS 2 N (number of pen ups)
3 N (sign changes ofdx

dt
and dy

dt
) 4 average jerkj

5 standard deviation ofay 6 standard deviation ofvy

7 (standard deviation ofy)/∆y 8 N (local maxima inx)
9 standard deviation ofax 10 standard deviation ofvx

11 jrms 12 N (local maxima iny)
13 t(second pen down)/TS 14 v/vx,max

15 Amin

∆x∆y
16 (xlast pen up− xmax)/∆x

17 (xfirst pen down− xmin)/∆x 18 (ylast pen up− ymin)/∆y

19 (yfirst pen down− ymin)/∆y 20 (TW v)/(ymax − ymin)

Table 2.2: Interpretations for symbols in Table 2.1
Symbol Definition
jerk j time derivative of the acceleration

ay acceleration in they direction
ax acceleration in thex direction
vy velocity in they direction
vx velocity in thex direction
∆y

∑pen downs
i=1 ymax |i − ymin |i

∆x

∑pen downs
i=1 xmax |i − xmin |i

xmax |i maximumx value in theith stroke
xmin |i minimumx value in theith stroke
ymax |i maximumy value in theith stroke
ymin |i minimumy value in theith stroke
jrms root mean square of the jerk
v average of the velocity

Amin (ymax − ymin)(xmax − xmin)
ymax maximumy value
ymin minimumy value
xmax maximumx value
xmin minimumx value
TW total time duration of all pen downs
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of the features. Assuming a diagonal covariance matrix, the Mahalanobis distance calcula-

tion simplifies to

dM(x, y) =

√
(x− µy)2

σy + k
, (2.25)

whereµy is the mean vector of the population thaty is sampled from,σy is the variance

vector of the population, andk is a constant. The constantk is used to prevent the distance

from becoming arbitrarily large whenσy is very close to zero. This is a problem if too few

training samples are provided to estimate the variance.

Because the Mahalanobis distance utilizes the feature covariance, no prior normaliza-

tion for the features is necessary. This is a great advantage to using this as a distance metric.

The mean and variance of each feature are taken into account during the calculation so that

features with different ranges and distributions are all weighted equally.

2.3.7 Performance Evaluation

While a number of signature verification systems have been reported in the literature,

they have never been compared against each other. Results are normally reported on a

database that was gathered locally by the researchers. These databases differ in size and

more importantly, difficulty. Some researchers are very diligent in gathering skilled forg-

eries to test the robustness of their algorithms while others test on only random forgeries.

There was never any major effort to compare the different signature verification methods

until the signature verification competition in 2004 (SVC2004) [43]. This competition cre-

ated a benchmark signature database and protocols for conducting comparative studies. The

competition itself used a database of 100 signers, each contributing 20 genuine signatures.

20 skilled forgeries were also created for each signer. The rules for testing verification

systems make this a very difficult task, where a significant amount of the results are based
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on skilled forgeries. Currently, the data for the first 40 signers is publicly available and this

will be the major database on which our algorithms will be tested on.

Tests are run on the SVC database using the following guidelines. Five out of the first

10 genuine signatures were randomly selected for training the system. Next, genuine scores

were generated by testing on the following 10 genuine signatures. Skilled impostor scores

were generated using all of the skilled forgeries for that signer (20 scores). Finally, 20

random signers are selected and a genuine signature from the random signer’s set is used

as a random forgery. This resulted in 10 genuine, 20 skilled, and 20 random scores for

each signer. Ten trials of the above test were run, selecting different random signers and

the average statistics were presented. In all of our tests, the same random signers are used

for a fair comparison of the system. For tests with only 3 training samples, we used the first

3 out of the 5 random samples selected for training. For tests with 10 training samples, we

used the first 10 genuine signature for training (no random selection was necessary). Some

examples of the signatures in the database are presented in Figure 2.14.

(a) (b)

(c) (d)

Figure 2.14: Signatures in the SVC database; (a), (b) Genuine signatures, (c), (d) Skilled
forgeries of the signatures shown in (a) and (b).
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The performance of the original algorithm on the SVC database is shown in Figure

2.15. Ten trials were run using training set sizes of 3, 5, and 10. The performance of this

algorithm is very poor on this database, especially on skilled forgeries. It should also be

noted that as the size of the training set increases, the performance does not significantly

increase.

Figure 2.15: Average ROC Curves for the signature verification algorithm described in
Section 2.2 on the SVC database. Tests were run on both skilled and random forgeries and
the results are presented seperately. TR3, TR5, and TR10 are examples of testing with 3,
5, and 10 training samples, respectively. The equal error rate of each curve is shown in the
parenthesis of the label.

