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Abstract

Extended Feature Set and Touchless Imaging For

Fingerprint Matching

By

Yi Chen

In recent decades, fingerprint matching has undertaken a tremendous transition

from a tedious manual procedure for criminal investigation to the most widely de-

ployed biometric technology for government and civilians applications. In this thesis,

we address two critical issues related to this transition: i) automatic systems have

not fully utilized the knowledge gained by forensic experts in manual fingerprint

matching (e.g., extended features, matching with distortion); ii) interoperability be-

tween advanced sensing technology and legacy fingerprint databases has not been

fully achieved in automatic systems.

To address the first issue, we investigate the use of extended features, often uti-

lized in manual fingerprint matching, in automatic systems. These extended features

include ridge skeletons, pores, dots and incipients. We propose methods to automat-

ically extract and compare these extended features in a hierarchical fashion. Our

experiments show performance improvement from each of the proposed extended fea-

tures in live-scan matching on MSU database (full vs. full and partial vs. full). We

also show that ridge skeletons are more effective than pores, dots and incipients in

improving latent matching on NIST-27 database (latent vs. roll). In addition, we con-

duct statistical analysis on the individuality of fingerprints using extended features,

demonstrating their discriminative nature both theoretically and empirically.

To address the second issue, we investigate the interoperability between a new

fingerprint sensing technology based on touchless imaging and the legacy rolled fin-



gerprint data. We propose a non-parametric virtual rolling method to unwrap the 3D

touchless fingerprints into 2D rolled-equivalent fingerprints. We also develop a qual-

ity measure and an enhancement algorithm for the unwrapped touchless fingerprints.

Our experiments on the TBS database demonstrate effectiveness of the proposed

methods in achieving compatibility in matching touchless fingerprints with legacy

rolled fingerprints.
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Chapter 1

Introduction

Personal characteristics exist in much more minute particulars. Perhaps the most

beautiful and characteristic of all superficial marks are the small furrows with the

intervening ridges and their pores that are disposed in a singularly complex yet even

order on the under surfaces of the hands and the feet. – Francis Galton, 1888,

Nature [61]

Human fingerprints have been discovered on a large number of archaeological

artifacts and historical items, including clay tablets for business transactions in an-

cient Babylon and clay seals in ancient China [95]. However, it was not until 1880

that Dr. Henry Faulds proposed to use printer ink to obtain fingerprints for the

purpose of personal identification [57]. In 1899, Sir Edward Henry established the

well-known “Henry system” of fingerprint classification [63], which started what is

considered “the modern era of fingerprint identification” [36]. In 1924 the United

States congress required the collection of fingerprints for criminal records [63]. Faced

with continually growing databases and recognizing the potential for latent print

searches, law enforcement agencies began to automate the fingerprint identification

procedure by introducing the Automated Fingerprint Identification Systems (AFIS)
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in 1977 [88]. By 1999, the FBI implemented the Integrated Automated Fingerprint

Identification System (IAFIS), allowing submission of electronic records and search

capabilities from local AFIS (states and counties) directly to the national database

[88]. In addition to law enforcement applications, IAFIS also serves in large-scale

government applications, such as civilian background checks. By 2007, IAFIS had

more than 74 million computerized fingerprint records [63] and conducted ∼ 100, 000

searches per day [50].

Automatic fingerprint matching has been shown to be a reliable, rapid, cost-

effective solution to large-scale verification and identification needs. However, it has

not completely replaced the need for manual examination by experienced forensic

experts. For example, although 67.6% of criminal identification cases submitted to

IAFIS were automatically or semi-automatically identified [27], it is only the iden-

tifications verified by forensic experts that are acceptable in courts of law. This is

because manual fingerprint matching is considered to be more accurate, especially

in the case of latent prints, as forensic experts rely on more detailed fingerprint fea-

tures [34] compared to automatic systems. As a result, “the level of sophistication of

automatic systems in matching fingerprints today cannot rival that of a dedicated,

well-trained fingerprint expert” [95]. In addition, complete sensor interoperability has

not been achieved in automatic systems, which needs immediate attention due to the

fast advances in fingerprint sensing technologies.

In this thesis, we study the integration of human expertise and technology in

order to achieve better accuracy and interoperability of automatic systems. More

specifically, we introduce i) the extended set of fingerprint features (e.g., pores and

dots) into automatic matching systems and develop algorithms to extract and match

them to improve the matching accuracy and ii) techniques to achieve interoperability

between touchless and legacy rolled fingerprints. We believe both these issues will

play a major role in advancing the next generation automatic fingerprint matching
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technology.

1.1 Fingerprint Formation

A fingerprint is the pattern of friction ridges on a human finger, which provides

increased friction for gripping. Many scientists believe that the friction ridges are

constructed from small “ridge units” (see Figure 1.1 (a)) whose size, shape, density

and alignment are “remarkably unique” to individuals [36]. During friction ridge

formation, “ridge units” are fused together under random forces into various ridge

characteristics, the most representative of which are ridge bifurcations and endings

(see Figure 1.2). No two persons, not even twins have been found to have finger-

prints that share exactly the same location, shape and inter-relationship of these

ridge characteristics [36]. Nevertheless, friction ridge formation is genetically con-

trolled as “statistically significant familial correlation values and high heritability

estimates (more than 60%)” have been observed for some of the ridge characteristics

such as forks, endings and the total number of ridge characteristics [48]. Dankmeijer

et al. have demonstrated a higher correlation of the number of ridge characteristics on

each finger for monozygotic twins as opposed to dizygotic twins [52]. Gungadin [67]

has also shown that the density of friction ridges is significantly greater in females

than males.

It is now known that the friction ridge formation process starts deep in the skin,

where skin cells are generated and migrate upward to the epidermal surface [46]. A

recent study on microcirculation of a human finger even revealed that the regular dis-

position of capillaries beneath the dermis “sharply followed the fingerprint pattern,

reproducing an identical vascular fingerprint with the same individual architecture”

(see Figure 1.3) [116]. Such scientific evidence explains why fingerprints are gener-

ally considered “permanent” and only a very deep cut would result in changes in a
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(a)               (b)

pore

Figure 1.1: Ridge units, the building blocks of friction ridges: (a) a sketch of ridge
units (reproduced from [36]); (b) an area of a fingerprint showing friction ridges fused
by ridge units, each containing a pore.

crossover
ending

bifurcation

fork

spur

Figure 1.2: The most common ridge characteristics.
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A

Figure 1.3: A finger seen during the maceration process shows (A) the friction ridges
of a finger; (B) rows of vessels underneath the friction ridges, revealing perfect corre-
spondence with the fingerprint (reproduced from [116]).
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fingerprint.

1.2 Fingerprint Acquisition

In order to acquire a fingerprint, various acquisition (sensing) technologies have been

developed. In general, based on the acquisition process, a fingerprint can be acquired

as either a latent or a tenprint (roll, slap or plain), as shown in Figure 1.4.

���������� ��������������������� ������ ��������

Figure 1.4: Example of (a) rolled, (b) plain, and (c) latent fingerprint.

(a)       (b)     (c)

Figure 1.5: An example of the latent lifting process: (a) dust with powder; (b)
photograph with a ruler; (c) apply transparent tape and then lift (reproduced from
[28]).
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(1)  (2)              (3)             (4)              (5)         

(6)              (7)              (8)             (9)              (10)     

(11)  (12)  (13)                              (14)

Figure 1.6: A tenprint card containing three types of fingerprints, namely (1-10) rolls
of each of the ten fingers, (11,14) slaps of the left and right hand (index, middle, ring
and little fingers) and (12,13) plains of left and right thumbs (reproduced from [16]).
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(a)                    (b)

Figure 1.7: Acquiring a fingerprint using (a) the traditional ink-on-paper method [6],
and (b) a live-scan device that captures fingerprints electronically [26].

Latent acquisition: A latent, or a mark, is a chance or accidental impression

left behind on a surface by an unknown individual. To acquire latents, forensic

experts need to carefully lift up or photograph the residue using special treatments and

imaging including optical (e.g., UV imaging), physical (e.g., powdering), or chemical

(e.g., ninhydrin) [46] (see Figure 1.5). The choice of treatment is dependent on the

surface where the latents are found. Because latents often exhibit a small portion

of the finger surface with few number of features (e.g., 17 minutiae on average [75]),

and are of poor quality due to smudginess, distortion, and poor deposition [21], they

generally contain “less clarity, less content, and less undistorted information than a

fingerprint taken under controlled conditions, and much less detail compared to the

actual patterns of ridges and grooves of a finger [53]”

Tenprint acquisition: A tenprint is a set of fingerprint impressions collected and

registered with the consent of a known individual. Tenprints are often stored in the

databases and used as templates in matching with other tenprints or latents during

identification. A complete tenprint record contains a set of 14 fingerprint images

collected as rolls, plains and slaps from all the ten fingers of a person (see Figure 1.6).
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∙ Roll, or a rolled fingerprint, is captured by rolling a finger (tip to the first joint)

from “nail-to-nail” on the sensing surface. It provides the largest fingerprint area

and contains, on average, about 80 minutiae, allowing for extremely accurate

classification and matching. However, the rolling procedure is tedious and can

result in poor quality images due to improper pressure, distortion, slippage, and

smearing.

∙ Plain (Flat) fingerprint is captured by pressing a finger against the sensing sur-

face. This process is faster compared to rolling, but the acquired fingerprint area

is smaller than that captured by rolls, containing ∼ 40 minutiae, on average.

∙ Slap, or a four-finger simultaneous impression, is captured by pressing four

(index, middle, ring, and little) fingers of a hand simultaneously against the

sensing surface. A slap image can be segmented into individual plain impressions

and can be used for sequence check1 by matching with corresponding rolls.

A tenprint can be captured off-line using a tenprint card (ink-on-paper) or on-line

using an electronic device (live-scan). In the off-line method, the subject’s finger is

coated with black ink and pressed or rolled against a paper card (see Figure 1.7 (a)). In

the on-line method, fingerprints are electronically scanned using optical scanners (see

Figure 1.7 (b)). Other live-scan technologies based on solid-state or ultrasound have

also been developed [95], however, these devices are rarely used in law enforcement

applications as they are too small to capture slap or rolled fingerprints.

New live-scan technologies based on multispectral imaging (MSI) and touchless

imaging have been introduced [9, 17]. Unlike conventional optical live-scan devices,

MSI devices scan both the surface and sub-surface of a fingerprint using different

wavelengths of light (e.g., 470nm (blue), 574nm (green), and 636nm (red)) and provide

a composite fingerprint image [114]. This technology is effective in improving image

1Sequence check is a process that compares rolled prints and corresponding plain impressions to
determine if the sequence of fingers is correct during acquisition.
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(a) (b) (c)

Figure 1.8: Fingerprint image resolution. Three impressions of the same fingerprint
are captured at (a) 380 ppi (Identix 200DFR) (b) 500 ppi (CrossMatch ID1000) and
(c) 1000 ppi (CrossMatch ID1000). High image resolution increases the visibility and
extractability of fingerprint details.

Figure 1.9: Two touchless fingerprint images from a video sequence captured using a
super resolution sensor (≈ 7000 ppi). Perspiration activities (opening and closing) of
pores are visible and can be used for spoof detection (courtesy: TBS Inc. and Geppy
Parziale (geppy.parziale@invasivecode.com)).
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Table 1.1: Comparison of various fingerprint sensing technologies.

Technology Image type Resolution1 Law enforcement2

optical rolls/plains/slaps 500-1000 yes
solid-state plains 500 no

ultrasound [20] plains 500 no
multispectral [9] plains 500 no
3D touchless [17] rolls3 500-1000 possible

1 in pixels per inch (ppi)
2 applicability in law enforcement
3 rolled-equivalent

quality of dry, wet, or worn out fingerprints [9]. However, MSI is not suited for law

enforcement applications because the algorithm that fuses multiple spectrum images

tends to blur or even remove fingerprint details during the fusion. The touchless

imaging, on the other hand, involves imaging the fingerprint surface without a direct

contact between the skin and sensor surface. This technology results in fingerprint

acquisition free of smearing, slippage, and skin distortion. As a result, in principle,

it effectively preserves the “ground truth” of a fingerprint while producing a more

complete representation (from “nail to nail” and “tip to bottom”) compared to the

conventional live-scan devices (see Section 6).

Different sensing technologies have their advantages and disadvantages in terms

of cost, time-efficiency, user experience, etc. The mostly widely used criterion to eval-

uate different fingerprint sensing technologies is the quality (clarity) of the captured

images, often measured by the image resolution, or pixels per inch (ppi). Higher im-

age resolution results in better image quality with finer details being more visible (see

Figure 1.8). Other criteria include whether the technology is capable of capturing all

types of tenprints (e.g., rolls, plains, and slaps), is applicable in law enforcement and

has high security level (e.g., robustness to spoof attacks) (see Figure 1.9). Table 1.1

shows a comparison of different fingerprint sensing technologies.

11



1.3 Sensor Interoperability

a)

b)

c)

d)

e) f)

g)

h)

Figure 1.10: Fingerprint images of the same finger acquired using different commer-
cial sensors, including optical sensors (a) Biometrika FX2000; (b) Digital Persona
UareU2002; (c) Identix DFR200; (d) Ethentica TactilSense T-FPM, and solid-state
sensors (e) ST-Microelectronics TouchChip; (f) Veridicom FPS110; (g) Atmel Fin-
gerChip; (h) Authentec AES4000 (reproduced from [95]).

In manual fingerprint matching, forensic experts are capable of comparing fin-

gerprint images acquired under different environments (e.g., latents, tenprints) and

using various acquisition methods (e.g., optical, solid-state, ink-on-paper). In auto-

matic fingerprint matching, however, AFIS systems are often designed and optimized

for fingerprint images originating from the same type of sensors [112]. When finger-

print images acquired using different sensing technologies are compared, automatic
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systems often have trouble discerning the appropriate fingerprint information, due to

different image characteristics caused by sensor noise, light sources, pressure sensi-

tivity, etc., a problem also known as sensor interoperability (see Figure 1.10) [112].

Note that the differences in fingerprint scales captured by different sensors are usually

not a problem, as they can be addressed by re-scaling the images based on the image

resolution, measured by pixels per inch (ppi) or dots per inch (dpi). Specifically, if

the fingerprint is captured by printing, the scale of the fingerprint is determined by

the scanning resolution; if the fingerprint is captured by imaging (e.g., touchless fin-

gerprints, latents), the corresponding resolution is determined during the acquisition

process.

Because sensor interoperability occurs at the image level, it is important to inves-

tigate the fundamental differences in the intrinsic characteristics of different sensing

technologies and develop algorithms to address this issue at the image level. An ex-

ample of achieving sensor interoperability between touchless and rolled fingerprints

at the image level is presented in Chapter 6. It is also possible to address the sen-

sor interoperability problem at the feature level, where a canonical representation

of fingerprint features (e.g., ridge lines with constant inter-ridge distances) can be

used to offset the variability in data. However, such representation is often limited

and incompatible with manual fingerprint matching. Note that sensor interoperabil-

ity cannot be fully solved by adopting a common biometric data exchange format

[31, 39]. Such a format will only assist in the exchange of fingerprint templates be-

tween different systems or vendors [107], but does not ensure compatibility between

fingerprint images captured using different sensing technologies [112].
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1.4 Fingerprint Representation

Fingerprint images are not directly compared in fingerprint matching. Instead, a set

of salient and discriminatory features that represent the underlying characteristics of

fingerprints are extracted from the images before matching. The reason for feature

extraction can be related to dimensionality reduction [54], where a raw image is

considered of high dimensionality, containing redundant information. Features are

also typically more robust to noise and distortion than the input image pixels. As

a result, the accuracy and efficiency of fingerprint matching greatly depends on the

selection and extraction of fingerprint features.

    ENDING        BIFURCATION             FORK                 SPUR                  DOT            SHORT RIDGE

     PORES         RIDGE SHAPE      INCIPIENTS            CREASES           WARTS                SCARS

    LEVEL 2 FEATURES

LEVEL 3 FEATURES

LEVEL 1 FEATURES

        ARCH         TENTED ARCH     LEFT LOOP       RIGHT LOOP    DOUBLE LOOP        WHORL        

Figure 1.11: Fingerprint features used in manual fingerprint matching, categorized as
Level 1 (upper row), Level 2 (middle row) and Level 3 (lower row) features [18, 100].

In manual feature extraction, forensic experts first analyze the clarity of the print

to determine the “extractability” of features. Next, a large variety of features, that
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have been established based on their evidential value observed during decades of

forensic practice, are encoded and recorded. These features are typically categorized

into three levels, namely, Level 1, Level 2 and Level 3 features (see Figure 1.11). The

higher the feature level, the finer the feature detail. In automatic feature extraction,

pre-compiled algorithms are used to determine the strength of ridge-valley signals

in order to determine the area in which to extract fingerprint features. Then, a

set of features pre-defined by the matching algorithm are extracted and encoded for

matching. Unlike the three levels of features defined in manual matching, the features

extracted in automatic matching do not regularly have to have a particular physical

counterpart (e.g., local orientation map or filter responses) as long as they lead to

high matching accuracy.

x

y

(a)              (b)

x

y

θ

Figure 1.12: Minutiae features currently defined in the ANSI-NIST-CSL 1-2000 stan-
dard [33]: (a) ridge bifurcation; (b) ridge ending. They are a subset of the Level 2
features used in manual fingerprint matching (see Figure 1.11).

Regardless of the extraction process, either manual or automatic, fingerprint fea-

tures are often required to be represented in a standard feature format. Standardiza-

tion of fingerprint representation ensures the compatibility of templates and allows

effective exchange and communication among different automatic systems or between

automatic systems and forensic experts. Currently, fingerprint feature standards (e.g.,

the ANSI-NIST-CSL 1-2000 standard [33]) are mostly based on minutiae, which are
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highly discriminative features that can be reliably extracted by both forensic experts

and automatic systems (see Figure 1.12). In practice, however, minutiae may not

always be sufficient in establishing a correct match when the fingerprint size is small

or the image quality is poor. In such cases, additional features other than minutiae,

also known as extended features, are needed. More details of fingerprint features and

feature standards are presented in Chapter 4.

1.5 Fingerprint Matching

Fingerprint matching is the process that compares features extracted from two differ-

ent fingerprint images and determines if they are from the same finger. The image, or

the features derived from it at the enrollment time, is stored in the database, called

a template. The image, or the features derived from it at authentication time, is

called a query. Fingerprint matching serves two objectives in personal authentica-

tion: verification and identification. In verification, a query with a claimed identity

is submitted and is only compared with the template of the same claimed identity.

In identification, no identity information is provided with the query, which is then

compared with all the templates in the database. The query is identified only if a

template is found to be closely matched with the query.

In practice, fingerprint matching is conducted in three different modes, namely,

manual, semi-automatic and automatic. These modes present different trade-offs

between efficiency (time and cost) and accuracy. For example, manual matching

requires a significant amount of effort on the part of highly trained forensic experts

to provide accurate identification results. Automatic matching, on the other hand,

is more efficient but may not be as accurate, especially for small and noisy quality

prints (e.g., latents). Semi-automatic matching attempts to take advantage of both

by using automatic matching to filter and reduce the number of templates needed for
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manual matching.

1.5.1 Manual Fingerprint Matching

In manual fingerprint matching, fingerprint features are extracted and compared by

forensic experts. Prior to 1973, the forensics community relied on a “point rule” [63]

to perform the task. That is, two fingerprints were declared to match as long as

a certain minimum number (12) of minutiae points were found in correspondences.

This rule was later abandoned as manual fingerprint matching is a “qualitative and

quantitative analysis” [122, 123] that often benefits from utilizing both minutiae and

extended features.

Currently, forensic experts follow an ACE-V protocol [122] to perform manual

fingerprint matching. There are four consecutive components in the ACE-V proto-

col: Analysis, Comparison, Evaluation, and Verification [73]. In Analysis experts

categorize and encode all three levels of features that are visible in the print. Com-

parison is an iterative procedure between the unknown print (query) and a known

print (template), focusing successively on Level 1, Level 2, and Level 3 features (when

identified in both) and taking into account the tolerances dictated by the quality of

the print (see Figure 1.13). Evaluation takes place at the same time as the comparison

and addresses two fundamental questions [36]: (i) Is there an agreement between the

query and a template fingerprint? (ii) Is there sufficient uniqueness to individualize

the identity of the query? Consequently, the evaluation results can be expressed in

three terms: elimination, individualization, or declaring an insufficient uniqueness to

individualize or eliminate. Finally, Verification is carried out by peer review to pre-

vent false identification. Note that compared to the “point rule”, ACE-V is a more

comprehensive procedure for manual fingerprint matching. However, recent court

rulings have raised questions on whether the ACE-V methodology has a reliable fac-

tual foundation for latent print identification [30]. Court arguments suggested that
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Figure 1.13: Manual fingerprint matching using three levels of features, including
Level 2 minutiae (indicated by numbers) and Level 3 ridge shapes (illustrated in the
magnified portions) (reproduced from [2]).

“ACE-V is a rather vague and general outline, compared to point counting, and there

are no objective or universal standards that govern the application of the ACE-V to

establish its reliability” [30].

1.5.2 Automatic Fingerprint Matching

Although manual fingerprint matching has started shifting away from the “point rule”

to the ACE-V protocol, automatic fingerprint matching still relies mainly on minutiae
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points. Essentially, automatic fingerprint matching consists of three components: i)

extraction of minutiae sets from the template and the query; ii) establishing the

alignment between the two minutiae sets; iii) match score calculation based on the

number of correspondences between the two minutiae sets and other properties (see

Figure 1.14).

(c)     (d)

(a)     (b)

Figure 1.14: Automatic fingerprint matching using minutiae points: (a) minutiae set
in a query; (b) minutiae set in a template; (c) alignment based on the pivot minutiae
marked with green circles in (a) and (b); (d) the matching results where corresponding
minutiae are connected by green lines (adopted from [71]).

One of the biggest challenges in automatic fingerprint matching is to establish the

correct alignment between the template and the query, which subsequently permits a
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meaningful calculation of the match score. Unlike forensic experts who utilize ridges

to visually determine the alignment of two fingerprints, minutiae-based automatic

systems often rely on maximizing the number of minutiae correspondences to establish

an alignment. As a result, automatic fingerprint matching has limited performance

in partial fingerprint (e.g., latent) matching, where the number of minutiae is often

small and the image quality is poor. Despite these limitations, automatic fingerprint

matching has been shown to be an accurate, efficient and cost-effective solution for

human identification. As an example, the commercial AFIS system by Cogent can

perform up to 500,000 matches per second with a very high accuracy [1, 130].

1.5.3 Semi-automatic Fingerprint Matching

Considering the high accuracy of manual fingerprint matching especially for latents

and the high throughput of automatic fingerprint matching, semi-automatic finger-

print matching employs both strategies to improve the overall performance. Semi-

automatic fingerprint matching is mainly employed in two different identification

tasks, namely, tenprint searches and latent searches. All law enforcement AFIS sys-

tems are required to have the capability of conducting both types of search.

Tenprint searches are driven by the needs for fast and accurate identification on

a large-scale database with high-quality enrolled images or templates. Speed is a

critical factor because in criminal processing, a fast turnaround is required to en-

sure rapid retrieval of information; and in civil applications, a search also needs to

be concluded in a reasonable time. With improved feature extraction and matching

speed and accuracy, the AFIS systems have played a major role in tenprint searches.

Although human verification is needed in certain applications to compare the can-

didates produced by AFIS or to validate the hit/non-hit decision, some agencies are

pursuing “lights-out” tenprint search, where responses from AFIS are directly sent to

the inquiring agency without any human intervention [88].
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Figure 1.15: Semi-automatic procedure for latent search.

Latent searches require interaction between AFIS systems and human experts.

The process is also known as “semi-lights-out” as human intervention can occur at

both (either) feature extraction (frontend processing) and (or) matching verification

(backend processing) stages, as shown in Figure 1.15. In latent searches, AFIS systems

only provide information, not a determination [88]. That is, the system usually

returns the top N (e.g., N=50) matches, each of which is then verified by a human

expert.

1.5.4 State-of-the-Art Performance

Regardless of the matching mode, the matching performance can be evaluated by

two types of error rates, namely, False Accept Rate (FAR) and False Reject Rate

(FRR). FAR refers to the error of falsely accepting an impostor match, while FRR

refers to the error of falsely rejecting a genuine match (see Figure 1.16). A Receiver

Operating Characteristic (ROC) curve is often used to plot the FAR and FRR at

different score thresholds. Note that FAR is the result of small variability between

impressions of different fingers, referred to as inter-class variability and FRR is caused

by large variability in different impressions of the same finger (e.g., poor quality, skin
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distortion), referred to as intra-class variability. For a given system, reducing one

error rate will cause the other to rise. Fingerprint systems deployed in high security

applications often operate at a low value of FAR. When a system operates in the

identification mode, the False Positive Identification Rate (FPIR) and False Negative

Identification Rate (FNIR) are the counterparts of FAR and FRR at a given rank,

or the number of retrieved candidates. Increasing the rank value would improve

the chance of correct retrievals, but would also increase the burden of verification

afterwards, especially if the verification is done manually. The relationship between

rank and the identification rate can be also reported using a Cumulative Match Curve

(CMC), where the percentage of retrieving the correct candidate is plotted against

the rank number.

Figure 1.16: Matching error rates. The curves show False Accept Rate (FAR) and
False Reject (FRR) Rate for a given threshold 𝑡 over the genuine and impostor score
distributions. FAR is the percentage of non-match (impostor) pairs whose matching
scores are greater than or equal to t, and FRR is the percentage of match (genuine)
pairs whose matching scores are less than t [108].

A number of large-scale tests have been conducted by the National Institute of
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Standards and Technology (NIST) to evaluate the state-of-the-art fingerprint match-

ing performance [130, 25, 29, 55]. These tests involve AFIS systems from major ven-

dors in the industry that were evaluated on large-scale fingerprint databases. Results

from these tests are summarized as follows.

In tenprint matching, recent evaluations tests (e.g., NIST Fingerprint Vendor

Technology Evaluation (FpVTE) test [130] and NIST Proprietary Fingerprint Tem-

plate (PFT) Test [25] have consistently shown highly accurate performances by top

AFIS vendors (i.e., FRR of 0.005 at FAR of 0.0001). Large sets of operational data

were used in these tests to generate statistical significance in the resulting perfor-

mance. These tests also revealed that tenprint matching accuracy can vary signifi-

cantly based on the number of fingers available, image quality, image size and image

type. For example, accuracy on larger images was significantly higher than that on

smaller images (see Table 1.2); accuracy using multiple fingers was significantly higher

than that using a single finger.

Table 1.2: Effects of image size in matching right and left index fingers from the NIST
Special Database 29 as a function of cropped image size [127].

Image size1 Right finger2 Left finger3

368 × 368 0.041 0.037
320 × 320 0.063 0.032
280 × 280 0.060 0.053
200 × 200 0.304 0.292
180 × 180 0.350 0.356

1 pixels in width and height
2,3 FRR at FAR of 0.001

In latent matching, recent evaluation tests (e.g., Phase I and Phase II of NIST

Automated Latent Fingerprint Identification Technologies (ELFT) test [55, 75]) have

shown a wide range of performances by top AFIS vendors on different databases.

