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ABSTRACT
TOWARDS A ROBUST UNCONSTRAINED FACE RECOGNITION PIPELINE

WITH DEEP NEURAL NETWORKS
By

Yichun Shi
Face recognition is a classic problem in the field of computer vision and pattern recognition due

to its wide applications in real-world problems such as access control, identity verification, physical

security, surveillance, etc. Recent progress in deep learning techniques and the access to large-scale

face databases has lead to a significant improvement of face recognition accuracy under constrained

and semi-constrained scenarios. Deep neural networks are shown to surpass human performance on

Labeled Face in the Wild (LFW), which consists of celebrity photos captured in the wild. However,

in many applications, e.g. surveillance videos, where we cannot assume that the presented face is

under controlled variations, the performance of current DNN-based methods drop significantly. The

main challenges in such an unconstrained face recognition problem include, but are not limited

to: lack of labeled data, robust face normalization, discriminative representation learning and the

ambiguity of facial features caused by information loss.

In this thesis, we propose a set of methods that attempt to address the above challenges in

unconstrained face recognition systems. Starting from a classic deep face recognition pipeline, we

review how each step in this pipeline could fail on low-quality uncontrolled input faces, what kind of

solutions have been studied before, and then introduce our proposed methods. The various methods

proposed in this thesis are independent but compatible with each other. Experiment on several

challenging benchmarks, e.g. IJB-C and IJB-S show that the proposed methods are able to improve

the robustness and reliability of deep unconstrained face recognition systems. Our solution achieves

state-of-the-art performance, i.e. 95.0% TAR@FAR=0.001% on IJB-C dataset and 61.98% Rank1

retrieval rate on the surveillance-to-booking protocol of IJB-S dataset.
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Chapter 1

Introduction

Face Recognition is a classic yet popular ongoing problem in the field of computer vision and

pattern recognition. The general goal of Automatic Face Recognition (AFR) is to let the machine

identify a person from his/her photos. Such a process could involve a set of typical challenges in

computer vision problems: occlusion, illumination, out-of-plane rotation (pose change) and low

image quality. On the other hand, AFR technology has a wide range of applications in forensics,

access control, mobile payment, surveillance, etc, making it one of the most active research topics in

the field of pattern recognition. In this chapter, we first review the applications of AFR systems and

their development history, and then explain the pipeline of modern AFR systems and the challenges

they face. Based on these challenges, we introduce our proposed methods and contributions.

1.1 Applications of Automatic Face Recognition

The applications of face recognition can be classified into two types: face verification and face

identification. Face verification systems, also known as 1:1 comparison, needs to decide whether

two given face images (or collections) belong to the same person while a face identification (1:N

comparison) system needs to identify (search) a probe image from a gallery set of N images. A

more detailed explanation of face verification and face identification can be found in Section 1.5.

Here, we list a few representative applications of face verification and identification.
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(a) Airport Security [9] (b) iPhone X FaceID [10]

(c) Identification for Payment [11] (d) Surveillance [12]

Figure 1.1 Example applications of face recognition.

1.1.1 Security

In many security-sensitive scenarios, we need to verify a person’s identity for safety reasons. For

example, as shown in Figure 1.1, many AFR systems have been deployed at airports world-wide to

check the identity of a passport holder [13]. With more and more passengers taking international

trips each year, such a system could significantly increase the efficiency of border control and reduce

the burden on staff at airports. Similarly, many immigration checkpoints have also adopted face

recognition systems to accelerate the passenger verification process.

1.1.2 Access Control

Another application of face verification is to check the access permission to certain buildings,

devices or files stored in a computer. In corporate buildings, AFR systems are used to replace

the traditional locks to control the entry gate. Starting with iPhone X, face recognition has been

deployed as an alternative to PIN to secure the unlocking process (See Figure 1.1 (b)). Compared to

2



password and fingerprint, face recognition is more convenient to use since it only requires the user

to look at the phone.

1.1.3 Identification

Besides face verification, another type of face recognition applications needs to identify a person

from a large set of known people. For example, if the police have a photo of a criminal, they

could use it to retrieve similar faces from a mugshot database to figure out potential identities

of the criminal. Child trafficking is a severe problem in many developing countries. There, face

identification can also be used to detect whether a child is reported to be lost [14] to solve such

social problems. Besides security applications, face identification can also be applied to mobile

payments (See Figure 1.1 (c)).

1.1.4 Surveillance

A special type of application of face identification is associated with surveillance cameras. These

surveillance cameras play a key role in the management of mega-cities across the world. Till

2019, there were estimated to be 770 million surveillance cameras installed around the world [15].

However, effectively utilizing these surveillance videos is not a simple task, since a large amount of

human labor would be needed to monitor or review them. In contrast, a robust face detection and

identification algorithm could go through massive number of videos to localize potential criminals

and operate 24 hours a day seven days a week.

1.2 The Development of Automatic Face Recognition

1.2.1 Traditional Solutions

Since the first study on AFR by Takeo Kanade [16] in 1970s, the technology of automatic face

recognition has evolved drastically. Many different approaches have been explored to represent
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and compute similarity two face images under consideration. In the early stages, methods that

explicitly model the geometric shape or texture of faces were used to represent the face images. For

example, Active Shape Models [17] represent a face by the coordinates of facial landmarks. However,

such methods are limited in terms of representation power and are sensitive to the variations that

could appear in face images, such as pose, illumination, and expression (PIE). Subspace-based

representations, such as EigenFace [18] and FisherFace [19], have been proposed to model faces

images by a set of basis components in a linear subspace. Each image is represented by the

coefficient of the bases, which can be further used for recognition tasks. Later, manually designed

visual descriptors, such as Scale-invariant Feature Transform (SIFT) [20] and Local Binary Patterns

(LBP) [21], became popular in computer vision tasks. These features are shown to be effective

on face recognition tasks as well [21] and achieves even better performance when combined with

data-driven methods [22], such as Linear Discriminant Analysis (LDA) [19] and JointBayes [23].

1.2.2 Deep Face Recognition

In recent years, due to the advent of large-scale web data and efficient parallel computing devices,

i.e. GPUs, Convolutional Neural Networks (CNNs), as a pure data-driven method, has replaced

traditional methods and achieved impressive performance on a wide range of computer vision tasks,

such as image classification [24], detection [25] and segmentation [26]. A series of CNN-based

face recognition algorithms have been proposed since 2014, including DeepFace [27], DeepID

series [28, 29] and FaceNet [30]. These algorithms not only outperform traditional methods by a

large margin, but they beat human beings on face verification tasks [28, 31]. Compared to LBP and

LDA, CNN are able to learn a much more complicated non-linear mapping function to serve as

the feature extractor, which is more discriminative and less sensitive to different facial variations.

After the early work on CNN-based face recognition, subsequent studies have explored different

loss functions to improve the discrimination power of the feature representation. Wen et al. [32]

proposed center loss to reduce intra-class variation. A series of works have also proposed to use

metric learning for face recognition [30, 33]. Recent efforts have attempted to achieve discriminative
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embeddings with a single identification loss function where proxy or prototype vectors are used to

represent each class in the embedding space [34, 35, 36, 37, 38].

1.2.3 From Constrained to Unconstrained Face Recognition

Along with the boost in AFR algorithms, the evaluation datasets and protocols for AFR systems

have been updated frequently. In the early studies, the input face photos to be recognized are

mostly captured under constrained settings, where there is a limited amount of variation in terms

of pose, illumination and expression (PIE). For example, the Yale-B face dataset [39] released in

2000 only consists of gray-scale frontal faces with different illumination. In 2007, the Labeled

Faces in the Wild (LFW) [3] dataset was released. As the first benchmark composed of face images

captured in the wild (not under controlled settings), LFW became a major challenge to the AFR

systems before the deep learning era (see Figure 1.3). While traditional approaches [22] achieved

95.17% accuracy on LFW under the standard verification protocol, CNNs that were trained on

large-scale datasets quickly saturated the benchmark with performance higher than 99.00% [31, 30].

Since then, more unconstrained benchmarks have been released to evaluate the performance of

FR algorithms. For example, NIST released three benchmarks developed under IARPA Janus

program [40], namely IJB-A [5], IJB-B [41], and IJB-C [42], that are composed of a mixed set of

celebrity photos along with video frames. Since the faces in these images are manually cropped by

humans rather than off-the-shelf face detectors, the faces in these datasets could include arbitrary

PIE variations. Further, instead of a closed-set recognition, the models today are required to perform

recognition in an open-set setting, i.e. the test (query) subjects may not be present in the database of

known subjects (gallery), which makes the tasks even more difficult. In spite of these challenges,

deep neural networks quickly saturated even these benchmarks by learning from larger and larger

training datasets and newer models. Recently, researchers have been focusing on more challenging

cases, such as surveillance face recognition [1] and low-resolution faces in the wild [6], which

represent a more realistic setting in real-world applications. More details on these datasets can be

found in Section 1.5.

5



Normalization Feature
Extractor

Similarity
Metric

Input Normalized Input

Score

Feature Vector

Figure 1.2 The pipleline of automatic face recognition systems. Here, we assume the face images
are already detected and hence omit the detection step.

1.3 Pipeline of Automatic Face Recognition

As shown in Figure 1.2, the pipeline of AFR typically includes three steps: normalization, feature

extraction and comparison. Here, we assume the faces have already been detected and we do not

discuss it.

Normalization In this step, spatial transformations are conducted to reduce the facial variations

before sending the input image to the feature extractor module. Different methods can be used to

reduce such variations. The simplest solution is to use the location of bounding box or landmarks

to crop a canonical view of the input face [30, 43]. Some use more complicated 3D models to

frontalize the face to further reduce the variation [27]. The most common solution is to detect 5

landmarks (eyes, nose and mouth corners) and apply a similarity transformation [32, 34].

Feature Extraction In this step, either a manually designed or a learned representation are used

to extract the discriminative features from the faces. Both the LBP descriptor and LDA methods

mentioned in last section belong to this step. Today, almost all ongoing research use a CNN as the

feature extractor, which maps an RGB image to a feature vector with fixed length. The CNN is

first trained on a large-scale web-crawled database, with millions of face images covering hundreds

of thousands of identities [44, 2], and then the output vectors of its hidden layers are used as the

extracted features to represent the faces. The network is trained either with metric learning loss

functions [30] or classification tasks [27].
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Similarity Metric The choice of similarity metric mainly depends on the representation. For

example, for histogram-based features, such as LBP, j2 measure is used to compute the distance.

Assuming the features are generated by a Gaussian distribution, Chen et al. [23] proposed to use

a joint formulation of concatenated feature vectors to compute the facial similarity, which is also

shown to be effective on deep representations [45]. The most widely adopted similarity metric for

deep face representations is cosine similarity. This is mainly because the hidden features learned by

the neural networks with a classification loss are distributed in a radial way [46, 34].

1.4 Challenges in Unconstrained Face Recognition

The major challenges of unconstrained face recognition, compared with constrained ones, lies in

the large facial variations, including pose, illumination, expression, low resolution, occlusion, etc.

Although illumination and expression were considered challenging for manually designed features,

deep representations that are trained on large-scale web datasets turn out to be relatively invariant to

such variations [29]. Thus, they are no longer a focus in recent studies. Different methods have

been proposed to learn pose-invariant deep face representations. Some use pose labels during

training to learn a pose-disentangled deep feature [47, 48] while others have utilized 3D models

to build deep models that could frontalize the face images before feature extraction [49]. On the

other side, state-of-the-art (SOTA) face recognition models [38] that are trained on generic face

datasets with deeper models and margin-based loss functions have also been shown to perform well

on cross-pose face verification tasks [4]. Compared with other types of variations, low resolution

and occlusion are more difficult because they imply the loss of information in the input faces. While

deep representations have achieved human-level performance on constrained face photos, many

evaluation benchmarks have been released to evaluate deep face recognition models on surveillance

and web videos [1, 6], where lower resolution and occlusion are the main challenges.

In a complete AFR system, the individual impact of aforementioned facial variations depends

on the choice of different modules in the FR pipeline. Here we briefly introduce the connection
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between different facial variations and the modules in an AFR pipeline, which further motivates our

proposed methods in Chapters 2-5:

• The face normalization step is mainly correlated with the cross-pose face recognition perfor-

mance. A more complicated normalization method, e.g. 3D modeling, could significantly

alleviates the pose variation problem. However, under unconstrained settings, given a low

quality image, the 3D model might not be able to accurately reconstruct the structure of the

input face. In Chapter 2, we introduce an attention-based learning framework that could

exploit local features from faces of different poses to handle this issue.

• In Chapter 3, we show that the common choice of similarity metric, i.e. cosine similarity

between embedded vectors, could suffer from facial variations that cause information loss,

such as low resolution and occlusion. We propose an uncertainty-based representation to

solve this problem.

• The representation learning step is related to all kinds of variations. The performance differs

depending on what kind of dataset and loss function we choose to train the model with. Thus, a

trade-off often exists when the performance degrades on a certain type of data when we fit our

model to handle other types of variations. In Chapter 4, we propose a universal representation

learning framework that is able to simultaneously improve feature discrimination power

with different variations. In Chapter 5, we further propose a semi-supervised representation

learning framework that utilizes an auxiliary unlabeled dataset to augment the labeled training

data to improve the generalizability of the face embeddings.

1.5 Evaluation Metrics and Datasets

1.5.1 Evaluation

The tasks of face recognition can be concluded as two types: face verification and face identification

or search.
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In face verification, also known as 1:1 comparison, the system is required to determine whether

a pair of face images belong to the same subject by applying a threshold to the similarity score.

Two types of metrics are used here for evaluating face verification protocol. The first metric is the

accuracy:

�22DA02H(#,)) = Number of correct comparison at threshold, )
Number of all possible pairs, #

. (1.1)

This metric is usually used for protocols with balanced number of positive and negative pairs, such

as in LFW [3] and CFP [4]. The threshold ) is usually determined under a cross-validation protocol.

The second metric, which is closer to a real-world verification requirement is to evaluate the True

Accept Rate of input pairs at a fixed False Accept Rate. Formally, this metric is defined as:

)�'(#?, )) =
Number of accepted genuine pairs at threshold, )

Number of all genuine pairs, #?
. (1.2)

��'(#=, )) =
Number of accepted impostor pairs at threshold, )

Number of all impostor pairs, #=
. (1.3)

To achieve a lower FAR, one would like to lower the threshold ) , which would cause a lower TAR,

too. Therefore, we can evaluate the performance by choosing the threshold based on a desired FAR

value.

In face identification, also known as 1:N comparison, the system is given a gallery set with

images of known identities. Then, given a probe face image, the system needs to determine which

person in the gallery the input face belongs to. In particular, depending on whether there exists

non-mate probes (whose corresponding subject is not in the gallery), the identification protocol

can be further categorized into closed-set identification and open-set identification. In the open-set

identification, the system needs to first determine whether the input face identity is in the gallery

before trying to identify him/her. For closed-set identification, rank retrieval rate is used to evaluate

the performance as shown below:

'4CA84E0;'0C4(#,  ) = Number of successfully retrieved probes with top  returns
Number of all probes #

(1.4)
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and True Positive Identification Rate (TPIR) at False Positive Identification Rate is used to report

the performance of open-set face recognition benchmarks:

)%�'(#,)) = Number of retrieved mate probes with score above threshold )
Number of all mate probes #

(1.5)

�%�'(#,)) = Number of non-mate probes with score above threshold )
Number of all non-mate probes #

(1.6)

Similar to TAR@FAR for verification, the threshold ) here is chosen depending on the FPIR. For

probes with a mate in the gallery, a probe’s mate is considered to be successfully retrieved only if it

is returned as top-1 result.

1.5.2 Datasets

Here, we briefly introduce all the datasets that we use for training and evaluating the AFR systems.

Since all the models in our work are based on deep neural networks, which require a large number

of images to fit the parameters, we use two public web-crawled datasets for training:

CASIA-Webface [50] contains about 0.5M high-quality celebrity photos of 10, 575 subjects captured

“in the wild”. All the face images are collected from internet by searching celebrity names.

MS-Celeb-1M [2] contains 8M face photos of about 85K subjects. The images are collected in

a similar way as CASIA-Webface. However, the original MS-Celeb-1M contains a large number

of mislabeled images. Therefore, a cleaned version is usually used instead of the original one.

In this thesis, we use a publicly available clean list1 and the clean list from ArcFace [38] for the

experiments.