The selection of the new features, along with the preprocessing stages, feature normal-

ization, changes in the DTW, and user-dependent normalization greatly increase the per-

formance. The best results are obtained using PCA dimensionality reduction. Results are

shown in Figure 2.16. The performance of the algorithm is highly dependent on the amount

of training data. When more training data is provided, the user normalization statistics are

more closely estimated.
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Figure 2.16: Average ROC Curves for the proposed signature verification algorithm on
the SVC database using PCA dimensionality reduction. Tests were run on both skilled
and random forgeries and the results are presented seperately. TR3, TR5, and TR10 are
examples of testing with 3, 5, and 10 training samples, respectively. The equal error rate of
each curve is shown in the parenthesis of the label.

The results for the global feature system are shown in Figure 2.17. The performance is

not nearly as high as the local DTW approach but our main goal was to have this system

provide complementary information about the signatures. Hopefully, the combination of

the local and global systems will have better performance. A very noticeable factor that

affects the performance is the size of the training set, even more so than the local system.

This algorithm utilizes each of the training samples in calculating the final matching score

and also to provide user-specific and feature-specific normalizations. When the size of

the training set increases, the distribution of the feature vectors can be estimated more

accurately.

The scores of the two systems are combined using the weighted sum rule, which will

be described in detail in Section 4.3. The scores are normalized to a common domain using
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Figure 2.17: Average ROC Curves for the new signature verification algorithm using global
features on the SVC database. Tests were run on both skilled and random forgeries and the
results are presented seperately. TR3, TR5, and TR10 are examples of testing with 3, 5,
and 10 training samples, respectively. The equal error rate of each curve is shown in the
parenthesis of the label.

the z-score method, which is described in Section 4.2.2. The local scores are generated

using the dynamic time warping algorithm with PCA dimension reduction. The global

scores are generated from using the twenty global features and the Mahalanobis distance

as the metric. The distributions of the global and local scores, before normalization are

shown in Figures 2.18(a) and 2.18(b). A weight of 0.95 is assigned to the local score while

a weight of 0.05 is given to the global score. The distribution of the fused scores is shown

in Figure 2.18(c). The results of the combined systems are shown in Figure 2.19. These

are generated using five training signatures. A performance increase occurs for the skilled

forgeries, while the performance of the random forgeries remains the same.

In order to compare how this work relates to the state of the art, Table 2.3 displays the

results published by the SVC competition in 2004. The signature verification algorithm

56



(a) (b)

(c)

Figure 2.18: Distribution of genuine and impostor scores from one trial of SVC testing;
(a) Global (distance score), (b) Local (similarity score), (c) After sum rule fusion (distance
score).
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Figure 2.19: Average ROC Curves for the fused local and global scores on the SVC
database. Tests were run on both skilled and random forgeries and the results are pre-
sented seperately. Five training signatures are used for testing. The scores are normalized
using the z-score normalization and the weighted sum rule was applied with weight of 0.95
and 0.05 for the local and global systems, respectively. The equal error rates of each curve
is shown in the parenthesis of the label.
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developed in this work has an average EER of 13.75% on skilled forgeries and 0.61% on

random forgeries.
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Table 2.3: Results from the training data (first 40 users) from the SVC competition [43].
Number Skilled EER Random EER

1 6.90% 3.02%
2 6.91% 3.02%
3 6.96% 3.47%
4 7.64% 4.45%
5 8.90% 3.08%
6 11.29% 4.41%
7 15.36% 6.39%
8 19.00% 4.29%
9 20.01% 5.07%
10 21.89% 8.75%
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CHAPTER 3

Speaker Identification and Verification

Our work utilizes both forms of voice recognition; verification and identification. This

chapter will provide a brief overview of speaker identification and verification. Because

we are using a commercial speaker verification system, we cannot provide exact details

of how this specific system works, although much information can be derived from the

documentation of the system.

3.1 Introduction

A generic speaker verification system is displayed in Figure 3.1. A microphone cap-

tures the sound from a speaker and this analog signal is converted to digital form. During

enrollment the extracted features are used to create a template or a model for future veri-

fication sessions. During verification, the extracted features are compared with the model

of a claimed identity to produce a matching score. Another dichotomy of speaker recog-

nition systems is based on whether the recognition is text-dependent or text-independent.

In text-dependent recognition, there is a required phrase that the person must say in order

to be recognized. This phase is known by the system, being either fixed or prompted. A

fixed phase may be something like a telephone or social security number, which changes

very infrequently. Prompted phrases can be given either orally or visually. In either case,

the verification system knows what words are being spoken as input to the system. In text

independent recognition, the spoken phase can be anything that the speaker chooses to say.
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Figure 3.1: Design of a generic speaker verification system.