For example, in Phase I of the ELFT test, the latent identification rate of the cur-

rent IAFIS ranges from 54% (NIST-27 database) to 94% (DCJS database) and 97%
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(Secrete Service database). This test confirmed the tremendous importance of latent

quality. In Phase II of the ELFT test, a latent database with an overall quality “higher

than typical operational latent case work” was used to evaluate the “semi-lights-out”

performances of AFIS vendors. In this test, the best AFIS vendor achieves the rank-

1 identification rate of 97.2% at 1000 ppi, or FNIR of 0.149 at FPIR of 0.01. Note

that compared to tenprint matching, latent matching remains a big challenge with a

much larger room for performance improvement. The challenge in latent matching

include: i) automatic segmentation of latent foreground from the noisy background

often caused by dirt, surface texture, etc.; ii) improving the image quality of latents,

especially to increase the ridge-valley contrast in noisy areas; iii) automatic extraction

of fingerprint features (both minutiae and extended features) in latents with or with-

out human assistance; iv) utilizing extended features in latent matching, especially

when the number of minutiae is small; v) accounting for the distortions present in

latents and correct them during matching.

Forensic experts have suggested that potential improvement for latent matching

could come from utilizing extended features in AFIS systems [36]. The main reasons

are i) extended features have shown evidential values in manual latent matching;

ii) some extended features (e.g., ridges) can be used to account for distortion when

the number of minutiae is too few; iii) using extended features in AFIS systems

would increase the interchangeability between manually and automatically encoded

features; iv) higher resolution (1000 ppi) tenprints and latents are available in practice.

Consequently, ANSI/NIST established a committee (CDEFFS) [45] of a group of

forensic experts and AFIS vendors to initiate systematic studies on the potential use

of extended features in the Next Generation Identification Technologies (NGI) [32].

One of the main efforts of CDEFFS is to look beyond minutiae points and formally

define a set of extended features, including pores, ridges, dots and incipients, that

can be utilized interchangeably by both automatic systems and forensic experts.

24



1.6 Thesis Contributions

There are some fundamental differences in how forensic experts and automatic sys-

tems conduct fingerprint matching, especially for latent matching. Identifying these

differences and integrating the benefits of both approaches are essential. First and

foremost, there is a strong need for automatic systems to integrate human expertise

of extended fingerprint feature extraction and matching. For example, automatic

systems mainly focus on the quantitative measures of minutiae (ridge ending and

bifurcation points), while forensic experts perform qualitative friction ridge analysis,

including examination of extended features. Secondly, most automatic systems are

developed and operated under the assumption that the fingerprint data (or images)

to be compared are obtained using the same type of sensing technology, and, hence,

are restricted in their ability to match or compare fingerprints originating from differ-

ent sensors. As a result, achieving sensor interoperability by obtaining compatibility

between new and legacy fingerprint data is essential, especially in law enforcement

applications. In this thesis, we have addressed the above challenges and made the

following contributions:

∙ Developed automatic algorithms to extract a set of extended features, includ-

ing ridge skeletons, pores, dots and incipients. In addition, interrelationship

among features (e.g., ridge ownership of pores, neighboring ridge information)

is extracted and utilized. The resulting feature representation is consistent with

that of manually encoded features. We show that for 1000 ppi live-scan images,

the errors of pore and dot/incipient extraction are two times of those of the

state-of-the-art minutiae extraction algorithm. However, the large quantity of

pores may possess sufficient discriminative power in matching and potentially

offset the extraction errors.

∙ Developed a two-stage alignment algorithm that utilizes both minutiae and
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extended features (ridge skeletons). Unlike other ridge-based methods, this

alignment algorithm propagates through all the ridge skeletons while accounting

for ridge distortion incrementally, based on the ridge correspondences. We

show that the alignment process automatically corrects for distortion for all

the extracted features, which is a key to the matching of densely distributed

extended features.

∙ Developed matching algorithms for each of the proposed extended features, in-

cluding ridge skeletons, pores, dots and incipients. The matching is conducted in

a hierarchical fashion to achieve both higher accuracy and efficiency. Matching

scores are combined using various score-level and rank-level fusion techniques.

Three databases are used to evaluate the matching performance and we show

that the proposed matching algorithm improves the accuracy in all the three

databases. We also demonstrate that low quality or small area fingerprints ben-

efit the most from extended feature matching. Further, ridge skeleton matching

is more effective than matching based on pores, dots and incipients.

∙ We extended an existing fingerprint individuality model to incorporate both

minutiae and extended features. The model evaluates the statistical distribu-

tions of minutiae position and direction, ridge pattern type, ridge period and

curvature, and pore spacing, assuming certain dependencies. We use the model

to evaluate the probability of random correspondence (PRC), and demonstrate

that the use of extended features can theoretically increase the individualization

power of a fingerprint. We also demonstrate that our theoretical evaluation

consistently follows the empirical values estimated using a public fingerprint

database.

∙ Developed algorithms to achieve interoperability between 3D touchless and 2D

legacy rolled fingerprints. The algorithm based on non-parametric equidistant
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unwrapping is developed to simulate a virtual rolling process to unfold 3D touch-

less fingerprints as 2D rolled images. Methods to evaluate and enhance the im-

age quality of touchless fingerprints are also proposed. The resulting touchless

fingerprints are demonstrated to be “rolled-equivalent” and quite compatible

with legacy rolled fingerprints based on a small database.
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Chapter 2

Fingerprint Features

2.1 Introduction

In fingerprint matching, images are not directly compared. Instead, discriminatory

features are extracted from fingerprint images and compared in an effective and ef-

ficient way. In general, any distinctive and permanent fingerprint ridge formation is

a potential fingerprint feature. The most commonly used fingerprint features include

the ridge flow patterns (whorl, left loop, right loop, arch, etc.) and minutiae, where

ridges branch, start, stop, turn or twist. In addition, numerous sweat pores (one on

each ridge unit) and even distal creases and scars are considered as salient fingerprint

features as they are distinctive and “generally do not change” [36]. In forensics, fin-

gerprint features are typically classified into three levels based on their clarity and

usability. Understanding the characteristics of these features is essential for devel-

oping effective and efficient algorithms for extended feature matching in automatic

systems.
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2.2 Feature Classification

2.2.1 Level 1

Level 1 features refer to the general ridge flow and pattern configuration

of a fingerprint [36].

Figure 2.1: Henry’s fingerprint pattern classes. Core and delta points are denoted by
red and blue dots, respectively.

Level 1 features describe the ridge flow pattern of a fingerprint. According to the

commonly used “Henry classification system,” there are eight major pattern classes,

comprised of whorl, left loop, right loop, twin loop, arch, tented arch, central pocket

and accidental (see Figure 2.1) [69, 132]. These pattern classes can be determined by

the position(s) of the “core” (the north most point of the innermost ridge line) and

the “delta” (the triradial point with three ridges radiating from it) in a fingerprint

[69]. For example, a fingerprint belongs to the whorl pattern class if it contains two

or more delta points, or is of single loop pattern class if it contains one delta and one

core (see Figure 2.1). The plain arch class has neither delta nor core points.
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Figure 2.2: Percentage of occurrences of major fingerprint classes in 222 million rolled
fingerprints [129].
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Figure 2.3: An example of Level 1 features, including the pattern class, delta and
core locations and orientation field overlaid on a fingerprint image.
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Because Level 1 features characterize a fingerprint class rather than the fingerprint

individuality, they are only used to narrow the search via classification and exclusion.

Fingerprint pattern classes are not uniformly distributed among the population. For

example, central pockets, twin loops, and accidentals are very rare and are often

ignored for classification purposes. The percentage of occurrences of the other five

major classes are approximately 3.7%, 33.8%, 31.7%, 2.9% and 27.9% for the arch,

left loop, right loop, tented arch and whorl, respectively [129] (see Figure 2.2). Note

that left loops, right loops, and whorls are the most common patterns, making up

93.4% of all fingerprints.

When fingerprints are partial (e.g., latents), the complete ridge flow pattern, or

pattern class, is often not available. As a result, Level 1 features also include any

information towards determining the pattern of a fingerprint, such as orientation field,

and core and delta points (see Figure 2.3).

2.2.2 Level 2

Level 2 features refer to the features that occur on individual ridge paths,

including the turns that each ridge takes and the places where ridges

terminate or split [36].

Level 2 features describe various ridge path deviations where single or multiple

ridges form abrupt stops, splits, spurs, enclosures, etc. These features, known as the

Galton points or minutiae, have two basic forms: ridge ending and ridge bifurcation

(see Figure 2.4). Composite minutiae (i.e., forks, spurs, bridges, crossovers and trifur-

cations) can all be considered as combinations of these basic forms (see Figure 2.5).

For example, a fork (enclosure) contains two ridge bifurcations facing each other, and

a spur consists of a ridge bifurcation and a ridge ending. Sometimes, a dot formed by

a single ridge unit is also considered as a minutiae, though often times it is classified

as Level 3. The percentages of occurrences of each minutiae (including composite
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Figure 2.4: Galton’s ridge characteristics (minutiae): (a) ridge ending; (b) ridge
bifurcation (adopted from [18]).

(a)         (b)      (c)    (d)         (e)

Figure 2.5: Composite ridge characteristics: (a) fork; (b) spur; (c) crossover; (d)
bridge; (e) trifurcation (adopted from [18]).
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Figure 2.6: Percentage of occurrences of various minutiae types in 977 rolled finger-
prints [46].
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minutiae) type are shown in Figure 2.6 [46]. It is shown that ridge ending, ridge

bifurcation and dot are the most common minutiae types in fingerprints.
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Figure 2.7: An example of Level 2 features, including ridge endings (red), ridge
bifurcations (blue) and dots (green).

Level 2 features, unlike Level 1 features, have individualization power and con-

tribute the most in fingerprint matching. On average, a fingerprint generally contains

75-175 minutiae (see Figure 2.7). At times, however, only a small number of minutiae

are available in the captured fingerprint image and the extraction of additional Level

3 features may be necessary.

2.2.3 Level 3

Level 3 features refer to all dimensional attributes of a ridge, such as ridge

path deviation, width, shape, pores, edge contour, incipient ridges, breaks,

creases, scars and other permanent details [36].
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Level 3 features describe micro features of the friction ridges. For example, vari-

ations of ridge width and shape (see Figure 2.8), pores, incipients, creases and scars

are all Level 3 features (see Figure 2.9). Generally, Level 3 features are the result of

differential growth or random damage (such as from scarring) at the ridge unit level

[36]. In particular, the alignment or misalignment of ridge units, ridge unit shape and

width, immature incipient ridges, and relative pore location are caused by differential

growth of the friction skin. Creases and scars, on the other hand, are caused by

physical or genetic damage to the friction skin.

Figure 2.8: Variations of ridge width and shape, demonstrated in detail at ridge
endings (red), bifurcations (green) and dots (blue).

Level 3 features are believed to be unique and have individualization power [36,

123]. Wentworth and Wilder suggested that 20 to 40 pores should be sufficient to

determine the identity of a person [128]. In practice, however, Level 3 features may

not be reproducible due to variations of skin condition (dryness), skin distortion

and pressure applied while forming the impression. As a result, Level 3 features are

always used in concert with Level 2 features and have “unconsciously become part

of the comparison at Level 2” [36]. In fact, 52% of forensic experts claim to always
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(a)         (b)

Figure 2.9: Examples of Level 3 features, including (a) pores (red), incipients (green)
and scars (yellow) and (b) creases (blue).

utilize Level 3 features, when present distinctively, to weigh their match decisions

[35].

Table 2.1: Fingerprint features and required image resolution

Resolution Level 1 features Level 2 features Level 3 features

250 ppi yes no1 no
500 ppi yes yes no2

1000 ppi yes yes yes

1 cannot capture dots or discern the type of Level 2 features (e.g., ridge
ending, ridge bifurcation)

2 some Level 3 features may be visible (e.g., pores, scars and creases)

Note that the feature level may not be the most appropriate way to classify a

fingerprint feature. For example, an incipient ridge can be “Level 2” if clarity permits

while a dot can be “Level 3” if barely visible. In fact, when the image resolution

increases, many of the Level 3 features become so stable that they possess as much

discriminative power as Level 2 features. As a result, the level of features available

in a fingerprint is relative to the image resolution. For example, 250 ppi is the

minimum resolution to capture Level 2 features, while the FBI standard is 500 ppi.

It is generally accepted in the forensic community that 1000 ppi is the minimum
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resolution to capture Level 3 features (see Table 2.1) [34].

2.3 Feature Correlation

Fingerprint features at Level 1, Level 2 and Level 3 do not exist independently.

Rather, they are mutually correlated and the existence of one feature usually depends

on the presence of other features. Galton showed that there is a strong correlation

between the friction ridge pattern at Level 1 and the occurrences of minutiae at

Level 2 [62]. This is because friction ridges often contain more minutiae around core

and delta points, whose relative positions and numbers also indicate the fingerprint

pattern (see Figure 5.7). In fact, the average minutiae density in the core and delta

regions is 0.49, compared to 0.18 outside these focal points [46]. Further, ridge paths

at Level 2 determine where pores at Level 3 may occur as friction ridges are composed

of ridge units, each of which contains a pore.

Figure 2.10: Ridge path deviations do not form in isolation. The location and cer-
tainty of a ridge characteristic can be found by examining the surrounding ridge paths
even if the feature may taper due to lack of pressure (reproduced from [36]).

Features at the same level are also highly correlated. For example, at Level 1 ridge

orientation indicates positions of delta and core points; at Level 2 neighboring ridges

determine the location and certainty of a ridge path deviation as they converge to fill

the vacant space after a ridge ends or two ridges merge (see Figure 2.10); at Level
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3 incipients often occur in groups and contain no pores. Understanding the correla-

tion among various features is the key for forensic experts to develop sophisticated

identification skills. This is also the case for automatic systems, where effective and

efficient feature extraction and matching algorithms result from in-depth knowledge

of fingerprint features and their properties.

2.4 Feature Reproducibility

When a fingerprint is acquired, not all of its features would reproduce from one

impression to another. For example, minutiae present in one impression can be dis-

placed or even missing in another impression of the same finger due to sensor noise,

skin distortion or non-ideal skin conditions, etc (see Figure 2.11). In addition, the

pressure applied during image acquisition also affects the feature reproducibility. For

example, appearances of incipients can be affected by pressure, as shown in Figure

2.12. Light finger pressure reduces the visibility of pores, as demonstrated on five

inked impressions (1000 ppi) by Parsons et al. [104] (see Figure 2.13).

Feature reproducibility refers to the consistency of a feature being present in a fin-

gerprint image regardless of the capturing mechanism. There is a general belief that

the higher the feature level, the less reproducible the features are due to their finer

details. However, this fact has not been quantitatively established and there is no

general consensus among forensic experts regarding feature reproducibility, especially

at Level 3 [35]. The main obstacle is that feature reproducibility is a relative term

that depends on many factors, such as image quality, skin condition, pressure and

feature representation. For example, Joliat et al. [84] suggested that Level 3 features

such as pores and ridge edge shapes are reproducible in very high quality prints, and

only in terms of their presence, not size or shape. Another difficulty in evaluating

feature reproducibility is that obtaining ground-truth information of fingerprint fea-
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Figure 2.11: Effects of image quality (e.g., distortion, non-ideal skin conditions) on the
presence of minutiae captured in two impressions of the same fingerprint. Minutiae
are manually marked (red) by forensic experts.

Figure 2.12: Effects of increasing pressure in a sequence of impressions on the ap-
pearances of incipients. Light pressure makes it difficult to distinguish incipients and
dots (adopted from [100]).
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Figure 2.13: Effects of varying amount of pressure (50g, 100g, 200g, 300g, and 400g)
on the number of manually detected pores (adopted from [104]).

tures is very time-consuming. As a result, a more efficient way to evaluate feature

reproducibility is to utilize them in automatic fingerprint matching and evaluate the

matching performance.

2.5 Standards

In manual fingerprint matching, forensic experts often conduct a case-by-case analysis

to determine what features to use in a comparison. In automatic fingerprint match-

ing, however, a standardization of feature format is required to ensure interoperability

among widely distributed networks of various fingerprint systems (i.e., AFIS). Because

minutiae are the most commonly used fingerprint features, both ANSI/NIST and the

FBI have established minutiae standards for AFIS systems. Realizing the importance

of non-minutiae features, especially those at Level 3, the National Institute of Stan-

dards and Technology (NIST) augmented these standards to include a large set of
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extended features [3]. This is a significant step towards utilizing extended features in

the next generation AFIS systems.

2.5.1 Minutiae standards

There are two major minutiae standards currently used in the AFIS community. The

ANSI/NIST-CSL 1-2000 standard [33] and the FBI’s Electronic Fingerprint Transmis-

sion Specification (EFTS) standard [5]. Both standards provide effective and efficient

means of exchanging fingerprint feature format among various commercial systems

used in large-scale applications. The ANSI/NIST-CSL 1-2000 standard defines four

types of minutiae (i.e., ending, bifurcation, compound or undetermined). Note that

this standard does not include dots as minutiae due to their small size and lower

reproducibility. In the FBI’s EFS standard, each minutiae is represented by its type,

location, direction, quality and ridge counts (number of ridges between each minutiae

and its neighboring minutiae).

The Minutiae Interoperability Exchange Test (MINEX) [29] and the Proprietary

Fingerprint Template (PFT) Test [25] conducted by NIST have revealed that stan-

dard minutiae templates result in lower matching accuracy compared to proprietary

templates. For example, using the proprietary templates of one of the leading AFIS

vendors can significantly reduce the error rate compared to using minutiae standard

templates (FRR reduces from 0.013 to 0.005 at a FAR of 0.01) [66]. This strongly

suggests that current minutiae standards should be extended to including additional

features that can be potentially used to improve the automatic matching performance

as well as to provide better system interoperability.

2.5.2 Standards for Extended Features

In 2005 NIST formed the Committee to Define an Extended Fingerprint Feature Set

(CDEFFS) [45] to expand the current fingerprint feature standards by identifying,
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defining, and providing guidance on extended features. Extended features, as sug-

gested by the name, refer to fingerprint features at all three levels that have not been

defined in the current standards, but have been generally accepted and used in manual

fingerprint matching. Note that unlike some fingerprint features (e.g., filter responses

[82]) proposed in automatic matching, the extended features referred to here have

direct physical counterparts (e.g., ridges, pores, dots, etc.), allowing visualization by

forensic experts. The purpose of defining extended features is two-fold: i) to stan-

dardize the additional features utilized by forensic experts that can be potentially

used to improve the performance of AFIS, and ii) to facilitate communication and

information exchange regarding these features among forensic experts and between

forensic experts and designers of AFIS [45]. A working draft of the “Data Format for

the Interchange of Extended Fingerprint and Palmprint Features” has been published

by the CDEFFS committee [3] and has been proposed to be included as an adden-

dum to the ANSI/NIST-ITL 1-2007 standard [99]. More discussions and revisions

are underway to finalize this standard.

Table 2.2 provides a list of extended features (mostly at Level 3) proposed by

CDEFFS [3]. Definitions and representations of the proposed features reflect a quan-

tifiable, reproducible, and clear characterization of the information content in a fin-

gerprint. Note that the representation also needs to be compact as encoding these

features should not significantly increase the burden on forensic experts, although

they may be used in both manual and automatic systems. Currently, this standard

is still a working draft

∙ Pores: openings of subcutaneous sweat glands on friction ridges. The defini-

tion and extraction of pores are practical for high resolution images (e.g., ∼1000

ppi). Pores can be quantitatively represented by their centroid positions. When

appearing in large quantity, pores can be very distinctive and reliable for iden-

tification, especially in fragmentary latent examination.
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Table 2.2: Extended features proposed in the “Data Format for the Interchange of
Extended Fingerprint and Palmprint Features” [3].

Features Code Representation

pores POR center point
dots DOT center point, length

incipients INR starting and ending points
creases, linear discontinuities CLD starting and ending points, crease type

ridge edge features REF center point, type
ridge skeletons SIM a skeletonized image of thinned ridges

ridge path segments RPS a ridge skeleton that connects two minutiae

∙ Dots: short ridges and short enclosures. Dots can be quantitatively represented

by their centroid position and length.

∙ Incipients: friction ridges that are not fully developed, which often appear

shorter and thinner in appearance, or more intermittent than fully developed

friction ridges. Inicipients can be quantitatively represented by positions of the

starting and ending points.

∙ Creases and linear discontinuities: ridge discontinuities caused by creases,

cracks, cuts, and thin or non-permanent scars. They can be represented by

the starting and ending points. Permanent flexion creases are also noted by

their type (i.e., proximal interphalangeal crease, distal interphalangeal crease).

∙ Ridge edge features: morphological features (width, major deviation, etc.)

defining the contour or shape of the ridge edge. These features can be quantita-

tively represented by their center locations and types (e.g., protrusion: widening

of a ridge edge; indentation: thinning of a ridge edge; or discontinuity: broken

ridge edge).

∙ Ridge skeletons: tracing of thinned ridges for the entire region of interest. They

are stored as a binary skeletonized image with a white background and a black

single-pixel-wide thinned representation of each ridge.
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∙ Ridge path segments: the portion of a ridge skeleton that connects two minutiae.

Each ridge path segment is an ordered array of vertices. In the infrequent case in

which a ridge segment forms a complete loop back on itself without intersecting

another ridge segment (such as near the core of some plain whorls or central

pocket loops), the ridge path starts and stops at a single arbitrary point on

the ridge. Incipient ridges, dots, ridge discontinuities and protrusions are not

included in the ridge path representation.

In order to utilize the above extended features, especially those at Level 3,

ANSI/NIST has also proposed to increase the standard image resolution for latent,

tenprint, and palm print images from 500 ppi to 1000 ppi. Consequently, the updated

“ANSI/NIST-ITL Standards for Fingerprint and Other Biometric Information [99]”

requires 1000 ppi resolution for latent scanning and recommends all live-scan devices

be equipped with 1000 ppi scanning capability.

2.6 Summary

Fingerprint features are generally described by forensic experts at three levels of

detail. However, not all fingerprint features that are utilized in manual fingerprint

matching are employed in automatic matching systems. In fact, only a small subset of

Level 2 features, namely, minutiae, have‘ been standardized for automatic fingerprint

matching. This greatly limits the performance of automatic systems especially for

poor quality tenprint and latent matching. The availability of higher resolution (1000

ppi) fingerprint sensing has made automatic extraction and matching of high level

extended features feasible. As a result, the forensic community together with AFIS

vendors have become very active in standardizing a large set of extended features and

quantifying their relevance and reliability [45, 3].

There has been no general consensus on the reproducibility or evidential value of
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extended features. A systematic study to determine how much performance gain one

can achieve by introducing extended features into AFIS can provide an answer. Such

a study would also shed light on the Next Generation Identification (NGI) needs, as

FBI is actively searching for means to improve AFIS performance especially for latent

matching.
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Chapter 3

Extended Feature Extraction

3.1 Introduction

Compared to minutiae extraction, extended feature extraction is a more challenging

problem due to their finer details. For example, pores are often too small (60 microns

in diameter) for reliable extraction, especially when the fingerprint images are cap-

tured at low resolution (≤500 ppi), excessive or very low finger pressure, or poor skin

condition. Dot and incipient extraction can also be greatly affected by the amount of

pressure, sensor noise and distortion. In addition, representation of extended features

and their comprehensive interrelationship information play major roles in the success

of utilizing extended features in fingerprint matching. These challenges, however,

should not discount the benefits of utilizing extended features as the large quantity

of these features can offset the feature extraction errors.

3.2 Previous Work

Automatic extraction of extended features has not been extensively studied. Exist-

ing literature has proposed several methods to extract a few specific non-minutiae

features. However, these features were mainly introduced to assist in minutiae ex-
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traction and have not been utilized as extended features in matching. For example,

various ridge extraction algorithms have been proposed to facilitate the extraction

or alignment of minutiae [92, 79], but the extracted ridges were often discarded after

minutiae extraction. Crease detection algorithms were also introduced for the pur-

poses of removing spurious minutiae [131, 135] or evaluating local fingerprint quality

[74].

To extract and utilize extended features for matching purposes, Feng et al. [58]

proposed to extract and trace ridge skeletons associated with each minutiae. When

the number of minutiae is small, however, the number of extracted ridge features

is very limited. Jain et al. [78] extended Feng’s work by extracting the full ridge

skeleton map for matching. Roddy and Stosz [120] introduced a pore extraction

algorithm based on skeletonization. Kryszczuk [90] used a combination of binarization

and skeletonization to extract pores. Both methods were demonstrated effective for

good quality high resolution fingerprint images (∼ 2000 ppi) [120], however, when

image quality degrades or resolution decreases, these methods become more sensitive

to noise and low image contrast. Recently, Parsons et al. [104] proposed a pore

extraction method for 1000 ppi fingerprint images using the difference of Gaussian

(DOG) filtering, which approximates the Mexican-hat wavelet we proposed in [76] for

pore extraction.

3.3 Proposed Approach

We propose to systematically extract a set of extended features, including ridge skele-

tons, pores, dots and incipients at both 500 ppi and 1000 ppi resolutions (see Figure

3.1). We follow the representation of these features proposed in the ANSI/NIST

extended feature standard [3] (see Table 2.2). For example, ridge skeletons are repre-

sented as single-pixel-wide thinned ridges; dots and incipients are represented by their
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skeletons (including center, starting and ending points) with orientation; and pores

are represented by their central positions, as illustrated in Table 3.1. In addition, we

extract feature interrelationship information such as neighboring ridge information

and ridge ownership of pores. This contextual information has proven to be useful

in manual fingerprint matching as the perception and comparison of one set of fea-

tures are often influenced by the presence or absence of other features [43]. Note

that the interrelationship information can be derived from features extracted either

automatically or manually as long as they are compatible.

pore

ridge skeleton

dot

incipient

Figure 3.1: Illustration of the proposed extended features.

There are three main steps in the proposed feature extraction algorithm:

∙ Segmentation: This module separates the fingerprint area (foreground) from

the background.
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Table 3.1: Representation of the proposed extended features.

Features Proposed Representation

pores center point, ridge ownership
dots point arrays of the skeleton, orientation

incipients point arrays of the skeleton, orientation
ridge skeletons a skeletonized image with neighboring ridge information

∙ Quality Assessment: This module estimates the quality of a fingerprint based

on the clarity of ridge-valley patterns in local regions. Poor quality (unusable)

regions are severely corrupted by distortion and noise, making the extracted

features in these regions unreliable.

∙ Feature Extraction: This module extracts the features and their interrelation-

ship information. Image enhancement is often employed to increase the feature

clarity before they are extracted.

3.3.1 Segmentation

A fingerprint image often contains a noisy background caused by ink stains, finger-

print residues, moisture, etc. during the collection process. As a result, it is necessary

to separate the fingerprint foreground from the background. The discriminating char-

acteristic between the foreground and background is the presence of an oriented ridge

pattern. We apply a gradient-based segmentation method [92] to segment the finger-

print foreground (see Figure 3.2).

Before computing gradients, we normalize the given fingerprint image 𝐼 using the

min-max rule such that the intensity values in the resulting image 𝐼𝑛 have a common

range of [0 1]:

𝐼𝑛 =
𝐼 −min(𝐼)

max(𝐼)−min(𝐼)
. (3.1)

To calculate the gradients, we apply the following 1D convolution kernels at each
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Figure 3.2: A high-level algorithm of the segmentation procedure.

pixel in 𝐼𝑛,

𝐺𝑥 =

[
−1

2 0 1
2

]
⊗ 𝐼𝑛 (3.2)

𝐺𝑦 =

[
−1

2 0 1
2

]𝑇
⊗ 𝐼𝑛 (3.3)

where 𝐺𝑥 and 𝐺𝑦 are gradients in the horizontal and vertical directions, respectively.