We show some example images from MS-Celeb-1M in Figure 1.3 (a). The images in CASIA-

Webface are similar to them. For evaluation, we consider 8 different benchmarks, whose images

present different types and degrees of facial variations:

LFW [3] contains 13, 233 near-frontal and high-quality face photos of 5, 749 subjects. The

verification protocol used in this thesis includes 6, 000 face pairs.

1https://github.com/inlmouse/MS-Celeb-1M_WashList.
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(a) CASIA-WebFace (2014) (b) MS-Celeb-1M (2016) (c) LFW (2007)

(d) YTF (2011) (e) MegaFace (2016) (f) CFP (2016)

(h) IJB-A (2015) (i) IJB-S (2018) (j) TinyFace (2019)

Figure 1.3 Example images of six representative datasets. The images are sampled from MS-
Celeb-1M [2], LFW [3], CFP [4], IJB-A [5], IJB-S [1] and TinyFace [6] respectively.

YTF [51] contains 3, 425 videos of 1, 595 subjects. The verification protocol used in this thesis

includes 5, 000 video pairs.

MegaFace [52] contains 1M face images from Flicker as distractors. The FaceScrub dataset is used

as the probe set in our experiments, which contains 3, 530 high-quality face images of 80 subjects.

CFP [4] contains 7, 000 frontal/profile face photos of 500 subjects. We only test on the frontal-profile
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(FP) protocol, which includes 7, 000 pairs of frontal-profile faces.

IJB-A [5] is a template-based benchmark, containing 25, 813 faces images of 500 subjects. Each

template includes a set of still photos or video frames. Compared with previous benchmarks, the

faces in IJB-A have larger variations and present a more unconstrained scenario.

IJB-C [42] is an extension of IJB-A with 140, 740 faces images of 3, 531 subjects. The verification

protocol of IJB-C includes more impostor pairs so that we can compute True Accept Rates (TAR) at

lower False Accept Rates (FAR).

IJB-S [1] is a surveillance video benchmark containing 350 surveillance videos spanning 30 hours

in total, 5, 656 enrollment images, and 202 enrollment videos of 202 subjects. Many faces in this

dataset are of extreme pose or low-quality, making it one of the most challenging face recognition

benchmarks.

TinyFace [6] is a dataset to evaluate the face recognition models on low-resolution face images.

The dataset contains 5,139 labelled facial identities given by 169, 403 natural low-resolution face

images. Closed-set identification rate is used to evaluate the systems on this benchmark.

Example images from some of these datasets are shown in Figure 1.3.

1.6 Dissertation Contributions

The main contributions of this dissertation are as follows:

• A spatial transformer-based attention module that automatically detects salient facial regions

to extract local features. The attention module could be trained without labels.

• A framework that efficiently combines multiple region attention modules to extract local

features and incorporates them into global facial representation. Experimental results on

unconstrained face databases show that the method could effectively boost the performance of

a base face matcher when more salient regions are combined.

• A new type of face representation that takes feature uncertainty into account. Given a
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pre-trained deterministic deep face embedding, the proposed method could convert it into

a probabilistic face embedding (PFE) by representing each face image as a distribution in

the latent space. The probabilistic embedding adds additional interpretability to deep face

representations and can be used as a quality assessment method to control the enrollment of

face images.

• A probabilistic method that effectively utilizes data uncertainty to combine and compare

different probabilistic face embeddings.

• An universal feature learning framework that learns a set of sub-embeddings to tackle different

variations in unconstrained face recognition. A confidence-controlled face identification loss

and variation-based decouple loss are proposed to regularize the facial features to handle

multiple variations. Experiments show that the proposed method could incrementally enhance

the feature representations when more types of variations are introduced into the training

data. Combining decoupled sub-embeddings with PFE leads to SOTA performance on several

challenging face recognition benchmarks.

• A semi-supervised feature learning framework that incorporates an auxiliary unlabeled dataset

into the training of deep face embeddings. A generator is trained to automatically discover the

latent styles in the unlabeled dataset such that it can be used to augment the labeled dataset.

Then, we can jointly regularize the embedding model from both the image space and the

feature space to improve its generalizability.

1.7 Thesis Structure

Ch. 2 of this thesis presents a framework of enhancing global face features with local information.

spatial transformers are used as attention modules to automatically localize salient facial regions

to extract local features, which are then fused into the holistic features. Ch. 3 presents a new

type of face representation, namely Probabilistic Face Embeddings (PFEs). PFEs incorporate data
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uncertainty into face representations and are able to improve face recognition performance by taking

uncertainty into account during template fusion and template comparison. In Ch. 4, we propose

a framework to learn a universal face representation. Different types of data augmentation are

combined to mimic a setting where one has access to a large training dataset of unconstrained faces

and new loss functions are proposed to learn decoupled features from difficult training samples.

Ch. 5 further studies the possibility of using an unlabeled dataset to augment a labeled training set

in terms of diversity, where we show improved model generalizability to unconstrained faces. The

last chapter discusses the conclusions of this dissertation and presents directions for future work.

The experimental results of the work in this thesis were previously presented in [53, 54, 55, 56].
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Chapter 2

Learning Local Face Features with Visual

Attention

2.1 Introduction

As shown in Figure 1.2, most AFR systems adopt a normalization step for pre-processing to ensure

the input faces are in a similar position and orientation, reducing the intra-class variations and

making the recognition task easier [27, 31, 50, 30, 57]. However, as the complexity of unconstrained

face images increase, even though aligned, 2D face images can still appear very differently, as shown

in Figure 2.1. As such, constructing global face models becomes a very difficult task. Because of

this difficulty, an attractive idea is to model different facial parts individually and combine them to

generate a global representation. Recognizing complex objects by their parts is a popular technique

in pattern recognition. In the well-known Deformable Part Model (DPM) [58], different part filters

are learned and combined with a root filter to detect complex objects in the images efficiently.

Similar ideas, such as decomposing faces into different parts, have been shown to work well for

face detection [59, 60, 61]. A highly successful, parts-based face recognition approach, called the

DeepID series [28, 29, 31], cropped a large number of different local patches either at fixed positions

or around landmarks in the face image, trained a single deep convolutional network on each of these
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LFW IJB-B

Figure 2.1 Example images in LFW and IJB-B after alignment using MTCNN [7]. The image in
the first row are well aligned and all the facial parts are located in a consistent way. The face images
in the second and third rows, although aligned, still appear in a quite different way because of large
pose variations or occlusion.

regions, and fused the representations from all the networks by training on a validation dataset. The

success of works like DeepID indicate that although face is a nearly rigid object, building models

for different face regions can also help improve the performance of face recognition systems.

One of themost important problems in parts-based face recognition approaches, is the localization

of the target parts. In other words, although the faces are aligned, parts of a face shown in a

fixed region could be quite different for different people at different poses, which reduces the

discrimination ability of these parts-based models. One approach to solving this problem is to use

the detected landmarks to crop rectangular patches around those respective landmarks. However,

even with these landmarks, it is still difficult to decide what regions we should crop since some

regions may be useful for recognition, and others may not. Given this difficulty, we turn to another

technique to find and localize discriminative regions automatically that has become popular in the

vision community, i.e. visual attention mechanism [62, 63, 64, 65].

By using a differentiable visual attention network, we can build an end-to-end system where

the global recognition network and several parts-based networks are trained simultaneously. In

this proposed end-to-end system, a fully connected layer for fusing features can be trained together

with the recognition networks, which helps the sub-networks to explore more discriminative
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features complementary to the global representation. In addition, the visual attention network

learns to localize distinct local regions automatically without any landmark supervision. Our

experiments show that the proposed approach can further improve the state-of-the-art networks on

challenging benchmarks such as IJB-A and IJB-B. More concisely, contributions of this chapter can

be summarized as follows:

• We designed an end-to-end face recognition system including global network, parts-based

networks, attention network and a fusion layer that are trained simultaneously.

• We showed that discriminative regions can be be localized automatically without using facial

landmarks by using a visual attention network.

• We showed that adding parts-based networks can further improve the performance of state-of-

art deep networks on challenging protocols, including BLUFR, IJB-A and IJB-B, with little

complexity increase.

2.2 Related Work

2.2.1 Parts-based Deep Face Recognition

Our proposed approach is predominantly inspired by the success of the DeepID series [28, 29, 31].

In their first work [28], ten different regions were cropped, respectively, from a face image (five

large regions at fixed positions and five small regions around detected landmarks). For each region,

RGB and gray-scale patches of five different scales were generated and each trained with a single

convolutional neural network to output a feature vector of 160 dimensions. The features were then

concatenated and the dimensionality was reduced with additional training on a validation set. In

DeepID2, 400 patches at different positions, scales, color channels and horizontal flipping were

cropped and used for training 200 different networks. After feature selection, 25 patches were selected

to extract a 4, 000-dimensional feature vector, which was finally reduced to 180-dimensional vector
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Figure 2.2 An example architecture of the proposed end-to-end network with  = 2 sub-networks.
A 96 × 112 image is first fed into the base-network, which is a single CNN for face recognition. The
feature map of the last convolutional layer of the base-network is then both used to learn a global
representation with a fully connected layer, and  transformation matrices with an attention network
of two-stacked fully-connected layers. The regions of interest are sampled into patches of size of
48 × 48.  smaller CNNs as sub-networks follow to learn local features from these automatically
localized patches. All the global and local features are then concatenated and fused by another fully
connected layer.

with PCA. The authors showed that combining these features from different regions substantially

improved the face recognition performance.

2.2.2 Visual Attention Network

Visual attention is a mechanism to automatically localize objects of interest in an image or parts of an

object. Ba et al. [62] used a recurrent attention model to locate the objects in order to better perform

multi-object classification. A similar scheme was used in [63] to generate captions for images.

Xiao et al. [66] proposed to use visual attention proposals for fine-grained object classification by

clustering the channels of a feature map into different groups and generating patches based on the

activation of individual groups. In [64], a recurrent structure of a CNN and attention proposal

network is proposed to zoom into small regions for fine-grained classification. The input of the

attention network is the feature map of the last convolutional layer rather than raw images so that the
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computational cost can be reduced. We adopt a similar strategy in our network. Only two levels

of CNNs are used in our approach but more than one patch is generated by the attention network.

In addition, we use Spatial Transformers [65], which use a projective transformation matrix \ to

transform the original input image, enabling us to better sample patches. By multiplying \ and

the coordinates of pixels in the output image, the spatial transformer computes the corresponding

coordinates of each pixel in the input image, and samples them through bi-linear interpolation. This

transformer is differentiable, allowing the attention network to be learned end-to-end without labels.

In [65], experiments showed that the spatial transformer network is able to automatically localize

distorted digits, and street view house numbers. Subsequently, the performance of fine-grained

classification is improved by generating multiple region proposals. Finally, Zhong et al. [67] showed

that by training an attention network with spatial transformers, an end-to-end face recognition

network which automatically learns the alignment can achieve comparable results to those with

pre-aligned images.

2.3 Approach

In this section, we outline an end-to-end network which includes a base-network for learning a

global representation from the whole face image, several sub-networks for modeling specific facial

parts, an attention network for generating region proposals to feed into the sub-networks and a fusion

layer to fuse the global and local features.

2.3.1 Overall Architecture

A graphic illustration of the overall architecture is shown in Figure 2.2. The input image size is

96 × 112. The proposed network begins with a base-network which can be any single convolutional

neural network for face recognition. In particular, we employ the Face-ResNet proposed in [68]

because of its good generalization ability and its state-of-the-art performance. In order to reduce the

computational cost of the attention network, we adopt a similar approach as [64], where the attention
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Table 2.1 The architecture of the attention network.

Type Output Size

Batch Norm + Fully Connected 128
Batch Norm + Fully Connected 8 ×  

network is connected to the last hidden convolutional layer rather than the input image. The attention

network outputs  projective transformation matrices \, each of which has 8 parameters. Here,  is

a hyperparameter. For each of the  transformation matrices, a spatial transformer is used to sample

a 48×48 patch from the region of interest via bi-linear interpolation. The sampled patch is then used

by a smaller sub-network to learn local features. The global representation is of 512 dimensions,

while the length of each local feature vector is 128 dimensions. All of them are concatenated

together and fused by a fully connected layer to generate a 512-dimensional representation.

A softmax layer is added to both the global representation and the fused representation for

classification in the training phase. Notice that the gradient is not propagated back through the fusion

layer to the global representation. This allows the base-network to be trained independently, and it

encourages the sub-networks to explore new features complementary to the global representation.

Experimental result shows that such an approach enables the model to converge faster and leads

to better generalizability. The softmax mainly learns to scatter the features of different classes,

which is correspondent to the inter-class dissimilarity. Therefore, in order to reduce the intra-class

variation, we also adopt the center loss proposed in [32] with the recommended setting of U = 0.5

and _ = 0.003. The center loss is applied to both the global representation and fused representation.

2.3.2 Attention Network

Details about the attention network are shown in Table 2.1. Because the input to this network

is the feature map of the last convolutional layer of the base-network that contains rich semantic

information, the attention network is composed of only two fully-connected layers, saving a large

amount of computational resources. We add a batch normalization layer [69] along with a ReLU
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Table 2.2 The architecture of the sub-networks.

Type Output Size Filter Size/Stride
Convolution 48 × 48 × 32 3 × 3/1
Convolution 48 × 48 × 64 3 × 3/1
Max Pooling 24 × 24 × 64 2 × 2/2
Convolution 24 × 24 × 64 3 × 3/1
Convolution 24 × 24 × 128 3 × 3/1
Max Pooling 12 × 12 × 128 2 × 2/2
Convolution 12 × 12 × 96 3 × 3/1
Convolution 12 × 12 × 192 3 × 3/1
Max Pooling 6 × 6 × 192 2 × 2/2
Convolution 6 × 6 × 128 3 × 3/1
Convolution 6 × 6 × 256 3 × 3/1
Fully Connected 128

activation layer [70] both before and after the first fully-connected layer to accelerate the training of

attention network. The second fully connected layer outputs  transformation matrices. Then a

spatial transformer module is used to sample the corresponding partial regions according to each of

these matrices. Finally, there are several implementation subtleties to note.

First, because we are using a projective transformation, the sampled region is not restricted to

be a rectangular shape. This means that the original image could be warped. However, Zhong et

al. [67] showed that a better performance can be achieved with a projective transformation than

a similarity transformation for face alignment. One plausible explanation for this is that neural

networks do not perceive images in the same way as human do. As such, networks are able to learn

better features from warped images.

Second, we multiply the learning rate of the attention network by 0.0001. Without performing

this scaling, the output transformation deviates too much before the network is able to learn a set of

reasonable parameters.

Third, the weights of the last fully connected layer are initialized as zero, while its biases are

initialized as the flatten vector of the initial K transformation matrices. In experiments, we use

manual initialization for these matrices if  is small and random initialization if  is large.
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2.3.3 Sub-Network for Modeling Facial Parts

Since the information in a local region is relatively small, it would be unnecessarily complex to use

a network with as many parameters as the base-network to learn representations from these patches.

As such, we use a simple architecture for all the sub-networks, as shown in Table 2.2. It is very

similar to the network used in [50] except that it uses fewer layers. We add a fully connected layer

at the end of the sub-network to learn a compressed local feature vector. Finally, we add a batch

normalization along with a ReLU layer after every convolution and fully connected layer. Because

the sub-networks take a smaller input and have fewer parameters compared with base-network, they

only add little extra run-time to the whole model, as shown in 2.4.1.

2.3.4 Promoting Sub-networks for Feature Exploration

Although theoretically the larger the number of sub-networks, the more complementary local features

can be learned to improve the robustness of the fused representation, we find that the improvement

of the performance after adding a large number of sub-networks is usually negligent. An explanation

for this is found by the magnitude of the weights in the fusion layer for each dimension in the

concatenated feature. Figure 2.3 shows that many local features have very small weights in the

fusion layer. This indicates that there are some sub-networks which contribute little to the final fused

representation. Additionally, this could diminish the loss propagated back to the base-networks and

prevents the sub-networks from learning efficiently. As such, some sub-networks become “dead”

during training. Therefore, inspired by [71], we add a promotion loss to explicitly promote the

weights in the fusion layer for those local features. Notice that in [71], the promoted parameters are

those related to a certain output class, however, in our case they are those related to a certain input

dimension. In particular, let’s denote an input feature vector as x = [x6, x;] where x6 is the global

feature vector and x; is the vector of all local features concatenated into one column. The fused

representation H is obtained with a fully connected layer H = ,x + b. Corresponding to G6 and G; ,
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, can be viewed as the concatenation of two matrices,6 and, ; , where

H = ,6x6 +, ;x; + b (2.1)

The goal of the proposed promotion loss !? is to encourage the local weights to be similar to the

global weights:

!? =
1
� ;

�;∑
8=0

, ;
8

2 − U
2
, (2.2)

where

U =
1
�6

�6∑
8=0

,6

8

2 (2.3)

and � ; , �6 refer to the number of dimensions in the local and global feature vectors, respectively.