As with other biometrics, the performance of speaker recognition is very much depen-

dent on the quality of the enrollment session. Before a user attempts to be recognized by

the system, he must first enroll to create a voice model or template. The decision between

text dependent or text independent modes must be made at this point. The more data that is

presented to the system at the time of enrollment, the more complete the model will be for a

user. When the data captured during enrollment is significantly different than the data pre-

sented for verification, it is reffered to as intra-class variability (Figure 3.2). For the voice

biometric, the amount of data is measured by the total length of time of the voice samples

given during enrollment. One must be careful of ambient noise and delayed versions of

the voice entering the microphone from reflective acoustic surfaces during an enrollment

session. Such factors are critical to the subsequent false accept/false rejection rates.

The major components of a typical speaker recognition system comprises of signal

acquisition, preprocessing, feature extraction, matching, and decision making. Work on

speaker recognition has been performed for many years and a variety of techniques have

been explored. The most discriminating attribute among these techniques is in terms of
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(a) (b) (c)

Figure 3.2: Voice intra-class variability. (a), (b), and (c) are three waveforms (amplitude
vs. time) from a single user who spoke his first and last name three different times.

the matching procedure. The most well known techniques include artificial neural net-

works (ANN), dynamic time warping (DTW), hidden Markov models (HMM), and vector

quantization (VQ). The Nuance system uses HMMs for its verification engine and will

accordingly be the focus of the following sections.

3.2 Acquisition

Speech is an acoustic signal that is captured using either a microphone or a telephone.

The signal is then anti aliased in order to limit the bandwidth. The result is sampled to

create a digital signal by an analog to digital converter. The sampling rate for the database

captured in this work is 16 bits of resolution (amplitude) at 8000 samples per second.

3.3 Preprocessing

In order to represent a speech signal in a more compact and less redundant form,

speech parameterization is performed. To build a statistical model for use in HMM pattern

matching, two popular techniques are filterbank-based analysis and the LPC-based method.

These obtain a cepstral representation of speech, which is very useful for text-independent

speaker verification.
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3.3.1 Filterbank-Based Analysis

Filterbank-based analysis is comprised of performing pre-emphasis, windowing, per-

forming the fast fourier transform (FFT), applying a filterbank and finally performing a

cepstral transform to extract the cepstral vectors. This process is displayed in Figure 3.3.

Pre-emphasis is done in order to enhance the high frequencies of the spectrum. It is per-

formed by applying the filter

xp(t) = x(t)− a ∗ x(t− 1), (3.1)

wherex(t) is the digital signal of speech at timet, a is a constant less than 1, andxp(t) is

the pre-emphasized signal at timet. This filter is not alway applied but can regain the high

frequencies that were possibly lost during acquisition.

Figure 3.3: Sequence of processes performed during filterbank-based analysis.

Following pre-emphasis, the signal is windowed to extract local information about the

signal. A window of fixed size is applied to the signal, starting at the beginning and moving

up to the end, where the windows often overlap. Either a Hamming or Hanning window

is used; these windows taper the original signal on the sides and consequently reduce the

influence of the signals at the beginning and end of the speech sample. Each of these win-

dows will provide spectral vectors to be used in the calculation of the cepstral coefficients.

The FFT of each individual window is calculated. The number of points for the calcu-

lation is usually a power of 2 that is greater than the the number of points in the window.
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Next, the amplitude (modulus) of the FFT is taken over each of the points. Because the

spectrum is symmetric, only the first half of the points are kept.

In order to eliminate some of the intra-class variability from the spectrum, a filterbank

is applied. This filterbank is a series of bandpass frequency filters and is designed such

that only the desired frequencies are kept. An obvious choice would be to keep only the

frequencies that are audible to the human ear. The Bark/Mel scale defines this range and

the corresponding frequency filters are defined by

fMEL = 1000 ∗ log(1 + fLIN/1000)

log 2
. (3.2)

After the filterbank is applied to the spectrum, the spectral envelope is obtained. The

log of the spectral envelope is taken. The final process is to transform the spectral vectors

by the cosine discrete transform. This transform will yield the cepstral coefficients.

cn =
K∑

k=1

Sk ∗ cos

[
n

(
k − 1

2

)
π

K

]
, n = 1, 2, ...L. (3.3)

In the above equationK is the number of log-spectral coefficients,Sk denotes the log-

spectral coefficients, andL is the number of cepstral coefficients desired. The result of this

process is a set of cepstral coefficients for each window.

3.3.2 LPC-based method

The other method for extracting the cepstral coefficients from the sampled voice signal

is to use the LPC algorithm. The process consists of pre-emphasis, windowing the signal,

the LPC algorithm and a cepstral transform to extract the cepstral vectors, as shown in

Figure 3.4. This method models the voice signal by a linear combination of its past values

and a scaled system parameter. A model that is often used is the auto regressive moving

average (ARMA) model, which is simplified in an auto regressive (AR) model. The ARMA

model can globally represent human speech production and then the speech signal can
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be described, in compact form, by the coefficients of the global model. This process is

simplified by using an AR filter as opposed to the ARMA filter.