Next, we partition the image 𝐼𝑛 into non-overlapping blocks of size 𝑏 × 𝑏 (𝑏 = 16).

For each block 𝐵, we calculate the average magnitude of gradients as:

𝐺𝐵 =
1

𝑏2

∑
𝑠∈𝐵

√
𝐺2
𝑥𝑠 +𝐺2

𝑦𝑠 , (3.4)

where (𝐺𝑥𝑠 , 𝐺𝑦𝑠) denote the gradients at site 𝑠 = (𝑥𝑠, 𝑦𝑠) ∈ 𝐵. Finally, 𝐺𝐵 is

compared to a threshold 𝑇𝑔 (= 0.03) to determine if block 𝐵 is part of the foreground
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(a)                                                       (b)

(c)                                                       (d)

Figure 3.3: Segmentation of a fingerprint image using block-wise average gradient
magnitude: (a) original image; (b) block-wise average gradient magnitude; (c) fore-
ground detection after thresholding and post-processing; the red contour is the convex
hull extracted based on the foreground blocks; (d) segmented image.
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(𝐹𝐵 = 1) or background (𝐹𝐵 = 0), that is:

𝐹𝐵 =

⎧⎨
⎩

1, if 𝐺𝐵 > 𝑇𝑔;

0, otherwise.
(3.5)

After thresholding, the foreground is not necessarily fully connected and may contain

holes. Post-processing methods, including connected component extraction, flood-fill

operation, and median filtering, are employed automatically to ensure a clean, fully

connected foreground. The convex hull that contains all the detected foreground

blocks is saved as the final segmented fingerprint foreground. Figure 3.3 demonstrates

the major steps of the proposed segmentation process.

3.3.2 Quality Assessment

Once the fingerprint foreground is identified, we evaluate the quality of the fingerprint

by determining the strength of the friction ridge pattern in each foreground block 𝐵

[49] (see Figure 3.4). Let 𝐽𝐵 be the covariance matrix of the gradient vectors for

block 𝐵,

𝐽𝐵 =
∑
𝑠∈𝐵

⎡
⎢⎣ 𝐺2

𝑥𝑠 𝐺𝑥𝑠𝐺𝑦𝑠

𝐺𝑦𝑠𝐺𝑥𝑠 𝐺2
𝑦𝑠

⎤
⎥⎦ . (3.6)

This 2× 2 symmetric matrix is positive semidefinite with eigenvalues

𝜆𝐵,1 =
1

2
(𝑡𝑟𝑎𝑐𝑒(𝐽𝐵) +

√
𝑡𝑟𝑎𝑐𝑒2(𝐽𝐵)− 4 𝑑𝑒𝑡(𝐽𝐵))

𝜆𝐵,2 =
1

2
(𝑡𝑟𝑎𝑐𝑒(𝐽𝐵)−

√
𝑡𝑟𝑎𝑐𝑒2(𝐽𝐵)− 4 𝑑𝑒𝑡(𝐽𝐵)) ,

(3.7)

where 𝑡𝑟𝑎𝑐𝑒(𝐽𝐵) =
∑

𝑠∈𝐵 𝐺2
𝑥𝑠 +𝐺2

𝑦𝑠, 𝑑𝑒𝑡(𝐽𝐵) = (
∑

𝑠∈𝐵 𝐺2
𝑥𝑠)(
∑

𝑠∈𝐵 𝐺2
𝑦𝑠) −

(
∑

𝑠∈𝐵 𝐺𝑥𝑠𝐺𝑦𝑠)
2 and 𝜆𝐵,1 ≥ 𝜆𝐵,2. The block-wise quality is then measured by
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the normalized coherence, defined as

𝑞𝐵 = log10 𝜆𝐵 × (𝜆𝐵,1 − 𝜆𝐵,2)
2

(𝜆𝐵,1 + 𝜆𝐵,2)
2

. (3.8)

Note that the first term in Equation 3.8 reflects the contrast of the block, while the

second term measures the strength of the local orientation. When contrast is very

low, or log10 𝜆𝐵 is negative, 𝑞𝐵 is set to zero. Figure 3.5 (b) shows the resulting

block-wise local quality measure.

Figure 3.4: A high-level algorithm of the quality estimation procedure.

The size of a block plays a very important role in local quality estimation. When

the block size is too small, the local quality estimation can be very noisy; when

the block size is too big, the estimation loses its capability of capturing the local

information. As a result, we extend the above quality estimation procedure into a

cascade framework by progressively investigating quality. That is, instead of estimat-

ing quality block by block, we first divide the fingerprint foreground into relatively
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(a)                                                         (b)

(c)                                                         (d)

Figure 3.5: Quality estimation of a fingerprint image using the proposed coherence
measure: (a) segmented image; (b) block-wise local quality; (c) cascade local quality;
(d) smoothed local quality using circular average filtering. White pixels mean good
quality and black pixels mean poor quality.

53



large regions (each with size 4𝑏 × 4𝑏), and estimate the quality using the coherence-

based measure in Equation 3.8. If the quality value of a region is sufficiently high

> 𝑇𝑞 = (0.5), the quality estimation process for this region is terminated, meaning

that this region is of good quality. Otherwise, this region is divided into 4 quadrants

(each with size 2𝑏× 2𝑏) for more detailed quality evaluation. This process continues

until individual blocks (each with size 𝑏× 𝑏, 𝑏 = 16) are reached. Figure 3.5 (c) shows

the cascade local quality of a fingerprint image. The cascade implementation is highly

efficient since detailed quality analysis is only conducted in poor quality regions. Fi-

nally, the local quality is smoothed using a circular averaging filter with radius 20

pixels (see Figure 3.5 (d)) and the regions that have quality values larger than 𝑇𝑞

are identified; Level 3 features (e.g., pores, dots and incipients) will be extracted only

in these regions. The overall quality of the fingerprint image 𝐼𝑛 is also obtained by

taking the average of local qualities in each block:

𝑄 =
1

𝑁𝐵

𝑁𝐵∑
𝐵=1

𝑞𝐵, (3.9)

where 𝑁𝐵 is the total number of foreground blocks in the fingerprint image.

3.3.3 Ridge Extraction

To extract ridge skeletons, we first enhance the ridge-valley patterns by spatially

applying Gabor filters of size 𝑏×𝑏 (b = 11) in each block 𝐵. Gabor filters are selected

because they have frequency-selective and orientation-selective properties that allow

the filters to give maximal response to ridges at a specific orientation and frequency

while reducing noise. The Gabor filter is defined as a cosine wave modulated by a
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Gaussian [77]:

𝐻𝐵 = exp

⎧⎨
⎩−1

2

⎡
⎣𝑥2

𝑠,𝜃𝐵

𝛿2
𝑥

+
𝑦2
𝑠,𝜃𝐵

𝛿2
𝑦

⎤
⎦
⎫⎬
⎭𝑐𝑜𝑠(2𝜋𝑓𝑥𝑠,𝜃𝐵

), (3.10)

where ⎡
⎢⎣ 𝑥𝑠,𝜃𝐵

𝑦𝑠,𝜃𝐵

⎤
⎥⎦ =

⎡
⎢⎣ cos(𝜃𝐵) sin(𝜃𝐵)

− sin(𝜃𝐵) cos(𝜃𝐵)

⎤
⎥⎦
⎡
⎢⎣ 𝑥𝑠

𝑦𝑠

⎤
⎥⎦. (3.11)

Parameters 𝑓 (= 0.125) and 𝛿𝑥 (= 4), 𝛿𝑦 (= 4) are the ridge frequency and standard

deviations of the Gaussian envelope applied along the x- and y-axes, respectively (see

Figure 3.6)[72]. The filter orientation 𝜃𝐵 is determined by the local ridge orientation,

which is estimated based on the gradients at each site 𝑠 = (𝑥𝑠, 𝑦𝑠) ∈ 𝐵 [71]:

𝜃𝐵 =
1

2
atan

⎧⎨
⎩
∑
𝑠∈𝐵

2𝐺𝑥𝑠𝐺𝑦𝑠∑
𝑠∈𝐵

(𝐺2
𝑥𝑠 −𝐺2

𝑦𝑠)

⎫⎬
⎭ , (3.12)

where
∑
𝑠∈𝐵

2𝐺𝑥𝑠𝐺𝑦𝑠 and
∑
𝑠∈𝐵

(𝐺2
𝑥𝑠 −𝐺2

𝑦𝑠) approximate the 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒 compo-

nents of the doubled local orientation (2𝜃), respectively. The 𝑎𝑡𝑎𝑛 function should

preserve the quadrant information of the angle. Once ridges are enhanced, we em-

ploy the peak-detection algorithm proposed in [109] to extract them. That is, for

each block centered at pixel (𝑥𝑠, 𝑦𝑠), the gray-level profile is obtained by projection

of the pixel intensities onto the central section and smoothing through local averaging

(see Figure 3.7). The peaks and their two neighboring pixels on each side constitute

the ridges in the resulting binary image, which is then skeletonized to extract single-

pixel-wide ridge skeletons. An example of ridge enhancement and extraction is shown

in Figure 3.8.

Because skeletonization preserves ridge continuity, the extracted ridge skeletons

are saved as ridge points traced in order from one end to the other. The set of ridge

skeletons 𝑈 is represented as 𝑈 = {𝑢(𝑖)𝑎}, 𝑖 = 1, 2, ..., 𝑛𝑎, 𝑎 = 1, 2, ..., 𝑁𝑈 , where
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   (a)                                                               (b)

Figure 3.6: Gabor filters: (a) 3D graphical representation; (b) a bank of filters with
eight different orientations.

(a)                                                     (b)

(xs,ys)

Figure 3.7: Peak-detection for ridge extraction. In (a) pixel intensities on the segment
centered at (𝑥𝑠, 𝑦𝑠) are projected onto the normal of the local ridge orientation to
obtain the gray-level profile in (b).
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(a)         (b)

(c)         (d)

Figure 3.8: Ridge enhancement and extraction: (a) a cropped fingerprint image; (b)
block-wise local orientation; (c) enhanced ridges using Gabor filters; (d) extracted
ridge skeletons.
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𝑢(𝑖)𝑎 = (𝑥(𝑖)𝑎, 𝑦(𝑖)𝑎) denotes the location of the 𝑖th ridge point on ridge 𝑎, 𝑛𝑎 is the

total number of ridge points on ridge 𝑎 and 𝑁𝑈 is the total number of individual ridge

skeletons in the fingerprint image. Note that for a ridge bifurcation, we generate two

separate ridge skeletons by connecting the main ridge with each of the two branches.

Neighboring ridges
current ridge tracing

Figure 3.9: Extraction of ridge skeletons and neighboring ridge information based on
the inter-ridge distances.

As the topology of ridges also follows a certain ordering, it is important to capture

the interrelationship between ridges during their extraction. Given two ridges, say 𝑎

and 𝑏, in a fingerprint image, we perform the following operations to determine their

distance and possible neighborhood information:

∙ Find the closest point pair (𝑛,𝑚) between 𝑢𝑎 and 𝑢𝑏, where 𝑛 and 𝑚 denote

the index of the points on ridge 𝑎 and 𝑏, respectively.

∙ Establish correspondences {𝑢(𝑖)𝑎, 𝑢(𝑗)𝑏} between the two ridges based on the

pair (𝑛,𝑚), starting at locations 𝑖 = 𝑛 − min(𝑛 − 1, 𝑚 − 1), and 𝑗 = 𝑚 −
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Figure 3.10: A high-level algorithm of the ridge skeleton extraction procedure.
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min(𝑛 − 1, 𝑚 − 1), ending at locations 𝑖 = 𝑛 + min(𝑛𝑎 − 𝑛, 𝑛𝑏 − 𝑚), and

𝑗 = 𝑚+min(𝑛𝑎 − 𝑛, 𝑛𝑏 −𝑚).

∙ Calculate the Euclidean distance 𝑑𝑖𝑗 between each corresponding point pair

({𝑢(𝑖)𝑎, 𝑢(𝑗)𝑏})
𝑑(𝑖, 𝑗) = ∥𝑢(𝑖)𝑎 − 𝑢(𝑗)𝑏∥ (3.13)

∙ Calculate the inter-ridge distance between 𝑎 and 𝑏 as

𝑙(𝑎, 𝑏) =
1

𝑘

∑
𝑖,𝑗

(𝑑𝑖𝑗), (3.14)

where 𝑘 = min(𝑛𝑎 − 𝑛, 𝑛𝑏 −𝑚) + min(𝑛− 1, 𝑚− 1) is the length of the corre-

sponding segment between the two ridges. Inter-ridge distance measure can be

used to calculate the ridge period (see Section 5.3.2).

∙ Reverse the point sequence in one of the ridges, say 𝑢𝑎, and repeat the above

process. Assign the minimum inter-ridge distance to 𝑙(𝑎, 𝑏).

∙ Determine ridges 𝑎 and 𝑏 to be neighbors if

𝑙(𝑎, 𝑏) < 𝑇𝑟, (3.15)

where 𝑇𝑟 = 13 (26) pixels at 500 (1000) ppi is empirically determined by the

maximum of minimum inter-ridge ridge distance.

Note a ridge can have more than two neighboring ridges due to the pres-

ence of minutiae (see Figure 3.9). Finally, the extracted ridge skeletons along

with their interrelationship information can be represented as 𝑈 = {𝑢(𝑖)𝑎} =

{{𝑥(𝑖)𝑎, 𝑦(𝑖)𝑎}𝑛𝑎𝑖=1, ℎ𝑎}
𝑁𝑈
𝑎=1, where ℎ𝑎 denotes the indices of neighboring ridges of

ridge 𝑎. A flowchart of the ridge extraction process is shown in Figure 3.10.
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3.3.4 Pore Extraction

The appearance of a pore in a fingerprint image can differ in both shape and size

due to its perspiration activity, as the pore may be open in one image and closed

in another image [36] (see Figure 3.11). On the other hand, pores appear only on

the ridges and can be associated with the ridges already extracted. We propose to

extract pores with regard to their central positions as well as their ridge ownership

information.

Closed pores Open pores

Figure 3.11: Appearance of pores. A pore can be open or closed due to its perspiration
activity.

In ridge extraction, an enhancement algorithm based on Gabor filtering was pro-

posed. This algorithm successfully enhanced the ridge-valley pattern, but also re-

moved the fine details such as pores. As a result, a different enhancement based on

the sigmoid function is proposed for pore extraction. Given a normalized fingerprint

image 𝐼𝑛, the enhanced image 𝐼𝑒 can be obtained as:

𝐼𝑒 =
1

1 + exp{𝑔 × (𝐼𝑛 −𝑚)} , (3.16)

where 𝑔 (= 10) is the percentage of contrast increase compared to 𝐼𝑛, and 𝑚 (= 0.5)

is the normalized gray value above which contrast is increased. Figure 3.12 (a) shows

the enhanced version of the image in Figure 3.8 (a). Note that the Level 3 details are

more clear in Figure 3.12 (a) compared to the ridge enhancement shown in Figure 3.8

(c).
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(a)         (b)      (c)

(d)         (e)       (f)

Figure 3.12: Extraction of pores: (a) enhanced image using the sigmoid function; (b)
band-pass filtering using the Mexican-hat wavelet transform; (c) masking out filtering
responses in the valleys using enhanced ridges (see Figure 3.8 (c)); (d) thresholding
and blob detection; (e) extracting ridge ownership (overlayed with ridge skeleton) and
removing spurious pores (green blobs); (f) extracted pores (red circles).
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Figure 3.13: A high-level algorithm of the pore extraction procedure.

After enhancement, the Mexican-hat wavelet [42] is used as a band pass filter to

capture the abrupt change of intensity values at pores (see Figure 3.12 (b)). The

wavelet transform is applied in the frequency domain, given as

Ω(𝜔1, 𝜔2) =
√
𝑠𝐹 (𝜔1, 𝜔2)𝜙(𝜔1, 𝜔2) (3.17)

where

𝐹 (𝜔1, 𝜔2) =

∫ ∫
𝑅2

𝐼𝑒(𝑥, 𝑦) exp{−𝑗2𝜋(𝜔1𝑥+ 𝜔2𝑦)} (3.18)

𝜙(𝜔1, 𝜔2) = −2𝜋(𝜔2
1 + 𝜔2

2) exp{−
1

2
(𝜔2

1 + 𝜔2
2)}. (3.19)

Note that 𝐹 (𝜔1, 𝜔2) is the Fourier transform of the enhanced image 𝐼𝑒(𝑥, 𝑦) ∈ 𝑅2

and 𝑠 (= 1.74) is an empirically determined scale factor. Next, we convert the wavelet

response back to the spatial domain by applying the Inverse Fourier transform, given
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as:

𝑊 (𝑥, 𝑦) =

∫ ∫
Ω(𝜔1, 𝜔2) exp{𝑗2𝜋(𝜔1𝑥+ 𝜔2𝑦)}. (3.20)

After filtering, pores that have high negative frequency responses are represented as

small blobs with low intensities. Because pores only appear on ridges, we also mask

out the filter responses in the valleys based on the enhanced ridge-valley patterns (see

Figure 3.12 (c)). Connected components whose negative filter responses are below an

empirically determined threshold 𝑇𝑝 (= −2) are identified as pores (see Figure 3.12

(d)). Let 𝑃 = {𝑝𝑖} = {(𝑥𝑖, 𝑦𝑖)}
𝑁𝑃
𝑖=1 denote the extracted pores, where (𝑥𝑖, 𝑦𝑖) denotes

the central location of pore 𝑝𝑖 and 𝑁𝑃 is the total number of pores in the image.

Next, for each extracted pore 𝑝𝑖, we establish its ridge ownership by calculating the

distances between 𝑝𝑖 and the extracted ridges 𝑈 = {𝑢𝑎}, 𝑎 = 1, 2, ..., 𝑁𝑟. The pore

𝑝𝑖 is assigned to its closest ridge 𝑜𝑖, given as

𝑜𝑖 = argmin
𝑎

(min(∥𝑝𝑖, 𝑢(𝑗)𝑎∥)), 𝑗 = 1, 2, ..., 𝑛𝑎, 𝑎 = 1, 2, ..., 𝑁𝑈 (3.21)

where ∥𝑝𝑖, 𝑢(𝑗)𝑎∥ denotes the Euclidean distance between pore 𝑝𝑖 and the 𝑗th point

on ridge 𝑎. Note if a pore lays more than 3 (6) pixels away from its closest ridge

skeleton at 500 ppi (1000 ppi), it will be discarded as it does not belong to any ridges

(see Figure 3.12 (e)). By assigning ridge ownership, pores are grouped based on

their associated ridges. The final extracted pores are shown in Figure 3.12 (f) and

are represented as 𝑃 = {𝑥𝑖, 𝑦𝑖, 𝑜𝑖}𝑁𝑃
𝑖=1. A flowchart of the pore extraction process is

shown in Figure 3.13.

3.3.5 Dot and Incipient Extraction

Dots are short ridge segments and incipients are immature ridges that are significantly

thinner than normal ridges. An incipient can be broken into a sequence of dots if

sufficient finger pressure was not applied during image acquisition (see Figure 2.12).
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Because of this and the fact that both dots and incipients occur in between the ridges,

it is difficult to design algorithms that can discriminate between dots and incipients.

As a result, we do not distinguish these two feature types in our extraction algorithm

and both dots and incipients are represented as oriented skeletons.

(a)        (b)   (c) 

  (d)          (e)      (f)

Figure 3.14: Extraction of dots and incipients: (a) a cropped fingerprint image;
(b) enhanced image using the sigmoid function; (c) masking out ridges using the
enhanced ridges; (d) estimated phase symmetry of features in the valleys; (e) extract-
ing connected components with responses surpassing thresholding 𝑇𝑑; (f) extracted
dots/incipients.

To extract dots and incipients, we first use the same enhancement algorithm used

for pore extraction (see Figure 3.14 (b)). Because dots and incipients only occur in

the valleys, we also mask out ridges using the Gabor enhanced ridge image (see Figure

3.14 (c)). After removing ridges, dots, incipients as well as edge features of ridges that

are wider than the inverse of the constant frequency used in the Gabor filtering would

remain in the valleys (see Figure 3.14 (c)). To separate dots and incipients from ridge
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edge features, we use the log Gabor filters [89] to estimate the phase symmetry since

dots and incipients present higher symmetry in the valleys than other features. Let

𝐼𝑒 be the enhanced fingerprint image, and 𝑀𝑒
𝑠 and 𝑀𝑜

𝑠 denote the even-symmetric

(cosine) and odd-symmetric (sine) components of the log Gabor filters at scale 𝑠. We

convolve 𝐼𝑒 with both the filters at each pixel (𝑥, 𝑦) to produce the filter responses,

given as

[𝑒𝑠(𝑥, 𝑦), 𝑜𝑠(𝑥, 𝑦)] = [𝐼(𝑥, 𝑦)⊗𝑀𝑒
𝑠 , 𝐼(𝑥, 𝑦)⊗𝑀𝑜

𝑠 ]. (3.22)

The amplitude of the responses at scale 𝑠 is defined as

𝐴𝑠(𝑥, 𝑦) =

√
(𝑒2
𝑠(𝑥, 𝑦) + 𝑜2

𝑠(𝑥, 𝑦)) (3.23)

and the phase is defined as

𝜙𝑠(𝑥, 𝑦) = arctan(𝑒2
𝑠(𝑥, 𝑦), 𝑜

2
𝑠(𝑥, 𝑦)). (3.24)

If the neighborhood of (𝑥, 𝑦) is symmetric, we would expect the absolute value of the

even-symmetric filter outputs to be large and the absolute value of the odd-symmetric

filter outputs to be small. We use two different scales 𝑠1 (= 3) and 𝑠2 (= 6), and the

final symmetry value at each pixel (𝑥, 𝑦) is defined as the normalized difference of the

absolute values of outputs from even-symmetric and odd-symmetric filters, given by

𝑆𝑦𝑚(𝑥, 𝑦) =

∑2
𝑖=1 ⌊𝐴𝑠𝑖(𝑥,𝑦){∣ cos(𝜙𝑠𝑖(𝑥,𝑦))∣−∣ sin(𝜙𝑠𝑖(𝑥,𝑦))∣}⌋∑2

𝑖=1 𝐴𝑠𝑖(𝑥,𝑦)
(3.25)

=

∑2
𝑖=1 ⌊{∣𝑒𝑠𝑖(𝑥,𝑦)∣−∣𝑜𝑠𝑖(𝑥,𝑦)∣}⌋∑2

𝑖=1 𝐴𝑠𝑖(𝑥,𝑦)
. (3.26)

Once local symmetry is estimated (see Figure 3.14 (d)), it is compared to a thresh-

old 𝑇𝑑 (= 0.32) and connected components that surpass the threshold are extracted

as dots and incipients (see Figure 3.14 (e)). Finally, the extracted components are
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Figure 3.15: A high-level algorithm of the dot and incipient extraction procedure.
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skeletonized (see Figure 3.14 (f)). Orientations of these features are also retrieved

from the local block-wise orientation field estimated during ridge extraction. If a

long incipient has very different orientation at each ends (> 10 degrees), both ori-

entations will be recorded. The final representation of the extracted dots and incip-

ients is 𝐷 = {𝑑𝑎} = {{(𝑥(𝑖)𝑎, 𝑦(𝑖)𝑎, )}𝑛𝑎𝑖=1, 𝜃𝑎}
𝑁𝐷
𝑎=1, where (𝑥(𝑖)𝑎, 𝑦(𝑖)𝑎) denotes the

location of the 𝑖th pixel on the skeleton of dot/incipient 𝑎, 𝜃𝑎 and 𝑛𝑎 are the orien-

tation and size (number of pixels) of dot/incipient 𝑎 and 𝑁𝐷 is the total number of

dots/incipients extracted. A flowchart of the dot and incipient extraction process is

shown in Figure 3.15.

3.4 Experiments

Performance of extended feature extraction is evaluated on two databases, namely

NIST Special Database 27 (NIST-27) [13] and MSU database (including two parts:

MSU-full and MSU-partial), as shown in Table 3.2). The MSU database was col-

lected by the Pattern Recognition and Image Processing (PRIP) laboratory at Michi-

gan State University as part of its “High Resolution Fingerprint Matching” project.

Sample images of each database can been seen in Figure 3.16. The NIST-27 is a

public database that contains 258 latent and rolled pairs at 500 ppi, with a total of

516 images. In this database, minutiae, dots/incipients and pores have been manually

extracted for both latents and rolled prints by forensic experts (see Figure 3.17). The

MSU database was collected with an interval of three days, using a commercial optical

sensor (CrossMatch ID1000) at both 500 ppi and 1000 ppi. This database has two

parts, the first part (MSU-full) contains 4 flat fingerprints of 41 users, 10 fingers for

each user, resulting in a total of 1,640 images; the second part (MSU-partial) contains

1 flat and 5 partial fingerprints of 30 users, 10 fingers for each user, resulting in a

total of 1,800 images. Users were asked to press to the left, right, top, bottom and
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center of their finger on the sensor to create partial prints. The MSU-partial database

was collected particularly to study the effects of small image size and distortion often

seen in latents, as no 1000 ppi latent database was available at the time of this study.

   (a)              (b)

(c)

latent                  roll flat

 partials   flat

Figure 3.16: Sample images from (a) NIST-27, (b) MSU-full and (c) MSU-partial
databases.

We apply the proposed automatic extended feature extraction algorithm on both

NIST-27 and MSU databases. Note that features in the latents of NIST-27 were only

manually extracted. This is because this database contains very challenging latents

with average case work quality. These latents have noisy background that are too

difficult for our extraction algorithms to work well (see Figure 3.17). Figure 3.18

shows the histograms of the number of dots and pores automatically extracted from
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Table 3.2: Description of databases used in experiments.

Database name MSU-full MSU-partial NIST-27

fingerprint type flats partials and flats latents and rolled prints
no. of fingers 410 300 258

impressions per finger 4 6* 2+

total no. of images 1,640 1,800 516
resolution 1000 ppi 1000 ppi 500 ppi

* 5 partial impressions and 1 flat impression
+ 1 latent and 1 rolled print

Figure 3.17: Examples of manually marked minutiae (blue), pores (red) and
dots/incipients (green) in (a) a latent and (b) the corresponding rolled print from
NIST-27.
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images of MSU-full, MSU-partial and rolls of NIST-27, as well as those of manually

extracted features from latents of NIST-27. As we can see, higher image resolution

in MSU-full and MSU-partial databases (1000 ppi) results in larger number of Level

3 features compared to NIST-27 database (500 ppi). On the average, the number

of pores (dots/incipients) automatically extracted from images in MSU-full, MSU-

partial, rolls in NIST-27 databases and manually extracted from latents in NIST-27

are 469 (13), 429 (7), 134 (13) and 5 (1), respectively. The number of Level 3 features

manually extracted from latents in NIST-27 is very low due to the poor image quality

and small fingerprint area.
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Figure 3.18: Histograms of the number of (a) pores and (b) dots/incipients automat-
ically extracted in MSU-full, MSU-partial and from rolls in NIST-27 as well as those
manually extracted from latents in NIST-27.
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Figure 3.19: Evaluating (a) pore and (b) dot/incipient extraction accuracy by com-
paring automatically extracted features (red) with manually extracted features (blue).
The missing (spurious) error rate of pore and dot/incipient extraction in the finger-
print area shown here is 0.16 (0.34) and 0 (0.17), respectively.
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Table 3.3: Average error rates of the proposed pore and dot/incipient extraction
algorithm at 500 ppi, compared with those of the state-of-the-art minutiae extraction
algorithm [12] on 258 rolled prints in the NIST-27 database.

manual count automatic count missing rate spurious rate

Pores 134.5 173.3 0.29 0.32

Dots 13.1 10.6 0.4 0.29

Minutiae[12] 106 104 0.21 0.17

Table 3.4: Average error rates of the proposed pore and dot/incipient extraction
algorithm at 1000 ppi, compared with those of the state-of-the-art minutiae extraction
algorithm [12] on 100 flats in the MSU database.

manual count automatic count missing rate spurious rate

Pores 497.2 531.4 0.09 0.14

Dots 18.8 18.7 0.15 0.17

Minutiae[12] 56.6 55.4 0.07 0.08

In order to estimate the accuracy of our Level 3 feature extraction algorithm, we

evaluate the consistency of positions (𝑥 and 𝑦 coordinates) between automatically

and manually extracted pores and dots/incipients from 258 rolls in the NIST-27

database and 100 flats in the MSU database. The result is also compared with the

accuracy of automatic minutiae extraction using a state-of-the-art algorithm [12]. In

our evaluation, a feature is considered as correctly extracted if it is found in both

manual and automatic extraction within a 𝑡× 𝑡 tolerance window (see Figure 3.19).