, ;
8
refers to the 8th column of, ; , similar for,6

8
. The promotion loss is added as a regularization

loss with coefficient _. As shown in 2.3, after adding promotion loss, the distribution of the weights

in the fusion layer become much more uniform, thus avoiding the problem of “dead" sub-network

and encouraging the sub-networks to find more discriminative features.

2.4 Experiments

2.4.1 Implementation Details

. We conduct all of our experiments using Tensorflow 1.2. First, we implement the Face-ResNet

in [68]. We follow the same settings for the learning rate and center loss. All the images are first

aligned using landmarks detected using MTCNN [7] and trained on the CASIA-Webface dataset [50].

The resulting network achieves a verification accuracy of 98.77% on the standard LFW protocol.

This result is quite comparable to the performance originally reported in [68], however, we do note

a slight drop in performance (from 99.00% to 98.77%). The most plausible explanation is that we

are using a different library for implementation. All the following experiments are compared to this

baseline result.
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Figure 2.3 Magnitude of the weights of the fusion layer over different input dimensions when
using different _ for the promotion loss. Without promotion loss, many dimensions have little
weight, resulting in “dead" sub-networks. Dropout helps to promote the weights, but diminishes the
performance.

For the sub-networks, we adopt two schemes to initialize the transformation matrices \:

• Model A: a small network with  = 3 rectangular regions initialized in the upper, middle and

bottom face, respectively.

• Model B: a relatively larger network with  randomly initialized rectangular regions, whose

widths and heights are between 30% and 60% of the original image.

The reason that we manually initialize Model A is that when  is rather small, the randomly

initialized regions are not guaranteed to be distributed well. For example, they may have a large

amount of overlap and only cover a small part of the entire face image. This would result in leaving

behind crucial information useful for recognition. Therefore, we manually choose three rectangular

regions that cover different parts of the face for Model A.

We follow the same training settings as [68] with a batch size of 256 and 28, 000 training steps.

The promotion loss weight is set to _ = 105 based on the results of a grid search. We use two Nvidia

Gefore GTX 1080 Ti GPUs to train Model A and four for Model B. As for time complexity, there is

only a slight increase in run-time: for base-network, Model A and Model B, it takes 0.003s, 0.003s

and 0.004s per image to extract features with one GPU, respectively.

In order to evaluate the proposed method and implementation, we first study the effectiveness of

the proposed modules using LFW dataset with both standard and BLUFR protocol [8]. Then we
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Figure 2.4 Example pairs that are misclassified by base-network but are classified correctly on
LFW dataset. Pairs in the green box are genuine pairs and pairs in the red box are impostor pairs.
We use the average threshold of BLUFR [8] face verification for VR@FAR= 0.1% on 10 splits.

evaluate the proposed model on more challenging IJB-A [5] and IJB-B [41] benchmarks. Because

the purpose of this chapter is to present a system to improve any face recognition network instead

of achieving the best result on these specific protocols, and since most results on the benchmarks

are based on different architectures and training datasets, we believe it is not fair to compare the

absolute performances. Thus, we only compare the relative performance of the proposed system

with the original base-network.

2.4.2 Evaluation of Proposed Modules on LFW

In the proposed network, we use an attention network to localize  discriminative regions rather

than cropping a fixed patch, train a fusion layer to compress the concatenated feature and add

promotion loss encouraging the sub-networks to explore more discriminative features. Here we

evaluate the effectiveness of these modules by comparing the results with and without these modules

on two protocols on LFW dataset: standard and BLUFR [8]. The standard verification protocol of
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Table 2.3 Evaluation results of the proposed model with/without certain modules on standard
LFW and BLUFR protocols. “AN” means "Attention Network"; “FL” means "Fusion Layer"; "PL"
refers to "Promotion Loss". “Y” indicates the module is used while “N” indicates that module is not
used. Accuracy is tested on the standard LFW verification protocol. Verification Rate (VR) and
Detection and Identification Rate (DIR) are tested on the BLUFR protocol.

Type AN FL PL Accuracy VR DIR Rank-1
@FAR= 0.1% @FAR= 1%

Base-net 98.77% 94.96% 72.96%
Model B N Y Y 98.67% 95.54% 74.33%
Model B Y N Y 98.78% 95.63% 76.37%
Model B Y Y N 98.75% 95.83% 75.75%
Model A Y Y Y 98.85% 95.90% 77.51%
Model B Y Y Y 98.98% 96.44% 77.96%

the original LFW dataset contains only 6, 000 pairs of faces in all, which is insufficient to evaluate

deep learning methods, evidenced by the fact that results are almost saturated on this protocol.

Because of this, Liao et al. [8] made use of the whole LFW dataset to build the BLUFR protocol.

In this protocol, a 10-fold cross-validation test is defined for both face verification and open-set

face identification. For face verification, a verification rate (VR) is reported for each split with

strict false alarm rate (FAR= 0.1%) by comparing around 156, 915 genuine pairs and 46, 960, 863

imposter pairs1, which is closer to real-world scenario than the accuracy metric in the standard

LFW protocol. For open-set identification, an identification rate (DIR) at Rank-1 corresponding

to FAR= 1% is computed. We first test the performance of Model B without certain modules to

ensure their effectiveness. Then we train the proposed Model A and Model B with all modules and

compare them with base-network.

In Table 2.3, Base-net indicates the baseline single CNN network, which is used as the base-

network in our model. Attention Net indicates whether an attention network is used to automatically

localize the regions for sub-networks or crop the fixed regions that are randomly initialized. Fusion

Layer indicates whether to add a fully connected fusion layer or directly use the concatenated layer

as the representation. Promotion Loss means whether we add promotion loss as regularization to

the fusion layer. The accuracy is tested on the standard protocol, while Verification Rate (VR) and

1the numbers are averaged over ten splits.
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Figure 2.5 Examples of the localized regions in Model A. The attention network localizes the eyes,
nose and mouth accurately by learning without landmark labels. These accurately localized patches
make it an easier task for the sub-networks to learn robust features from certain facial parts.

Detect and Identification Rate (DIR) are tested on BLUFR protocol. Although all the results are

similar on standard LFW protocol, distinct differences can be observed in BLUFR results. This is

because standard protocol only contains 6, 000 pairs which is not adequate to precisely reflect the

performance of a highly sophisticated model. Based on the results on BLUFR, we can see that Model

B consistently outperforms base-network even without certain modules. And also every module is

making a contribution and is essential to guarantee the final performance of the whole model. After

using all modules, the proposed Model A and Model B surpasses the baseline by 4% in terms of

DIR@FAR= 1% at rank-1. This demonstrates that the proposed idea of an auto-aligned parts-based

model does improve the performance of a single neural network. And with more sub-networks

added, Model B (12 sub-networks) consistently outperforms Model A (3 sub-networks).

To further evaluate the attention networks, we visualize the localized patches in Model A. Some

examples are shown in Figure 2.5. Notice the different distribution of facial parts, even after

alignment, due to the challenging pose of the input image. The attention network can still accurately

find the target facial parts. In the localized patches in each column, all the facial parts are distributed

in a similar way. These accurately localized patches make it an easier task for the sub-networks to
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Table 2.4 Evaluation results on IJB-A 1:1 Comparison and 1:N Search protocols.

TAR@FAR (Verification) CMC (Closed-set Identification) FNIR (Open-set Identification)
Type 0.001 0.01 Rank-1 Rank-5 0.01 0.1

Base-net 0.542 ± 0.0917 0.7883 ± 0.0917 0.882 ± 0.0190 0.954 ± 0.0079 0.426 ± 0.0170 0.355 ± 0.0140
Model A 0.583 ± 0.0832 0.8075 ± 0.0264 0.889 ± 0.0068 0.957 ± 0.0068 0.418 ± 0.0147 0.353 ± 0.0137
Model B 0.602 ± 0.0692 0.8231 ± 0.0219 0.898 ± 0.0092 0.960 ± 0.0061 0.411 ± 0.0164 0.353 ± 0.0142

Table 2.5 Evaluation results on IJB-B 1:1 Baseline Verification and 1:NMixedMedia Identification
protocols.

TAR@FAR (Verification) CMC (Closed-set Identification) FNIR (Open-set Identification)
Type 0.001 0.01 Rank-1 Rank-5 0.01 0.1

Base-net 0.631 0.851 0.749 0.861 0.149 0.032
Model A 0.652 0.861 0.768 0.875 0.139 0.031
Model B 0.659 0.865 0.769 0.874 0.135 0.032

learn robust features from certain facial parts. The attention network also allows adjusting which

part to localize so that the sub-networks can find more discriminative features. Notice that the

attention network is trained without the landmark labels and as such, the computation is almost free.

2.4.3 Evaluation on IJB-A and IJB-B Benchmarks

The IARPA Janus Benchmarks, including IJB-A and IJB-B, were released to push forward the

frontiers of unconstrained face recognition systems. In IJB-A, a manually labeled dataset containing

images both from photos and video frames is used to build a protocol for face identification (1:N

Search) and face verification (1:1 Comparison). In comparison to LFW, the 5, 712 images and 2, 085

videos in the IJB-A benchmark have a wider geographic variation, larger pose variation and images

of low resolution or heavy occlusion, making it a much harder benchmark than both standard LFW

and BLUFR benchmarks. Again, a 10-fold cross-validation test is designed for both identification

and verification in IJB-A. True Accept Rate (TAR) at False Accept Rate (FAR) is used to evaluate

verification performance. For closed-set identification, Cumulative Match Characteristic (CMC)

measures the fraction of genuine gallery templates that are retrieved within a certain rank. And

False Negative Identification Rate (FNIR) at False Positive Identification Rate (FPIR) is reported to
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Figure 2.6 Example pairs that are misclassified by base-network but are classified correctly by
Model B on IJB-B dataset. Pairs in the green box are genuine pairs and pairs in the red box are
impostor pairs. We use the threshold of IJB-B 1:1 Baseline Verification for TAR@FAR= 0.1%.

evaluate the performance in terms of open-set identification.

IJB-B is an extension of IJB-A benchmark. It consists of 21, 798 still images and 55, 026 frames

from 7, 011 videos from 1, 845 subjects. There is no cross-validation in IJB-B. In particular, we use

the 1:1 Baseline Verification protocol and 1:N Mixed Media Identification protocol for IJB-B.

From the results in Table 2.4 and Table 2.5, we can see that the proposed models do improve

the performance of the base-net on both the IJB-A and IJB-B benchmarks. This shows the

effectiveness of the proposed idea which fuses features from local regions together with a global

feature representation, although the base-network is already quite sophisticated. Second, Model B

outperforms Model A in most protocols, which indicates that more local regions and sub-networks

could help achieve even larger performance gains.
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2.5 Conclusion

In this chapter, we have proposed a scheme for incorporating parts-based models into state-of-the-art

CNNs for face recognition. A set of sub-networks are added to learn features from certain facial parts.

An spatial transformer-based attention network learns to automatically localize the discriminative

regions. We have further added a fusion layer to combine the global and local features, which, with

the proposed promotion loss, encourages the sub-networks to find more discriminative features. The

proposed approach can be applied to any single CNN to build an end-to-end system. Experiments

on the most novel and challenging benchmarks show that the proposed strategy can help improve

the performance of a single CNN without significant increase in run-time. Evidence suggests that

we can further improve the performance with even more sub-networks.
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Chapter 3

Uncertainty Estimation for Deep Face

Recognition

3.1 Introduction

When humans are asked to describe a face image, they not only give the description of the facial

attributes, but also the confidence associated with them. For example, if the eyes are blurred in

the image, a person will keep the eye size as an uncertain information and focus on other features.

Furthermore, if the image is completely corrupted and no attributes can be discerned, the subject

may respond that he/her cannot identify this face. This kind of uncertainty (or confidence) estimation

is common and important in human decision making.

On the other hand, the representations and similarity metrics used in state-of-the-art face

recognition systems are generally confidence-agnostic. These methods depend on an embedding

model (e.g. Deep Neural Networks) to give a deterministic point representation for each face image

in the latent feature space [30, 32, 34, 36, 38]. A point in the latent space represents the model’s

estimation of the facial features in the given image. If the error in the estimation is somehow

bounded, the distance between two points can effectively measure the semantic similarity between

the corresponding face images. But given a low-quality input, where the expected facial features are

ambiguous or absent in the image, a large shift in the embedded points is inevitable, leading to false
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Figure 3.1 Difference between deterministic face embeddings and probabilistic face embeddings
(PFEs). Deterministic embeddings represent every face as a point in the latent space without regards
to its feature ambiguity. Probabilistic face embedding (PFE) gives a distributional estimation of
features in the latent space instead. Best viewed in color.

recognition (Figure 3.1a).

To address the above problems, we propose Probabilistic Face Embeddings (PFEs), which

give a distributional estimation instead of a point estimation in the latent space for each input face

image (Figure 3.1b). The mean of the distribution can be interpreted as the most likely latent

feature values while the span of the distribution represents the uncertainty of these estimations. PFE

can address the unconstrained face recognition problem in a two-fold way: (1) During matching

(face comparison), PFE penalizes uncertain features (dimensions) and pays more attention to more

confident features. (2) For low quality inputs, the confidence estimated by PFE can be used to reject

the input or actively ask for human assistance to avoid false recognition. Besides, a natural solution

can be derived to aggregate the PFE representations of a set of face images into a new distribution

with lower uncertainty to increase the recognition performance. The implementation of PFE is

open-sourced1. The contributions of the chapter can be summarized as below:

1. An uncertainty-aware probabilistic face embedding (PFE) which represents face images as

distributions instead of points.

2. A probabilistic framework that can be naturally derived for face matching and feature fusion

using PFE.
1https://github.com/seasonSH/Probabilistic-Face-Embeddings

32

https://github.com/seasonSH/Probabilistic-Face-Embeddings


3. A simple method that converts existing deterministic embeddings into PFEs without additional

training data.

4. Comprehensive experiments showing that the proposed PFE can improve face recognition

performance of deterministic embeddings and can effectively filter out low-quality inputs to

enhance the robustness of face recognition systems.

3.2 Related Work

Uncertainty Learning in DNNs To improve the robustness and interpretability of discriminant

Deep Neural Networks (DNNs), deep uncertainty learning is getting more attention [72, 73, 74].

There are two main types of uncertainty: model uncertainty and data uncertainty. Model uncertainty

refers to the uncertainty of model parameters given the training data and can be reduced by collecting

additional training data [75, 76, 72, 73]. Data uncertainty accounts for the uncertainty in output

whose primary source is the inherent noise in input data and hence cannot be eliminated with more

training data [74]. The uncertainty studied in our work can be categorized as data uncertainty.

Although techniques have been developed for estimating data uncertainty in different tasks, including

classification and regression [74], they are not suitable for our task since our target space is not

well-defined by given labels2. Variational Autoencoders [77] can also be regarded as a method for

estimating data uncertainty, but it mainly serves a generation purpose. Specific to face recognition,

some studies [78, 79, 80] have leveraged the model uncertainty for analysis and learning of face

representations, but to our knowledge, ours is the first work that utilizes data uncertainty3 for

recognition tasks.

Probabilistic Face Representation Modeling faces as probabilistic distributions is not a new

idea. In the field of face template/video matching, there exists abundant literature on modeling the

faces as probabilistic distributions [82, 83], subspace [84] or manifolds [83, 85] in the feature space.