First, pre-emphasis is performed if desired. Then, the signal is windowed, as described

in the filterbank-based approach. Next, the LPC algorithm is performed. As mentioned

earlier, this approach models the speech signal as a linear combination of the past values:

sn = −
p∑

k=1

ak ∗ sn−k + G ∗ un. (3.4)

In the above equation,sn is the current output,p is the prediction order,ak are the model

parameters (predictor coefficients),sn−k are past outputs,G is a scaling factor, andun is

the current input. This equation is simplified if the current output is approximated by only

the past output samples:

ŝn = −
p∑

k=1

ak ∗ sn−k. (3.5)

When this simplification is made, some information is lost about the signal and this is

defined by the prediction error,en,

en = sn − ŝn. (3.6)

The LPC algorithm finds the prediction coefficients (ak) that minimize the prediction error

in terms of the mean squared error. Details can be found in [11].

Figure 3.4: Sequence of processes that are used during LPC-based parameterization to
extract the cepstral coefficients.
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After the prediction coefficients are determined, the cepstral coefficients can be calcu-

lated by the following equations.

lc0 = ln σ2 (3.7)

cm = am +
m−1∑
k=1

(
k

m

)
ckam−k, 1 ≤ m ≤ p (3.8)

cm =
m−1∑
k=1

(
k

m

)
ckam−k, p < m (3.9)

In the above equations,σ2 is the gain term,am are the LPC coefficients, andp is the number

of LPC coefficients calculated.

3.4 Feature Extraction

After the LPC coefficients are extracted, they are manipulated in order to extract the

useful information and discard any information that is not discriminative. One technique

that is used is to center the cepstral coefficients. This is done by calculating the mean vector

over all the windows and subtracting it from each vector. The variance of the vectors can

also be normalized in a similar fashion.

Dynamic information about the vectors can be extracted by examining how they vary

over time. The first and second derivatives of the signal are calculated by the following

equations.

∆cm =

∑l
k=−l k ∗ cm+k∑l

k=−l |k|
(3.10)

∆∆cm =

∑l
k=−l k

2 ∗ cm+k∑l
k=−l |k2|

(3.11)

Each of these time series can now be used as features corresponding to the voice.

The final step is to decide what information is important in distinguishing a speaker and

what information should be discarded. One of the main goals of this step is to eliminate si-

lence or background noise from the signal. This can be performed by computing a bimodal
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Gaussian model of the feature vector distribution. The Gaussian with the lower mean is

assumed to correspond to silence and background noise while the Gaussian with the higher

mean is assumed to correspond to segments of speech. Accordingly, the portions of the

signal that belong the the Gaussian with the lower mean are discarded.

3.5 Matching

A number of methods for matching have been used successfully in speaker recognition.

The focus of preprocessing and feature extraction has been geared toward a statistical-based

or stochastic-based model for use in HMM matching. This has recently been found to be

very successful and is the basis of the Nuance recognition engine used in this work.

The difference between using a stochastic model versus a template model, as used with

the signature verification system, is that the matching is probabilistic and the matching

result is a measure of the likelihood of observing the given model. The problem then is

to measure the likelihood of a collection of feature vectors given the speaker model. Two

probabilities need to be computed for speaker verification; the probability that the feature

vector is from the model of the claimed identity and the probability that the feature vector

is not from the model of the claimed identity. The first probability is well defined and can

be estimated directly from the training data of the claimed identity. The second probability

is much harder to define because the entire space of all possible other identities must be

modeled. A simple approach to this problem is to use the set of available speaker models

to cover the space. The probabilities that the input speech matches each of these models is

used with some function (e.g. average, min, max) to produce the probability that the speech

does not match the claimed identity. A second and better approach is to train a single model

from a pool of speakers. The main advantage of using this approach is that a single model
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can be trained and then used against all the claimed identities. The verification process

using a background model for verification is shown in Figure 3.5.

Figure 3.5: Speaker verification using a background model. A likelihood ratio is computed
based on the probabilities generated from the claimed identity model and the background
model to produce the matching score.

Gaussian mixture models have had the most success for text-independent speaker recog-

nition. These model aD-dimensional feature vectorx with a likelihood function that is a

weighted sum ofM Gaussian mixtures, given by the equation

p(x|λ) =
M∑
i=1

pibi(x), (3.12)

wherebi(x) is the density for componenti, andpi is the weight of theith component. Each

component density is a Gaussian defined by

bi(x) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x− µi)

′Σ−1
i (x− µi)

}
, (3.13)

whereµi is the mean vector andΣi is the covariance matrix. The mixture weights are

constrained to add up to one. Overall, a GMM can be defined by the mixture weights (pi),

mean vectors (µi), and covariance matrices (Σi). Normally, a diagonal covariance is used

as opposed to a full covariance matrix. This makes training the system simpler and has
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also been shown to outperform systems that use a full covariance matrix. A depiction of a

Gaussian mixture density is shown in Figure 3.6.