In general, there are two types of errors that can occur: i) missing errors, or failures

of missing a manually extracted feature in the automatic extraction, and ii) spurious

errors, or failures of removing a falsely detected feature in automatic extraction that

is not manually extracted. In our experiment, the value of 𝑡 is set to 8 (16) pixels for

minutiae and dots/incipients, and 5 (10) pixels for pores at 500 ppi (1000 ppi), which

are the same values we use in matching these features between two fingerprints. Note

that when the tolerance box is too small (large), less (more) automatically extracted
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features are likely to be matched with manually extracted features, resulting in both

high (low) missing and spurious errors. That is, enlarging (reducing) the tolerance

boxes would decrease (increase) both error rates simultaneously.

Let 𝑁𝑔, 𝑁𝑒, 𝑁𝑚, 𝑁𝑠 be the number of manually extracted, automatically ex-

tracted, missing and spurious features, respectively. The missing error rate is cal-

culated as the ratio of the missing features to the total number of manually extracted

features, denoted as 𝑁𝑚
𝑁𝑔

. The spurious error rate is calculated as the ratio of the spu-

rious features to the total number of automatically extracted features, denoted as 𝑁𝑠
𝑁𝑒

.

Note that these error rates are only relative to the manual extraction performance,

which is not perfect and has its own errors compared to the ground truth.

Tables 3.3 and 3.4 show the average error rates of missing and spurious features

on 258 rolls of NIST-27 database and 100 flats in MSU database. Note the flats

in MSU database has smaller fingerprint area than the rolls in NIST-27, so fewer

minutiae are extracted from prints in MSU database. On the other hand, Level 3

feature extraction benefits from high image resolution and good image quality of the

1000 ppi live-scan images, as more pores and dots (incipients) are extracted from

the MSU database, compared to the rolls in NIST-27 database. In general, the error

rates of automatic pore and dot/incipient extraction are higher than those of minutiae

extraction. However, the large quantity of pores, especially at 1000 ppi, could possess

sufficient discriminative power in matching and potentially offset the extraction errors.

Finally, Figures 3.20 and 3.21 demonstrate how the extracted extended features could

enrich the feature representation of a fingerprint, especially those with small area.

The proposed extraction algorithms are currently implemented in MATLAB on

a 3G HZ Intel Duo Core machine with 3G RAM. At 500 ppi, the average time to

extract ridge skeletons, pores and dots/incipients in a full print is 1.8, 1.2 and 5.9

seconds, respectively. When pores and dots/incipients are extracted at 1000 ppi, the

average time is 3.3 and 12.8 seconds, respectively. Note that ridge skeleton extraction
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(a)                         (b)               (c) 

Figure 3.20: Automatically extracted feature representation on a roll of NIST-27:
(a) original rolled image; (b) minutiae ([12]); (c) extended features (including ridge
skeletons (blue), pores (red) and dots/incipients (green)).

(a)                         (b)                (c) 

Figure 3.21: Automatically extracted feature representation on a partial print of
MSU-partial: (a) original fingerprint image; (b) minutiae ([12]); (c) extended features
(including ridge skeletons (blue), pores (red) and dots/incipients (green)).
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at 1000 ppi is redundant and not necessary since ridges are well separated at 500 ppi.

Note that currently, our extended feature extraction algorithms are not applicable

to latents. This is mainly because latents are lifted from various surfaces (e.g., paper,

wood, metal, etc.), often of poor quality with noisy background. In many cases, the

background of a latent can include hand writing, surface texture patterns, dirt, other

fingerprint residue, etc. As a result, a reliable segmentation algorithm is needed to

separate the latent from the background. In good quality latents with clear back-

ground, however, automatic extended feature extraction is possible and may greatly

reduce the workload of forensic experts, even if manual supervision is still required.

3.5 Summary

Extended feature extraction is an essential step towards utilizing them in automatic

fingerprint matching. To our knowledge, little attention has been paid to developing

algorithms for automatic extraction of extended features, especially Level 3 features.

We have developed algorithms to automatically extract ridge skeletons, pores, dots

and incipients. These algorithms also perform fingerprint foreground segmentation,

quality assessment and feature enhancement. In addition to individual features, we

also extract relational information among features, such as ridge neighboring infor-

mation and ridge ownership of pores. In Chapter 4, this information will be used as

constraints in matching ridges and pores.

To evaluate the performance of the proposed extended feature extraction algo-

rithm, we compared automatically and manually extracted features at both Level 2

and Level 3 on the NIST-27 (rolls only) and MSU databases. We did not evaluate the

performance on latents because the image quality of latents in NIST-27 was too poor

for our algorithm to detect Level 3 features. Instead, we collected the MSU-partial

database to simulate high quality latents with small fingerprint size and uncontrolled
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distortion. The evaluation results show that the proposed pore and dot/incipient

extraction algorithms are less accurate than the state-of-the-art minutiae extraction.

For example, for 1000 ppi live-scan images, the errors of pore and dot/incipient ex-

traction are two times of those of the state-of-the-art minutiae extraction algorithm.

However, the large quantity of pores may possess sufficient discriminative power in

matching and potentially offset the extraction errors.
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Chapter 4

Extended Feature Matching

4.1 Introduction

In Chapter 3, we developed algorithms to extract extended fingerprint features, in-

cluding ridge skeletons, pores, dots and incipients. In this chapter, matching algo-

rithms are developed to match these extended features. A fusion framework to sys-

tematically integrate the matching components of each feature type is also proposed.

This framework is designed in a hierarchical fashion to achieve both accuracy and

efficiency. Our experiments demonstrate that the proposed extended feature match-

ing can be successfully integrated into automatic systems. Our experiments show

performance improvements from extended features in both full (MSU-full), partial

(MSU-partial) livescan and latent (NIST-27) matching.

4.2 Previous Work

Automatic extended feature matching has been previously studied on ridges and

pores. In ridge matching, Feng et al. [58] proposed an algorithm to match ridges in

local neighborhoods of minutiae. Ross et al. [111] proposed to construct an average

distortion model based on ridges associated with minutiae, which can be applied to
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templates during matching. Both of these methods, however, still rely on minutiae for

establishing an alignment. As a result, the benefits of ridge matching were not fully

exploited when minutiae-based alignment fails. In pore matching, Stosz et al. [120]

proposed to match pores in local segments of pre-aligned fingerprints. Kryszczuk et al.

[90] conducted a similar study to demonstrate the benefits of pore matching on partial

fingerprints. Vasta et al. proposed a fusion method based on the DezertSmarandache

theory to combine scores generated using Jain’s minutiae matching algorithm [79]

and Kryszczuk’s pore matching algorithm [126].

4.3 Proposed Approach

We propose to develop extended feature matching algorithms for ridge skeletons,

pores and dots/incipients. Compared to the previous work, our approach differs in

the following ways: i) we utilize ridges together with minutiae for establishing align-

ment; ii) we estimate distortion based on ridges and apply distortion correction to all

the extended features (e.g., ridge, pores, incipients) during matching; iii) we employ

state-of-the-art minutiae matching and integrate it with the proposed extended fea-

ture matching using various fusion techniques; iv) our experiments are performed on

both livescan and latent databases. The effects of image size and image quality on the

matching performance are also studied. We believe that incorporating extended fea-

tures in alignment and distortion correction is consistent with the manual matching

procedure employed by forensic experts and would ultimately improve the accuracy

and efficiency of current minutiae-based matching systems.

4.3.1 Ridge Matching

One of the major challenges in ridge matching is to align ridges in the presence of

distortion. As shown in Figure 4.1, ridges can be distorted due to the elasticity of the
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skin and pressure applied during acquisition. To address this problem, we propose

to align ridges in an incremental fashion, during which distortion is estimated and

corrected, a procedure we call “ridge propagation.” The inspiration of this ridge

matching procedure comes from the training exercise of manual fingerprint matching,

where experts iterate through each focal point (e.g., a minutiae) in the query, find its

correspondence in the template by comparing local ridge information and propagate

to their neighboring ridges and minutiae until a decision can be made [36].

Figure 4.1: Difficulty in aligning ridge skeletons in two fingerprints of the same finger
due to non-linear distortion.

Note that the proposed ridge matching requires an initial alignment to start with.

For computational efficiency, we obtain such an alignment based on minutiae [79].

That is, only one initial alignment is necessary if more than 12 minutiae correspon-

dences can be obtained, otherwise up to 5 different alignments that maximize the

number of matching minutiae are generated. Note that each initial alignment is rep-

resented by a pair of pivot minutiae from the template and query, respectively. Figure

4.2 illustrates the general procedure of the proposed ridge matching.

81



Feature extraction
    (minutiae, ridges)  

Alignment from
pivot minutia

Alignment after
ridge propagation

match 
distance

0.76
Final alignment

match distance
        = 0.32

Query

Template

Distortion
too large, 
can not be

aligned

Figure 4.2: Illustration of the proposed ridge matching. The procedure includes initial
alignment based on pivot minutiae, refined alignment after ridge propagation and
final match score calculation. Notice how ridge propagation enables the correction of
distortion at the finger tip between the two fingerprints.
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Ridge Propagation

Given an initial alignment, the ridge propagation starts with comparing the ridge

pair and their neighbors associated with the pivot minutiae pair. Once these ridges

are matched, the distortion is estimated based on the corresponding ridge points

and is applied to all the ridges in the query. This process continues to grow by

matching neighbors of the matched ridges until all the ridges in the overlap region

are examined. An example of ridge propagation in matching a partial fingerprint to

its mated template is shown in Figure 4.3.

Let 𝑄 = {𝑞} and 𝑇 = {𝑡} be the minutiae sets and 𝑈 = {𝑢} and 𝑉 = {𝑣}
be the indices of ridges in the template and query, respectively. To implement the

ridge propagation algorithm, we utilize two FIFO (First In First Out) queues, P to

record indices of matched ridge pairs and L to keep track of indices of all the to-be-

matched ridges that are neighbors of those in P. When two ridges are matched, point

correspondences between the two ridges are established and saved in C, which is then

used to estimate the distortion. The ridge propagation procedure can be summarized

in the following steps:

1. For each initial alignment represented by a pivot minutiae pair (𝑞𝑖, 𝑡𝑗), where 𝑞𝑖

is the 𝑖th minutiae from the query and 𝑡𝑗 is the 𝑗th minutiae from the template.

(a) Initialize the ridge candidate list L, matched ridge pair list P, and ridge

point correspondence list C.

(b) Add the ridges (𝑢, 𝑣) associated with the pivot minutiae and their neigh-

boring ridges to L.

(c) While [L ∪ P] ⊂ [𝑈 ∪ 𝑉 ]

i. Retrieve all ridges from L, calculate distances between ridges from

different prints and establish correspondences (details are presented
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(a)                     (b)                       (c)

(d)                     (e)                       (f)

Figure 4.3: Ridge propagation: (a) a partial fingerprint and its template are pre-
aligned using pivot minutiae (arrows); (b) matching the neighboring ridges associated
with the pivot minutiae; (c)-(f) iterative ridge propagation. Note how distortion is
corrected after each propagation step.

84



later). Add matched ridge points to C, move matched ridge pairs from

L to P, and add their neighbors that are not in P to L.

ii. Estimate non-linear distortion based on the corresponding ridge points

in C (details are presented later). If the energy of the distortion is

smaller than a threshold 𝑇𝑑, apply it to all the features (ridge skeletons,

dots, pores) in the query fingerprint; otherwise, go back to step 1.

(d) Calculate the match distance based on the matched ridges in P and non-

matched ridges in L for the given initial alignment.

2. Select the alignment (with distortion corrected) that gives the smallest ridge

match distance.

Ridge Correspondences

During ridge propagation, when two ridges (𝑢, 𝑣) are matched, all their neighbors are

retrieved for comparison, resulting in a 𝑎× 𝑏 distance matrix, where 𝑎 and 𝑏 are the

number of neighbors of 𝑢 and 𝑣, respectively. To establish correspondences among

these ridge neighbors, we estimate their matching distances and model the distance

matrix as a cost matrix, where we want to obtain 1-to-1 assignment while minimizing

the total cost (ridge distances) 𝐶. This optimization problem can be solved using the

Hungarian algorithm [103]. That is, given 𝑎 workers and 𝑏 tasks, let 𝐿 be the cost

matrix

𝐿 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑙11 𝑙12 ... 𝑙1𝑏

𝑙21 𝑙22 ... 𝑙2𝑏

:

𝑙𝑎1 𝑙𝑎2 ... 𝑙𝑎𝑏

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.1)
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where 𝑙𝑖𝑗 is the cost of the 𝑖th worker to perform the 𝑗th task; in our case 𝑙𝑖𝑗 = 𝑑(𝑖, 𝑗)

is the distance between ridge 𝑖 and ridge 𝑗. The Hungarian algorithm then finds

the optimal 1-to-1 assignment that minimizes the total cost 𝐶 in polynomial time.

Details of the algorithm are described as below:

1. Disable assignments that should be forbidden. For example, if the distance

between two ridges is too large (> 2𝑇𝑟, where 𝑇𝑟 is the average ridge period),

then this distance is more likely caused by a nonmatch rather than distortion.

We set this distance to ∞.

2. Remove any column or row in 𝐿 if distances in that column or row are all ∞.

3. For each row, subtract its smallest element from all its elements. Then, for

each column, subtract its smallest element from all its elements. The resulting

matrix is called the reduced cost matrix.

4. Select a zero element from each row of the reduced cost matrix, if any, and cross

out all the elements in its corresponding row and column.

5. If all rows are selected with a zero element, the assignment is completed; other-

wise, for each row that has not been assigned, mark all columns that have zeros

in that row and all rows that have been assigned in the given column. Repeat

this until a closed loop is obtained.

6. Find the smallest element in the unmarked area and subtract it from all un-

marked elements. Mark the column and the row of this element. Repeat this

until all assignments are obtained.

Note that this algorithm generates at most 𝑚𝑖𝑛(𝑎, 𝑏) pairs of 1-to-1 correspondences.

Finally, ridge pairs that are found matched using the Hungarian algorithm are moved

from L to P, and their neighbors that are not in P are added to L.
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Ridge Distance Calculation

To calculate the distance between two ridges, we use an algorithm similar to the one

proposed for finding ridge neighbors in Section 3.3.3. Let 𝑢 = {𝑢(𝑖)}, 𝑖 = 1, 2, ..., 𝑛𝑢

be a ridge with length 𝑛𝑢 from the query, and 𝑣 = {𝑣(𝑗)}, 𝑗 = 1, 2, ..., 𝑛𝑣 be a ridge

with length 𝑛𝑣 from the template. The closest points between the two ridges are

denoted as 𝑢𝑛 and 𝑣𝑚. The distance between 𝑢 and 𝑣 is then defined as:

𝑑(𝑢, 𝑣) =
1

𝑘1 + 𝑘2

∑
𝑖 = 𝑛− 𝑘1, ..., 𝑛+ 𝑘2

𝑗 = 𝑚− 𝑘1, ..., 𝑚+ 𝑘2

(∥𝑢(𝑖)− 𝑣(𝑗)∥), (4.2)

where

𝑘1 = min(𝑛− 1, 𝑚− 1) (4.3)

𝑘2 = min(𝑛𝑢 − 𝑛, 𝑛𝑣 −𝑚). (4.4)

If 𝑢 and 𝑣 are matched during ridge propagation, their corresponding ridge points,

denoted as {𝑢(𝑖), 𝑖 = 𝑛−𝑘1, ..., 𝑛+𝑘2} and {𝑣(𝑗), 𝑗 = 𝑚−𝑘1, ..., 𝑚+𝑘2}, respectively,
will be added to C. Figure 4.4 illustrates the ridge distance calculated using Feng’s

method [58] and the proposed method. As we can see, the proposed method is more

accurate as it averages the distances between all corresponding ridge point pairs.

Distortion Estimation

During ridge propagation, distortion is estimated whenever the point correspondence

list C gets updated; namely, when new ridge correspondences are established. By

continuously measuring distortion and applying distortion correction to the template,

ridge matching becomes more robust to distortion and propagates more effectively.

Let U = (u1, u2, ..., u𝑙)
𝑇 and V = (v1, v2, ..., v𝑙)

𝑇 be all the corresponding ridge
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Figure 4.4: Ridge matching based on (a) Feng’s method [58] and (b) the proposed
method. Feng’s method only compares the length of the corresponding segments be-
tween two ridge skeletons, while the proposed method averages the distances between
all corresponding ridge point pairs.

points stored in the list C from the template and query, respectively, where (u𝑖, v𝑖) ∈
𝑅2 denote the spatial coordinates of the 𝑖th corresponding pair and 𝑙 is the total

number of ridge point correspondences. The distortion function 𝐹 between U and V

can be modeled using Thin-Plate Splines (TPS) [40], defined as

𝐹 (U) = 𝑐 + 𝐴U𝑖 +𝑊𝑇𝑆(U) = V, (4.5)

where parameters 𝑐 and 𝐴 represent an affine transform and 𝑊 defines non-linear dis-

tortion. The distance measure 𝑆(U), defined as a vector (𝜎(U−u1), 𝜎(U−u2), ..., 𝜎(U−
u𝑙))

𝑇 where

𝜎(U) = ∥U∥2 log ∥U∥, (4.6)

is also called the radial basis function. To simulate the physical property of thin
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plates, the objective of TPS is to minimize the following function:

∑
(V− 𝐹 (U))𝑇 (V− 𝐹 (U)) + 𝜆𝐽(𝐹 ), (4.7)

where

𝐽(𝐹 ) =

∫ ∫
𝑅2

⎧⎨
⎩
(

∂2𝐹 (𝑥, 𝑦)

∂𝑥2

)2

+ 2

(
∂2𝐹 (𝑥, 𝑦)

∂𝑥∂𝑦

)2

+

(
∂2𝐹 (𝑥, 𝑦)

∂𝑦2

)2
⎫⎬
⎭ 𝑑𝑥𝑑𝑦

represents the bending energy of the spline and 𝜆 is the smoothing parameter that

controls the smoothness of the splines. When 𝜆 increases, the resulting spline becomes

more robust to correspondence errors.

Unfortunately, the bending energy of TPS contains only second-order derivatives,

which controls the rigidity of the spline (or stiffness of the surface). This often results

in overshooting, which appears in regions with rapid change of gradient as a result of

simulating the physical property of a thin plate. In order to reduce the overshooting

problem, we introduce a tension model [60] by adding the first-order derivatives in

the objective function, simulating the elasticity of the skin. This is given as

∑
(V− 𝐹 (U))𝑇 (V− 𝐹 (U)) + 𝜆𝐽(𝐹 )★, (4.8)

where

𝐽(𝐹 )★ =

∫ ∫
𝑅2

⎧⎨
⎩
(

∂2𝐹 (𝑥, 𝑦)

∂𝑥2

)2

+ 2

(
∂2𝐹 (𝑥, 𝑦)

∂𝑥∂𝑦

)2

+

(
∂2𝐹 (𝑥, 𝑦)

∂𝑦2

)2
⎫⎬
⎭ 𝑑𝑥𝑑𝑦

+𝜏2
∫ ∫

𝑅2

{(
∂𝐹 (𝑥, 𝑦)

∂𝑥

)2
+

(
∂𝐹 (𝑥, 𝑦)

∂𝑦

)2
}

𝑑𝑥𝑑𝑦. (4.9)

The parameter 𝜏 is the tension parameter that controls the degree of tension (elas-

ticity) effects. If 𝜏 is set at 0, the objective function is the same as in the traditional
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TPS. As the 𝜏 value increases, the stiffness of the plate is reduced so that the interpo-

lated surface resembles the shape of a membrane passing through the control points

(see Figure 4.5 and Figure 4.6). Accordingly, the radial basis function of TPS with

tension model is defined as [41]:

𝜎★(U) =
1

2𝜏3
(𝑒−𝜏∥U∥ + 𝜏∥U∥). (4.10)

Compared to TPS, the TPS with tension model demonstrates more robustness to

correspondence errors, resulting in less overshoots and more realistic skin distortion

estimation and ridge alignment, as shown in Figure 4.7. The implementation of TPS

with tension model is described in Appendix A.

(a) (b) (c)

Figure 4.5: The overshooting problem of the TPS can be reduced by introducing the
tension effects. The tension parameter in each plot is (a) 𝜏 = 0.1, (b) 𝜏 = 50 and (c)
𝜏 = 1000, respectively (see Equation 4.9).

Finally, we can evaluate the amount of distortion based on the bending energy of

the TPS with tension model, which is expressed as

𝐸 = trace(𝑊𝑇𝑆𝑊 ), (4.11)

where 𝑊 and 𝑆 are the non-linear distortion parameter and the distance matrix (see

Equation 4.5), respectively. If the bending energy 𝐸 is larger than a threshold 𝑇𝑒,

the ridge alignment process would be terminated for the given initial alignment.
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TPS TPS with tension

(a) (b)

Figure 4.6: The behavior of the interpolated surface of displacement between two
fingerprints using (a) a TPS model and (b) a TPS with tension model. The tension
effects increases the elasticity of the TPS model. The points marked with red crosses
are control points (points with known correspondences) and the blue bar at each
control point represents the amount of displacement between the template and the
query. The higher the bar, the larger the displacement.

Ridge Match Score

When ridge propagation is completed, the matching ridge list ∣P∣ contains all the

matched ridge pairs and the ridge candidate list ∣L∣ contains all the ridges that are

left unmatched. Let {𝑢′} and {𝑣′} be the set of unmatched ridges in ∣L∣ that belong to

the template and query, respectively. Distances among these ridges are also computed

using the Hungarian algorithm except that the assignment with large cost (distance)

is no longer forbidden as the objective now is to calculate the total cost (distance)

instead of establishing ridge correspondences. Overall, the ridge match score for a

given initial alignment is calculated as

𝑑 = −

⎧⎨
⎩

∑
{𝑢,𝑣}∈P

𝐶(∣P∣) + ∑
{𝑢′,𝑣′}/∈P

𝐶(∣L∣)

𝑚𝑖𝑛(𝑁𝑈 , 𝑁𝑉 )

⎫⎬
⎭ , (4.12)

91



(a)                    (b)

(c)                (d)

Figure 4.7: Aligning a partial fingerprint to its template based on (a) minutiae only;
(b) minutiae and ridges without distortion correction; (c) minutiae and ridges with
distortion correction using TPS; and (d) minutiae and ridges with distortion correc-
tion using TPS with tension.
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where 𝑁𝑈 and 𝑁𝑉 are the total number of ridges in the overlap region of the template

and query, respectively. For matched ridges pairs (𝑢, 𝑣) in P, their ridge distances are

guaranteed to be less than 2𝑇𝑟, while ridge pairs (𝑢
′, 𝑣′) not in P would have distances

larger than 2𝑇𝑟. This means the more ridge correspondences found in P, the higher

the match score would be. The negative sign in Equation 4.12 is simply to map the

dissimilarity measure (ridge distance) to a similarity measure (match score). Given

𝑘 (𝑘 ≤ 5) initial alignments, the final ridge match score is defined as the maximum

among all 𝑘 scores

𝑆𝑟 =
𝑘

max
𝑖=1

(𝑑𝑖). (4.13)

The alignment and distortion correction associated with the maximum ridge match

score is applied to pores and dots/incipients before they are matched.

4.3.2 Pore Matching

According to [104], forensic experts tend to declare a match between two pores from

two aligned fingerprints if they are less than about 10 (5) pixels apart at 1000 (500)

ppi. We use this criteria to count the number of matched pores 𝑁𝑎 on corresponding

ridges established during ridge matching. Recall that the ridge ownership of each pore

was extracted in Section 3.3.4. For noncorresponding ridges, we also try to match

the pores belonging to these ridges based on the 10 (5) pixel criteria and denote

the number of matches as 𝑁𝑏. Note that pores matched between the corresponding

ridges are more reliable and suffer lower distortion than those matched between non-

corresponding ridges. Therefore, the pore match score is defined as a weighted sum

given by

𝑆𝑝 =
𝛼×𝑁𝑎 + (1− 𝛼)×𝑁𝑏

𝑁𝑝 +𝑁𝑞
, (4.14)

where 𝑁𝑝 and 𝑁𝑞 are the number of pores extracted in the overlap region of the

template and query, respectively, and 𝛼 (= 0.65) is the parameter used to give more
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confidence on pores matched between corresponding ridges. The range of 𝑆𝑝 is [0 1].

4.3.3 Dot and Incipient Matching

Let 𝑁𝑔 and 𝑁ℎ be the number of dots/incipients extracted from the template and

query, respectively. Two dots/incipients 𝑑𝑎 = {𝑑𝑎𝑖 , 𝜃𝑎}, 𝑖 = 1, 2, ..., 𝑛𝑎 and 𝑑𝑏 =

{𝑑𝑏𝑗 , 𝜃𝑏}, 𝑗 = 1, 2, ..., 𝑛𝑏 are matched based on the following criteria:

𝑀(𝑎, 𝑏) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1, if ∣𝜃𝑎 − 𝜃𝑏∣ < 𝜋
4 and min

𝑖 = 1, ..., 𝑛𝑎

𝑗 = 1, ..., 𝑛𝑏

∥𝑑𝑎𝑖, 𝑑𝑏𝑗∥ < 𝑇ℎ

0, otherwise

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where 𝑛𝑎 and 𝑛𝑏 are the size (number of pixels) of dots/incipients 𝑎 and 𝑏, respectively

and 𝑇ℎ is 16 (8) pixels at 1000 (500) ppi. 𝑀(𝑎, 𝑏) is an indicator variable that denotes

a match (=1) or a non-match (=0) between dots/incipients 𝑎 and 𝑏. Note this criteria

is still applicable even if only the centroid of dots and incipients are extracted. Finally,

the match score of dots/incipients is defined as

𝑆𝑑 =

∑
𝑎 = 1, ..., 𝑁𝑔

𝑏 = 1, ..., 𝑁ℎ

𝑀(𝑎, 𝑏)(𝑛𝑎 + 𝑛𝑏)

∑
𝑎 = 1, ..., 𝑁𝑔

𝑛𝑎 +
∑

𝑏 = 1, ..., 𝑁ℎ

𝑛𝑏
.