However, the input for such methods is a set of face images rather than a single face image, and

2Although we are given the identity labels, they cannot directly serve as target vectors in the latent feature space.
3Some in the literature have also used the terminology “data uncertainty" for a different purpose [81].
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Figure 3.2 Illustration of feature ambiguity dilemma. The plots show the cosine similarity on
LFW dataset with different degrees of degradation. Blue lines show the similarity between original
images and their respective degraded versions. Red lines show the similarity between impostor
pairs of degraded images. The shading indicates the standard deviation. With larger degrees of
degradation, the model becomes more confident (very high/low scores) in a wrong way.

they use a between-distribution similarity or distance measure, e.g. KL-divergence, for comparison,

which does not penalize the uncertainty. Meanwhile, some studies [86, 87] have attempted to build

a fuzzy model of a given face using the features of face parts. In comparison, the proposed PFE

represents each single face image as a distribution in the latent space encoded by DNNs and we use

an uncertainty-aware log likelihood score to compare the distributions.

Quality-aware Pooling In contrast to the methods above, recent work on face template/video

matching aims to leverage the saliency of deep CNN embeddings by aggregating the deep features

of all faces into a single compact vector [88, 89, 90, 91]. In these methods, a separate module learns

to predict the quality of each face in the image set, which is then normalized for a weighted pooling

of feature vectors. We show that a solution can be naturally derived under our framework, which not

only gives a probabilistic explanation for quality-aware pooling methods, but also leads to a more

general solution where an image set can also be modeled as a PFE representation.

3.3 Limitations of Deterministic Embeddings

In this section, we explain the problems of deterministic face embeddings from both theoretical

and empirical views. Let X denote the image space and Z denote the latent feature space of �
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dimensions. An ideal latent spaceZ should only encode identity-salient features and be disentangled

from identity-irrelevant features. As such, each identity should have a unique intrinsic code z ∈ Z

that best represents this person and each face image x ∈ X is an observation sampled from ?(x|z).

The process of training face embeddings can be viewed as a joint process of searching for such a

latent spaceZ and learning the inverse mapping ?(z|x). For deterministic embeddings, the inverse

mapping is a Dirac delta function ?(z|x) = X(z− 5 (x)), where 5 is the embedding function. Clearly,

for any spaceZ, given the possibility of noises in x, it is unrealistic to recover the exact z and the

embedded point of a low-quality input would inevitably shift away from its intrinsic z (no matter

how much training data we have).

The question is whether this shift could be bounded such that we still have smaller intra-class

distances compared to inter-class distances. However, this is unrealistic for fully unconstrained face

recognition and we conduct an experiment to illustrate this. Let us start with a simple example:

given a pair of identical images, a deterministic embedding will always map them to the same point

and therefore the distance between them will always be 0, even if these images do not contain a face.

This implies that “a pair of images being similar or even the same does not necessarily mean the

probability of their belonging to the same person is high”.

To demonstrate this, we conduct an experiment by manually degrading the high-quality images

and visualizing their similarity scores. We randomly select a high-quality image of each subject

from the LFW dataset [3] and manually insert Gaussian blur, occlusion, and random Gaussian noise

to the faces. In particular, we linearly increase the size of Gaussian kernel, occlusion ratio and

the standard deviation of the noise to control the degradation degree. At each degradation level,

we extract the feature vectors with a 64-layer CNN4, which is comparable to state-of-the-art face

recognition systems. The features are normalized to a hyper-spherical embedding space. Then,

two types of cosine similarities are reported: (1) similarity between pairs of original image and its

respective degraded image, and (2) similarity between degraded images of different identities. As

shown in Figure 3.2, for all the three types of degradation, the genuine similarity scores decrease to

4trained on Ms-Celeb-1M [2] with AM-Softmax [35]
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(a) Low-similarity Genuine Pairs (b) High-similarity Impostor Pairs

Figure 3.3 Example genuine pairs from IJB-A dataset estimated with the lowest similarity scores
and impostor pairs with the highest similarity scores (among all possible pairs) by a 64-layer CNN
model. The genuine pairs mostly consist of one high-quality and one low-quality image while the
impostor pairs are all low-quality images. Note that these pairs are not templates in the verification
protocol.

0 while the impostor similarity scores converge to 1.0! These indicate two types of errors that can

be expected in a fully unconstrained scenario even when the model is very confident (very high/low

similarity scores):

(1) false accept of impostor low-quality pairs and

(2) false reject of genuine cross-quality pairs.

To confirm this, we test the model on the IJB-A dataset by finding impostor/genuine image pairs with

the highest/lowest scores, respectively. The situation is exactly as we hypothesized (See Figure 3.3).

We call this Feature Ambiguity Dilemma which is observed when the deterministic embeddings are

forced to estimate the features of ambiguous faces. The experiment also implies that there exist a

dark space where the ambiguous inputs are mapped to and the distance metric is distorted.

3.4 Probabilistic Face Embeddings

To address the aforementioned problem caused by data uncertainty, we propose to encode the

uncertainty into the face representation and take it into account during matching. Specifically,

instead of building a model that gives a point estimation in the latent space, we estimate a distribution

?(z|x) in the latent space to represent the potential appearance of a person’s face5. In particular, we

5following the notations in Section 3.3.
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use a multivariate Gaussian distribution:

?(z|x8) = N(z; -8,22
8 I) (3.1)

where -8 and 28 are both a �-dimensional vector predicted by the network from the 8th input

image x8. Here we only consider a diagonal covariance matrix to reduce the complexity of the face

representation. This representation should have the following properties:

1. The center - should encode the most likely facial features of the input image.

2. The uncertainty 2 should encode the model’s confidence along each feature dimension.

In addition, we wish to use a single network to predict the distribution. Considering that new

approaches for training face embeddings are still being developed, we aim to develop a method that

could convert existing deterministic face embedding networks to PFEs in an easy manner. In the

followings, we first show how to compare and fuse the PFE representations to demonstrate their

strength and then propose our method for learning PFEs.

3.4.1 Matching with PFEs

Given the PFE representations of a pair of images (x8, x 9 ), we can directly measure the “likelihood”

of them belonging to the same person (sharing the same latent code): ?(z8 = z 9 ), where z8 ∼ ?(z|x8)

and z 9 ∼ ?(z|x 9 ). Specifically,

?(z8 = z 9 ) =
∫

?(z8 |x8)?(z 9 |x 9 )X(z8 − z 9 )3z83z 9 . (3.2)

In practice, we would like to use the log likelihood instead, whose solution is given by:

B(x8, x 9 ) = log ?(z8 = z 9 )

= − 1
2

�∑
;=1
(
(`(;)
8
− `(;)

9
)2

f
2(;)
8
+ f2(;)

9

+ log(f2(;)
8
+ f2(;)

9
))

− 2>=BC,

(3.3)
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where 2>=BC = �
2 log 2c, `(;)

8
refers to the ;th dimension of -8 and similarly for f (;)

8
.

Note that this symmetric measure can be viewed as the expectation of likelihood of one input’s

latent code conditioned on the other, that is

B(x8, x 9 ) = log
∫

?(z|x8)?(z|x 9 )3z

= logEz∼?(z|x8) [?(z|x 9 )]

= logEz∼?(z|x 9 ) [?(z|x8)] .

(3.4)

As such, we call it mutual likelihood score (MLS). Different from KL-divergence, this score is

unbounded and cannot be seen as a distance metric. It can be shown that the squared Euclidean

distance is equivalent to a special case of MLS when all the uncertainties are assumed to be the

same:

Property 1 If f (;)
8

is a fixed number for all data x8 and dimensions ;, MLS is equivalent to a scaled

and shifted negative squared Euclidean distance.

Further, when the uncertainties are allowed to be different, we note that MLS has some interesting

properties that make it different from a distance metric:

1. Attention mechanism: the first term in the bracket in Equation (3.3) can be seen as a weighted

distance which assigns larger weights to less uncertain dimensions.

2. Penalty mechanism: the second term in the bracket in Equation (3.3) can be seen as a penalty

term which penalizes dimensions that have high uncertainties.

3. If either input x8 or x 9 has large uncertainties, MLSwill be low (because of penalty) irrespective

of the distance between their mean.

4. Only if both inputs have small uncertainties and their means are close to each other, MLS

could be very high.

The last two properties imply that PFE could solve the feature ambiguity dilemma if the network

can effectively estimate 28.
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Figure 3.4 Fusion with PFEs. (a) Illustration of the fusion process as a directed graphical model.
(b) Given the Gaussian representations of faces (from the same identity), the fusion process outputs
a new Gaussian distribution in the latent space with a more precise mean and lower uncertainty.

3.4.2 Fusion with PFEs

In many cases we have a template (set) of face images, for which we need to build a compact

representation for matching. With PFEs, a conjugate formula can be derived for representation fusion

(Figure 3.4). Let {x1, x2, . . . , x=} be a series of observations (face images) from the same identity

and ?(z|x1, x2, . . . , x=) be the posterior distribution after the =th observation. Then, assuming all

the observations are conditionally independent (given the latent code z). It can be shown that:

?(z|x1, x2, . . . , x=+1) = U
?(z|x=+1)
?(z) ?(z|x1, x2, . . . , x=), (3.5)

where U is a normalization factor. To simplify the notations, let us only consider a one-

dimensional case below; the solution can be easily extended to the multivariate case.

If ?(z) is assumed to be a noninformative prior,i.e. ?(z) is a Gaussian distribution whose

variance approaches∞, the posterior distribution in Equation (3.5) is a new Gaussian distribution

with lower uncertainty.

Further, given a set of face images {x1, x2, . . . , x=}, the parameters of the fused representation
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can be directly given by:

ˆ̀= =
=∑
8=1

f̂2
=

f2
8

`8, (3.6)

1
f̂2
=

=

=∑
8=1

1
f2
8

. (3.7)

In practice, because the conditional independence assumption is usually not true, e.g. video

frames include a large amount of redundancy, Equation ( 3.7) will be biased by the number of images

in the set. Therefore, we take dimension-wise minimum to obtain the new uncertainty.

Relationship to Quality-aware Pooling If we consider a case where all the dimensions share the

same uncertainty f8 for 8th input and let the quality value @8 = 1
f2
8

be the output of the network. Then

Equation (3.6) can be written as

-̂= =

∑=
8=1 @8-8∑=
9 @ 9

. (3.8)

If we do not use the uncertainty after fusion, the algorithm will be the same as recent quality-aware

aggregation methods for set-to-set face recognition [88, 89, 90].

3.4.3 Learning

Note that any deterministic embedding 5 , if properly optimized, can indeed satisfy the properties of

PFEs: (1) the embedding space is a disentangled identity-salient latent space and (2) 5 (x) represents

the most likely features of the given input in the latent space. As such, in this work we consider a

stage-wise training strategy: given a pre-trained embedding model 5 , we fix its parameters, take

-(x) = 5 (x), and optimize an additional uncertainty module to estimate 2(x). When the uncertainty

module is trained on the same dataset of the embedding model, this stage-wise training strategy

allows us to have a more fair comparison between PFE and the original embedding 5 (x) than an

end-to-end learning strategy.

The uncertainty module is a network with two fully-connected layers which shares the same
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input as of the bottleneck layer6. The optimization criteria is to maximize the mutual likelihood

score of all genuine pairs (x8, x 9 ). Formally, the loss function to minimize is

L =
1
|P |

∑
(8, 9)∈P

−B(x8, x 9 ) (3.9)

where P is the set of all genuine pairs and B is defined in Equation (3.3). In practice, the loss

function is optimized within each mini-batch. Intuitively, this loss function can be understood as an

alternative to maximizing ?(z|x): if the latent distributions of all possible genuine pairs have a large

overlap, the latent target z should have a large likelihood ?(z|x) for any corresponding x. Notice that

because -(x) is fixed, the optimization wouldn’t lead to the collapse of all the -(x) to a single point.

3.5 Implementation Details

All the models in the chapter are implemented using Tensorflow r1.9. Two and Four GeForce GTX

1080 Ti GPUs are used for training base models on CASIA-Webface [50] and MS-Celeb-1M [2],

respectively. The uncertainty modules are trained using one GPU.

3.5.1 Data Preprocessing

All the face images are first passed through MTCNN face detector [7] to detect 5 facial landmarks

(two eyes, nose and two mouth corners). Then, similarity transformation is used to normalize the

face images based on the five landmarks. After transformation, the images are resized to 112 × 96.

Before passing into networks, each pixel in the RGB image is normalized by subtracting 127.5 and

dividing by 128.

6Bottleneck layer refers to the layer which outputs the original face embedding.
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3.5.2 Base Models

The base models for CASIA-Webface [50] are trained for 28, 000 steps using a SGD optimizer

with a momentum of 0.9. The learning rate starts at 0.1, and is decreased to 0.01 and 0.001 after

16, 000 and 24, 000 steps, respectively. For the base model trained on Ms-Celeb-1M [2], we train

the network for 140, 000 steps using the same optimizer settings. The learning rate starts at 0.1, and

is decreased to 0.01 and 0.001 after 80, 000 and 120, 000 steps, respectively. The batch size, feature

dimension and weight decay are set to 256, 512 and 0.0005, respectively, for both cases.

3.5.3 Uncertainty Module

Architecture The uncertainty module for all models are two-layer perceptrons with the same

architecture: FC-BN-ReLU-FC-BN-exp, where FC refers to fully connected layers, BN refers to

batch normalization layers [69] and exp function ensures the outputs f2 are all positive values [74].

The first FC shares the same input with the bottleneck layer, i.e. the output feature map of the

last convolutional layer. The output of both FC layers are �-dimensional vectors, where � is the

dimensionality of the latent space. In addition, we constrain the last BN layer to share the same W

and V across all dimensions, which we found to help stabilizing the training.

Training For the models trained on CASIA-WebFace [50], we train the uncertainty module for

3, 000 steps using a SGD optimizer with a momentum of 0.9. The learning rate starts at 0.001, and

is decreased to 0.0001 after 2, 000 steps. For the model trained on MS-Celeb-1M[2], we train the

uncertainty module for 12, 000 steps. The learning rate starts at 0.001, and is decreased to 0.0001

after 8, 000 steps. The batch size for both cases are 256. For each mini-batch, we randomly select 4

images from 64 different subjects to compose the positive pairs (384 pairs in all). The weight decay

is set to 0.0005 in all cases. A Subset of the training data was separated as the validation set for

choosing these hyper-parameters during development phase.
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Table 3.1 Results of models trained on CASIA-WebFace. “Original” refers to the deterministic
embeddings. The better performance among each base model are shown in bold numbers. “PFE”
uses mutual likelihood score for matching. IJB-A results are verification rates at FAR=0.1%.

Base Model Representation LFW YTF CFP-FP IJB-A

Original 98.93 94.74 93.84 78.16Softmax +
Center Loss [32] PFE 99.27 95.42 94.51 80.83

Original 97.65 93.36 89.76 60.82Triplet [30] PFE 98.45 93.96 90.04 61.00
Original 99.15 94.80 92.41 78.54A-Softmax [34] PFE 99.32 94.94 93.37 82.58
Original 99.28 95.64 94.77 84.69AM-Softmax [35] PFE 99.55 95.92 95.06 87.58

Inference Speed Feature extraction (passing through the whole network) using one GPU takes

1.5ms per image. Note that given the small size of the uncertainty module, it has little impact on the

feature extraction time. Matching images using cosine similarity and mutual likelihood score takes

4ns and 15ns , respectively. Both are neglectable in comparison with feature extraction time.

3.6 Experiments

In this section, we first test the proposed PFE method on standard face recognition protocols to

compare with deterministic embeddings. Then we conduct qualitative analysis to gain more insight

into how PFE behaves.

To comprehensively evaluate the efficacy of PFEs, we conduct the experiments on 7 benchmarks,

including the well known LFW [3], YTF [51], MegaFace [52] and four other more unconstrained

benchmarks.

We use the CASIA-WebFace [50] and a cleaned version7 of MS-Celeb-1M [2] as training data,

from which we remove the subjects that are also included in the test datasets8.

7https://github.com/inlmouse/MS-Celeb-1M_WashList.
884 and 4, 182 subjects were removed from CASIA-WebFace and MS-Celeb-1M, respectively.
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Table 3.2 Results of our models (last three rows) trained on MS-Celeb-1M and state-of-the-
art methods on LFW, YTF and MegaFace. The MegaFace verification rates are computed at
FAR=0.0001%. “-” indicates that the author did report the performance on the corresponding
protocol.

Method Training Data LFW YTF MF1 MF1
Rank1 Veri.