Figure 3.6: Diagram of a Gaussian mixture density representing the model for identityλ.
gi is theith Gaussian component, andwi is the associated mixture weight.i ranges from 1
to m, wherem is the number of components. Each Gaussian component is represented by
a meanµi and covariance matrixΣi.

To train a model given training vectors derived from the speech signal of a user, the

parameters of the GMM are manipulated in order to match the distribution of the training

vectors. The most popular method for finding these parameters is maximum likelihood

estimation. These parameter estimates can be obtained iteratively using the expectation-

maximization (EM) algorithm. This algorithm increases the likelihood parameters of the

estimated model in a monotonically increasing fashion until a threshold is reached. Details

of the EM equations for evaluating these parameters can be found in [37].

After the models have been trained by estimating the parameters of the Gaussians, the

probability of a sequence of feature vectors being produced by a claimed identity model
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can be calculated as

log p(X|λ) =
1

T

∑
t

log p(xt|λ). (3.14)

In the above equation,X is the sequence of feature vectors{x1, . . . , xt}, λ is the model

of the claimed identity, andT is the number of components. The average log-likelihood is

computed for normalization purposes.

A technique that improves the performance of the GMM system is the use of the back-

ground model, or model that represents all other speakers. The background model is trained

with speech from a variety of speakers. Individual speaker models are trained using the

speech from that individual alone. An approach that increases the performance of the

system is to adapt the parameters of the background model, using the speech of the indi-

vidual attempting to enroll. The parameters can be manipulated using Bayesian adaptation

or maximum a posteriori estimation. This provides the benefit of having the background

model and the speaker’s model be related in some fashion, rather than being completely in-

dependent. For details related to the adaptation of the parameters of the background model

to create a speaker’s model, refer to [10].

3.6 Score Normalization

As with signature verification, speaker recognition needs to take into account the intra-

class variability (the variation of the voice of the same speaker) of the speakers. This

variability can arise from differing quality of the enrollment data, the duration of the speech,

sickness, emotional states, environmental noise, etc. To account for these factors, a single

decision threshold cannot be used without prior normalization. Also, inter-class variability

(the variation in the voices of different speakers) is an important factor when considering

the placement of decision boundaries. Score normalization deals with the variability of the

scores in order to make the placement of a decision threshold an easier problem.
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A variety of normalization techniques have been proposed in the literature. Many of

the ideas overlap with the normalization techniques proposed for the other biometrics, such

as z-norm (S ′ = S−µ
σ

). Some techniques specific to speaker recognition have also be pro-

posed, such as H-norm. In this approach, the attempt is to normalize for the type of handset

that is used for telephone speech. Handset-dependent normalization parameters are esti-

mated by testing genuine speaker models against handset-dependent speech signals pro-

duced by impostors [36]. When the test samples are input to the system, the corresponding

normalization parameters for the specific handset are used for the score normalization. A

number of other techniques have been proposed and it has been found that combinations of

the normalization techniques produce better results.

3.7 Speaker Identification

Much of the presented material is in the context of speaker verification but it can also

be directly applied to speaker identification. The difference is that instead of one claimed

identity modelλ, we are comparing an input utterance to a group ofS speakers ({1, . . . , S})

which are represented byS GMMs ({λ1, . . . , λS}). The goal is then to find the speaker

model that produces the highest probability for the input feature vector sequence. Using

logarithms and the assumption of independence between observations, the identification

problem can be presented mathematically as

Ŝ = arg max
1≤k≤S

T∑
t=1

log p(xt|λk), (3.15)

wherelog p(xt|λk) is provided in Equation (3.14). This process is depicted in Figure 3.7.
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Figure 3.7: Speaker identification given an input feature vector x.λi is the mixture model
for enrolled speakeri, where1 ≤ i ≤ S, andλm is the background model.

3.8 Nuance Speaker Recognition System

The Nuance speaker recognition system used in this work uses GMMs as the basis for

its recognition engine. The system can work in a text-dependent, text-prompted, or text-

independent mode. Our system works in the text-prompted mode where it is not initially

known what the user will say during training. The system expects the same phrase as

spoken during training to be repeated during verification.

3.9 Performance Evaluation

The performance of the Nuance speaker recognition system is reported in Chapter 4.

The voice system obtains an equal error rate of 2.2% on a database of 100 individuals that

each contributed 10 voice samples. Each of the samples was about 2 seconds in length.
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CHAPTER 4

Multimodal Authentication

When using multiple biometric systems, combining information provided by the mul-

tiple biometric sources will normally lead to a higher recognition accuracy than a single

biometric modality. In this thesis, we have used the voice and signature modalities together

to improve the overall performance of the system and to make spoofing the system a more

difficult task.