Generally, the range of 𝑆𝑑 is within [0 1]. However, 𝑆𝑑 may be larger than one if an

incipient is matched to multiple dots.
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4.3.4 Fusion

We have discussed how to obtain individual match scores for various extended features

(e.g., ridge skeletons, pores and dots/incipients). In order to systematically integrate

these results, we propose an hierarchical framework to fuse the matching results at

different levels, as demonstrated in Figure 4.8. At Level 2, both minutiae and ridges

are utilized to establish alignment and compute match scores (𝑆𝑚) and (𝑆𝑟). If

both scores are sufficiently high (𝑆𝑚 > 𝑇𝑚 and 𝑆𝑟 > 𝑇𝑟), the match is excluded;

otherwise, matching proceeds to the next level, where match scores of pores (𝑆𝑝)

and dots/incipients (𝑆𝑑) are computed. Finally, all match scores are integrated using

one of the following fusion techniques. Note that our integration framework is highly

efficient as it avoids matching Level 3 features when Level 2 features are in agreement.

4.3.5 Score-Level Fusion

The general methodology of score-level fusion can be divided into three categories

[113]: i) transformation-based fusion, where the match scores are first normalized

(transformed) to a common domain and then appropriately weighted and combined;

ii) classifier-based fusion, where scores from multiple matchers are treated as features

and a classifier is used to determine whether a given set of match scores belongs to

a genuine user or an impostor; iii) density-based fusion, where densities of the match

score are estimated and fusion is conducted based on the likelihood ratio of the

score distributions. In our matching experiments, a method representing each of the

three methodologies is evaluated and compared, namely sum-rule fusion, decision-tree

fusion and likelihood-ratio fusion. Because these fusion methods require training data

for parameter estimation or classification, we perform ten-fold cross validation in all

our tests by dividing the match scores into ten bins, using nine bins for training and

one for testing, and repeating this process ten times before combining the matching

results.
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Figure 4.8: The proposed integration framework. Minutiae and extended feature
(ridge, pore and dot/incipient) matchings are integrated in a hierarchical fashion.
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Sum-rule Fusion

Sum-rule fusion is a transformation-based fusion method. As one of the most effective

and efficient fusion methods, sum-rule fusion combines the match scores provided by

different matchers using a weighted sum. Because the combination is meaningful only

when the scores of different matchers are compatible [113], score normalization is of-

ten needed to first transform the match scores obtained from different matchers into a

common domain. Min-max and z-score normalization are the most popular methods

for score normalization. We use the min-max normalization in our experiments be-

cause the impostor match scores often deviate from the Gaussian distribution assump-

tion required by the z-score normalization [81]. Let 𝑆𝑖𝑗 denote the 𝑖th (𝑖 = 1, ..., 𝑁)

match score output by the 𝑗th (𝑗 = 1, ...,𝑀) matcher and {𝑆𝑘𝑗 , 𝑘 ∈ 𝑇𝑆} denote the

set of match scores available in the training set 𝑇𝑆. The min-max normalized score

𝑁𝑆𝑖𝑗 , for the test score 𝑆𝑖𝑗 is defined as

𝑁𝑆𝑖𝑗 =

𝑆𝑖𝑗 − min
𝑘∈𝑇𝑆

𝑆𝑘𝑗

max
𝑘∈𝑇𝑆

𝑆𝑘𝑗 − min
𝑘∈𝑇𝑆

𝑆𝑘𝑗

. (4.15)

This normalization retains the score distribution except for a scaling factor that trans-

forms the scores into the range [0 1]. Finally, the normalized scores from each matcher

are combined using a weighted sum, given as:

𝐹𝑆𝑖𝑗 =
𝑀∑
𝑗=1

𝜔𝑗 ×𝑁𝑆𝑖𝑗 , (4.16)

where 𝜔𝑗 (
𝑀∑
𝑗=1

𝜔𝑗 = 1) denotes the weight for the 𝑗th matcher. Note that the weights

are obtained by minimizing the weighted error rate
𝑀∑
𝑗=1

𝜔𝑗𝐸𝑗 on the training data

𝑇𝑆, where 𝐸𝑗 is measured as the sum of false reject rates (FRR) for the 𝑗th matcher
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at fixed false accept rates (e.g., FAR =10−4, 5× 10−4, 10−3, 5× 10−3).

Decision-tree Fusion

Decision-tree fusion is a classifier-based fusion method. Unlike the sum-rule fusion,

this method is nonlinear as it divides the scores into a nested set of partitions and fits

linear models in each partition to fuse the scores. In our experiment, we incorporate

a log-linear probability model [85] in our decision tree. That is, there are two decision

levels in the tree, each level is responsible of making a classification decision, and the

decision at the second level is conditioned on the decision at the first level (see Figure

4.9). The terminal nodes are different linear classifiers while the nonterminal nodes

combine the individual classification outputs using a weighted sum where weights are

derived from the performance of each classifier.

�

�!�"

�""

��

�"! �"� �!" �!! �!� ��" ��! ���

Figure 4.9: Decision-tree fusion using a two-level tree structure. 𝑀 is the number of
matchers.

Let 𝑆𝑖 = {𝑆𝑖𝑗 , 𝑖 ∈ 𝑇𝑆, 𝑗 = 1, ...,𝑀} be the match score vectors from 𝑀 different

matchers with the true class label 𝑦𝑖 (match or nonmatch). During training, the

score vectors are fed to the decision tree and the Expectation Maximization (EM)

[54] algorithm is employed to iteratively estimate the parameters 𝜃𝑚𝑛 of each classifier
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by maximizing the likelihood function

𝑙𝑐(𝜃, 𝑆𝑖) =
∑
𝑖

ln
∑
𝑚

𝑃 (𝑧𝑚∣𝑆𝑖)
∑
𝑛

𝑃 (𝑧𝑚𝑛∣𝑆𝑖, 𝑧𝑚)𝑃 (𝑦𝑖, 𝑆𝑖, 𝑧𝑚, 𝑧𝑚𝑛), (4.17)

where 𝑧𝑚 (𝑚 = 1, 2) are the indicator variables for the nonterminal nodes while

𝑧𝑚𝑛 (𝑚,𝑛 = 1, 2) represent terminal nodes (see Figure 4.9). During testing, the

probability of classifying a score vector 𝑆𝑡 = {𝑆𝑡𝑗 , 𝑡 = 1, ..., 𝑁, 𝑗 = 1, ...,𝑀} to class 𝑦𝑡

is a mixture of the probabilities of generating class label 𝑦𝑡 from each of the classifiers,

given by

𝑃 (𝑦𝑡∣𝑆𝑡) =
∑
𝑚

𝑃 (𝑧𝑚∣𝑆𝑡)
∑
𝑛

𝑃 (𝑧𝑚𝑛∣𝑆𝑡, 𝑧𝑚)𝑃 (𝑦𝑡∣𝑆𝑡, 𝑧𝑚, 𝑧𝑚𝑛), (4.18)

where

𝑃 (𝑦𝑡∣𝑆𝑡, 𝑧𝑚, 𝑧𝑚𝑛)) =
𝑒𝜃

𝑇
𝑚𝑛𝑆𝑡∑

𝑛 𝑒𝜃
𝑇
𝑚𝑛𝑆𝑡

. (4.19)

Likelihood-ratio Fusion

Likelihood-ratio fusion is a density-based fusion method. According to the Neyman-

Pearson theorem, at a given false accept rate (FAR), the optimal test for accept or

reject a match 𝑠 is the likelihood-ratio test, given by

Φ(𝑠) =

⎡
⎢⎣ 1, when

𝑓(𝑠∣gen)
𝑓(𝑠∣imp)

≥ 𝜂

0, when
𝑓(𝑠∣gen)
𝑓(𝑠∣imp)

< 𝜂

⎤
⎥⎦ (4.20)

where 𝑓(𝑠∣gen) and 𝑓(𝑠∣imp) are the density functions for genuine and impostor

scores, respectively, and 𝜂 is the decision threshold. Let 𝑓𝑗(𝑠∣gen) and 𝑓𝑗(𝑠∣imp)

be the density of the genuine and impostor scores of the 𝑗th (𝑗 = 1, ...,𝑀) matcher.

Assuming all 𝑀 matchers are independent, the joint density of the 𝑀 match scores

is the product of the 𝑀 marginal densities. As a result, the combined likelihood ratio
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(or fused scores) can be written as

𝐹𝑆𝑗 =

𝑀∏
𝑗=1

𝑓𝑗(𝑆𝑗 ∣gen)
𝑓𝑗(𝑆𝑗 ∣imp)

. (4.21)

Because genuine and impostor densities are often unknown, we need to estimate

them from the training data. Let 𝐾 be the number of training data, and 𝑓𝑗(𝑠) be the

density function at score 𝑠 of the 𝑗th matcher. The empirical distribution function

𝐹𝑗(𝑠) can be computed based on the training data [98], given as:

𝐹𝑗(𝑠) =
1

𝐾

𝐾∑
𝑘=1

𝐼{𝑆𝑘𝑗 ≤ 𝑠}, (4.22)

where 𝐼{𝑆𝑘𝑗 ≤ 𝑠} = 1 if 𝑆𝑘𝑗 ≤ 𝑠, and = 0, otherwise. For values of 𝑠 not contained in

the training data, 𝐹𝑗(𝑠) is obtained by linear interpolation. Finally, samples simulated

from 𝐹𝑗(𝑠) are used to estimate the true density estimate of 𝑓𝑗(𝑠) using a Gaussian

kernel density estimator [98].

4.3.6 Rank-Level Fusion

In an identification scenario, the output of a matcher is the rank of the template

instead of a match score. As a result, a rank-level fusion method is needed to fuse

the identification results. We implement the highest rank fusion method [70], which

is known to work well as it utilizes the strength of each matcher effectively, even if

only one matcher assigns a high rank to the correct user. This method assumes the

number of users is large compared to the number of matchers, which is the case in

our experiments.

Let 𝑅
𝑖,𝑘
𝑗 be the rank of a match between users 𝑖 and 𝑘 using matcher 𝑗 (𝑗 =
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1, ...,𝑀). The fused rank is defined as

𝑅𝑖,𝑘 =
𝑀
min
𝑗=1

𝑅
𝑖,𝑘
𝑗 . (4.23)

Notice this may result in up to 𝑀 ties due to the consolidation of decisions output by

the 𝑀 matchers, which need to be broken randomly to reach a strict ranking order.

As a result, the accuracy from rank 1 to 𝑀 − 1 of the highest rank method is usually

less than that of the best individual matcher [97].

4.4 Experiments

Experiments to evaluate the performance gain by utilizing extended features are car-

ried out on the three databases described in Section 3.4, namely MSU-full, MSU-

partial and NIST Special Database 27 (NIST-27) [13] (see Figure 3.16 and Table 3.2).

The extended features in these databases are either automatically extracted (MSU-

full, MSU-partial and rolled prints in NIST-27) by using the algorithms proposed in

Chapter 3 or manually extracted (latents in NIST-27)) by forensic experts. Matching

of extended features is conducted automatically by using the algorithms proposed

in this chapter. To provide a valid comparison with the state-of-the-art minutiae

matching performance, we also evaluate the minutiae-based Neurotechnology matcher

(Verifinger 4.2 [12]), which ranked 1st on “average zero FMR” in FVC2006 [7]. Note,

however, that this matcher performs much better on its proprietary minutiae-based

templates than standard templates (where only minutiae position and directions are

available). As a result, we use our in-house minutiae-based matcher on the NIST-27

database (where only minutiae position and directions are manually extracted) to

achieve the optimal minutiae-based matching accuracy [80].

In the first experiment, we evaluate the verification performance of integrating

extended features with minutiae for the MSU-full database (410 fingers, 4 impressions
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Figure 4.10: Verification ROCs on MSU-full database (flat to flat matching at 1000
ppi) using (a) the sum-rule fusion; (b) three fusion rules on four different scores: 𝑆𝑚
(minutiae matching), 𝑆𝑟 (ridge matching), 𝑆𝑝 (pore matching) and 𝑆𝑑 (dot/incipient
matching). Results are combined using ten-fold cross validation.
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Figure 4.11: Verification ROCs on MSU-partial database (partial to flat matching
at 1000 ppi) using (a) the sum-rule fusion; (b) three fusion rules on four different
scores: 𝑆𝑚 (minutiae matching), 𝑆𝑟 (ridge matching), 𝑆𝑝 (pore matching) and 𝑆𝑑
(dot/incipient matching). Results are combined using ten-fold cross validation.
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(a) (b) (c)

Figure 4.12: An example of matching a partial print (blue) to a flat (black) based on
(a) minutiae; (b) ridges; (c) pores. The normalized match scores based on each of
these features are 𝑆𝑚 = 0.015, 𝑆𝑟 = 0.79, 𝑆𝑝 = 0.56, respectively, and the final fused
score is 0.334.

per finger, 1000 ppi). Each impression is compared to all other impressions of the

same finger, resulting in 2, 460 genuine comparisons; the first impression of each finger

is compared to the first impression of all other fingers, resulting in 83, 845 impostor

comparisons. As shown in Figure 4.10 (a), the fusion of every extended feature

with minutiae using sum-rule fusion improves the matching performance. Although

minutiae matching performance is already high, fusion with extended features still

improves the GAR from 97% to 98.5%, at FAR=0.01%. This is equivalent to a 50%

reduction in FRR (from 3% to 1.5%) at a FAR=0.01%. Figure 4.10 (b) demonstrates

the fusion of all the proposed extended features with minutiae using the three different

fusion schemes, namely sum-rule fusion, likelihood-ratio (LR) fusion and decision-tree

fusion.

In the second experiment, we evaluate the verification performance of integrating

extended features with minutiae for the MSU-partial database (300 fingers, 1 full and

5 partial impressions per finger, 1000 ppi). Each partial print is compared to the flat

print of the same finger, resulting in 1, 500 genuine comparisons; the first partial print
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Figure 4.13: CMC curve for identification using highest rank fusion on minutiae and
extended features in NIST-27 (latent to rolled prints matching at 500 ppi).
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(a) (b)

(c) (d)

Figure 4.14: An example of improving latent matching by using extended features.
(a) a latent image and (b) the corresponding rolled print with extracted features
(minutiae (red), ridges (blue), dots (green), pores (magenta)) (c) minutiae matching
(𝑆𝑚 = 0.76, 𝑅𝑚 = 4) (d) ridge matching (𝑆𝑟 = 0.79, 𝑅𝑟 = 1) and dot/incipient
matching (𝑆𝑑 = 0.67, 𝑅𝑑 = 2). Using extended features help retrieve the correct
candidate of the latent at rank 1. Features in latents were manually extracted by a
forensic expert.
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of each finger is compared to the flat print of all other fingers, resulting in 88, 350

impostor comparisons. As seen in Figure 4.11 (a), because the query fingerprints are

partial, minutiae matching performance drops significantly compared to the MSU-

full database (GAR decreases to 80% from 97%, at FAR=0.01%). When extended

features are utilized, however, the GAR improves from 80% to 85%, at the operating

point FAR=0.01% (see Figure 4.11 (a)). This is equivalent to a 25% reduction in

FRR (from 20% to 15%) at a FAR=0.01%. Figure 4.11 (b) demonstrates the fusion

of all the proposed extended features with minutiae using the three different fusion

schemes. Figure 4.12 shows how the genuine match between a partial and a flat print

can be improved as a result of integrating minutiae with ridges and pores.

Note that among all the three different score-level fusion methods, sum-rule

slightly outperforms the others on both MSU-full and MSU-partial databases. This is

not surprising as sum-rule fusion is easier to optimize than training based classifiers,

such as decision-tree fusion and likelihood-ratio fusion. Nevertheless, performance

improvement was observed for all three fusion results, suggesting the effectiveness of

extended features in improving fingerprint verification performance.

In the third experiment, we evaluate the identification performance of integrating

extended features with minutiae for the NIST-27 database (258 fingers, 1 latent and

1 roll per finger, 500 ppi). In this database, each latent is compared to all rolled

prints and only extended features in rolled prints are automatically extracted. The

identification is performed by ranking the match scores of each feature and fusing the

ranks using the highest-rank method. Note that this identification is based on a very

small background database, compared to those used in recent papers by Jain [78] and

NIST [75]. Figure 4.13 shows the identification performance on the NIST-27 database.

Note that at ranks 1 to 3, the fused identification rates are not very high due to the

random tie breaking in the highest-rank fusion [97]. At rank 4 (10), the rank-level

fusion improves the identification rate from 88% (91%) to 90% (93.5%), respectively.
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This is equivalent to a 16.7% (27.8%) reduction in identification error rate at rank

4 (10). We also notice that ridge matching provides the most performance improve-

ment, while pore and dot/incipient matching fail to improve the performance. This is

potentially because at 500 ppi, our pore and dot/incipient extraction algorithms do

not perform well, for example, only 67 (131) out of 258 latents were found to contain

dots/incipients (pores) and the average number of dots/incipients (pores) manually

extracted is too small to be distinctive (only 0.6 (5.2)). Also note that when the

minutiae or ridge match scores are sufficiently high, no pore or dot/incipient match-

ing is necessary, as described in Section 4.3.4). Figure 4.14 demonstrates an example

of improving latent identification using ridges and dots/incipients.

In the fourth experiment, we study the performance gain of using extended fea-

tures in an identification scenario across different image quality. Forensic experts have

manually classified the latents in NIST-27 into three quality bins (i.e., good, bad and

ugly). We obtain the identification results by matching the partial (latent) prints

in each quality bin with all rolled prints. As shown in Figure 4.15, the performance

gain of integrating extended features with minutiae increases from 1.1% to 2.4% to

3.5% at rank 4 as the image quality degrades from good to bad to ugly. This result

suggests that high quality fingerprint images typically contain a sufficient number of

minutiae for accurate matching. It is the fingerprints with low quality that gain the

most from extended feature matching.

Finally, we evaluate the performance gain of using extended features in an identi-

fication scenario across different sizes of latent fingerprints. Based on the size of the

latent area estimated using the segmentation algorithm proposed in Section 3.3.1 and

manually verified, we divide the latents in NIST-27 into three fingerprint size bins

(i.e., small, medium and large). Identification results by matching latents in each bin

with all rolled prints are shown in Figure 4.16. As we can see, the performance gain

of integrating extended features with minutiae increases from 1.1% to 1.2% to 4.7%
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at rank 4 as the size of the fingerprint area decreases from large to medium to small.

This result suggests that fingerprints with small area benefit more from extended

feature matching compared to large fingerprints, which typically contain a sufficient

number of minutiae for accurate matching.

Currently, all proposed extended feature matching algorithms are implemented in

MATLAB. The average time for ridge, pore and dot/incipient matching between a

partial and a flat is 12, 0.02, and 0.0001 seconds, respectively, on a 3G HZ Intel Duo

Core machine with 3G RAM.

4.5 Summary

Automatic fingerprint matching using extended features is an important but chal-

lenging problem. This is because, unlike minutiae, matching of Level 3 features (e.g.,

pores and dots) can be greatly affected by errors in feature extraction, incorrect align-

ment and distortion. To address this, we propose a hierarchical matching system that

utilizes Level 2 features such as minutiae and ridges to obtain alignment with dis-

tortion correction before Level 3 features (pores and dots/incipients) are matched.

The individual feature matching results are integrated using score-level or rank-level

fusion. Our experimental results demonstrate that extended features possess some

discriminative power and when combined with minutiae, can significantly improve the

performance in both automatic and semi-automatic matching scenarios. More specif-

ically, all proposed extended features (ridge skeletons, pores and dots/incipients) are

effective in improving fingerprint matching (partial, full) at 1000 ppi, while ridges

show the most improvement in latent identification at 500 ppi. In addition, per-

formance gains are especially noticeable in low quality and small area livescans and

latents, suggesting that extended features provide complementary discriminative in-

formation to minutiae. These results strongly suggest that utilizing extended features

109



for fingerprint matching is both practical and beneficial.
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Figure 4.15: CMC curve for identification using minutiae and extended features across
different image quality by dividing latents in NIST-27 into three quality bins (a) good
quality, (b) bad quality, and (c) ugly quality manually assigned by forensic experts.
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Figure 4.16: CMC curve for identification using minutiae and extended features across
different sizes of fingerprint area by dividing latents in NIST-27 into three bins (a)
large size, (b) medium size, and (c) small size based on automatically segmented
foreground area.
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Chapter 5

Individuality of Fingerprints

5.1 Introduction

For over one hundred years of the history of fingerprint recognition, fingerprints have

been generally believed to be unique for each individual. As a result, the individuality

of fingerprints was rarely, if ever, questioned. Recent court challenges, however,

have brought into question the validity and reliability of fingerprint individuality,

the fundamental issue of fingerprint recognition as a science [23, 22, 24, 30]. These

challenges are based on, among other factors, the lack of (i) conclusive evidence to

support the claim of fingerprint uniqueness, and (ii) scientific evaluation of criteria

used to determine a match between two fingerprints.

Fingerprint individuality can be formulated as the probability that any two finger-

prints from different fingers will be “sufficient” similar. Because similarity between

fingerprints is often quantitatively defined based on the similarity of fingerprint fea-

tures, it is equivalent to finding the probability of random correspondence (PRC),

or the probability of matching 𝑘 features, given that the two different fingerprints

contain 𝑚 and 𝑛 features, respectively. This probability can be evaluated either em-

pirically or theoretically. In the empirical case, representative sample fingerprints are
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collected or synthetically generated and feature-based matching is conducted using a

matcher (automatic or human). This process, however can be very time-consuming

and expensive. For example, it was estimated in [95] that given a large database of

over 200 million fingerprints (i.e., the FBI database), it would take approximately

1, 270 years to match all the fingerprints in the database with each other using a sys-

tem with a speed of one million matches per second. In the theoretical case, models

of fingerprint features are derived from sample data and the probabilities of random

correspondence are directly calculated based on the models.

In this chapter, we propose to address two main issues of theoretical evaluation

of fingerprint individuality: i) how to model the distribution of fingerprint features

and their correlation, as it is not only the number of features, but also their spatial

distributions that account for the fingerprint individuality; ii) how to incorporate

both minutiae and extended features in the individuality model as they all possess

discriminative power as demonstrated in Chapter 4.

5.2 Previous Work

The fingerprint individuality problem can be approached from two directions. One is

to model the fingerprint formation or synthetic generation process and create a large

enough database for empirical analysis. The other is to model the distribution of fin-

gerprint features and theoretically calculate the probability of their correspondences.

5.2.1 Individuality based on Formation Models

Fingerprint individuality is directly related to the fingerprint formation process, as

fingerprints do not generally change once formed, except damage caused by scarring,

disease, etc. If the formation process can be mathematically simulated, it can be used

to analyze fingerprint individuality. Kucken et al. [91] proposed a mathematical model
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for fingerprint formation. In their model, the epidermis and dermis were simulated

by two layers of nonlinear springs, and ridge formations were observed as a result of

compressive stress applied on the two layers. This model has been used to successfully

generate synthetic fingerprints with different class patterns, including whorls, loops

and arches [91]. Cappelli et al. proposed another fingerprint generation method, called

SFINGE (Synthetic Fingerprint Generation) [44]. This method was based on a much

simpler formation model, which produced ridge patterns by modeling the orientation

field of a fingerprint. Minutiae were naturally formed due to ridge line disparity

produced by local convergence/divergence of the orientation. It was demonstrated

that “the parameters of the SFINGE can be tuned to properly emulate the variations

in real fingerprints” [95]. Experiments also showed that synthetic fingerprints exhibit

very similar performance compared to real fingerprints [94, 93, 7]. However, a more

in-depth investigation of the fingerprint formation process and synthetic fingerprint

generation is needed before the proposed models can be used for reliable analysis of

fingerprint individuality.

5.2.2 Individuality based on Feature Models

Fingerprint individuality can also be related to the occurrences of fingerprint fea-

tures. If the distribution of fingerprint features can be modeled, it can be used to

estimate fingerprint individuality. Currently, two main feature models have been pro-

posed, namely, configuration-based models and probability of random correspondence

(PRC)-based models.

In configuration-based models, fingerprint individuality is estimated as the proba-

bility of observing a particular configuration of features in a target population. Based

on the assumptions of feature dependence, the configuration-based models can be fur-

ther classified as feature-independent models, cell-independent models and feature-

dependent models.
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∙ Feature-independent models use a fixed probability 𝑝 for each feature occurrence

and assume independence among features. The individuality of a fingerprint

with 𝑁 features is then estimated as 𝑝𝑁 [69, 37, 128, 51, 68].

∙ Cell-independent models divide fingerprints into fix-sized cells and assume de-

pendence of fingerprint features within cells and independence among cells. As

a result, the individuality of a fingerprint is estimated as the product of the

probability of observing the particular feature occurrences in each of the cells

[115, 62, 101]. Note that in cell-independent models, the determination of cell

size is essential. When cell size is small, features fall separately in different cells,

and cell independence becomes equivalent to feature independence. When cell

size is big, however, the discriminative power of the model is weakened as the

spatial relationship among features is lost.

∙ Feature-dependent models assume dependency among fingerprint features by

measuring the probability of observing a feature with respect to other features

in a fingerprint [124, 86, 119].

A table of probability estimates of above configuration-based models can be found in

[102]. Note that these models tend to give higher values of individuality to fingerprints

that possess larger number of features. In reality, however, the individuality of a

fingerprint is also dependent on locations of the features in the image.

In PRC-based models, fingerprint individuality is measured by the probability

of random correspondence (PRC). That is, the probability of matching 𝑘 features in

their spatial locations and other attributes, given the distribution of 𝑚 and 𝑛 features

in the template and query, respectively. To estimate PRC, two types of generative

models that describe the distributions of fingerprint features have been proposed:

∙ Feature-independent models that model fingerprint features as independent vari-

ables. For example, in Pankanti et al.’s model, minutiae are modeled as uni-
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formly and independently distributed [102].

∙ Cluster-independent models that take considerations of the clustering tendency

of fingerprint features [86]. For example, in Zhu et al.’s model, minutiae in

each fingerprint are clustered and each cluster is independently modeled, while

minutiae within a cluster are assumed dependent [136, 137].

5.3 Proposed Model

We propose to estimate fingerprint individuality using cluster-independent models

on both minutiae and extended features, including ridge (period and curvature) and

pore (spacing) features (see Figure 5.1). These extended features are selected because

they are sufficiently discriminative and invariant to distortion.

In general, we make the following assumptions in the proposed individuality mod-

els:

∙ Each fingerprint is represented by the following features: minutia (position

and direction) and associated ridge period, ridge curvature, and pores spacing.

Minutiae are either endings or bifurcations, and they are not distinguished from

each other.

∙ Fingerprint features (minutiae and ridge features) tend to cluster instead of

being uniformly distributed. Features are dependent within a cluster, but inde-

pendent between different clusters. The clustering tendencies (non-uniformity)

of fingerprint features reflect the class patterns of fingerprints and have been

observed and demonstrated in practice [86, 47] and statistically demonstrated

in [136, 137].

∙ All fingerprint features are correctly extracted. This assumption is needed to

ensure the correctness of the individuality model. In practice, however, this
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is not true, especially for extended feature extraction. Hence, it is important

to keep in mind that extraction errors would result in unreliable individuality

models and the resulting estimates of PRC.

∙ All fingerprints are pre-aligned and there is one and only one alignment between

a pair of fingerprints. This assumption is needed to to register fingerprints in a

common coordinate system.