DeepFace+ [27] 4M 97.35 91.4 - -
FaceNet [30] 200M 99.63 95.1 - -
DeepID2+ [31] 300K 99.47 93.2 - -
CenterFace [32] 0.7M 99.28 94.9 65.23 76.52
SphereFace [34] 0.5M 99.42 95.0 75.77 89.14
ArcFace [38] 5.8M 99.83 98.02 81.03 96.98
CosFace [36] 5M 99.73 97.6 77.11 89.88
L2-Face [37] 3.7M 99.78 96.08 - -
Baseline 4.4M 99.70 97.18 79.43 92.93
PFEfuse 4.4M - 97.32 - -
PFEfuse+match 4.4M 99.82 97.36 78.95 92.51

3.6.1 Experiments on Different Base Embeddings

Since our method works by converting existing deterministic embeddings, we want to evaluate

how it works with different base embeddings, i.e. face representations trained with different loss

functions. In particular, we implement the following state-of-the-art loss functions: Softmax+Center

Loss [32], Triplet Loss [30], A-Softmax [34] and AM-Softmax [35]9. To be aligned with previous

work [34, 36], we train a 64-layer residual network [34] with each of these loss functions on the

CASIA-WebFace dataset as base models. All the features are ℓ2-normalized to a hyper-spherical

embedding space. Then we train the uncertainty module for each base model on the CASIA-WebFace

again for 3, 000 steps. We evaluate the performance on four benchmarks: LFW [3], YTF [51],

CFP-FP [4] and IJB-A [5], which present different challenges in face recognition. The results are

shown in Table 3.1. The PFE improves over the original representation in all cases, indicating the

proposed method is robust with different embeddings and testing scenarios.
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Table 3.3 Results of our models (last three rows) trained on MS-Celeb-1M and state-of-the-art
methods on CFP (frontal-profile protocol) and IJB-A.

Method Training Data IJB-A (TAR@FAR) CFP-FP0.1% 1.0%
Yin et.al. [92] 0.5M 73.9 ± 4.2 77.5 ± 2.5 94.39
NAN [88] 3M 88.1 ± 1.1 94.1 ± 0.8 -
QAN [89] 5M 89.31 ± 3.92 94.20 ± 1.53 -
Cao et.al. [44] 3.3M 90.4 ± 1.4 95.8 ± 0.6 -
Multicolumn [90] 3.3M 92.0 ± 1.3 96.2 ± 0.5 -
L2-Face [37] 3.7M 94.3 ± 0.5 97.00 ± 0.4 -
Baseline 4.4M 93.30 ± 1.29 96.15 ± 0.71 92.78
PFEfuse 4.4M 94.59 ± 0.72 95.92 ± 0.73 -
PFEfuse+match 4.4M 95.25 ± 0.89 97.50 ± 0.43 93.34

Table 3.4 Results of our models (last three rows) trained on MS-Celeb-1M and state-of-the-art
methods on IJB-C.

Method Training Data IJB-C (TAR@FAR)
0.001% 0.01% 0.1% 1%

Yin et.al. [93] 0.5M - - 69.3 83.8
Cao et.al. [44] 3.3M 74.7 84.0 91.0 96.0
Multicolumn [90] 3.3M 77.1 86.2 92.7 96.8
DCN [94] 3.3M - 88.5 94.7 98.3
Baseline 4.4M 70.10 85.37 93.61 96.91
PFEfuse 4.4M 83.14 92.38 95.47 97.36
PFEfuse+match 4.4M 89.64 93.25 95.49 97.17

Table 3.5 Performance comparison on three protocols of IJB-S. The performance is reported in
terms of rank retrieval (closed-set) and TPIR@FPIR (open-set) instead of the media-normalized
version [1]. The numbers “1%” and “10%” in the second row refer to the FPIR.

Method Training Data Surveillance-to-Single Surveillance-to-Booking Surveillance-to-Surveillance
Rank-1 Rank-5 Rank-10 1% 10% Rank-1 Rank-5 Rank-10 1% 10% Rank-1 Rank-5 Rank-10 1% 10%

C-FAN [91] 5.0M 50.82 61.16 64.95 16.44 24.19 53.04 62.67 66.35 27.40 29.70 10.05 17.55 21.06 0.11 0.68
Baseline 4.4M 50.00 59.07 62.70 7.22 19.05 47.54 56.14 61.08 14.75 22.99 9.40 17.52 23.04 0.06 0.71
PFEfuse 4.4M 53.44 61.40 65.05 10.53 22.87 55.45 63.17 66.38 16.70 26.20 8.18 14.52 19.31 0.09 0.63
PFEfuse+match 4.4M 50.16 58.33 62.28 31.88 35.33 53.60 61.75 64.97 35.99 39.82 9.20 20.82 27.34 0.84 2.83

3.6.2 Comparison with State-Of-The-Art

To compare with state-of-the-art face recognition methods, we use a different base model, which

is a 64-layer network trained with AM-Softmax on the MS-Celeb-1M dataset. Then we fix the

parameters and train the uncertainty module on the same dataset for 12, 000 steps. In the following

experiments, we compare 3 methods:

• Baseline only uses the original features of the 64-layer deterministic embedding along with cosine

9We also tried implementing ArcFace [38] but it does not converge well in our case. So we did not use it.
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similarity for matching. Average pooling is used in case of template/video benchmarks.

• PFEfuse uses the uncertainty estimation 2 in PFE and Equation (3.6) to aggregate the features of

templates but uses cosine similarity for matching. If the uncertainty module could estimate the

feature uncertainty effectively, fusion with 2 should be able to outperform average pooling by

assigning larger weights to confident features.

• PFEfuse+match uses 2 both for fusion and matching (with mutual likelihood scores). Tem-

plates/videos are fused based on Equation (3.6) and Equation (3.7).

In Table 3.2 we show the results on three relatively easier benchmarks: LFW, YTF andMegaFace.

Although the accuracy on LFW and YTF are nearly saturated, the proposed PFE still improves the

performance of the original representation. Note that MegaFace is a biased dataset: because all the

probes are high-quality images from FaceScrub, the positive pairs in MegaFace are both high-quality

images while the negative pairs only contain at most one low-quality image10 . Therefore, neither

of the two types of error caused by the feature ambiguity dilemma (Section 3.3) will show up in

MegaFace and it naturally favors deterministic embeddings. However, the PFE still maintains the

performance in this case. We also note that such a bias, namely the target gallery images being of

higher quality than the rest of gallery, would not exist in real world applications.

In Table 3.3 and Table 3.4 we show the results on three more challenging datasets: CFP, IJB-A

and IJB-C. The images in these datasets present larger variations in pose, occlustion, etc, and facial

features could be more ambiguous. As such, we can see that PFE achieves a more significant

improvement on these three benchmarks. In particular on IJB-C at FAR= 0.001%, PFE reduces

the error rate by 64%. In addition, simply fusing the original features with the learned uncertainty

(PFEfuse) also helps the performance.

In Table 3.5 we report the results on three protocols of the latest benchmark, IJB-S. Again,

PFE is able to improve the performance in most cases. Notice that the gallery templates in the

“Surveillance-to-still” and “Surveillance-to-booking” all include high-quality frontal mugshots,

which present little feature ambiguity. Therefore, we only see a slight performance gap in these two

10The negative pairs of MegaFace in the verification protocol only include those between probes and distractors.
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Table 3.6 Results of different network architectures trained on CASIA-WebFace. “Original” refers
to the deterministic embeddings. The better performance among each base model are shown in bold
numbers. “PFE” uses mutual likelihood score for matching. IJB-A results are verification rates at
FAR=0.1%.

(a) CASIA-Net

Base Model Representation LFW YTF CFP-FP IJB-A

Original 97.70 92.56 91.13 63.93Softmax +
Center Loss [32] PFE 97.89 93.10 91.36 64.33

Original 96.98 90.72 85.69 54.47Triplet [30] PFE 97.10 91.22 85.10 51.35
Original 97.12 92.38 89.31 54.48A-Softmax [34] PFE 97.92 91.78 89.96 58.09
Original 98.32 93.50 90.24 71.28AM-Softmax [35] PFE 98.63 94.00 90.50 75.92

(b) Light-CNN

Base Model Representation LFW YTF CFP-FP IJB-A

Original 97.77 92.34 90.96 60.42Softmax +
Center Loss [32] PFE 98.28 93.24 92.29 62.41

Original 97.48 92.46 90.01 52.34Triplet [30] PFE 98.15 93.62 90.54 56.81
Original 98.07 92.72 89.34 63.21A-Softmax [34] PFE 98.47 93.44 90.54 71.96
Original 98.68 93.78 90.59 76.50AM-Softmax [35] PFE 98.95 94.34 91.26 80.00

protocols. But in the most challenging “surveillance-to-surveillance” protocol, larger improvement

can be achieved by using uncertainty for matching. Besides, PFEfuse+match improves the performance

significantly on all the open-set protocols, which indicates that MLS has more impact on the absolute

pairwise score than the relative ranking.

3.7 Results on Different Architectures

Here, we evaluate the proposed method on two different network architectures for face recognition:

CASIA-Net [50] and 29-layer Light-CNN [95]. Notice that both networks require different image

shapes from our preprocessed ones. Thus we pad our images with zero values and resize them

into the target size. Since the main purpose of the experiment is to evaluate the efficacy of the

uncertainty module rather than comparing with the original results of these networks, the difference

in the preprocessing should not affect a fair comparison. Besides, the original CASIA-Net does not

converge for A-Softmax and AM-Softmax, so we add an bottleneck layer to output the embedding

representation after the average pooling layer. Then we conduct the experiments by comparing

probabilistic embeddings with base deterministic embeddings, similar to Section 3.6.1 . The results

are shown in Table 3.6a and Table 3.6b. Without tuning the architecture of the uncertainty module

nor the hyper-parameters, PFE still improve the performance in most cases.
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Figure 3.5 Repeated experiments on feature ambiguity dilemma with the proposed PFE. The same
model in Figure 3.2 is used as the base model and is converted to a PFE by training an uncertainty
module. No additional training data nor data augmentation is used for training.

(a) Low-score Genuine Pairs (b) High-score Impostor Pairs

Figure 3.6 Example genuine pairs from IJB-A dataset estimated with the lowest mutual likelihood
scores and impostor pairs with the highest scores by the PFE version of the same 64-layer CNN
model in Section 3.3. In comparison to Figure 3.3, most images here are high-quality ones with
clear features, which can mislead the model to be confident in a wrong way. Note that these pairs
are not templates in the verification protocol.

3.7.1 Qualitative Analysis

Why and when does PFE improve performance? We first repeat the same experiments in

Section 3.3 using the PFE representation and MLS. The same network is used as the base model

here. As one can see in Figure 3.5, although the scores of low-quality impostor pairs are still

increasing, they converge to a point that is lower than the majority of genuine scores. Similarly, the

scores of cross-quality genuine pairs converge to a point that is higher than the majority of impostor

scores. This means the two types of errors discussed in Section 3.3 could be solved by PFE. This is

further confirmed by the IJB-A results in Figure 3.6. Figure 3.7 shows the distribution of estimated

uncertainty on LFW, IJB-A and IJB-S. As one can see, the “variance" of uncertainty increases in the

following order: LFW < IJB-A < IJB-S. Comparing with the performance in Section 3.6.2, we can
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Figure 3.7 Distribution of estimated uncertainty on different datasets. Here, “Uncertainty” refers
to the harmonic mean of f across all feature dimensions. Note that the estimated uncertainty is
proportional to the complexity of the datasets. Best viewed in color.

see that PFE tends to achieve larger performance improvement on datasets with more diverse image

quality.

What does DNN see and not see? To answer this question, we train a decoder network on the

original embedding, then apply it to PFE by sampling z from the estimated distribution ?(z|x) of

given x. For a high-quality image (Figure 3.8 Row 1), the reconstructed images tend to be very

consistent without much variation, implying the model is very certain about the facial features in this

images. In contrast, for a lower-quality input (Figure 3.8 Row 2), larger variation can be observed

from the reconstructed images. In particular, attributes that can be clearly discerned from the image

(e.g. thick eye-brow) are still consistent while attributes cannot (e.g. eye shape) be discerned

have larger variation. As for a mis-detected image (Figure 3.8 Row 3), significant variation can be

observed in the reconstructed images: the model does not see any salient feature in the given image.

3.8 Risk-controlled Face Recognition

In many scenarios, we may expect a higher performance than our system is able to achieve or we

may want to make sure the system’s performance can be controlled when facing complex application

scenarios. Therefore, we would expect the model to reject input images if it is not confident. A

49



x 2 mean sample1 sample2 sample3 sample4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.8 Visualization results on a high-quality, a low-quality and a mis-detected image from
IJB-A. For each input, 5 images are reconstructed by a pre-trained decoder using the mean and 4
randomly sampled z vectors from the estimated distribution ?(z|x).

common solution for this is to filter the images with a quality assessment tool. We show that PFE

provides a natural solution for this task. We take all the images from LFW and IJB-A datasets for

image-level face verification (We do not follow the original protocols here). The system is allowed

to “filter out” a proportion of all images to maintain a better performance. We then report the

TAR@FAR= 0.001% against the “Filter Out Rate”. We consider two criteria for filtering: (1) the

detection score of MTCNN [7] and (2) a confidence value predicted by our uncertainty module. Here

the confidence for 8th sample is defined as the inverse of harmonic mean of 28 across all dimensions.

For fairness, both methods use the original deterministic embedding representations and cosine

similarity for matching. To avoid saturated results, we use the model trained on CASIA-WebFace

with AM-Softmax. The results are shown in Figure 3.10. As one can see, the predicted confidence

value is a better indicator of the potential recognition accuracy of the input image. This is an

expected result since PFE is trained under supervision for the particular model while an external

quality estimator is unaware of the kind of features used for matching by the model. Example images

with high/low confidence/quality scores are shown in Figure 3.9.
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Figure 3.9 Example images from LFW and IJB-A that are estimated with the highest (H)
confidence/quality scores and the lowest (L) scores by our method and MTCNN face detector.
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Figure 3.10 Comparison of verification performance on LFW and IJB-A (not the original protocol)
by filtering a proportion of images using different quality criteria.

3.9 Conclusion

We have proposed probabilistic face embeddings (PFEs), which represent face images as distributions

in the latent space. Probabilistic solutions were derived to compare and aggregate the PFE of face

images. Unlike deterministic embeddings, PFEs do not suffer from the feature ambiguity dilemma

for unconstrained face recognition. Quantitative and qualitative analysis on different settings showed

that PFEs can effectively improve the face recognition performance by converting deterministic

embeddings to PFEs. We have also shown that the uncertainty in PFEs is a good indicator for the

“discriminative”quality of face images. In the future work we will explore how to learn PFEs in an

end-to-end manner and how to address the data dependency within face templates.
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Chapter 4

Universal Face Representation Learning

In this chapter, we will talk about the challenges faced by the feature extraction module in AFR

systems and a potential solution to solve it. Almost all modern AFR systems use deep convolutional

neural networks as the feature extraction module. As a black box function, such deep neural networks

are trained to map input images to a feature space with small intra-identity distance and large

inter-identity distance, which has been achieved by prior works through loss design and datasets with

rich within-class variations [30, 32, 34, 36, 38]. However, even very large public datasets manifest

strong biases, such as ethnicity [96, 97] or head poses [98, 99, 100]. This lack of variation leads to

significant performance drops on challenging test datasets, for example, accuracy reported by prior

state-of-the-art [54] on IJB-S or TinyFace [1, 6] are about 30% lower than IJB-A [5] or LFW [3].

Recent works seek to close the domain gap caused by such data bias through domain adaptation,

i.e., identifying specific factors of variation and augmenting the training datasets [99], or further

leveraging unlabeled data along such nameable factors [96]. While nameable variations are hard

to identify exhaustively, prior works have sought to align the feature space between source and

target domains [101, 97]. Alternatively, individual models might be trained on various datasets

and ensembles to obtain good performance on each [102]. All these approaches either only

handle specific variations, or require access to test data distributions, or accrue additional run-time

complexity to handle wider variations. In contrast, we propose learning a single “universal” deep
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Figure 4.1 Traditional recognition models require target domain data to adapt from the high-quality
training data to conduct unconstrained/low-quality face recognition. Model ensemble is further
needed for a universal representation purpose which significantly increases model complexity. In
contrast, our method works only on original training data without any target domain data information,
and can deal with unconstrained testing scenarios.

feature representation that handles the variations in face recognition without requiring access to test

data distribution and retains run-time efficiency, while achieving strong performance across diverse

situations especially on low-quality images (see Figure 4.1).