There are a variety of scenarios in which fusion of biometric modalities is necessary

[38]. These include:

• A single biometric trait using multiple sensors. In this situation, multiple sensors

record the same biometric trait. An example would be to have both an optical and

capacitive sensor capture a fingerprint of the same finger or acquiring both 2D and

3D representations of the same face.

• A single biometric trait using multiple classifiers. Only one biometric trait is acquired

and this is processed in multiple ways using different types of matchers. An example

of this was described earlier where we acquire one signature from the signer but used

both a local and global matcher on the same signature.

• A single biometric trait using multiple units. This scenario cannot occur with all

biometrics. The same biometric trait is used along with the same sensor but there can

be multiple inputs of the same trait to the sensor. This can be done with fingerprints

by providing two separate fingerprints or in case of the iris by providing both eyes to

the sensor.
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• Finally, we can fuse multiple biometric traits. This is the most common scenario

where more than one biometric trait is presented to the system, such as signature and

voice. The system must combine the two modalities at some level in order to arrive

at a single decision (accept or reject).

The information from multiple biometric systems can be integrated at three main lev-

els; feature, matching, or decision level. Although, the available information can be fully

utilized if fusion is performed at the feature level, this approach has several problems. First,

there many not be any clear relationship between the feature spaces of the individual bio-

metric systems. This could lead to the use of highly correlated features. A second problem

is the “curse of dimensionality” [12]. A common approach is to concatenate the feature

vectors of the different systems together to create a single feature vector. This may lead

to a feature vector of long length, requiring a very large number of training samples to

provide good performance. Finally, when using a commercial biometric product, access

to the feature vector is restricted, so the fusion must be performed at a later stage in the

processing.

A higher level at which the information of can be combined is at the matching score

level. This level utilizes the most information about the individual systems, next to feature

level fusion. Typically, biometric systems output a matching score and this is the level of

fusion used in our system and will be the focus of this chapter.

4.1 Database

The data used in our experiments is a truly multimodal database gathered from 100

individuals in our laboratory. Ten signatures along with ten voice samples were gathered

for each subject during a single session. The individuals were asked to sign their name and

speak their first and last names. The data was collected using a Toshiba Protege tablet PC;
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the stylus was used to gather the signatures and the internal microphone recorded the voice.

The collection was done on our campus in various laboratories with significant background

noise. The on-line signature data contains the x and y coordinates along with the pressure,

altitude, and azimuth of the pen sampled at 100 points per second. The recorded speech

was sampled at a rate of 8000Hz from one channel using 16 bits per sample.

Tests run on this database generated genuine and impostor scores for each user in the

following fashion. Five random samples of voice and signature combinations were selected

as the training set. Genuine scores from the remaining 5 samples, were computed. Impostor

scores were generated by testing on one random sample from each of the 99 other users.

This resulted in 5 genuine scores and 99 impostor scores per speaker. Cross validation was

performed using this process 10 times (each time picking a different training set of size 5

for each speaker). Results are reported as the averages from these ten trials.

The distributions of the signature and voice scores are shown in Figure 4.1. The local

and global systems for the signature matcher were combined in the same fashion as de-

scribed in Chapter 2. The distributions and resulting ROC curves of this process are given

in Appendix A.

4.2 Score Normalization

There are two common approaches to combine the matching scores of different bio-

metric modalities; either classification or combination. In the classification approach, the

scores of the individual systems are concatenated to form a feature vector. This vector

is used as input to a classifier which will classify the feature vector into two classes: ac-

cept or reject. A benefit of using this approach is that the matching scores can be non-

homogeneous; one may be a distance measure while another can be a similarity measure

and they may have different ranges. Consequently, no score normalization is necessary. A
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(a) (b)

Figure 4.1: Distribution of genuine and impostor signature scores; (a) Signature (distance
score) and (b) Voice (similarity score). Signature scores are based on the combination of
local and global features.

drawback to using this approach is that additional training data is needed in order to train

the parameters of the classifier in order to find a proper decision boundary.

The second approach is to combine the matching scores of the individual systems to

generate a single score on which a decision threshold is set. This approach generally pro-

vides better performance but it must be ensured that the scores are properly transformed

to a common domain before the combination. Score normalization attempts to solve the

problems of non-homogeneous scores, varying score ranges, and differing distributions. It

changes the location and scale parameters of the matching score distributions of different

modalities so that all the scores share a common domain.

Various techniques have been proposed in the literature to normalize the matching score

of biometric systems and it has been found that the min-max and z-score normalization

techniques followed by a simple sum rule, generally outperform other techniques [22].

Accordingly, in this thesis, we experimented with the use of the min-max and z-score

normalizations.
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4.2.1 Min-Max

Min-max normalization is the simplest of the score normalization techniques. The nor-

malization shifts the minimum and maximum scores to range between 0 and 1, respectively.