Note that our proposed model is an extension of Zhu et al.’s original minutiae-

based cluster-independent model [136, 137]. Besides that we incorporate additional

extended features, there are two major differences between ours and Zhu’s approach:

∙ Our model is fitted to five major fingerprint classes, not to individual finger-

prints. Researchers have shown dependence between distributions of fingerprint

features (e.g., minutiae, ridge flows) and finger pattern classes [86, 47]. Although

Zhu also proposed to apply clustering on the finger-specific models to obtain an

average model for each cluster (which showed strong correlations with finger-

print classes), her model is prone to overfitting, especially when the number of

features is small in a fingerprint.

∙ Finger-specific models and their clustering are difficult to generalize as they need

to be generated whenever applied to a new database or a new observed match.

On the contrary, our model can be applied without being retrained. This is

because our model is estimated based on five major classes of fingerprints, and

given the class information of a target population or an observed match, the

PRC can be directly calculated.

5.3.1 Modeling Minutiae

Given a large database of fingerprints, we classify each print into one of the five major

classes or pattern types as defined in the Henry classification system [69]: whorl, left
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pore

ridge

minutiae

right loop type       whorl type

(a)                                            (b)

Figure 5.1: Fingerprint features used in our individuality model (a) two different
pattern types; (b) minutiae, ridges and pores.

loop, right loop, arch and tented arch. For each fingerprint class, minutiae from

fingerprints that belong to this class are consolidated and their spatial distribution is

estimated. Following the work of Zhu et al. these minutiae are then clustered based

on the distribution of their positions (𝑋) and orientations (𝑂) using the Expectation

Maximization (EM) algorithm [59]. In each cluster, the position 𝑋 is modeled by a

bivariate Gaussian distribution and the orientation 𝑂 is modeled using a Von-Mises

distribution. Combining the distributions of minutiae positions and orientations, it

follows that each minutiae 𝑚(𝑋,𝑂) in a fingerprint with class 𝐺 has the following

mixture density:

𝑓(𝑥, 𝑜∣Θ𝐺) =

𝑁𝐺∑
𝑔=1

𝜏𝑔 ⋅ 𝑓𝑋 (𝑥∣𝜇𝑔,Σ𝑔) ⋅ 𝑓𝑂(𝑜∣𝜈𝑔, 𝜅𝑔), (5.1)

where 𝑁𝐺 is the number of clusters in the mixture for class 𝐺, 𝜏𝑔 is the weight

for the 𝑔th cluster, Θ𝐺 is the set of parameters describing the distribution of each

cluster, 𝑓𝑋 (𝑥∣𝜇𝑔,Σ𝑔) is the p.d.f. of the bivariate Gaussian distribution over minutiae

positions in the 𝑔th cluster, and 𝑓𝑂(𝑜∣𝜈𝑔, 𝜅𝑔) is the p.d.f. over minutiae orientations

in the 𝑔th cluster. Minutiae with positions corresponding to the 𝑔th cluster have
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orientations corresponding to the same cluster, establishing a dependence between

minutiae position and orientation [136].

Let 𝑇 be a fingerprint belonging to class 𝐺 with minutiae density 𝑓(𝑥, 𝑜∣Θ𝐺). Sim-

ilarly, let 𝑄 be a fingerprint belonging to class 𝐻 with minutiae density 𝑓(𝑥, 𝑜∣Θ𝐻).

Let 𝑚(𝑋𝑇 , 𝑂𝑇 ) and 𝑚(𝑋𝑄, 𝑂𝑄) be two minutiae from 𝑇 and 𝑄, respectively. The

probability that these two minutiae would match is defined as

𝑃 (∣𝑋𝑇 −𝑋𝑄∣ ≤ 𝑥0, ∣𝑂𝑇 − 𝑂𝑄∣ ≤ 𝑜0∣Θ𝐺,Θ𝐻 ) =
𝑁𝐺∑
𝑔=1

𝑁𝐻∑
ℎ=1

𝜏𝑔 ⋅ 𝜏ℎ ⋅ (5.2)

𝑃 (∣𝑋𝑇 −𝑋𝑄∣ ≤ 𝑥0∣𝜇𝑔, 𝜇ℎ,Σ𝑔,Σℎ) ⋅ 𝑃 (∣𝑂𝑇 − 𝑂𝑄∣ ≤ 𝑜0∣𝜈𝑔, 𝜈ℎ, 𝜅𝑔, 𝜅ℎ),

where the parameters 𝑥0 = 15 pixels and 𝑜0 = 22.5 degrees are used as tolerances

[102]. Note that this probability can be directly computed since (𝑋𝑇 −𝑋𝑄) follows a

2D Gaussian distribution with mean (𝜇𝑔−𝜇ℎ) and covariance (Σ𝑔+Σℎ); (𝑂
𝑇 −𝑂𝑄)

can be approximated by a Von-Mises distribution with mean (𝜈𝑔 − 𝜈ℎ) and variance

𝜅𝑔,ℎ, given as [96]:

𝐴(𝜅𝑔,ℎ) = 𝐴(𝜅𝑔)𝐴(𝜅ℎ), (5.3)

𝐴(𝑥) = 1− 1
2 − 1

8𝑥2 − 1
8𝑥3 + 𝑜(𝑥−3). (5.4)

Note that we calculate the probability of matching two minutiae by directly deriving

the distribution of minutiae displacement instead of numerical simulation of the prob-

ability of observing each minutiae and then taking the average difference as proposed

in [136].

Finally, the PRC, or the probability of matching 𝑘 pairs of minutiae between 𝑄

and 𝑇 , is calculated as

𝑝(𝑚,𝑛, 𝑘) =
𝑒−𝜆 ⋅ 𝜆𝑘

𝑘!
, 𝜆 = 𝑚𝑛𝑙, (5.5)
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where 𝑚 and 𝑛 are the number of minutiae in 𝑄 and 𝑇 , respectively, and 𝑙 = 𝑃 (∣𝑋𝑇−
𝑋𝑄∣ ≤ 𝑥0, ∣𝑂𝑇 − 𝑂𝑄∣ ≤ 𝑜0∣Θ𝐺,Θ𝐻 ) is the probability calculated in Equation 5.2.

This PRC calculation corresponds to the Poisson probability mass function with mean

𝜆 = 𝑚𝑛𝑙, which can be interpreted as the expected number of matches from the total

number of 𝑚𝑛 possible pairings between 𝑄 and 𝑇 with the probability of each match

being 𝑙 [136]. The reason for using the Poisson distribution is to approximate the

binomial distribution when the number of trials (𝑚𝑛) is large while the probability

of “success” (impostor minutiae matching) is small.

5.3.2 Modeling Ridges

Ridges are distinctive features that contribute to the individuality of fingerprints, but

they are not easy to model. For example, ridges have a continuous distribution in

the entire fingerprint and their positions can be affected by skin distortions. Fang et

al. [56] proposed to classify a ridge segment associated with each minutiae into one

of the sixteen different ridge shapes (see Figure 5.3). However, this model assumes

that minutiae in the same cluster have similar ridge shape. We argue that a more

realistic assumption would be that minutiae in the same cluster have similar ridge

period and curvature. In addition, ridge period and curvature are less sensitive to

distortion than ridge shape.

We propose to incorporate ridge period and curvature associated with each minu-

tiae in our model. It can be demonstrated that if two minutiae are matched in their

position and orientation, their local ridge structures can be converted to a canonical

form (centered at the minutiae and rotated by the minutiae orientation), and matched

based on ridge period and curvature (see Figure 5.2). We estimate the ridge period

and curvature as the average inter-ridge distance and the average inverse radius in a

30 × 30 pixel neighborhood of each minutiae (see Figure 5.4). At each point (𝑥0, 𝑦0),

the inter-ridge distance with neighboring ridges can be calculated using the method
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Figure 5.2: Local ridge structures associated with each minutiae can be converted to a
canonical form by centering at the minutiae and rotating by the minutiae orientation.
As a result, matching two minutiae and their associated ridge structures is equivalent
to matching the position and orientation of minutiae and the period and curvature
of the local ridge structure.
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Figure 5.3: Sixteen ridge shapes used in Fang’s individuality model: (a) ridge models;
(b) corresponding ridge shapes. These ridge shapes are defined based on the relative
positions between the minutiae (circles) and two ridge anchor points (squares) [56].

r

c

(a) (b)

Figure 5.4: Ridge features: (a) ridge period (average of inter-ridge distances 𝑟) and
(b) ridge curvature (average of inverse radius 𝑐) in the neighborhood (30 × 30 pixels)
of a minutiae.
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Figure 5.5: (a) Illustration of ridge curvature estimation. (b) Estimated ridge curva-
tures (blue curves with estimated value) at each minutiae (red arrows) in a fingerprint
image. Higher curvature values represent larger changes in ridge flow orientations.
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proposed in Section 3.3.3. The inverse radius of the osculating circle at point (𝑥0, 𝑦0)

can be obtained using the second derivatives, denoted as

𝑐 =
𝑑2𝑦

𝑑𝑥2
= 1000× ∣𝑐+ − 𝑐−∣, (5.6)

𝑐+ =
1

𝑡

𝑡−1∑
𝑘=0

𝑦𝑘 − 𝑦𝑘+1

𝑥𝑘 − 𝑥𝑘+1
(5.7)

𝑐− =
1

𝑡

0∑
𝑘=−𝑡+1

𝑦𝑘−1 − 𝑦𝑘
𝑥𝑘−1 − 𝑥𝑘

, (5.8)

where {(𝑥𝑘, 𝑦𝑘), 𝑘 = −𝑡, .., 0, .., 𝑡} are sample ridge points starting from (𝑥0, 𝑦0) with

10-pixel distance between neighboring points (see Figure 5.5). The value of 𝑡 is

dependent on the length of the ridge but is limited to be no more than 5. Within

a fingerprint, ridge period often stays stable with fluctuations in the finger tip and

flexion crease regions. As a result, a Gaussian mixture is used to model the ridge

period. Ridge curvature, on the other hand, is usually low except near the core and

delta regions. Hence, a Poisson mixture is used to model the ridge curvature.

To incorporate ridge features in the model, we extend the density function in

Equation 5.1 to the following mixture density for class 𝐺:

𝑓(𝑥, 𝑜, 𝑟, 𝑐∣Θ𝐺) =

𝑁𝐺∑
𝑔=1

𝜏𝑔 ⋅ 𝑓𝑋 (𝑥∣𝜇𝑔,Σ𝑔) ⋅ 𝑓𝑂(𝑜∣𝜈𝑔, 𝜅𝑔) ⋅ 𝑓𝑅(𝑟∣𝜔𝑔, 𝜎2
𝑔) ⋅ 𝑓𝐶(𝑐∣𝜆𝑔),

(5.9)

where 𝑓𝑅(𝑟∣𝜔𝑔, 𝜎2
𝑔) and 𝑓𝐶(𝑐∣𝜆𝑔) are the probability density functions of ridge pe-

riod and ridge curvature associated with each minutiae in the 𝑔th cluster, respectively.

Note that both minutiae and their associated ridge features are used in the clustering

process and minutiae in the same cluster would have the same distribution of position,

orientation, ridge period and curvature, thus establishing a dependency among minu-

tiae and ridge features. Details of this modified clustering algorithm can be found in

Appendix B.
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Let 𝑇 be a fingerprint belonging to class 𝐺 with minutiae density 𝑓(𝑥, 𝑜, 𝑟, 𝑐∣Θ𝐺).

Similarly, let 𝑄 be a fingerprint belonging to class 𝐻 with minutiae density

𝑓(𝑥, 𝑜, 𝑟, 𝑐∣Θ𝐻). Let 𝑚(𝑋𝑇 , 𝑂𝑇 , 𝑅𝑇 , 𝐶𝑇 ) and 𝑚(𝑋𝑄, 𝑂𝑄, 𝑅𝑄, 𝐶𝑄) be two minu-

tiae from 𝑇 and 𝑄, respectively. The probability that these two minutiae would

match is then defined as

𝑃 (∣𝑋𝑇 −𝑋𝑄∣ ≤ 𝑥0, ∣𝑂𝑇 −𝑂𝑄∣ ≤ 𝑜0, ∣𝑅𝑇 − 𝑅𝑄∣ ≤ 𝑟0, ∣𝐶𝑇 − 𝐶𝑄∣ ≤ 𝑐0

∣Θ𝐺,Θ𝐻 ) =
𝑁𝐺∑
𝑔=1

𝑁𝐻∑
ℎ=1

𝜏𝑔 ⋅ 𝜏ℎ ⋅ 𝑃 (∣𝑋𝑇 −𝑋𝑄∣ ≤ 𝑥0∣𝜇𝑔, 𝜇ℎ,Σ𝑔,Σℎ)

⋅𝑃 (∣𝑂𝑇 −𝑂𝑄∣ ≤ 𝑜0∣𝜈𝑔, 𝜈ℎ, 𝜅𝑔, 𝜅ℎ) ⋅ 𝑃 (∣𝑅𝑇 −𝑅𝑄∣ ≤ 𝑟0∣𝜔𝑔, 𝜔ℎ, 𝜎2
𝑔 , 𝜎

2
ℎ)

⋅𝑃 (∣𝐶𝑇 − 𝐶𝑄∣ ≤ 𝑐0∣𝜆𝑔, 𝜆ℎ), (5.10)

where 𝑟0 = 2 and 𝑐0 = 5 are empirically determined based on genuine comparisons,

the same method used in [102] to determine 𝑥0 and 𝑜0. Similar to Equation 5.2, this

probability can be directly computed since (𝑅𝑇 −𝑅𝑄) follows a Gaussian distribution

with mean (𝜔𝑔 − 𝜔ℎ) and variance (𝜎2
𝑔 + 𝜎2

ℎ) and (𝐶𝑇 − 𝐶𝑄) follows a Skellam

distribution [117] with mean (𝜆𝑔−𝜆ℎ) and variance (𝜆𝑔+𝜆ℎ). The final PRC is still

computed using Equation 5.5, except that 𝑙 is now replaced by Equation 5.10.

Note the parameters of the above distributions of minutiae and ridge features are

estimated during clustering using the EM algorithm (see Appendix B). Both empirical

and theoretical distributions as well as their goodness-of-fit statistics are presented

in Section 5.4.

5.3.3 Modeling Pores

Besides minutiae and ridge features, pores are also distinctive features that contribute

to the individuality of fingerprints. Because pores are almost evenly spaced along

ridges, matching the pores associated with each minutiae is equivalent to matching

the minutiae position and orientation, local ridge period and curvature as well as
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the intra-ridge spacing of pores on ridges. As a result, each minutiae and associated

features (position 𝑋, orientation 𝑂, ridge period 𝑅, ridge curvature 𝐶 and pore

spacing 𝑆) have the following mixture density for fingerprints from class 𝐺:

𝑓(𝑥, 𝑜, 𝑟, 𝑐∣Θ𝐺, 𝑠) = (5.11)

𝑁𝐺∑
𝑔=1

𝜏𝑔 ⋅ 𝑓𝑋 (𝑥∣𝜇𝑔,Σ𝑔) ⋅ 𝑓𝑂(𝑜∣𝜈𝑔, 𝜅𝑔) ⋅ 𝑓𝑅(𝑟∣𝜔𝑔, 𝜎2
𝑔) ⋅ 𝑓𝐶(𝑐∣𝜆𝑔) ⋅ 𝑓𝑆(𝑠∣𝜇𝑝, 𝜎2

𝑝),

where 𝑓𝑆(𝑠∣𝜇𝑝, 𝜎2
𝑝) is the probability density function for pore spacing. Because there

is no evidence that intra-ridge pore spacing is dependent on minutiae position or ridge

flow patterns, we do not perform clustering on pore spacing.

Let 𝑇 be a fingerprint belonging to class𝐺 with minutiae density 𝑓(𝑥, 𝑜, 𝑟, 𝑐∣Θ𝐺, 𝑠).

Similarly, let 𝑄 be a fingerprint belonging to class 𝐻 with minutiae density

𝑓(𝑥, 𝑜, 𝑟, 𝑐∣Θ𝐻 , 𝑠). Let 𝑚(𝑋𝑇 , 𝑂𝑇 , 𝑅𝑇 , 𝐶𝑇 , 𝑆𝑇 ) and 𝑚(𝑋𝑄, 𝑂𝑄, 𝑅𝑄, 𝐶𝑄, 𝑆𝑄) be

two minutiae from 𝑇 and 𝑄, respectively. The probability of matching the two minu-

tiae features can be calculated as follows:

𝑃 (∣𝑋𝑇 −𝑋𝑄∣ ≤ 𝑥0, ∣𝑂𝑇 − 𝑂𝑄∣ ≤ 𝑜0, ∣𝑅𝑇 −𝑅𝑄∣ ≤ 𝑟0, ∣𝐶𝑇 − 𝐶𝑄∣ ≤ 𝑐0,

∣Θ𝐺,Θ𝐻 , ∣𝑆𝑇 − 𝑆𝑄∣ ≤ 𝑠0) =
𝑁𝐺∑
𝑔=1

𝑁𝐻∑
ℎ=1

𝜏𝑔 ⋅ 𝜏ℎ ⋅ 𝑃 (∣𝑋𝑇 −𝑋𝑄∣ ≤ 𝑥0∣𝜇𝑔, 𝜇ℎ,Σ𝑔,Σℎ)

⋅𝑃 (∣𝑂𝑇 − 𝑂𝑄∣ ≤ 𝑜0∣𝜈𝑔, 𝜈ℎ, 𝜅𝑔, 𝜅ℎ) ⋅ 𝑃 (∣𝑅𝑇 − 𝑅𝑄∣ ≤ 𝑟0∣𝜔𝑔, 𝜔ℎ, 𝜎2
𝑔 , 𝜎

2
ℎ)

⋅𝑃 (∣𝐶𝑇 − 𝐶𝑄∣ ≤ 𝑐0∣𝜆𝑔, 𝜆ℎ) ⋅ 𝑃 (∣𝑆𝑇 − 𝑆𝑄∣ ≤ 𝑠0∣𝜎2
𝑝), (5.12)

where 𝑠0 = 2 is empirically determined based on genuine comparisons. Again, this

probability can be directly calculated since (𝑆𝑇 − 𝑆𝑄) follows a Gaussian distribu-

tion with mean 0 and variance 2𝜎2
𝑝. Finally, PRC is still computed as in Equation

5.5, except that 𝑙 is now replaced by Equation 5.12. Note that after incorporating

ridge and pore features in our individuality model, PRC represents the probability

of matching 𝑘 minutiae if and only if the position and orientation, local ridge period
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and curvature as well as pore spacing associated with the minutiae are matched.

Note we do not perform clustering on pore spacing and the parameters of its

distribution are empirically estimated. Both empirical and theoretical distributions

as well as their goodness-of-fit statistics are presented in Section 5.4.

5.4 Model Evaluation and Validation

In order to demonstrate the utility of our individuality model, we perform the fol-

lowing operations to evaluate our model: (i) learn the mixture density of minutiae

and their local ridge and pore features; (ii) compute the theoretical probability of

random correspondence (PRC); (iii) compare the theoretical PRC with the empirical

values obtained through matching. Note that no cross validation is needed here since

our goal is to learn the model using as much data as possible and compare the the-

oretical estimates with empirical values. The database we use for evaluation is the

NIST Special Database 4 (NIST-4) [15], which contains 2,000 pairs (4,000 images) of

inked rolled prints at 500 ppi. Rolls are appropriate for fingerprint individuality study

because they provide complete nail-to-nail views of fingerprints. Each fingerprint in

NIST-4 comes with a class label (28.2% right loop, 26.6% left loop, 21.5% whorl, 19%

arch and 4.7% tented arch) assigned by forensic experts. They are also manually

aligned by the author based on the locations of core and delta points. For example,

fingerprints of the left loop and right loop classes are aligned at the core point with

the direction pointing to the delta point; fingerprints of the whorl class are aligned

at the centroid of the two cores; and fingerprints of the plain and tented arch classes

are aligned at the core or the highest curvature point on the most upthrusting ridge

with the local ridge orientation (see Figure 5.6). We use the split-half cross valida-

tion to evaluate our model, with half of the data used for training (or computing the

theoretical PRC) and the other half for testing (or computing the empirical PRC).
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(a) (b) (c)

Figure 5.6: Aligning rolls of each class in NIST-4 at red circles with orientation
marked by a red line based on the locations of core (blue circles) and delta (blue
triangles) points.

(a) (b)

(c) (d) (e)

Figure 5.7: Empirical distribution of minutiae positions (empirically extracted [12])
in each of the five fingerprint classes (a) arch, (b) tented arch, (c) left loop, (d) right
loop, (e) whorl, obtained from 2,000 pairs of rolls in NIST-4. The darker the area, the
higher the density of minutiae in that region. Note the images are manually classified
into 5 classes by forensic experts and aligned by the author.
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(a) (b)

(c) (d) (e)

Figure 5.8: Theoretical distribution of minutiae positions (based on the mixture
model) in each of the five fingerprint classes: (a) arch; (b) tented arch; (c) left loop;
(d) right loop; (e) whorl.
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Figure 5.7 shows the empirical distributions of minutiae position from fingerprints

in each of the five classes. It can be observed that the minutiae distribution is highly

correlated with the fingerprint class with higher density in the core and delta regions,

which is consistent with Champod’s finding [47]. After fitting the mixture model

to the distribution of minutiae position for each class, 1,000,000 minutiae points are

sampled from each of the five estimated models and their theoretical distributions are

shown in Figure 5.8. Note for the display purpose, we smooth these plots using a disk

filter with a radius of 25 pixels; the center of each plot corresponds to the alignment

origin.

To measure the goodness of fit of the theoretical distribution with the empirical

distribution of minutiae position in each fingerprint class, we perform the Pearson’s

Chi-square test on the following null and alternative hypotheses:

𝐻0 : the observed minutiae positions follow the Gaussian mixture model, vs.

𝐻1 : not H0. (5.13)

The above goodness-of-fit test can be carried out by partitioning the fingerprints in

each class into a set of non-overlapping blocks, denoted as ℬ, and computing the

observed number (𝑜𝑖) and the expected number (𝑒𝑖) of minutiae that fall in the i-th

block. The Pearson’s Chi-square statistic is given by

∑
𝑖∈ℬ

(𝑜𝑖 − 𝑒𝑖)
2

𝑒𝑖
(5.14)

which has an asymptotic Chi-square distribution with ∣ℬ∣−1 degrees of freedom under

𝐻0, where ∣ℬ∣ is the total number of blocks in ℬ. The Chi-square distribution can

be used to obtain a p-value to either accept or reject 𝐻0. Small (respectively, large)

p-values, typically below (above) the significance level (0.05), lead to the rejection

(acceptance) of 𝐻0. In our test, we divide the fingerprints in each class into 21× 21
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non-overlapping blocks (441 bins), each with size of 30 × 30 pixels. The Chi-square

test gives p-values of 0.98, 0.38, 0.39, 0.79, 0.99 for each of the five fingerprint classes

(arch, tented arch, left loop, right loop, and whorl), respectively, resulting in the

acceptance of 𝐻0 for all classes.

Table 5.1: Theoretical probabilities of matching a minutiae pair between impostor
fingerprints belonging to class A=arch, TA=tented arch, L=left loop, R=right loop
and W=whorl based on the proposed model.

Type A TA L R W

A 11.28 × 10−4 6.49 × 10−4 4.26 × 10−4 3.98 × 10−4 4.57 × 10−4

TA 6.49 × 10−4 10.74 × 10−4 6.22 × 10−4 6.39 × 10−4 4.62 × 10−4

L 4.26 × 10−4 6.22 × 10−4 10.46 × 10−4 4.73 × 10−4 4.31 × 10−4

R 3.98 × 10−4 6.39 × 10−4 4.73 × 10−4 11.17 × 10−4 4.92 × 10−4

W 4.57 × 10−4 4.62 × 10−4 4.31 × 10−4 4.92 × 10−4 8.77 × 10−4

Table 5.2: Empirical probabilities of matching a minutiae pair between impostor
fingerprints belonging to class A=arch, TA=tented arch, L=left loop, R=right loop
and W=whorl based on NIST-4.

Type A TA L R W

A 13.98 × 10−4 12.03 × 10−4 7.62 × 10−4 8.21 × 10−4 2.38 × 10−4

TA 12.03 × 10−4 12.36 × 10−4 8.14 × 10−4 9.07 × 10−4 2.53 × 10−4

L 7.62 × 10−4 8.14 × 10−4 11.17 × 10−4 5.81 × 10−4 4.25 × 10−4

R 8.21 × 10−4 9.07 × 10−4 5.81 × 10−4 11.13 × 10−4 4.61 × 10−4

W 2.38 × 10−4 2.53 × 10−4 4.25 × 10−4 4.61 × 10−4 6.47 × 10−4

Next, we calculate the theoretical probability of matching a minutiae pair between

impostor fingerprints of each class using Equation 5.2. As shown in Table 5.1, impos-

tor fingerprints from the same class have a higher matching probability (highlighted

in gray) than those from different classes. This is consistent with the results of Jain et

al.’s study [83], which revealed that fingerprints from the same class are more likely to

be matched (have higher False Accept Rate) than fingerprints from difference classes.

For comparison, we also calculate the empirical probabilities of matching a minu-

tiae pair between impostor fingerprints based on NIST-4. To be compatible with our

model, the matcher is restricted to register fingerprints within a 50×50 neighborhood
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of the manually aligned origin. As a result, an in-house fingerprint matcher [79] was

used to automatically establish minutiae correspondences between the impostor pairs

in NIST-4. Note that due to the alignment restriction, the difference in performance

between our in-house matcher and any commercial minutiae-based matcher could be

minimum. A total of 1, 999, 000 impostor matches were conducted and the empirical

probability of matching a minutiae pair between two impostor prints is computed by

the average of 𝑘/(𝑚× 𝑛), where 𝑘 is the number of matched minutiae and 𝑚 and 𝑛

are the number of minutiae in the two fingerprints. This probability is tabulated by

the fingerprint class information, resulting in all possible intra-class and inter-class

probability values (see Table 5.2).

To incorporate ridge features into our model, we first show the empirical distribu-

tions of ridge curvature (Figure 5.10) and ridge period (Figure 5.11) associated with

minutiae in each of the five classes. These plots are generated by averaging the ridge

curvature and ridge period at all minutiae positions and then smoothing the space

using a disk filter with radius of 25 pixels; the center of each plot corresponds to the

alignment origin. As we can see, the distribution of ridge curvature and ridge period

is correlated with the fingerprint class, e.g., ridge curvature is especially high near

core and delta points, and ridge period is low above the core points and high near the

distal creases. Note that the range of the ridge curvature values is much larger than

that of the ridge period, resulting in more prominent differences in its distribution

among different fingerprint classes.

Next, we retrain the clustering algorithm and fit the mixture model to the distri-

bution of ridge features associated with minutiae. That is, for each class, 1,000,000

minutiae points are sampled from each modeled cluster and their ridge curvature and

ridge period are also sampled based on their estimated distributions. The theoretical

distributions are shown in Figure 5.12 and Figure 5.13.