This chapter introduces several novel contributions in Section 4.2 to learn such a universal

representation. First, we note that inputs with non-frontal poses, low resolutions and heavy occlusions

are key nameable factors that present challenges for “in-the-wild” applications, for which training

data may be synthetically augmented. But directly adding hard augmented examples into training

leads to a more difficult optimization problem. We mitigate this by proposing an identification loss

that accounts for per-sample confidence to learn a probabilistic feature embedding. Second, we seek

to maximize representation power of the embedding by decomposing it into sub-embeddings, each

of which has an independent confidence value during training. Third, all the sub-embeddings are

encouraged to be further decorrelated through two complementary regularization over different

partitions of the sub-embeddings, i.e., classification loss on variations and adversarial loss on
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different partitions. Fourth, we achieve further decorrelation by mining for additional variations

for which synthetic augmentation is non-trivial. Finally, we account for the varying discrimination

power of sub-embeddings for various factors through a probabilistic aggregation that accounts for

their uncertainties.

In Section 4.4, we extensively evaluate the proposed methods on public datasets. Compared to

our baseline model, the proposed method maintains the high accuracy on general face recognition

benchmarks, such as LFW and YTF, while significantly boosting the performance on challenging

datasets such as IJB-C, IJB-S, where new state-of-the-art performance is achieved. Detailed ablation

studies show the impact of each of the above contributions in achieving these strong performance.

In summary, the main contributions of this chapter are:

• A method for learning a universal face representation by associating features with different

variations, leading to improved generalization on diverse testing datasets.

• A confidence-aware identification loss that utilizes sample confidence during training to leverage

hard samples.

• A feature decorrelation regularization that applies both a classification loss on variations and

an adversarial loss on different partitions of the feature sub-embeddings, leading to improved

performance.

• A training strategy to effectively combine synthesized data to train a face representation applicable

to images outside the original training distribution.

• State-of-the-art results on several challenging benchmarks, such as IJB-A, IJB-C, TinyFace and

IJB-S.

4.1 Related Work

Universal representation refers to a single model that can be applied to various visual domains

(usually different tasks), e.g. object, character, road signs, while maintaining the performance of

using a set of domain-specific models [103, 104, 105, 106, 97]. The features learned by such a
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Figure 4.2 Samples from MS-Celeb-1M [2]with augmentation alongside different variations.

single model are believed to be more universal than domain-specific models. Different from domain

generalization [107, 108, 109, 110, 111], which targets adaptability on unseen domains by learning

from various seen domains, universal representation learning does not involve re-training on unseen

domains. Several methods focus on increasing the parameter efficiency by reducing the domain-shift

with techniques such as conditioned BatchNorm [103] and residual adapters [104, 105]. Based on

SE modules [112], [106] propose a domain-attentive module for intermediate (hidden) features of a

universal object detection network. Our work is different from those methods in two ways: (1) it

is a method for similarity metric learning rather than detection or classification tasks and (2) it is

model-agnostic. The features learned by our model can then be directly applied to different domains

by computing the pairwise similarity between samples of unseen classes.

4.2 Proposed Approach

In this section, we first introduce three augmentable variations, namely blur, occlusion and head

pose, to augment the training data. Visual examples of augmented data are shown in Figure 4.2 and

the details can be found in Section 4.3. Then in Section 4.2.1, we introduce a confidence-aware

identification loss to learn from hard examples, which is further extended in Section 4.2.2 by splitting

the feature vectors into sub-embeddings with independent confidence. In Section 4.2.3, we apply
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Figure 4.3 Overview of the proposed method. High-quality input images are first augmented
according to pre-defined variations, i.e., blur, occlusion and pose. The feature representation is
then split into sub-embeddings associated with sample-specific confidences. Confidence-aware
identification loss and variation decorrelation loss are developed to learn the sub-embeddings.

the introduced augmentable variations to further decorrelate the feature embeddings. A method for

discovering further non-augmentable variations is proposed to achieve better decorrelation. Finally,

an uncertainty-guided pairwise metric is proposed for inference.

4.2.1 Confidence-Aware Identification Loss

We investigate the posterior probability of being classified to identity 9 ∈ {1, 2, . . . , #}, given the

input sample x8. Denote the feature embedding of sample 8 as f8 and the 9 th identity prototype vector

as w 9 , which is the identity template feature. A probabilistic embedding network \ represents each

sample x8 as a Gaussian distribution N(f8, f2
8
I) in the feature space. The likelihood of x8 being a

sample of class 9 is given by:

?(x8 |H = 9) ∝ ?\ (w 9 |x8)

=
1

(2cf2
8
) �2

exp(−
f8 − w 9

2

2f2
8

), (4.1)
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where � is feature dimension. Further assuming the prior of assigning a sample to any identity as

equal, the posterior of x8 belonging to the 9 th class is derived as:

?(H = 9 |x8) =
?(x8 |H = 9)?(H = 9)∑#
2=1 ?(x8 |H = 2)?(H = 2)

=

exp(− ‖f8−w 9 ‖2

2f2
8

)∑#
2=1 exp(− ‖f8−w2 ‖2

2f2
8

)
, (4.2)

For simplicity, let us define a confidence value B8 = 1
f2
8

. Constraining both f8 and w 9 on the

ℓ2-normalized unit sphere, we have ‖f8−w 9 ‖2

2f2
8

= B8 (1 − w)
9
f8) and

? (H = 9 |x8) =
exp(B8w)

9
f8)∑#

2=1 exp(B8w)
2 f8)

. (4.3)

The effect of confidence-aware posterior in Equation 4.3 is illustrated in Figure 4.4. When training is

conducted among samples of various qualities, if we assume the same confidence across all samples,

the learned prototype will be in the center of all samples. This is not ideal, as low-quality samples

convey more ambiguous identity information. In contrast, if we set up sample-specific confidence

B8, where high-quality samples show higher confidence, it will push the prototype w 9 to be more

similar to high-quality samples in order to maximize the posterior. Meanwhile, during update of the

embedding f8, it provides a stronger push for low-quality f8 to be closer to the prototype.

Adding loss margin [36] over the exponential logit has been shown to be effective in narrowing

the within-identity distribution. We also incorporate it into our loss:

L′83C = − log
exp(B8w)

H8
f8 − <)

exp(B8w)
H8 f8 − <) +

∑
9≠H8

exp(B8w)
9
f8)
, (4.4)

where H8 is the ground-truth label of x8. Our confidence-aware identification loss (C-Softmax)

is different from cosine loss[36] as follows: (1) each image has an independent and dynamic B8

rather than a constant shared scalar and (2) the margin parameter < is not multiplied by B8. The

57



low-quality 

samples

high-quality 

samples

prototype

(a) w/o confidence

prototype
low-quality 

samples

high-quality 

samples

(b) w/ confidence

Figure 4.4 Illustration of confidence-aware embedding learning on quality-various data. With
confidence guiding, the learned prototype is closer to high-quality samples which represents the
identity better.

independence of B8 allows it to gate the gradient signals of w 9 and f8 during network training in

a sample-specific way, as the confidence (degree of variation) of training samples can have large

differences. Though samples are specific, we aim to learn a homogeneous feature space such that the

metric across different identities is consistent. Thus, allowing B8 to compensate for the confidence

difference of the samples, we expect < to be consistently shared across all the identities.

4.2.2 Confidence-Aware Sub-Embeddings

Though the embedding f8 learned through a sample-specific gating B8 can deal with sample-level

variations, we argue that the correlation among the entries of f8 itself is still high. To maximize

the representation power and achieve a compact feature size, decorrelating the entries of the

embedding is necessary. This encourages us to further break the entire embedding f8 into partitioned

sub-embeddings, each of which is further assigned a scalar confidence value.

Illustrated in Figure 4.3, we partition the entire feature embedding f8 into  equal-length

sub-embeddings as in Equation 4.5. Accordingly, the prototype vector w 9 and the confidence scalar
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(a) sub-embedding of size 8 (b) sub-embedding of size 32

Figure 4.5 The correlation matrices of sub-embeddings by splitting the feature vector into different
sizes. The correlation is computed in terms of distance to class center.

B8 are also partitioned into the same size  groups.

w 9 = [w(1))9
,w(2))

9
, . . . ,w( ))

9
],

f8 = [f (1))8
, f (2))
8

, . . . , f ( ))
8
],

s8 = [B(1)8 , B
(2)
8
, . . . , B

( )
8
],

(4.5)

Each group of sub-embeddings f (:)
8

is ℓ2 normalized onto unit sphere separately. The final

identification loss thus is:

L83C = − log
exp(a8,H8 − <)

exp(a8,H8 − <) +
∑
9≠H8

exp(a8, 9 )
, (4.6)

a8, 9 =
1
 

 ∑
:=1

B
(:)
8

w(:))
9

f (:)
8
. (4.7)

A common issue for neural networks is that they tend to be “over-confident” on predictions [113].

We add an additional ;2 regularization to constrain the confidence from growing arbitrarily large:

LA46 =
1
 

 ∑
:=1

B
(:)2
8

. (4.8)
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Figure 4.6 The variation decorrelation loss disentangles different sub-embeddings by associating
them with different variations. In this example, the first two sub-embeddings are forced to be
invariant to occlusion while the second two sub-embeddings are forced to be invariant to blur. By
pushing stronger invariance for each variation, the correlation/overlap between two variations is
reduced.

4.2.3 Sub-Embeddings Decorrelation

Setting up multiple sub-embeddings alone does not guarantee the features in different groups are

learning complementary information. Empirically shown in Figure 4.5, we find the sub-embeddings

are still highly correlated, i.e., dividing f8 into equal 16 groups, the average correlation among all

the sub-embeddings is 0.57. If we penalize the sub-embeddings with different regularization, the

correlation among them can be reduced. By associating different sub-embeddings with different

variations, we conduct variation classification loss on a subset of all the sub-embeddings while

conducting variation adversarial loss in terms of other variation types. Given multiple variations,

such two regularization terms are forced on different subsets, leading to better sub-embedding

decorrelation.

For each augmentable variation C ∈ {1, 2, . . . , "}, we generate a binary mask +C , which selects

a random  
2 subset of all sub-embeddings while setting the other half to be zeros. The masks are

generated at the beginning of the training and will remain fixed during training. We guarantee

that for different variations, the masks are different. We expect +C (f8) to reflect Cth variation while

invariant to the others. Accordingly, we build a multi-label binary discriminator � by learning to
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predict all variations from each masked subset:

min
�
L� = −

"∑
C=1

log ?� (u8 = û8 |+C (f8))

= −
"∑
C=1

"∑
C ′=1

log ?� (D(C
′)

8
= D̂
(C ′)
8
|+C (f8))

(4.9)

where u8 = [D(1)8 , D
(2)
8
, . . . , D

(")
8
] are the binary labels (0/1) of the known variations and û8 is the

ground-truth label. For example, if C = 1 corresponds to resolution, D̂(1)
8

would be 1 and 0 for

high/low-resolution images, respectively. Note that Equation 4.9 is only used for training the

discriminator �. The corresponding classification and adversarial loss of the embedding network is

then given by:

L2;B = −
"∑
C=1

log ?� (D(C) = D̂(C)8 |+C (f8)) (4.10)

L03E = −
"∑
C=1

∑
C ′≠C

(1
2

log ?� (D(C
′) = 0|+C (f8))+

1
2

log ?� (D(C
′) = 1|+C (f8)))

(4.11)

The classification loss L2;B to encourage +C to be variation-specific while L03E is an adversarial loss

to encourage invariance to the other variations. As long as no two masks are the same, it guarantees

that the selected subsets +C is functionally different from other +C ′. We thus achieve decorrelation

between +C and +C ′. The overall loss function for each sample is:

min
\
L = L83C + _A46LA46 + _2;BL2;B + _03EL03E . (4.12)

During the optimization, Equation (4.12) is averaged across the samples in the mini-batch.
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4.2.4 Mining for Further Variations

The limited number (three in our method) of augmentable variations leads to limited effect of

decorrelation as the number of +C are too small. To further enhance the decorrelation, as well

to introduce more variations for better generalization ability, we aim to explore more variations

with semantic meaning. Notice that not all the variations are easy to conduct data augmentation,

e.g. smiling or not is hard to augment. For such variations, we attempt to mine out the variation

labels from the original training data. In particular, we leverage an off-the-shelf attribute dataset

CelebA [114] to train a attribute classification model \� with identity adversarial loss:

min
\�
L\� = − log ?(;� |x�) −

1
#�

#�∑
2

log ?(H� = 2 |x�)

min
��
L�� = − log ?(H� = Hx� |x�),

(4.13)

where ;� is the attribute label and H� is the identity label. x� is the input face image and #� is the

number of identities in the CelebA dataset. The first term penalizes the feature to classify facial

attributes and the second term penalizes the feature to be invariant to identities.

The attribute classifier is then applied to the recognition training set to generate ) new soft

variation labels, e.g. smiling or not, young or old. These additional variation binary labels are

merged with the original augmentable variation labels as: u8 = [D(1)8 , . . . , D
(")
8

, D
("+1)
8

, . . . , D
("+))
8

]

and are then incorporated into the decorrelation learning framework in Section 4.2.3.

4.2.5 Uncertainty-Guided Probabilistic Aggregation

Considering the metric for inference, simply taking the average of the learned sub-embeddings is

sub-optimal. This is because different sub-embeddings show different discriminative power for

different variations. Their importance should vary according to the given image pairs. Inspired

by [54], we consider applying the uncertainty associated with each embedding for a pairwise
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similarity score:

B2>A4(x8, x 9 ) = −
1
2

 ∑
:=1

f (:)8 − f (:)
9

2

f
(:)2
8
+ f (:)2

9

− �

2 

 ∑
:=1

log(f (:)2
8
+ f (:)2

9
)

(4.14)

Though with Equation 4.8 for regularization, we empirically find that the confidence learned with the

identification loss still tend to be overconfident and hence cannot be directly used for Equation 4.14,

so we fine-tune the original confidence branch to predict f while fixing the other parts. We refer the

readers to [54] for the training details of fine-tuning.

4.3 Implementation Details

Training Details and Baseline All the models are implemented with Pytorch v1.1. We use the

clean list from ArcFace [38] for MS-Celeb-1M [2] as training data. After cleaning the overlapped

subjects with the testing sets, we have 4.8M images of 76.5K classes. We use the method in [115] for

face alignment and crop all images into a size of 110× 110. Random and center cropping are applied

during training and testing, respectively, to transform the images into 100 × 100. The backbone

of our embedding network \ is a modified 100-layer ResNet in [38]. The network is split into

two different branches after the last convolution layer, each of which includes one fully connected

layer. The first branch outputs a 512-D vector, which is further split into 16 sub-embeddings. The

other branch outputs a 16-D vector, which are confidence values for the sub-embeddings. The

exp function is used to guarantee all the confidence values B(:)
8

are positive. The model \� that

we used for mining additional variations is a four layer CNN. The four layers have 64, 128, 256

and 512 kernels, respectively, all of which are 3 × 3. The embedding size is 512 for all models,

and the features are split into 16 groups for multi-embedding methods. The model � is a linear

classifier. The baseline models in the experiments are trained with CosFace loss function [36, 35],
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which achieves state-of-the-art performance on general face recognition tasks. The models without

domain augmentation are trained for 18 epochs and models with domain augmentation are trained

for 27 epochs to ensure convergence. We empirically set _A46, _2;B and _03E as 0.001, 2.0 and 2.0,

respectively. The margin < is empirically set to 30. For non-augmentable variations, we choose

) = 3 attributes, namely smiling, young and gender.

Variation Augmentation For the low-resolution, we use Gaussian blur with a kernel size between

3 and 11. For the occlusion, we split the images into 7 × 7 blocks and randomly replace some

blocks with black masks. (3) For pose augmentation, we use PRNet [116] to fit the 3D model of

near-frontal faces in the dataset and rotate them into a yaw degree between 40◦ and 60◦. All the

augmentations are randomly combined with a probability of 30% for each.

4.4 Experiments

In this section, we firstly introduce different types of datasets reflecting different levels of variation.

Different levels of variation indicate different image quality and thus lead to different performance.

Then we conduct detailed ablation study over the proposed confidence-aware loss and all the

proposed modules. Further, we show evaluation on those different types of testing datasets and

compare to state-of-the-art methods.