If the minimum and maximum values of the matching score distribution are not known be-

forehand, they can be estimated given a set of matching scores. Formally the min-max rule

can be defined as

s′ =
s−min

max−min
, (4.1)

wheres is the raw matching score, ands′ is the normalized matching score. To account

for non-homogeneous scores, a distance score can be transformed into a similarity score by

subtracting the normalized score from 1 (1-s′k). This normalization does not change the un-

derlying distribution of the data except for a scaling factor. If the minimum and maximum

values have to be estimated, outliers will effect the normalization. Figure 4.2 shows the

results of transforming the signature and voice scores using the min-max normalization.

(a) (b)

Figure 4.2: Distribution of genuine and impostor signature scores after min-max normal-
ization; (a) Signature and (b) Voice.
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4.2.2 Z-Score

The z-score normalization technique is the most commonly used. It utilizes the mean

and standard deviation of the data to normalize the scores. A normalized score is produced

by the equation

s′ =
s− µ

σ
, (4.2)

whereµ is the mean andσ is the standard deviation of the matching score distribution.

Similar to min-max, this method is also sensitive to outliers. This is because outliers can

greatly affect the calculation of the mean and standard deviation and thus altering the trans-

formation of the normalized scores. It differs from the min-max method in that it does not

guarantee a set numerical range. This method attempts to change the score distributions

so that they have a mean of zero and a standard deviation of one. If the distributions are

not originally Gaussian, the transformation will not retain the original distribution. Figure

4.3 shows the results of transforming the signature and voice scores using the z-score. The

signature score is converted into a similarity score using the transformationx′s = e−xs ,

wherexs is the original signature score andx′s is the converted similarity score. As can

be seen, the distributions do not share a common range and the original shape of the score

distributions of the data are not retained.

4.3 Score Fusion

Now that the matching scores share a common domain, they can be combined in a use-

ful fashion. The problem of combining the scores from the voice and signature modalities

for a given test sampleT can be considered as a two class classification problem. The

sampleT can fall into either the impostor (wi) or genuine (wg) class. A Bayesian approach
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(a) (b)

Figure 4.3: Distribution of genuine and impostor signature scores after z-score normaliza-
tion; (a) Signature and (b) Voice.

would decidewi if

P (wi|xv, xs) > P (wg|xv, xs) (4.3)

andwg otherwise. In the equation,xv andxs are the voice and signature scores, respec-

tively, andP (w|xv, xs) denotes the posteriori probability of a class given the voice and

signature scores. The strategy used in our system is the simple sum rule described by Jain

and Ross [23]. This rule assumes statistical independence of each modality and also that

the posteriori probabilities computed by the individual classifiers do not deviate much from

the prior probabilities [22]. The weighted sum rule assigns a test sample towi if

WvP (wi|xv) + WsP (wi|xs) > WvP (wg|xv) + WsP (wg|xs), (4.4)

andwg otherwise. In the equation,Wv andWs are the weights of the voice and signature

scores, respectively, andP (w|x) is the posteriori probability of a class given a matching

score.
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4.3.1 Modes of Operation

Multimodal systems can perform fusion in one of three different modes; serial, parallel,

or hierarchical mode [39]. In serial mode, the output of one modality is used to narrow

down the search for the identities. This allows for the users to not have to simultaneously

input all biometric traits at once and, also, this can lead the system to a decision before

all modalities are input. In parallel mode, all the traits are input at the same time and the

multimodal system uses all the scores together to make a decision. In hierarchical mode,

the traits are combined in a treelike fashion where results of a subset of the classifiers are

combined before adding the information from the other classifiers. This mode will be most

useful when a large number of biometric traits are present.

Our multimodal system works in serial mode. First, a spoken voice is input to the

system. The speaker recognition system first performs speaker identification on the speech

signal. If this input does not match closely with any of the enrolled individuals, the user

is classified as impostor and the on-line signature of the user is not obtained. If speaker

identification finds a match to one of the enrolled speakers, this identity is passed to the

signature verification system. The signature of the user is obtained, and this is compared

against the identity found by speaker identification. When both the signature and voice

scores have been obtained, score fusion will be performed.

4.4 Results

The weights (Wv andWs) of the individual modalities have to be estimated from addi-

tional data (validation set). Our system uses common weights (for all the users) but using a

user-specific specific weighting scheme may further increase the performance of the mul-

timodal system [20]. Figure 4.4 shows the distributions of the signature and voice scores
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fused together using the weighted sum rule with min-max and z-score normalization. Fig-

ures 4.5 and 4.6 show the resulting ROC curves using min-max and z-score normalizations,

respectively. The system using the z-score normalization gives better performance with an

equal error rate of 0.72%. The weights used for the sum rule were 0.65 for the signature

system an 0.35 for the voice system. These weights were determined from the validation

set.