To measure the goodness of fit of the theoretical distribution with the empirical
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Figure 5.9: Empirical and theoretical distributions of (a) ridge curvature and (b)
ridge period associated with minutiae in the arch fingerprint classes. The empirical
distribution strictly follows the theoretical one in both cases.

distribution of ridge curvature and ridge period in each fingerprint class, we perform

the Pearson’s Chi-square test on the following null and alternative hypotheses:

𝐻0 : the observed ridge curvature (period) follow the Poisson (Gaussian)

mixture model, vs. 𝐻1 : not H0. (5.15)

The above goodness-of-fit test can be carried out for each class by dividing a range

of ridge curvature (period) values into equal-sized bins, denoted as ℬ, and computing

the observed number (𝑜𝑖) and the expected number (𝑒𝑖) of ridge curvature (period)

values that fall in the i-th bin. In our test, we divide the ridge curvature (period) val-

ues into 20 bins covering all possible values from observed data (see Figure 5.9). The

Chi-square test on ridge curvature (period) gives p-values of 0.12, 0.13, 0.08, 0.09, 0.17

(0.33, 0.17, 0.35, 0.20, 0.23) for each of the five fingerprint classes (arch, tented arch,

left loop, right loop, and whorl). Because these p-values are larger than the signifi-

133



cance level of 0.05, the null hypotheses 𝐻0 for both ridge curvature and ridge period

distribution are accepted for all classes.
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(a) (b)

(c) (d) (e)

Figure 5.10: Empirical distribution of ridge curvature associated with minutiae in
each of the five fingerprint classes (a) arch, (b) tented arch, (c) left loop, (d) right
loop, (e) whorl, obtained from 2,000 pairs of rolls in NIST-4. The darker the area,
the higher the ridge curvature in that region.

(a) (b)

(c) (d) (e)

Figure 5.11: Empirical distribution of ridge period in each of the five fingerprint
classes (a) arch, (b) tented arch, (c) left loop, (d) right loop, (e) whorl, obtained from
2,000 pairs of rolls in NIST-4. The darker the area, the higher the ridge period in
that region.
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(a) (b)

(c) (d) (e)

Figure 5.12: Theoretical distribution of ridge curvature associated with minutiae
(based on the mixture model) in each of the five fingerprint classes: (a) arch; (b)
tented arch; (c) left loop; (d) right loop; (e) whorl.

(a) (b)

(c) (d) (e)

Figure 5.13: Theoretical distribution of ridge period associated with minutiae (the-
oretically generated using the mixture model) in each of the five fingerprint classes:
(a) arch; (b) tented arch; (c) left loop; (d) right loop; (e) whorl.
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To reevaluate the empirical probability of matching a minutiae pair after ridge

features are incorporated, we use ridge features to obtain new minutiae correspon-

dences as those that disagree in local ridge period or curvature (with difference larger

than 𝑟0 and 𝑐0, respectively) are rejected. The resulting number of matched minu-

tiae pairs 𝑘′ is then used to recalculate the empirical probability as the average of

𝑘′/(𝑚×𝑛). The theoretical probability is also reevaluated using Equation 5.10. Both

theoretical and empirical matching probability matrices tabulated by fingerprint class

information after incorporating the ridge features are shown in Tables 5.3 and 5.4,

respectively. As we can see, higher probabilities are still observed among impostor

fingerprints from the same class than those from different classes. The use of ridge

features reduces the probability of random minutiae correspondence both empirically

and theoretically.

Table 5.3: Theoretical probabilities of matching a minutiae pair and their local ridge
features between impostor fingerprints belonging to class A=arch, TA=tented arch,
L=left loop, R=right loop and W=whorl based on the proposed model.

Type A TA L R W

A 5.74 × 10−4 1.82 × 10−4 1.68 × 10−4 1.85 × 10−4 2.16 × 10−4

TA 1.82 × 10−4 6.79 × 10−4 2.55 × 10−4 2.39 × 10−4 2.20 × 10−4

L 1.68 × 10−4 2.55 × 10−4 5.83 × 10−4 2.43 × 10−4 2.61 × 10−4

R 1.85 × 10−4 2.39 × 10−4 2.43 × 10−4 6.17 × 10−4 2.69 × 10−4

W 2.16 × 10−4 2.20 × 10−4 2.61 × 10−4 2.69 × 10−4 4.80 × 10−4

Table 5.4: Empirical probabilities of matching a minutiae pair and their local ridge
features between impostor fingerprints belonging to class A=arch, TA=tented arch,
L=left loop, R=right loop and W=whorl based on NIST-4.

Type A TA L R W

A 6.48 × 10−4 5.72 × 10−4 3.55 × 10−4 3.76 × 10−4 1.08 × 10−4

TA 5.72 × 10−4 6.17 × 10−4 3.99 × 10−4 4.33 × 10−4 1.21 × 10−4

L 3.55 × 10−4 3.99 × 10−4 5.51 × 10−4 2.75 × 10−4 2.10 × 10−4

R 3.76 × 10−4 4.33 × 10−4 2.75 × 10−4 5.40 × 10−4 2.22 × 10−4

W 1.08 × 10−4 1.21 × 10−4 2.10 × 10−4 2.22 × 10−4 3.28 × 10−4
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Figure 5.14: Distribution of intra-ridge pore spacings obtained from 720 fingerprints
in NIST-30 (1000 ppi) using the proposed pore extraction algorithm (see Section
3.3.4).
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When pores are further incorporated in the model, we reevaluate the theoretical

probability of matching a minutiae pair using Equation 5.12. Because pores are

more reliably captured at 1000 ppi than 500 ppi, we use the NIST-30 database [14],

which contains 360 pairs (720 images) of rolled fingerprints at 1000 ppi, to extract

(using the algorithm proposed in Section 3.3.4) and model the distribution of pore

spacings. The empirical distribution and a Gaussian fit to the distribution with mean

12.67 and standard deviation 0.82 are shown in Figure 5.14. This is consistent with

the estimates of Roddy and Stosz [110], who suggested that the most frequently

observed pore spacing is 13 pixels at 1100 ppi. To evaluate the goodness of fit, we

performed a Pearson’s Chi-square test that gives p-value of 0.85 at the significance

level of 0.05, resulting in the acceptance of the null hypothesis that the observed pore

spacing values are from a Gaussian distribution. The theoretical probability matrix of

matching a minutiae and their local ridge and pore features tabulated by fingerprint

class information is shown in Table 5.5.

Table 5.5: Theoretical probabilities of matching a minutiae pair, their local ridge and
pore features between impostor fingerprints belonging to class A=arch, TA=tented
arch, L=left loop, R=right loop and W=whorl based on the proposed model.

Type A TA L R W

A 5.25 × 10−4 1.67 × 10−4 1.54 × 10−4 1.70 × 10−4 1.98 × 10−4

TA 1.67 × 10−4 6.22 × 10−4 2.34 × 10−4 2.19 × 10−4 2.01 × 10−4

L 1.54 × 10−4 2.34 × 10−4 5.33 × 10−4 2.22 × 10−4 2.38 × 10−4

R 1.70 × 10−4 2.19 × 10−4 2.22 × 10−4 5.65 × 10−4 2.46 × 10−4

W 1.98 × 10−4 2.01 × 10−4 2.38 × 10−4 2.46 × 10−4 4.39 × 10−4

Having obtained the probability of matching one minutiae pair, we can calculate

the PRC based on the “12-point rule”, or probability of matching at least 𝑘 = 12

minutiae pairs, given 𝑚 and 𝑛 minutiae in the two fingerprints using Equation 5.5.

For example, when only minutiae position and orientation are incorporated, the the-

oretical probability of having at least 12 minutiae matches given 𝑚 = 52 and 𝑛 = 52

is 2.5 × 10−5. This is more consistent with the empirical probability (2.6 × 10−5)
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Table 5.6: An example of comparing “12-point rule” PRCs from Pankanti et al.’s
uniform model, Zhu et al.’s mixture model and the proposed model based on minutiae
with the empirical estimates using NIST-4. Empirical values are calculated using
Equation 5.5 by substituting 𝜆 with the mean number of matches (weighted by the
class distribution) found empirically.

(m,n,k) Uniform [102] Mixture [136] Proposed Empirical

(52,52,12) 4.3 × 10−8 4.4 × 10−3 2.5 × 10−5 2.6 × 10−5

(62,62,12) 2.9 × 10−7 6.9 × 10−2 5.9 × 10−4 1.0 × 10−3

we obtain than the previously published models (see Table 5.6). When ridge pe-

riod and curvature are incorporated, both theoretical and empirical probabilities (for

𝑘 = 12, 𝑚 = 52, 𝑛 = 52) are reduced to 2.5 × 10−7 and to 5.7 × 10−7, respec-

tively. When pore spacing is incorporated, the theoretical probability drops further

to 9.6× 10−8.

It is important to realize that the gain from extended features in our theoretical

estimation of fingerprint individuality is achieved by assuming that these features are

correctly and fully extracted. That is, there is no error in extracting these features.

This is difficult to achieve in reality, however, because no feature extraction is perfect,

neither manually nor automatically. In fact, the more features are used in modeling

the fingerprint individuality, the more errors are accumulated in feature extraction.

As a result, we conclude that: i) in theory, extended features, when correctly and

fully extracted, provide significant contribution to the fingerprint individuality; ii)

in reality, extraction errors would reduce the individualization power of extended

features, however, the reduction would not offset all the gain from extended features

(the PRC would always decrease) as long as the alignment is fixed and extended

features are only used to confirm a corresponding minutiae pair.

Finally, I would like to discuss the possibility of extending fingerprint individuality

models to latents. Currently, all proposed fingerprint individuality models evaluate

the uniqueness of a finger based on the assumption that each fingerprint is a true and
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complete representation of a finger. In practice, however, a fingerprint impression,

especially a latent, is only a partial, distorted and often noisy representation of a

finger. As a result, in order to evaluate the confidence associated with an observed

match, we need to incorporate the effects of image size and quality in our individuality

model. For example, the probability of matching two features from different finger-

prints should be conditioned by the quality of the features. The poorer the feature

quality, the more likely that it is a spurious feature extracted due to noise, and the

less it should contribute to the fingerprint individuality. In addition, the probability

of random correspondences should be conditioned by the size of each fingerprint. If

at least one of the two fingerprints is of small image size, the alignment between them

is likely to be established due to randomness, and therefore, the confidence of the

match should be low.

5.5 Summary

In this chapter, we have proposed a mixture model to evaluate fingerprint individ-

uality based on five major fingerprint classes using minutiae and extended features.

Experimental results show that the estimated matching probabilities between impos-

tor fingerprints are highly correlated with the fingerprint class information. These

probabilities are reduced when extended features are incorporated in the model. Our

theoretical estimates of PRCs are consistent with those based on empirical matching.

In practice, however, both theoretical and empirical estimates can be affected by fac-

tors such as fingerprint sensing, image quality and resolution, as well as the feature

extraction and matching accuracy. Finally, while our individuality model only esti-

mates the inter-class variation of fingerprints, intra-class variation of fingerprints is

equally important and should be considered in the future models.
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Chapter 6

Touchless Sensing and Sensor

Interoperability

6.1 Introduction

In the previous chapters, methods to incorporate extended features in automatic

systems were presented. In this chapter, we address the interoperability issue in

automatic systems, where fingerprints captured using different sensing technologies

are compared. Specifically, we address a new sensing technology based on 3D touchless

imaging. In order to achieve interoperability between touchless and legacy rolled

fingerprints, it is necessary to obtain: i) compatible image and feature representation,

ii) equivalent image quality, and iii) comparable matching performance in automatic

systems.

6.2 Touchless Sensing

Touchless sensing can be viewed as a “remote sensing” technique that captures the

image of an object’s surface without requiring contact between the object and a

sensing surface. Compared to conventional touch-based fingerprint sensing, touchless
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Table 6.1: Comparisons between touchless and touch-based sensing technologies.

Touchless Touch-based

skin distortion no yes
slippage and smearing no yes

fingerprint residue no yes
tolerance on skin condition large small

image contrast low high
user’s comfort level high low

fingerprint sensing has the potential to provide greater acquisition speed and user

convenience. It can also address the following intrinsic problems of touch-based sens-

ing [105] (see Table 6.1): (i) slippage and smearing due to moist fingers; (ii) improper

contact due to finger dryness; (iii) dirt and fingerprint residue accumulating on the

imaging surface; (iv) degraded image quality resulting from wear and tear on sur-

face coatings; (v) halo effect generated by the temperature difference between the

finger and the platen. Most importantly, touchless fingerprints are potentially free

of skin distortion, resulting in more consistent fingerprint representations. There are

generally two types of touchless sensing, namely Reflection-based Touchless Sensing

(RTS) and Transmission-based Touchless Sensing (TTS) [11, 105]. The principle idea

of RTS is imaging based on reflection of light sources from the object surface; while

TTS is based on the optical transmittance of skin tissue. Figure 6.1 demonstrates an

example of a fingerprint acquired from a dry finger using a touch-based and a RTS

device. Note that the touchless image better captures the ridge-valley pattern of the

fingerprint, however, the image contrast and ridge frequency varies across the image

due to the differences in the distances between the light sources and the finger.

6.2.1 3D Touchless Sensing

3D touchless sensing technology for law enforcement and government application has

been proposed to meet the challenge of fast capture (less than 15 seconds) of rolled-
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(a) (b)

Figure 6.1: The same fingerprint acquired using (a) a touch-based optical device
(Crossmatch) and (b) a RTS device (TBS) (reproduced from [105]). Here the finger
skin is very dry, so the touch-based sensing results in poor image representation.
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Figure 6.2: The Surround Imager, a multi-camera system for 3D touchless fingerprint
acquisition [105].
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(a)                                         (b)

Figure 6.3: 3D touchless fingerprint reconstruction: (a) five steoroscopic views of the
same finger captured by the Surround Imager; (b) the reconstructed 3D touchless
fingerprint (courtesy: TBS Inc [17].).

Figure 6.4: A detailed view of the ridge-valley structure of a 3D touchless fingerprint.
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equivalent fingerprints to improve the operational efficiency and accuracy of tenprint

acquisition [4]. Figure 6.2 shows a schematic diagram of a 3D touchless sensing

device developed by TBS Inc. [17]. This multi-camera system known as Surround

Imager, engages five cameras to capture the surface of a finger. During acquisition,

the five cameras synchronously capture snap shots of a finger from different view

points under specialized lighting conditions. The exact position and orientation of

each camera and mirror within a chosen reference coordinate system is computed

using calibration algorithms [125, 134]. This information, combined with the images

of each view, is used to reconstruct the 3D fingerprint based on the principles of

stereovision and photogrammetry [106].

Figure 6.3 shows five stereoscopic views captured by the five cameras inside the

Surround Imager and the reconstructed 3D touchless fingerprint. As we can see, this

device captures the full nail-to-nail representation of a finger (see Figure 6.3 (b)).

Compared to legacy rolls, the new 3D touchless fingerprints have a less distorted and

more consistent representation that is potentially “ideal” for government and law

enforcement applications. However, 3D touchless fingerprints are not rolled equiva-

lent, and hence, cannot be directly matched with legacy rolls by AFIS. Also touchless

fingerprints have lower ridge-valley contrast compared to the binary-like touch-based

fingerprints (see Figure 6.4). In the following section, we propose several methods

to address these interoperability issues between 3D touchless fingerprints and 2D

touch-based rolls.

6.3 Interoperability

To achieve compatibility between 3D touchless fingerprints and 2D legacy rolls, we

first present an unwrapping algorithm to simulate the “virtual rolling” of a 3D fin-

ger to obtain 2D touchless fingerprints. Next, quality analysis and enhancement
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algorithms are proposed to achieve compatible image quality between touchless and

touch-based fingerprints. The effectiveness of these algorithms will be evaluated in

our experiments by matching a small database of converted 2D touchless fingerprints

with corresponding legacy rolls.

6.3.1 Virtual Rolling

The methodology to unwrap 3D objects to 2D has been extensively studied and

applied in the field of Geographic Information Systems (GIS). One such example is

map projection, which focuses on how to unwrap the globe to match with inherently

flat geographic maps on paper and films [118, 133]. Other fields, including medical

imaging, surface recognition and industrial design, also utilize unwrapping of 3D

object surfaces [87, 121, 64].

��� ���

Figure 6.5: Globe Unwrapping using (a) a cylindrical model and (b) a conic model
(reproduced from [10]).

In general, there are two main types of unwrapping methods, parametric and

non-parametric.

1. Parametric unwrapping refers to the projection of the 3D object onto a para-

metric model (i.e., cylindrical or conic) and the unwrapping of the model. This
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method often involves simple and straightforward transformations. It also re-

quires that the chosen parametric model fits the shape of the object. Otherwise,

large distortions may be introduced during unwrapping.

2. Non-parametric unwrapping involves no projections and is directly applied to an

object by mapping points in 3D to 2D while preserving their relative distances or

angular relations. This method is often employed for irregular-shaped objects.

Figure 6.5 shows the unwrapping of the globe using two different parametric mod-

els: cylindrical and conic. Note it is not possible to unwrap a 3D sphere to a 2D plane

without introducing some distortion. One can only try to minimize the distortion by

using multiple models for different portions of the object to best approximate the

shape locally, as shown in Figure 6.5. In the case of 3D fingerprint unwrapping, this

limitation also applies because, although the human finger can be approximated as

a cylinder or cone, distortion is still unavoidable, especially at the fingertip. In the

next two sections, we will give examples of unwrapping 3D fingerprints using a para-

metric cylindrical model and a nonparametric method based on equidistance. We will

compare the two methods and show that the distortion introduced by the parametric

method can be noticeably large, whereas the nonparametric method demonstrates

more faithful representation of the “ground-truth” of fingerprints.

Parametric Based Virtual Rolling

Although human fingers vary in shape (for example, the middle finger is often more

cylindrical than the thumb), it is generally true that they can be closely approximated

by a cylinder. We adopt the cylindrical model for parametric unwrapping of 3D

fingerprints. A simple illustration of the cylindrical-based unwrapping is to imagine

projecting the fingerprint texture onto a cylinder surrounding the finger, and then

unwrapping (flattening) the cylinder to obtain the 2D fingerprint. Mathematically,

let the origin be positioned at the bottom of the finger, centered at the principle axis
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of the finger. Let 𝑇 be a point on the surface of the 3D finger, 𝑇 = (𝑥, 𝑦, 𝑧)𝑇 . This

3D point is then projected (transformed) onto the cylindrical surface to obtain the

corresponding 2D coordinates 𝑆 = (𝜃, 𝑧)𝑇 , where 𝜃 = tan−1(𝑦𝑥).

(  ,z)θ 

(x,y,z)

O

θ

Figure 6.6: Parametric unwrapping using a cylindrical model (top-down view). Point
(x,y,z) on the 3D finger is projected to (𝜃, z) on the 2D plane.

A top-down view of the unwrapping model is shown in Figure 6.6, where the 𝑍

axis points outward from the origin. It must be noted that the finger is represented

as a triangular mesh after 3D reconstruction and each vertex on a triangle would be

directly projected using the above transformation. As a result, each triangle on the

3D finger would be mapped to a triangle on the cylinder, whereas points in between

vertices of the triangle would be mapped using a linear interpolation.

Parametric fingerprint unwrapping using the cylindrical model is efficient and

straightforward, but it does not preserve the relative distances between points on the

finger surface. Figure 6.7 provides a visual illustration of the problem. For example,

the surface distance 𝑑(𝐴,𝐵) between points 𝐴 and 𝐵 at the fingertip is much smaller

than the distance 𝑑(𝐶,𝐷) between points 𝐶 and 𝐷 near the middle of the finger.

However, since they both correspond to the same angle 𝜃, the unwrapped distances

𝑑(𝐴′, 𝐵′) and 𝑑(𝐶′, 𝐷′) become equal. In general, each cross section of the finger, big
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Figure 6.7: Fingerprint unwrapping using the cylindrical model. Relative distances
between points on the finger surface are not preserved after the unwrapping procedure.
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or small, is projected into a fixed-length row in the projected 2D image. As a result,

horizontal distortion is introduced as the fingerprint will be noticeably stretched,

especially at the fingertip, as shown in Figure 6.11(a).

In addition to the stretching effects, parametric unwrapping also has limitations

in preserving the size of the finger. Using the cylindrical model as an example, the

mapping in the horizontal direction is based on the angle rather than the surface

distance, and hence, size differences in the horizontal direction between different

fingers need to be compensated for after the unwrapping.

Non-parametric Based Virtual Rolling

In the non-parametric approach an object with arbitrary shape is directly unwrapped

without being projected onto a model. The objective is to preserve the geodesic dis-

tance between any two points in a local region on the object surface. This property

is desirable in fingerprint unwrapping because fingerprint matching often involves

distances between feature points. If we can preserve such distances during unwrap-

ping, the problem of interoperability between touchless and touch-based fingerprints

is then reduced to accounting for the skin deformation caused by contact. The non-

parametric approach also guarantees that the variability in finger shape and size is

preserved.

The essential idea of the proposed non-parametric method is to “locally unfold”

the finger surface such that both inter-point surface distances and scale are preserved

to a maximum degree. More specifically, for a given 3D finger, we divide it into

thin parallel slices, orthogonal to the principle axis of the finger, and unfold each

slice without stretching. Because human fingers have very smooth structure, as long

as each slice is sufficiently thin, the resulting unwrapped fingerprint texture will be

smooth. Figure 6.8 shows the triangular mesh representation of a 3D finger, where

only vertices (no lines) of triangles are shown. Note that these vertices are represented

151



 

baseline 

Figure 6.8: 3D representation of a finger (viewed from the bottom to the tip of a
finger). Vertices of the triangular mesh are represented in slices.

in slices at different heights of the finger. However, these slices are not dense enough

to obtain a smooth unwrapping. As a result, linear interpolation is applied between

vertices to obtain a denser representation.

given slice Si

given slice Si+1

interpolated slice Si,1

interpolated slice Si,2

Si.Pj Si.Pj+1

Si+1.Pk

Si,1.Pa

Si,2.Pb

h
h

Figure 6.9: Slice interpolation. We interpolate between given slices with a step-size
ℎ to obtain denser representation in the vertical direction (y-axis) for unwrapping.

Let 𝑆𝑖 and 𝑆𝑖+1 be the given slices from the triangular mesh and ℎ be the step-

size (distance between slices in the dense representation) for interpolation. Figure 6.9
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gives an illustration of the procedure. Let 𝑆𝑖.𝑃𝑗 , 𝑆𝑖.𝑃𝑗+1 and 𝑆𝑖+1.𝑃𝑘 be the three

vertices of a given triangle. The position of the interpolated point 𝑆𝑖,1.𝑃𝑎 is obtained

as follows:

𝑆𝑖,1.𝑃𝑎.𝑥 = 𝑡× 𝑆𝑖+1.𝑃𝑘.𝑥+ (1− 𝑡)× 𝑆𝑖.𝑃𝑗 .𝑥 (6.1)

𝑆𝑖,1.𝑃𝑎.𝑦 = 𝑡× 𝑆𝑖+1.𝑃𝑘.𝑦 + (1− 𝑡)× 𝑆𝑖.𝑃𝑗 .𝑦 (6.2)

𝑆𝑖,1.𝑃𝑎.𝑧 = 𝑆𝑖.𝑃𝑗 .𝑧 + ℎ, (6.3)

where

𝑡 =
𝑆𝑖,1.𝑃𝑎.𝑧 − 𝑆𝑖.𝑃𝑗 .𝑧

𝑆𝑖.𝑃𝑗 .𝑧 − 𝑆𝑖+1.𝑃𝑘.𝑧
(6.4)

is the proportion parameter. This procedure is repeated for every sampling distance

ℎ along the z-axis. Each slice in the dense representation corresponds to a row in the

final unwrapped fingerprint image.

baseline

h

h

Si.Pa
Si.Pa+1

Si.Q3
Si.Q-1 Si.Q0

Si.Q2Si.Q1

Figure 6.10: Equidistant sampling. We sample points on each slice with equal dis-
tance ℎ to obtain finer representation in the horizontal direction for unwrapping.
The baseline defines the central column of the 2D image that the fingerprint will be
mapped to.

Once a dense representation in the vertical direction is established, we apply

similar interpolation horizontally across each slice to sample points equidistantly with

the same sampling distance ℎ to preserve the scale of the finger. The value of ℎ is
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chosen such that the resulting image has the same image resolution specified by the

device. This procedure can be considered equivalent to virtually rolling a finger on

a surface. The 𝑖th sample point on the 𝑗th slice corresponds to the pixel at 𝑖th

row and 𝑗th column of a 2D image. A baseline to start unfolding each slice, is also

defined as the intersecting line (curve) between the 3D finger and a plane passing

through the principal axis in the center of the finger. In other words, the direction of

unwrapping is established from the center of the finger to the nail side to minimize

rolling distortion. We will show that the baseline can be reset at each nail side to

simulate rolling from left to right and vice versa. Figure 6.10 illustrates the virtual

rolling procedure; the algorithm is described in detail below:
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for 𝑖 = 1 : 𝑛 (iterate through all slices)

for 𝑗 = 1 : 𝑚 (sample to the right)

𝑑𝑖𝑠𝑡 = ∥𝑆𝑖.𝑃𝑎+𝑗 − 𝑆𝑖.𝑄𝑗−1∥;
if (𝑑𝑖𝑠𝑡 > ℎ)

𝑡 = ℎ
𝑑𝑖𝑠𝑡 ;

𝑆𝑖.𝑄𝑗 .𝑥 = 𝑡× 𝑆𝑖.𝑃𝑎+𝑗 .𝑥+ (1− 𝑡)× 𝑆𝑖.𝑄𝑗−1.𝑥;

𝑆𝑖.𝑄𝑗 .𝑦 = 𝑡× 𝑆𝑖.𝑃𝑎+𝑗 .𝑦 + (1− 𝑡)× 𝑆𝑖.𝑄𝑗−1.𝑦;

else

𝑡 = ℎ−𝑑𝑖𝑠𝑡
∥𝑆𝑖.𝑃𝑎+𝑗+1−𝑆𝑖.𝑃𝑎+𝑗∥ ;

𝑆𝑖.𝑄𝑗 .𝑥 = 𝑡× 𝑆𝑖.𝑃𝑎+𝑗+1.𝑥+ (1− 𝑡)× 𝑆𝑖.𝑃𝑎+𝑗 .𝑥;

𝑆𝑖.𝑄𝑗 .𝑦 = 𝑡× 𝑆𝑖.𝑃𝑎+𝑗+1.𝑦 + (1− 𝑡)× 𝑆𝑖.𝑃𝑎+𝑗 .𝑦;

for 𝑗 = 1 : 𝑙 (sample to the left)

𝑑𝑖𝑠𝑡 = ∥𝑆𝑖.𝑃𝑎−𝑗+1 − 𝑆𝑖.𝑄−𝑗+1∥;
if (𝑑𝑖𝑠𝑡 > ℎ)

𝑡 = ℎ
𝑑𝑖𝑠𝑡 ;

𝑆𝑖.𝑄−𝑗 .𝑥 = 𝑡× 𝑆𝑖.𝑃𝑎−𝑗+1.𝑥+ (1− 𝑡)× 𝑆𝑖.𝑄−𝑗+1.𝑥;

𝑆𝑖.𝑄−𝑗 .𝑦 = 𝑡× 𝑆𝑖.𝑃𝑎−𝑗+1.𝑦 + (1− 𝑡)× 𝑆𝑖.𝑄−𝑗+1.𝑦;

else

𝑡 = ℎ−𝑑𝑖𝑠𝑡
∥𝑆𝑖.𝑃𝑎−𝑗+1−𝑆𝑖.𝑃𝑎−𝑗∥ ;

𝑆𝑖.𝑄−𝑗 .𝑥 = 𝑡× 𝑆𝑖.𝑃𝑎−𝑗 .𝑥+ (1− 𝑡)× 𝑆𝑖.𝑃𝑎−𝑗+1.𝑥;

𝑆𝑖.𝑄−𝑗 .𝑦 = 𝑡× 𝑆𝑖.𝑃𝑎−𝑗 .𝑦 + (1− 𝑡)× 𝑆𝑖.𝑃𝑎−𝑗+1.𝑦;

Figures 6.11 (a) and (b) show unwrapped touchless fingerprint images using the

cylinder-based parametric model and the proposed non-parametric method, respec-

tively. It can be seen that the proposed unwrapping method better preserves the

surface distances than the cylinder-based parametric method, especially at the finger

tip.