4.4.1 Datasets

We evaluate our models on eight face recognition benchmarks, covering different real-world testing

scenarios. The datasets are roughly categorized into three types based on the level of variations:

Type I: Limited Variation LFW [3], CFP [4], YTF [51] and MegaFace [117] are four widely

applied benchmarks for general face recognition. We believe the variations in those datasets are

limited, as only one or few of the variations being presented. In particular, YTF are video samples

with relatively lower resolution; CFP [4] are face images with large pose variation but of high
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Figure 4.7 Testing results on synthetic data of different variations from IJB-A benchmark
(TAR@FAR=0.01%). Different rows correspond to different augmentation strategies during training.
Columns are different synthetic testing data. “B”, “O”, “P” represents “Blur”, “Occlusion” and
“Pose”, respectively. The performance of the proposed method is improved in a monotonous way
with more augmentations being added.

resolution; MegaFace includes 1 million distractors crawled from internet while its labeled images

are all high-quality frontal faces from FaceScrub dataset [118]. For both LFW and YTF, we use the

unrestricted verification protocol. For CFP, we focus on the frontal-profile (FP) protocol. We test on

both verification and identification protocols of MegaFace.

Type II: Mixed Quality IJB-A [5] and IJB-C [42] include both high quality celebrity photos

taken from the wild and low quality video frames with large variations of illumination, occlusion,

head pose, etc. We test on both verification and identification protocols of the two benchmarks.

Type III: Low Quality We test on TinyFace [6] and IJB-S [1], two extremely challenging

benchmarks that are mainly composed of low-quality face images. In particular, TinyFace only

consists of low-resolution face images captured in the wild, which also includes other variations such

as occlusion and pose. IJB-S is a video face recognition dataset, where all images are video frames

captured by surveillance cameras except a few high-quality registration photos for each person.
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(b) Proposed

Figure 4.8 t-SNE visualization of the features in a 2D space. Colors indicate the identities. Original
training samples and augmented training samples are shown in circle and triangle, respectively.
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Figure 4.9 Performance change with respect to difference choice of K.

4.4.2 Ablation Study

Effect of Confidence-aware Learning

We train a set of models by gradually adding the nameable variations. The “Baseline” model is

an 18-layer ResNet trained on a randomly selected subset of MS-Celeb-1M (0.6M images). The

“Proposed” model is trained with the confidence-aware identification loss and  = 16 embedding

groups. As a controlled experiment, we apply the same type of augmentation on IJB-A dataset to

synthesize testing data of the corresponding variations. In Figure 4.7, “Baseline” model shows

decreasing performance when gradually adding new variations as in the grid going down from
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Table 4.1 Ablation study over the whole framework. VA: Variation Augmentation (Section 4.2),
CI: Confidence-aware Identification loss (Section 4.2.1), ME: indicates Multiple Embeddings
(Section 4.2.3), DE: Decorrelated Embeddings (Section 4.2.3), PA: Probabilistic Aggregation.
(Section 4.2.5). E(all) uses all the proposed modules.

Model Method LFW CFP-FP IJB-A (TAR@FAR) TinyFace IJB-S
VA CI ME DE PA Accuracy Accuracy FAR=0.001% FAR=0.01% Rank1 Rank5 Rank1 Rank 5

Baseline 99.75 98.16 82.20 93.05 46.75 51.79 37.14 46.75
A X 99.70 98.35 82.42 93.86 55.26 59.04 51.27 58.94
B X X 99.78 98.30 94.70 96.02 57.11 63.09 59.87 66.90

C X X X 99.77 98.50 94.75 96.27 57.30 63.73 59.66 66.30
X X X X 99.78 98.66 96.10 97.29 55.04 60.97 59.71 66.32

D X X X 99.65 97.77 80.06 92.14 34.76 39.86 29.87 40.69
X X X X 99.68 98.00 94.37 96.42 35.05 40.13 50.00 56.27

E (all) X X X X 99.75 98.30 95.00 96.27 61.32 66.34 60.74 66.59
X X X X X 99.78 98.64 96.00 97.33 63.89 68.67 61.98 67.12

Table 4.2 Our method compared to state-of-the-art methods on Type I datasets. The MegaFace
verification rates are computed at FAR=0.0001%. “-” indicates that the author did not report the
performance on the corresponding protocol.

Method LFW YTF CFP-FP MF1
Rank1 Veri.

FaceNet [30] 99.63 95.1 - - -
CenterFace [32] 99.28 94.9 - 65.23 76.52
SphereFace [34] 99.42 95.0 - 75.77 89.14
ArcFace [38] 99.83 98.02 98.37 81.03 96.98
CosFace [36] 99.73 97.6 - 77.11 89.88
Ours (Baseline) 99.75 97.16 98.16 80.03 95.54
Ours (Baseline+VA) 99.70 97.10 98.36 78.10 94.31
Ours (all) 99.75 97.68 98.30 79.10 94.92
Ours (all) + PA 99.78 97.92 98.64 78.60 95.04

top row to bottom row. In comparison, the proposed method shows improving performance when

adding new variations from top to bottom, which highlights the effect of our confidence-aware

representation learning and it further allows to add more variations into the framework training.

We also visualize the features with t-SNE projected onto 2D embedding space. Figure 4.8

shows that for “Baseline” model, with different variation augmentations, the features actually are

mixed and thus are erroneous for recognition. While for “Proposed” model, different variation

augmentation generated samples are still clustered together to its original samples, which indicates

that identity is well preserved. Under the same settings as above, we also show the effect of using

different number of groups in Figure 4.9. At the beginning, splitting the embedding space into more
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Table 4.3 Our model compared to state-of-the-art methods on IJB-A, IJB-C and IJB-S. “-” indicates
that the author did not report the performance on the corresponding protocol. “*” indicates fine-
tuning on the target dataset during evaluation on IJB-A benchmark and “+” indicates the testing
performance by using the released models from corresponding authors.

Method IJB-A (Vrf) IJB-A (Idt) IJB-C (Vrf) IJB-C (Idt) IJB-S (S2B)
FAR=0.001% FAR=0.01% Rank1 FAR=0.001% FAR=0.01% Rank1 Rank1 Rank5 FPIR=1%

NAN [88] - 88.1±1.1 95.8±0.5 - - - - - -
L2-Face [37] 90.9±0.7 94.3±0.5 97.3±0.5 - - - - - -
DA-GAN [119] 94.6±0.1 97.3±0.5 99.0±0.2 - - - - - -
[44] - 92.1±1.4 98.2±0.4 76.8 86.2 91.4 - - -
Multicolumn [90] - 92.0±1.3 - 77.1 86.2 - - - -
ArcFace [38] 93.7±1.0 94.2±0.8 97.0±0.6 93.5 95.8 95.87 57.36 64.95 41.23
Ours (Baseline) 82.6±8.3 93.3±3.0 95.5±0.7 43.9 86.7 89.85 37.14 46.75 24.75
Ours (Baseline + VA) 82.4±8.1 93.9±3.5 95.8±0.6 47.6 90.6 90.16 51.27 58.94 31.19
Ours (all) 95.0±0.9 96.3±0.6 97.5±0.4 91.6 93.7 94.39 60.74 66.59 37.11
Ours (all) + PA 96.0±0.8 97.3±0.4 97.5±0.3 95.0 96.6 96.00 61.98 67.12 42.73

groups increases performance for both TARs. When the size of each sub-embedding becomes too

small, the performance starts to drop because of the limited capacity for each sub-embedding.

Ablation on All Modules

We investigate each module’s effect by looking into the ablative models in Table 4.1. Starting

from the baseline, model A is trained with variation augmentation. Based on model A, we add

confidence-aware identification loss to obtain model B. Model C is further trained by setting up

multiple sub-embeddings. In model E, we further added the decorrelation loss. We also compare

with a Model D with all the modules except variation augmentation. Model C, D and E, which have

multiple embeddings, are tested w/ and w/o probabilistic aggregation (PA). The methods are tested

on two type I datasets (LFW and CFP-FP), one type-II dataset (IJB-A) and one type-III dataset

(TinyFace).

Shown in Table 4.1, compared to baseline, adding variation augmentation improves performance

on CFP-FP, TinyFace, and IJBA. These datasets present exactly the variations introduced by data

augmentation, i.e., pose variation and low resolution. However, the performance on LFW fluctuates

from baseline as LFW is mostly good quality images with few variations. In comparison, model B

and C are able to reduce the negative impact of hard examples introduced by data augmentation and

leads to consistent performance boost across all benchmarks. Meanwhile, we observe that splitting

into multiple sub-embeddings alone does not improve (compare B to C first row) significantly, which

68



High-quality Blur Occlusion Large-pose

Figure 4.10 Heatmap visualization of sub-embedding uncertainty on different types of images
from IJB-C dataset, shown on the right of each face image. 16 values are arranged in 4×4 grids (no
spatial meaning). Brighter color indicates higher uncertainty.

can be explained by the strongly correlated confidence among the sub-embeddings (see Figure 4.5).

Nevertheless, with the decorrelation loss and probabilistic aggregation, different sub-embeddings

are able to learn and combine complementary features to further boost the performance, i.e., the

performance in the second row of Model E is consistently better than its first row.

4.4.3 Evaluation on General Datasets

We compare our method with state-of-the-art methods on general face recognition datasets, i.e.,

those Type I datasets with limited variation and high quality. Since the testing images are mostly

with good quality, there is limited advantage of our method which is designed to deal with larger

variations. Even though, shown in Table 4.2, our method still stands on top being better than most

of the methods while slightly worse than ArcFace. Notice that our baseline model already achieves

good performance across all the testing sets. It actually verifies that the type I testing sets do not

show significant domain gap from the training set, where even without variation augmentation or

embedding decorrelation, the straight training can lead to good performance.
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4.4.4 Evaluation on Mixed/Low Quality Datasets

When evaluating on more challenging datasets, those state-of-the-art general methods encounter

performance drop as the challenging datasets present large variations and thus large domain gap

from the good quality training datasets. Table 4.3 shows the performance on three challenging

benchmarks: IJB-A, IJB-C and IJB-S. The proposed model achieves consistently better results

than the state-of-the-arts. In particular, simply adding variation augmentation (“Ours (Baseline +

VA)”) actually leads to a worse performance on IJB-A and IJB-C. When variation augmentation is

combined with our proposed modules (“Ours”), significant performance boost is achieved. Further

adding PA with “Ours”, we achieve even better performance across all datasets and protocols. Notice

that IJB-A is a cross-validation protocol. Many works fine-tune on training splits before evaluation

(shown with “*”). Even though, our method without fine-tuning still outperforms the state-of-the-art

methods with significant margin on IJB-A verification protocol, which suggests that our method

indeed learns the representation towards dealing with unseen variations.

Table 4.3 last column shows the evaluation on IJB-S, which is so far the most challenging

benchmark targeting real surveillance scenario with severe poor quality images. We show the

Surveillance-to-Booking (S2B) protocol of IJB-S. As IJB-S is recently released, there are few

studies that have evaluated on this dataset. To comprehensively evaluate our model, we use the

publicly released models from ArcFace [38] for comparison. Our method achieves consistently

better performance across Rank-1 and Rank-5 identification protocol. For TinyFace, as in Table 4.1,

we achieve 63.89%, 68.67% rank-1 and rank-5 accuracy, where [6] reports 44.80%, 60.40%, and

ArcFace achieves 47.39%, 52.28%. Combining Table 4.2, our method achieves top level accuracy

on general recognition datasets and significantly better accuracy on challenging datasets, which

demonstrates the advantage in dealing with extreme or unseen variations.

Uncertainty Visualization Figure 4.10 shows uncertainty scores for the 16 sub-embeddings

reshaped into 4× 4 grids. High-quality and low-quality sub-embeddings are shown in dark and light

colors respectively. The uncertainty map presents different patterns for different variations.
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4.5 Conclusion

In this work, we propose a universal face representation learning framework, URFace, to recognize

faces under all kinds of variations. We firstly introduce three nameable variations into MS-Celeb-1M

training set via data augmentation. Traditional methods encounter convergence problem when

directly feeding the augmented hard examples into training. We propose a confidence-aware

representation learning by partitioning the embedding into multiple sub-embeddings and relaxing

the confidence to be sample and sub-embedding specific. Further, the classification and adversarial

losses on variations are proposed to decorrelate the sub-embeddings. By formulating the inference

with an uncertainty model, the sub-embeddings are aggregated properly. Experimental results show

that our method achieves top performance on general benchmarks such as LFW and MegaFace, and

significantly better accuracy on challenging benchmarks such as IJB-A, IJB-C and IJB-S.
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Chapter 5

Generalizing Face Representation with

Unlabeled Images

5.1 Introduction

Machine learning algorithms typically assumes that training and testing data come from the same

underlying distribution. However, in practice, we would often encounter testing domains that are

different from the population where the training data is drawn. Since it is non-trivial to collect data

for all possible testing domains, learning representations that are generalizable to heterogeneous

testing data is desired [108, 120, 121, 122, 123]. Particularly for face recognition, this problem is

reflected by the domain gap between the semi-constrained training datasets and unconstrained testing

datasets. Nearly all of the state-of-the-art deep face networks are trained on large-scale web-crawled

face images, most of which are high-quality celebrity photos [50, 2]. But in practice, we wish to

deploy the trained FR systems for many other scenarios, e.g. unconstrained photos [5, 41, 42] and

surveillance [1]. The large degree of face variation in the testing scenarios, compared to the training

set, could result in significant performance drop of the trained face models [42, 1].

The simplest solution to such a domain gap problem is to collect a large number of unconstrained

labeled face images from different sources. However, due to privacy issue and human-labeling cost, it
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Figure 5.1 Illustration of the problem settings in our work. Blue circles imply the domains that the
face images belong to. By utilizing diverse unlabeled images, we want to regularize the learning of
the face embedding for more unconstrained face recognition scenarios.

is extremely hard to collect such a database. Other popular solutions to this problem include transfer

learning and domain adaptation, which require domain-specific data to train a model for each of the

target domains [124, 125, 126, 127, 128, 129]. However, in unconstrained face recognition, a face

representation that is robust to all different kinds of variations is needed, so these domain-specific

solutions are not appropriate. Instead, it would be useful if we could utilize the commonly available,

unlabeled data to achieve a domain-agnostic face representation that generalizes to unconstrained

testing scenarios (See Fig. 5.1). To achieve this goal, we would like to ask the following questions

in this chapter:

• Is it possible to improve model generalizability to unconstrained faces by introducing more

diversity from auxiliary unlabeled data?

• What kind of and how much unlabeled data do we need?

• How much performance boost could we achieve with the unlabeled data?

In this chapter, we propose such an semi-supervised framework for learning robust face

representations. The unlabeled images are collected from a public face detection dataset, i.e.

WiderFace [130], which contains more diverse types (sub-domains) of face images compared to
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typical labeled face datasets used for training.

To utilize the unlabeled data, the proposed method jointly regularizes the embedding model

from feature space and image space. We show that adversarial regularization can help to reduce

domain gaps caused by facial variations, even in the absence of sub-domain labels. On the other

hand, an image augmentation module is trained to discover the hidden sub-domain styles in the

unlabeled data and apply them to the labeled training samples, thus increasing the discrimination

power on difficult face examples. To our knowledge, this is the first study to use a heterogeneous

unlabeled dataset to boost the model performance for general unconstrained face recognition. The

contributions of this chapter are summarized as below:

• A semi-supervised learning framework for generalizing face representations with auxiliary

unlabeled data.

• An multi-mode image translation module is proposed to perform data-driven augmentation

and increase the diversity of the labeled training samples.

• Empirical results show that the regularization of unlabeled data helps to improve the recognition

performance on challenging testing datasets, e.g. IJB-B, IJB-C, and IJB-S.

5.2 Related Work

5.2.1 Semi-supervised Learning

Classic semi-supervised learning involves a small number of labeled images and a large number of

unlabeled images [131, 132, 133, 134, 135, 136, 137, 138]. The goal is to improve the recognition

performance when we don’t have sufficient data that are labeled. State-of-the-art semi-supervised

learning methods can mainly be classified into four categories. (1) Pseudo-labeling methods generate

labels for unlabeled data with the trained model and then use them for training [131]. In spite of its

simplicity, it has been shown to be effective primarily for classification tasks where labeled data

and unlabeled data share the same label space. (2) Temporal ensemble models maintain different
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versions of model parameters to serve as teacher models for the current model [133, 134]. (3)

Consistency-regularization methods apply certain types of augmentation to the unlabeled data

while making sure the output prediction remains consistent after augmentation [132, 137, 138]. (4)

Self-supervised learning, originally proposed for unsupervised learning, has recently been shown to

be effective for semi-supervised learning as well [136]. Compared with classic semi-supervised

learning addressed in the literature, our problem is different in two sense of heterogeneity: different

domains and different identities between the labeled and unlabeled data. These differences make

many classic semi-supervised learning methods unsuitable for our task.