(a) (b)

Figure 4.4: Distribution of genuine and impostor signature scores after sum rule fusion;
(a) Min-Max normalization and (b) Z-Score normalization. The weights assigned to the
signature and voice systems were 0.65 and 0.35, respectively.
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Figure 4.5: Receiver operating characteristic curves for the signature, voice, and fused sys-
tem scores using min-max normalization. The equal error rate of each system is displayed
in parenthesis in the legend.

Figure 4.6: Receiver operating characteristic curves for the signature, voice, and fused
system scores using z-score normalization. The equal error rate of each system is displayed
in parenthesis in the legend.
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CHAPTER 5

Summary

The motivation of this thesis is to provide a secure form of authentication for access to

medical records. The use of biometrics provides increased security over standard forms of

authentication because it relies on who we are and what we do. This type of information

provides enhanced security levels because different individuals are unlikley to have similar

physiological and behavioral attributes.

The use of the signature and voice modalities were selected for two main reasons. First,

these are well accepted in the medical domain and emulate the current system of authenti-

cation in hospitals. Second, a tablet PC does not require any additional hardware in order

to accommodate biometric authentication using signature and speech. Use of multiple bio-

metrics overcomes some of the limitations imposed by unimodal systems and increases the

performance of the authentication.

Signature verification was explored in Chapter 2. This utilized dynamic time warping

to match feature vectors from two signatures. The system focused on the temporal infor-

mation captured by the on-line signature to increase the performance in classifying skilled

forgeries. We incorporated a form of user-dependent normalization to account for the intra-

class variability presented by the signers. This required the use of dimensionality reduction

techniques, with the best performance obtained using Principle Component Analysis, to

transform the normalized score vector to one dimension. A global feature system was also

added to provide complementary information about the signature. Twenty features were

extracted that examined the signature in its entirety and the Mahalanobis distance was used

to compute the distance between a user template and an input feature vector. The two
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scores (global and local) were combined using a simple weighted sum rule to provide a

robust signature verification system.

Voice identification and verification was discussed in Chapter 3. To perform identifi-

cation and verification, we used the Nuance Verifier system. This system relied on Gaus-

sian mixture models to analyze the acoustic information provided in the voice signal. We

worked in a text-prompted mode, where the speaker could say anything during training

but had to use the same phrase spoken in training for subsequent verification sessions.

This system was used to perform both identification and verification. A user attempting

to access the system must first speak his first and last name. The voice system performed

identification to recognize if the input speech matches any of the enrolled models. If mul-

tiple matches were found, verification was performed on each of the possible identities and

the model with the highest similarity score was used as the claimed identity. This score

was passed onto the fusion module while the claimed identity was passed to the signature

verification system.

Chapter 4 focused on the techniques used to combine the matching scores of the two

unimodal systems. First, score normalization was performed, experimenting with the min-

max and z-score techniques. The normalized scores were then combined using a weighted

sum rule to output a final matching score. This was compared against a common threshold

to classify the input as either genuine or impostor.

5.1 Future Work

The techniques presented in this thesis provide a robust multimodal authentication sys-

tem to protect the privacy of medical records. Further work can be done to improve the

performance of the system. Other forms of dynamic information from the on-line signature

can be incorporated into the system. These can be in the form of calculating acceleration
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signals in the x and y directions and also the time derivatives of the acceleration signals.

Also, experiments with the tilt of the pen (altitude and azimuth) can be explored to see if

these provide distinguishing information for skilled forgeries. It is also important to further

explore the area of user-dependent normalization techniques to allow the system to handle

variations in the handwriting.

Further score normalization techniques should also be explored. The min-max and z-

score normalizations were not robust to outliers in the data. Techniques that are not greatly

effected by outliers may provide for better fusion results, such as tan-h normalization or

Parzen window density estimation. The fusion systems can also be further explored. Clas-

sifications techniques such as support vector machines, may be able to find a better decision

boundary than using a simple sum rule. It can also be beneficial to use user specific weights

when using combination fusion. It may be the case that while one user has very reliable

signature scores (allowing higher weight to be put upon the signature system’s score) other

users may have very high intra-class variability for their signature and the multimodal sys-

tem may obtain better performance if most of the weight was placed upon the voice modal-

ity. Also, the system should be tested on a larger database to validate the robustness of the

algorithms.
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APPENDIX A

A.1 Signature Fusion for the Multimodal Database

(a) (b)

Figure A.1: Distribution of genuine and impostor signature scores from one trial of testing
on the multimodal database; (a) Global (distance score) and (b) Local (distance score).
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(a) (b)

(c)

Figure A.2: Distribution of genuine and impostor signature scores from one trial of testing
on the multimodal database after performing z-score normalization and sum rule fusion us-
ing weights of 0.1 and 0.9 for the global and local systems respectively; (a) Global (distance
score), (b) Local (distance score) and (c) Fused scores using the sum rule.
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Figure A.3: Receiver operating characteristic curves for the global, local, and fused sig-
nature scores. The equal error rate (%) of each system is displayed in parenthesis in the
legend.
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