When the baseline of the unwrapping procedure moves from the center of the finger
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Stretch

(a) (b)

Figure 6.11: Unwrapping a 3D fingerprint (ridge enhanced) using (a) the cylindrical-
based parametric method and (b) the proposed non-parametric method. Note the
stretching effects at the fingertip in (a) are more severe than those in (b).

(a) (b)

Figure 6.12: 3D finger “virtual rolling” from (a) left to right, and (b) right to left.
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to each nail side (see Figure 6.12), the procedure of legacy rolled print acquisition

can be simulated. Figure 6.13 shows the unwrapped images obtained by virtually

“rolling” the 3D fingerprint from left to right and from right to left. As we can see,

increase in distortion can be observed as unwrapping proceeds, simulating the effects

of pushing the skin from one nail side to the other during legacy rolling (see Figure

6.14). Generally, legacy fingerprint rolling requires all fingers (from their tip to the

first joint) to be rolled from “nail to nail.” In particular, thumbs should be rolled

from inside to outside of the nail, while other fingers of the right hand should be rolled

from left to right, and from right to left for the left hand [19]. If such a protocol is to

be strictly followed, the 3D touchless fingerprints should be unwrapped accordingly

to produce compatible distortions caused by rolling.

(a) (b)

Figure 6.13: Directional “virtual rolling” by setting the baseline at (a) the left nail
side, and (b) the right nail side. Each simulates the skin distortion during rolling
from left to right, and from right to left, respectively. Two sets of minutiae points
and their relative distances are marked to show the effects of distortion caused by
directional rolling.

6.3.2 Image Enhancement

In touch-based sensing, fingerprints are captured based on the presence/absence of

the ridges/valleys in contact with the sensor surface, resulting in binary-like images

with ridges having gray values close to 0 and valleys close to 255. In touchless

157



(a) (b)

Figure 6.14: Directional distortion in legacy rolled fingerprints: (a) rolling from left
to right; (b) rolling from right to left. Similar skin distortion patterns are illustrated
with two sets of minutiae points.

sensing, however, fingerprints are captured as images at a distance. As a result,

ridges and valleys are not separated during acquisition and the resulting touchless

fingerprint images often present lower contrast compared to the legacy fingerprint

images. Therefore, image enhancement is necessary to increase the image contrast.

Figure 6.15: Homomorphic filtering procedure.

We propose to use homomorphic filters for touchless fingerprint enhancement.

Homomorphic filtering has been commonly used to increase the image contrast by

sharpening features and flattening lighting variations in an image [65]. The image

formation model assumed for homomorphic filters is often characterized by two com-

ponents: illumination 𝐿 and reflectance 𝑅. Both components can be combined to
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(a)

(b)

(c)

Figure 6.16: Touchless fingerprint enhancement: (a) an unwrapped touchless finger-
print image; (b) homomorphic enhancement of (a); (c) Gabor filtering of (b).
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give the image function 𝐹 :

𝐼(𝑥, 𝑦) = 𝐿(𝑥, 𝑦) ⋅ 𝑅(𝑥, 𝑦), (6.5)

where 0 < 𝐿(𝑥, 𝑦) < ∞ and 0 < 𝑅(𝑥, 𝑦) < 1. The illumination component captures

the lighting conditions present during image acquisition, while the reflectance com-

ponent represents the way the object reflects light, which is an intrinsic property of

the object. The essential idea of homomorphic filtering is to separate the two compo-

nents using a log transform and then a high-pass filter to enhance reflectance while at

the same time reducing the contribution of illumination. Specifically, homomorphic

filtering consists of the following five steps (see Figure 6.15):

∙ Use natural log to transform equation (6.5) from multiplicative to additive:

𝑍(𝑥, 𝑦) = ln[𝐼(𝑥, 𝑦)] = ln[𝐿(𝑥, 𝑦) ⋅𝑅(𝑥, 𝑦)] = ln[𝐿(𝑥, 𝑦)] + ln[𝑅(𝑥, 𝑦)] (6.6)

∙ Apply Fourier transform:

ℑ𝑍(𝑥, 𝑦) = ℑln[𝐿(𝑥, 𝑦)] + ℑln[𝑅(𝑥, 𝑦)] (6.7)

∙ Apply a high pass filter 𝐻(𝑢, 𝑣) in the frequency domain:

𝑆(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) ⋅𝑍(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) ⋅ℑln[𝐿(𝑥, 𝑦)]+𝐻(𝑢, 𝑣) ⋅ℑln[𝑅(𝑥, 𝑦)] (6.8)

∙ Apply Inverse Fourier transform:

𝐸(𝑥, 𝑦) = ℑ−1𝑆(𝑢, 𝑣) = ℑ−1𝐻(𝑢, 𝑣) ⋅ ℑln[𝐿(𝑥, 𝑦)] + ℑ−1𝐻(𝑢, 𝑣) ⋅ ℑln[𝑅(𝑥, 𝑦)]

(6.9)
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∙ Obtain the final enhanced image by exponential operation:

𝐼 ′(𝑥, 𝑦) = exp𝐸(𝑥, 𝑦) (6.10)

The high pass filter 𝐻(𝑢, 𝑣) used in the above transformation is defined as

𝐻(𝑢, 𝑣) =
1

1 + [
𝐷0

𝐷(𝑢,𝑣)
]2𝑛

, (6.11)

where 𝐷(𝑢, 𝑣) is the Euclidean distance from the origin of the centered transform and

𝐷0 = 0.1 and 𝑛 = 1 are the cutoff frequency and order of the filter, respectively. The

filter 𝐻(𝑢, 𝑣) is designed to decrease the contribution of the low frequencies (illumina-

tion) and amplify the contribution of mid- and high- frequencies (reflectance), which

is the key of homomorphic filtering. To obtain a normalized image within the range

[0 255], we also apply adaptive histogram equalization after homomorphic filtering.

Figure 6.16 shows the enhancement of an unwrapped touchless fingerprint image.

The proposed enhancement algorithm increases the image contrast and facilitates

subsequent extraction of ridge/valley patterns in the fingerprint image.

6.3.3 Image Quality

Due to imaging artifacts caused by diffused illumination, self-occlusion and perspec-

tive distortion, the image quality of the touchless fingerprint images vary in different

local regions. This effect becomes very significant when different absorption prop-

erties of the tissues and blood vessels in the finger cause non-uniform illumination

during image acquisition. As a result, it is desirable to develop a quality measure for

touchless fingerprint images that takes into consideration local quality variations.

We apply the coherence-based local quality proposed in Section 3.3.2 to estimate

the quality of touchless fingerprints. This quality index measures the contrast level
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Figure 6.17: Cascade quality assessment in local regions (80 × 80 pixels) with (a)
excellent quality, (b) good quality, (c) medium quality, and (d) poor quality. The
first and second row show the fingerprint regions and their corresponding quality
estimates, respectively. The darker a region of an image in the second row, the lower
the image quality in that region.

as well as the strength of the dominant orientation in the local region. The cascade

implementation proposed in Section 3.3.2 is also adopted for optimization purposes.

Figure 6.17 shows four local regions (80 × 80 pixels) of Figure 6.16 (a) with quality

estimates.

Next, we compare the estimated qualities of an unwrapped touchless fingerprint

image, its enhanced image and the corresponding rolled fingerprint (see Figure 6.18).

The overall quality of each of the three images, computed as the average of local

quality indices, is 0.28, 0.76 and 0.44, respectively. As we can see, the proposed

enhancement method greatly improves the image quality of the unwrapped touchless

fingerprint.

6.4 Interoperability Experiments

To demonstrate the effectiveness of the proposed unwrapping and enhancement al-

gorithms, TBS [17] kindly provided us a database that contains four touchless im-
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(a)                    (b)

(c)                    (d)

(e)                    (f)

Figure 6.18: Comparing image quality: (a) an unwrapped touchless fingerprint image;
(b) local quality map of (a); (c) enhanced image of (a); (d) local quality map of (c);
(e) corresponding rolled fingerprint; (f) local quality map of (e). White pixels denote
good quality and black pixels mean poor quality. The global quality of (a), (c) and
(e) is 0.27, 0.68, and 0.51, respectively.
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pressions captured using the Surround Imager and one mated ink-on-paper rolled

impression from 102 fingers (see Figure 6.19).

(a)             (b)

Figure 6.19: Sample images from the second database: (a) an unwrapped touchless
fingerprint and (b) the corresponding rolled fingerprint.

The touchless fingerprints are first converted from 3D to 2D using the proposed

non-parametric “virtual rolling” algorithm and the quality of each image is estimated

before and after enhancement using the proposed algorithms. The distributions of

global image quality of the touchless fingerprints with and without enhancement is

shown as boxplots in Figure 6.20 (a), together with the distribution of global image

quality estimated from the mated rolled fingerprints. The figure shows that the en-

hancement algorithm effectively improves the overall image quality of the touchless

fingerprints to a level that is comparable with legacy fingerprints. Next, a commer-

cial matcher [8] is used to evaluate the matching performance on all possible pairs

of touchless impressions and rolled fingerprints. The verification ROCs are plotted

in Figure 6.21. As we can see, the enhancement algorithm significantly improves

the matching performance, resulting in higher compatibility between touchless and

ink-on-paper rolled fingerprints. However, further investigation is needed (in both

hardware and software) to address the remaining differences on image quality and

distortions before achieving full compatibility between touchless and legacy rolled
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Figure 6.20: Box plots of estimated global quality indices on touchless fingerprints
(with and without enhancement) and their corresponding rolled fingerprints.
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Figure 6.21: Verification ROCs on matching touchless and mated rolled fingerprints
on the TBS database.
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Figure 6.22: Matching an enhanced touchless fingerprint and its corresponding rolled
fingerprint shown in Figure 6.19. The two fingerprints are aligned with the matched
minutiae marked with red circles.

fingerprints. Note in the same plot that matching among touchless fingerprints shows

almost perfect accuracy. This demonstrates that by avoiding contact, the touchless

imaging technology produces highly consistent and reproducible fingerprint images

that effectively reduces the intra-class variations in matching.

Finally, an example of matching the two genuine fingerprints in Figure 6.19 is

demonstrated in Figure 6.22. There are 130 minutiae (marked as blue dots) extracted

from the touchless fingerprint and 64 minutiae extracted (marked as green dots)

from the corresponding ink-on-paper rolled fingerprint. During matching, 49 pairs of

minutiae are found to be in correspondence (marked as red circles).

6.5 Summary

3D touchless sensing is a novel fingerprint sensing technology. Because of its contact-

free and full-area imaging technique, the resulting images are likely to lead to more
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consistent and accurate fingerprint representation, and hence, is potentially “ideal”

for many government and law enforcement applications. However, due to the intrin-

sic differences between the touchless and touch-based sensing, fingerprints generated

from the two technologies are not fully compatible. We have proposed a “virtual

rolling” process that unwraps the 3D touchless fingerprints as 2D images using a

non-parametric equidistant approach. We have also proposed an image enhancement

algorithm to optimize the contrast between ridges and valleys in touchless finger-

prints. The effectiveness of the proposed algorithms to achieve interoperability be-

tween touchless and legacy rolled fingerprints is successfully demonstrated in our ex-

periments. Note that touchless imaging is potentially beneficial for latent matching as

it provides a truly complete and close-to-ground-truth representation of fingerprints.

However, touchless fingerprints lack the large amount of skin-distortion that is often

seen in latents, and further studies are needed to study such difference and determine

the interoperability between touchless fingerprints and latents.
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Chapter 7

Summary and Future Work

Automatic fingerprint matching systems have played a major role in forensics and

criminal investigations. However, these systems have not yet completely eliminated

the need for manual examination, especially in matching latent prints. Automatic

systems utilize a limited feature set compared to forensic experts and are not able to

easily adapt to handle variations in image quality and resolution. In this thesis, we

have proposed to address these issues by introducing extended features and touchless

imaging in automatic fingerprint matching. A summary of this thesis is given below.

Chapter 1 provided a brief background on fingerprint matching, including fin-

gerprint formation, acquisition and representation. The manual and automatic fin-

gerprint matching procedures and their differences were presented and implications

of these differences with respect to matching performance were discussed. Major

challenges in semi-automatic and automatic latent matching were also presented.

Chapter 2 gave a brief introduction to fingerprint features and their categorization

(e.g., Level 1, Level 2 and Level 3). We emphasized that fingerprint features do not

exist in isolation, but are highly correlated. A wide range of extended features and

their interrelationship information used in manual identification were described in

detail. Fingerprint feature standards for both minutiae and extended features were
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presented and discussed.

Chapter 3 proposed algorithms to automatically extract a set of extended features

(i.e., ridge skeletons, pores and dots/incipients) and their interrelationship informa-

tion. The accuracy of the proposed extended feature extraction was evaluated by

comparing with the manually extracted features. Experiments showed that the pro-

posed algorithm for automatic extraction of Level 3 features (pores and dots) is less

accurate compared to minutiae, however, the large quantity of pores may possess suf-

ficient discriminative power in matching and potentially offset the extraction errors.

Chapter 4 investigated matching of extended features. In particular, ridge-based

matching establishes ridge correspondences while correcting for non-linear distortion

so that Level 3 features can be better aligned and matched. A hierarchical fusion

framework that combines scores or ranks of each feature was also proposed. Experi-

mental results demonstrated that i) all the proposed extended features (ridge skele-

tons, pores, dots/incipients) are effective in improving the verification performance

on both MSU-full and MSU-partial databases; ii) ridge matching is more effective

than pores and dots/incipients in improving latent identification performance on the

NIST-27 database, especially on latents with poor quality or small size.

In Chapter 5 studies on fingerprint individuality were surveyed and the use of

both minutiae and extended features in fingerprint individuality modeling was inves-

tigated. To utilize extended features in assessing fingerprint individuality, we sepa-

rately modeled minutiae as well as the ridge and pore features in their neighborhoods

for fingerprints of five major classes. Experimental results based on both theoretical

and empirical estimates on NIST-4 and NIST-30 databases demonstrated that (i) fin-

gerprint individuality is dependent on the fingerprint class and (ii) extended features

make significant contributions to the fingerprint individuality.

In Chapter 6, we studied the interoperability between 3D touchless and 2D legacy

rolled fingerprints. Algorithms to unwrap 3D touchless fingerprints by virtually
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“rolling” the 3D finger were described. Methods to evaluate and enhance the im-

age quality of unwrapped touchless fingerprints were also proposed. Experimental

results on the TBS database demonstrated that the proposed unwrapping algorithm

is capable of generating “rolled-equivalent” touchless fingerprints and the enhance-

ment algorithm is effective in improving the clarity of the unwrapped fingerprints

across different image quality.

In conclusion, the main contributions of this thesis are (1) algorithms for ex-

traction and matching of extended features, (ii) individuality model of fingerprints

using both fingerprint class, minutiae and extended features and (iii) interoperabil-

ity of new generation touchless fingerprint acquisition systems with legacy fingerprint

databases. Some additional topics for future research on extended features and sensor

interoperability are proposed below.

∙ Besides the extended features studied in this thesis, additional extended features

such as minutiae shape and ridge width should be investigated.

∙ As 1000 ppi latent and tenprint databases become available in the public do-

main, the proposed extraction and matching of extended features should be

re-evaluated.

∙ Real-time algorithms for extended feature extraction and matching as well as

reduction of template size for efficient storage.

∙ Fingerprint individuality is the fundamental basis for fingerprint matching. Cur-

rent mathematical models are proposed under the assumption that fingerprints

are of ideal quality and are large in size (rolled prints) with large number of

minutiae. In practice, however, fingerprint images captured can be of various

quality and size. These factors have tremendous impact on the individuality of

fingerprints. As a result, studying the effects of image size and quality (e.g.,

latents) on the individuality of fingerprints is essential.
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∙ Evaluation of the interoperability between 3D touchless fingerprints and 2D

legacy rolled fingerprints on a larger database.
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Appendix A

Numerical Implementation of

Thin-Plate Spline with Tension

Thin-plate spline (TPS) [40] is a useful tool for surface interpolation over scattered

data, which is a mathematical analogy of measuring the physical bending of a thin

metal plate on point constraints. Because of its second-order property, TPS lacks the

elasticity needed to model fingerprint distortion. To solve this, first-order terms are

introduced as tension parameters into the TPS model.

Given two set of corresponding points 𝑈 = (𝑢1, 𝑢2, ..., 𝑢𝑙)
𝑇 and 𝑉 = (𝑣1, 𝑣2,

..., 𝑢𝑙)
𝑇 , let 𝑢𝑘 and 𝑣𝑘 denote the spatial coordinates of the 𝑘th corresponding pair,

where 𝑙 is the total number of correspondences. The deformation 𝐹 can be expressed

as a mapping function from point set 𝑈 to 𝑉 :

𝐹 (𝑈) = 𝑐+ 𝐴 ⋅ 𝑈 +𝑊𝑇𝑆(𝑈), (A.1)

where parameters 𝑐 and 𝐴 represent the affine transform and 𝑊 defines non-linear

distortion. The distance measure 𝑆(𝑈) is the vector (𝜎(𝑈 −𝑢1), 𝜎(𝑈 −𝑢2), ..., 𝜎(𝑈 −
𝑢𝑙))

𝑇 with

𝜎(U) =
1

2𝜏3
(𝑒−𝜏∥U∥ + 𝜏∥U∥), (A.2)
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where 𝜏 is a tension parameter that controls the degree of tension (elasticity) effects

[41].

In Equation (A.1), there are a total of (6+2𝑙) parameters to be estimated, where

𝑐 is a 2 × 1 vector, 𝐴 is a 2 × 2 matrix and 𝑊 is a 𝑙 × 2 matrix. As Equation (A.1)

requires 2𝑙 constraints to be satisfied in the spatial domain, the number of degrees of

freedom is reduced by 2𝑙. To further reduce the complexity of the problem, we assume

that the coefficients 𝑊 satisfy (i) 1𝑇𝑙 𝑊 = 0 (2 restrictions) and (ii) 𝑈𝑇𝑊 = 0 (4

restrictions), where 1𝑙 is a 𝑙×1 vector. Finally, the coefficients 𝑐, 𝐴 and 𝑊 of the TPS

with tension model can be numerically solved using the following set of equations:

⎡
⎢⎢⎢⎢⎣

𝑆 1𝑙 𝑈

1𝑇𝑙 0 0

𝑈𝑇 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

𝑊

𝑐𝑇

𝐴𝑇

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

𝑉

0

0

⎤
⎥⎥⎥⎥⎦ . (A.3)

The matrix in Equation A.3 gives rise to a TPS with tension model that minimizes

the total bending energy subject to the perfect alignment constraints in Equation

A.1. In order to achieve robust distortion estimation in the presence of noise, the

distortion model can be further relaxed by replacing 𝑆 by (𝑆+𝜆𝐼𝑁 ) in Equation A.3,

where 𝐼𝑁 is the 𝑁 ×𝑁 identity matrix.
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Appendix B

Estimating Mixture Density using

EM algorithm

A Incorporating Minutiae

The objective is to model the minutiae position and orientation as a mixture of

Guassian and Von-Mises functions, respectively. Specifically, we model a class of

fingerprints using a 𝐾-cluster mixture density with parameters 𝛼 = (𝑝𝑘, 𝜇,Σ, 𝜈, 𝜅),

given as

𝑓(𝑥, 𝑜∣𝛼) =
𝐾∑
𝑘=1

𝑝𝑘𝑔(𝑥∣𝜇,Σ𝑘)ℎ(𝑜∣𝜈, 𝜅𝑘) (B.1)

where

𝑔(𝑥∣𝜇𝑘,Σ𝑘) =
1

(2𝜋𝐷/2∣Σ𝑘∣)1/2
exp

{
−1

2

(
(𝑥− 𝜇𝑘)

𝑇Σ𝑘
−1(𝑥− 𝜇𝑘)

)2
}
(B.2)

ℎ(𝑜∣𝜈𝑘, 𝜅𝑘) =
𝜅
𝐷/2−1
𝑘

(2𝜋)𝐷/2𝐼𝐷/2−1(𝜅𝑘)
exp{𝜅𝑘𝜈𝑇𝑘 𝑜} (B.3)
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are with dimension 𝐷 = 2 and under the constraints

𝐾∑
𝑘=1

𝑝𝑘 = 1 (B.4)

𝑝𝑘 ≥ 0 (B.5)

∥𝜈𝑘∥ = 1 (B.6)

𝜅𝑘 ≥ 0. (B.7)

The function 𝑔(⋅) is a multivariate Gaussian, ℎ(⋅) is a multivariate Von-Mises, and

𝐼𝑟(⋅) is the modified Bessel function of the first kind and order 𝑟. Given a set of 𝑁

points, 𝑋, their corresponding orientations, 𝑂, the likelihood function of our model

can be defined as

Λ(𝑋,𝑂∣𝛼) =

𝑁∏
𝑛=1

𝑓(𝑥𝑛, 𝑜𝑛∣𝛼) (B.8)

=

𝑁∏
𝑛=1

𝐾∑
𝑘=1

𝑝𝑘𝑔(𝑥𝑛∣𝜇𝑘,Σ𝑘)ℎ(𝑜𝑛∣𝜈𝑘, 𝜅𝑘) (B.9)

under the assumption that the samples of 𝑋 and 𝑂 are independent and identically

distributed. Given this likelihood function, the density estimation problem can be

defined as

�̂� = argmax
𝛼

Λ(𝑋,𝑂∣𝛼) (B.10)

To compute the maximum likelihood estimates for the parameters of 𝛼, we first define

the log likelihood as

𝜆(𝑋,𝑂∣𝛼) =
𝑁∑
𝑛=1

log
𝐾∑
𝑘=1

𝑝𝑘𝑔(𝑥𝑛∣𝜇𝑘,Σ𝑘)ℎ(𝑜𝑛∣𝜈𝑘, 𝜅𝑘). (B.11)
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Computing partial derivatives with respect to each of the parameters, introducing

Langrangian multipliers when necessary for the specific constraints, results in

�̂�𝑘 =

∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼)𝑥𝑛∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼)

(B.12)

Σ̂𝑘 =

∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼)(𝑥𝑛 − 𝜇𝑘)

𝑇 (𝑥𝑛 − 𝜇𝑘)∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼)

(B.13)

𝜈𝑘 =

𝑁∑
𝑛=1

𝑜𝑛𝑝(𝑘∣𝑥𝑖, 𝑜𝑖, 𝛼) (B.14)

�̂�𝑘 =
𝑟𝐷 − 𝑟3

1− 𝑟2
(B.15)

𝑝𝑘 =
1

𝑁

𝑁∑
𝑛=1

𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼) (B.16)

where

𝑟 =
∥∑𝑁

𝑛=1 𝑜𝑛∥
𝑁

(B.17)

𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼) =
𝑝𝑘𝑓(𝑥𝑛, 𝑜𝑛∣𝛼)∑𝐾
𝑘=1 𝑝𝑘𝑓(𝑥𝑛, 𝑜𝑛∣𝛼)

(B.18)

The MLE estimate for 𝜅𝑘 defined above is only an approximation derived in [38].

Computing the actual estimate involves an implicit equation that is a ratio of Bessel

functions, where no closed form solution can be obtained.

The above equations are closely coupled because the terms 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼) on the

right-hand sides depend on the terms of the left hand side (𝛼). This is where the EM

algorithm is utilized; starting with an initial guess for the parameters 𝛼 = (𝑝𝑘, 𝜇𝑘,

Σ𝑘, 𝜈𝑘, 𝜅𝑘), the E-step is performed, updating the distribution of the hidden variables

𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝛼), followed by the M-step, where each parameter is updated. This process

is iterated until convergence. Specifically, the E-step computes Equations B.1 and

B.18 while the M-step computes Equations B.12, B.13, B.14, B.15, and B.16. The

convergence criterion used is when the difference in log likelihood from one iteration
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to the next is less than a threshold (0.001).

B Incorporating Ridge Period

In order to incorporate local ridge period into the EM algorithm, a Gaussian function

(used to model the frequency) is introduced into the model:

𝑓(𝑥, 𝑜, 𝑟∣𝛼) =
𝐾∑
𝑘=1

𝑝𝑘𝑔(𝑥∣𝜇𝑘,Σ𝑘)ℎ(𝑜∣𝜈𝑘, 𝜅𝑘)𝑖(𝑟∣𝜔𝑘, 𝜎𝑘) (B.19)

where 𝑔(𝑥∣𝜇𝑘,Σ𝑘) and ℎ(𝑜∣𝜈𝑘, 𝜅𝑘) are the Gaussian and Von-Mises probability density

functions, defined previously and 𝑖(𝑟∣𝜔𝑘, 𝜎𝑘) is a univariate Gaussian, with density

function

𝑖(𝑟∣𝜔𝑘, 𝜎𝑘) =
1√
2𝜋𝜎2

𝑘

exp

(
−(𝑟 − 𝜔𝑘)

2

2𝜎2
𝑘

)
. (B.20)

Again, the derivation of the equations for EM remains exactly the same except for

the incorporation of Equation B.19 instead of B.23 and the addition of the update

equations for 𝜔𝑘 and 𝜎𝑘:

𝜔𝑘 =

∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝑐𝑛, 𝑟𝑛, 𝛼)𝑟𝑛∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝑐𝑛, 𝑟𝑛𝛼)

(B.21)

𝜎𝑘 =

√√√⎷∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝑐𝑛, 𝑟𝑛, 𝛼)∥𝑟𝑛 − 𝜔𝑘∥2∑𝑁

𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝑐𝑛, 𝑟𝑛, 𝛼)
(B.22)

C Incorporating Ridge Curvature

Finally, in order to incorporate local ridge curvature into the EM algorithm described

above, an additional Poisson function (used to model the curvature) is introduced
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into the model probability function:

𝑓(𝑥, 𝑜, 𝑟, 𝑐∣𝛼) =
𝐾∑
𝑘=1

𝑝𝑘𝑔(𝑥∣𝜇𝑘,Σ𝑘)ℎ(𝑜∣𝜈𝑘, 𝜅𝑘)𝑖(𝑟∣𝜔𝑘, 𝜎𝑘)𝑗(𝑐∣𝜆𝑘) (B.23)

where 𝑗(𝑐∣𝜆𝑘) is a Poisson with density function

𝑗(𝑐∣𝜆𝑘) =
𝑒−𝜆𝑘𝜆𝑐𝑘

𝑐!
. (B.24)

The derivation of the equations for EM remains exactly the same, except for the

incorporation of Equation B.23 instead of B.1 and the addition of the update equation

for 𝜆𝑘:

𝜆𝑘 =

∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝑐𝑛, 𝛼)𝑐𝑛∑𝑁
𝑛=1 𝑝(𝑘∣𝑥𝑛, 𝑜𝑛, 𝑐𝑛, 𝛼)

. (B.25)
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