5.2.2 Domain Adaptation and Generalization

In domain adaptation, the user has a dataset for a source domain and another for a fixed target

domain [124, 125, 126, 128, 129]. If the target domain is unlabeled, this leads to an unsupervised

domain adaption setting [125, 128, 129]. The goal is to improve the performance on the target

domain so that it could match the performance on the source domain. This is achieved by reducing

the domain gap between the two datasets in feature space. The problem about domain adaption

is that one needs to acquire a new dataset and train a new model whenever there is a new target

domain. In domain generalization, the user is given a set of labeled datasets from different

domains. The model is jointly trained on these datasets so that it could better generalize to unseen

domains [108, 120, 121, 122, 123]. Our problem shares the same goal with domain generalization

methods: we want to increase the model generalizability rather than improving performance on a

specific target domain. However, unlike domain generalization, we do not have identity labels for all

the data, which makes our task even more difficult.

5.3 Methodology

Generally, in face representation learning, we are given a large labeled dataset

X={(G1, H1), (G2, H2), . . . , (G=, H=)}, where G8 and H8 are the face images and identity labels, re-
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Figure 5.2 Overview of the training framework of the embedding network. In each mini-batch,
a random subset of labeled data would be augmented by the augmentation network to introduce
additional diversity. The non-augmented labeled data are used to train the feature discriminator.
The adversarial loss forces the distribution of the unlabeled features to align with the labeled one.

spectively. The goal is to learn an embedding model 5 such that 5 (G) would be discriminative

enough to distinguish between different identities. However, since 5 is only trained on the domain

defined by X, which is usually semi-constrained celebrity photo, it might not generalize to un-

constrained settings. In our framework, we assume the availability of another unlabeled dataset

U = U1 ∪U2 . . .U: = {D1, D2, . . . , D=}, collected from different sources (sub-domains). However,

these sub-domain labels may not be available in real applications, thus we do not assume the access

to them but instead seek solutions that could automatically leverage these hidden sub-domains.

Then, we wish to simultaneously minimize three types of errors:

• Error due to discrimination power within the labeled domain X.

• Error due to feature domain gap between the labeled domain X and the hidden sub-domains

U8.

• Error due to discrimination power within the unlabeled domainU.

An overview of the framework is shown in Fig. 5.2.
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Figure 5.3 t-SNE visualization of the face embeddings using synthesized unlabeled images. Using
part of the MS-Celeb-1M as unlabeled dataset, we create three sub domains by processing the images
with either random Gaussian noise, random occlusion or downsampling. (a) different sub-domains
show different domain shift in the embedding space of the supervised baseline. (b) with the holistic
binary domain adversarial loss, each of the sub-domains is aligned with the distribution of the
labeled data.

5.3.1 Minimizing Error in the Labeled Domain

The deep representation of a face image is usually a point in a hyper-spherical embedding space,

where ‖ 5 (G8)‖2 = 1. State-of-the-art supervised face recognition methods all try to find an objective

function to maximize the inter-class margin such that the representation could still be discriminative

when tested on unseen identities. In this work, we choose to use CosFace loss function [36][35] for

training the labeled images:

L83C = −EG8 ,H8∼X [log
4
B(,)

H8
58−<)

4B(,
)
H8
58−<) +∑

9≠H8
4
B,)

H9
58
] . (5.1)

Here B is the hyper-parameter controlling temperature, < is a margin hyper-parameter and, 9 is the

proxy vector of the 9 Cℎ identity in the embedding space, which is also ℓ2 normalized. We choose to

use CosFace loss function because of its stability and high-performance. It could potentially be

replaced by any other supervised identification loss function.
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5.3.2 Minimizing Domain Gap

The unlabeled dataset U is assumed to be a diverse dataset collected from different sources, i.e.

covering different sub-domains (types) of face images. If we have the access to such sub-domain

labels, a natural solution to a domain-agnostic model would be aligning each of the sub-domains

with the feature distribution of the labeled images. However, the sub-domain labels might not be

available in many cases. In our experiment, we find there is no necessity for pairwise domain

alignment. Instead, a binary domain alignment loss is sufficient to align the sub-domains. Formally,

given a feature discriminator network �, we could reduce the domain gap via an adversarial loss:

L� = −EG∼X [log� (H = 0| 5 (G)]

−ED∼U [log� (H = 1| 5 (D)],
(5.2)

L03E = −EG∼X [log� (H = 1| 5 (G)]

−ED∼U [log� (H = 0| 5 (D)] .
(5.3)

The discriminator � is a multi-layer binary classifier optimized by L� . It tries to learn a non-linear

classification boundary between the two datasets while the embedding network needs to fool the

discriminator by reducing the divergence between the distributions of 5 (G) and 5 (D). To see the

effect of domain alignment loss, we conduct a controlled experiments with a toy dataset. We split

the MS-Celeb-1M [2] dataset into labeled images and unlabeled images (no identity overlap). The

unlabeled images are then processed with one of the three degradations: random Gaussian noise,

random occlusion and downsampling. Thus, we create three sub-domains in the unlabeled dataset.

The corresponding domain shift can be observed in the t-SNE plot in Fig. 5.3 (a), where the model

is trained only on the labeled split. Then, we incorporate the augmented unlabeled images into

training with the binary domain adversarial loss. In Fig. 5.3 (b), we observe that with the binary

domain alignment loss, the distribution of each of sub-domains is aligned with the original domain,

indicating reduced domain gaps.
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5.3.3 Minimizing Error in the Unlabeled Domains

The domain alignment loss in Section 5.3.2 helps to eliminate the error caused by domain gaps

between unconstrained faces. Thus, the remaining task is to improve the discrimination power of

the face representation among the unlabeled faces. Many semi-supervised classification methods

address this problem by using pseudo-labeling of unlabeled data [131, 137, 138], but this is not

applicable to our problem since our unlabeled dataset does not share the same label space with the

labeled one. Furthermore, because of data collection protocols, there is very little chance that one

identity would have multiple unlabeled images. Thus, clustering-based methods are also infeasible

for our task. Here, we consider to address this issue with a multi-mode augmentation method.

Prior studies have shown that an image translation network, such as CycleGAN [139], can be

effectively used as a data augmentation module for domain adaptation [140]. The main idea of the

augmentation network is to learn the difference between two domains in the image space and then

augment the samples from source domain data to create training data with pseudo-labels in the target

domain. Since our goal is to generalize the deep face representation to unconstrained faces, which

involves a large variety, deterministic method such as CycleGAN would be unsuitable. Therefore,

we propose to use a multi-mode image translation network that could discover the hidden domains in

the unlabeled data and then augment the labeled training data with different styles. In particular, we

need a function� which maps labeled samples G into the image space defined by the unlabeled faces,

i.e. ?(G) → ?(D). Then, training the embedding 5 on � (G) could make it more discriminative in

the image space defined by*. There are two requirement of the function �: (1) it should not change

the identity of the input image and (2) it should be able to capture different styles that are present

in the unlabeled images. Inspired by recent progress in image translation frameworks [139, 141],

we propose to train � as a style-transfer network that learns the visual styles during transfer in an

unsupervised manner. The network � can then be used as a data-driven augmentation module that

generates diverse samples given an input from the labeled dataset. During the training, we randomly

replace a subset of the labeled images to be augmented and put them into our identification learning

framework. The details of training the augmentation network � is given in Section 5.3.3.

79



Labeled 
images 𝑥

Augmentation
Network

Image
DiscriminatorUnlabeled 

images 𝑢
Adversarial Supervision

𝒩(𝟎, 𝐈)

𝐺

𝐷!

𝐺
𝐸!

style code 𝑧

𝐺

𝐸!

Reconstruction Loss

𝐺 𝑥, 𝐸! 𝑥

𝐺 𝑢, 𝐸! 𝑢

𝒩(𝟎, 𝐈)

𝐷!
Style

Discriminator

Reconstruction Supervision

Figure 5.4 Training framework of the augmentation network �. The two pipelines are optimized
jointly during training.

The overall loss function for the embedding network is given by:

L = _83CL83C + _03EL03E (5.4)

where !83C also includes the augmented labeled samples.

Multi-mode Augmentation Network

The augmentation network � is a fully convolutional network that maps an image to another. To

preserve the geometric structure, our architecture does not involve any downsampling or upsampling.

In order to generate styles similar to the unlabeled images, an image discriminator � � is trained to

distinguish between the texture styles of unlabeled images and generated images:

L� � = − EG∼X [log� � (H = 0|� (G, I))]

− ED∼U [log� � (H = 1|D)],
(5.5)

L�03E = − EG∼X [log� � (H = 1|� (G, I))] . (5.6)

80



Here I ∼ N(0, I) is a random style vector to control the styles of the output image, which is injected

into the generation process via Adaptive Instance Normalization (AdaIN) [142]. Although the

adversarial learning could make sure the output are in the unlabeled space, but it cannot ensure

that (1) the content of the input is maintained in the output image and (2) the random style I is

being used to generate diverse visual styles, corresponding to differnt sub-domains in the unlabeled

images. We propose to utilize an additional reconstruction pipeline to simultaneously satisfy these

two requirements. First, we introduce an additional style encoder �I to capture the corresponding

style in the input image, as in [141]. A reconstruction loss is then enforced to keep the consistency

of the image content:

L�A42 = EG∼X [‖G − � (G, �I (G))‖2] (5.7)

+ ED∼U [‖D − � (D, �I (D))‖2], (5.8)

Then, during the reconstruction, we add another latent style discriminator �I to guarantee the

distribution of �I (D) align with prior distribution N(0, I):

L�I = − ED∼U [log�I (H = 0|�I (D))]

− EI∼N(0,I) [log�I (H = 1|I)],
(5.9)

LI
03E

= − ED∼U [log�I (H = 1|�I (D))], (5.10)

The overall loss function of the generator is given by:

L� = _�03EL
�
03E + _

�
A42L�A42 + _I03EL

I
03E

(5.11)

A overview of the training framework of � is given in Fig. 5.4 and example generated images are

shown in Fig. 5.5.
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Figure 5.5 Example generated images of the augmentation network.

5.4 Experiments

5.4.1 Implementation Details

Training Details of the Recognition Model All the models are implemented with Pytorch v1.1.

We use the RetinaFace [143] for face detection and alignment. All images are transformed into a

size of 112 × 112. A modified 50-layer ResNet in [38] is used as our architecture. The embedding

size is 512 for all models. By default, all the models are trained with 150, 000 steps with a batch

size of 256. For semi-supervised models, we use 64 unlabeled images and 192 labeled images in

each mini-batch. For models which uses the augmentation module, 20% of the labeled images are

augmented by the generator network. The scale parameter B and margin parameter < are set to 30

and 0.5, respectively. We empirically set _83C , _03E as 1.0 and 0.01. For models that utilizes the

consistency regularization, _�' is set to 0.2. Random image translation, flipping, occlusion and

downsampling are used as data perturbation for those models.

Training Details of the Generator Model The generator is trained for 160, 000 steps with a batch

size of 8 images (4 from each dataset). Adam optimizer is used with V1 = 0.5 and V2 = 0.99. The

learning rate starts with 14 − 4 and drops to 14 − 5 after 80, 000 steps. _�
03E

, _�A42 and _I03E are set to

as 1.0, 10.0 and 1.0, respectively. The architecture of the generator is based on MUNIT [141]. Let

c5s1-k be a 5×5 convolutional layer with : filters and stride 1. dk-IN denotes a 3×3 convolutional

layer with : filters and dilation 2, where IN means Instance Normalization [144]. Similarly, AdaIN

means Adaptive Instance Normalization [142] and LN denotes Layer Normalization [145]. fc8
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denotes a fully connected layer with 8 filters. avgpool denotes a global average pooling layer. No

normalization is used in the style encoder. We use Leaky ReLU with slope 0.2 in the discriminator

and ReLU activation everywhere else. The architectures of different modules are as follows:

• Style Encoder:

c5s1-32,c3s2-64,c3s2-128,avgpool,fc8

• Generator:

c5s1-32-IN,d32-IN,d32-AdaIN,d32-LN,

d32-LN,c5s1-3

• Discriminator:

c5s1-32,c3s2-64,c3s2-128

The length of the latent style code is set to 8. A style decoder (multi-layer perceptron) has two

hidden fully connected layers of 128 filters without normalization, which transforms the latent style

code to the parameters of the AdaIN layer.

5.4.2 Datasets

We use MS-Celeb-1M [2] as our labeled training dataset. As for unlabeled images, we choose

WiderFace [130] as our training data. WiderFace is dataset collected by retrieving images from

search engines with different event keywords. As a face detection dataset, it includes a much wider

domain of photos and the faces. Many faces in this dataset still cannot be detected by state-of-the-art

detection methods [143]. We only keep the detectable faces in the WiderFace training set as our

training data. Our goal is to close the gap between face detection and recognition engine and improve

the recognition performance on a general settings with any detectable faces. At the end, we were

able to detect about 70K faces from WiderFace, less than 2% of our labeled training data.

To evaluate the face representation models, we test on three benchmarks, namely IJB-B, IJB-C

and IJB-S. Although our goal is to improve recognition performance on domains that are different

from the training set, we would not like to lose the discrimination power in the original domain
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Table 5.1 Ablation study over different training methods of the embedding network. All models
has identification loss by default. “DA”, “AN”, “SM” and “MM” refer to “Domain Alignment”,
“Augmentation Network”, “Single-mode” and “Multi-mode”, respectively.

Method IJB-C (Vrf) IJB-C (Idt) IJB-S (V2S) LFW
1e-7 1e-6 1e-5 Rank1 Rank5 Rank1 Rank5 Accuracy

Baseline 62.90 82.94 90.73 94.90 96.77 53.23 62.91 99.80
+ DA 72.74 85.33 90.52 94.99 96.75 56.35 66.77 99.82
+ DA + AN (SM) 74.80 87.58 91.94 95.51 97.09 56.98 65.66 99.80
+ DA + AN (MM) 77.39 87.92 91.86 95.61 97.13 57.33 65.37 99.75

(high-quality photos) either. Therefore, during ablation we also evaluate our models on the standard

LFW [3] protocol, which is a celebrity photo dataset, similar to the labeled training data (MS-Celeb-

1M). Note that the accuracy on the LFW protocol is highly saturated, so the main goal is just to

check whether there is a significant performance drop on the constrained faces while increasing the

generalizability to unconstrained ones.

5.4.3 Ablation Study

In this section, we conduct an ablation study to quantitatively evaluate the effect of different modules

proposed in this chapter. In particular, we have two modules to study: Domain Alignment (DA) and

Augmentation Network (AN). The performance is shown in Table 5.1. As we already showed in

Fig. 5.3, domain adversarial loss is able to force smaller domain gaps between the sub-domains

in WiderFace and the celebrity faces, even though we do not have access to those domain labels.

Consequently, we observe the performance improvement on most of the protocols on IJB-C and

IJB-S. Introducing the augmentation network (AN) further helps improving the performance

on unconstrained benchmarks, where a multi-mode (MM) augmentation network outperforms a

single-model (SM) augmentation network.

We also ablate over the training modules of the augmentation network. In particular, we consider

to remove the following modules for different variants: Latent-style code for multi-mode generation

(MM), Image Discriminator (� �), Reconstruction Loss (Rec), Style Discriminator (�I ) and the

architecture without downsampling (ND). The qualitative results of different models are shown in
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Input Model (a) Model (b) Model (c) Model (d) Model (e) Model (f)

Figure 5.6 Ablation study of the augmentation network. Input images are shown in the first column.
The subsequent columns show the results of different models trained without a certain module or
loss. The texture style codes are randomly sampled from the normal distribution.

Fig. 5.6. Without the latent style code (Model a), the augmentation network can only output one

deterministic image for each input, which mainly applies blurring to the input image. Without the

image adversarial loss (Model b), the model cannot capture the realistic variations in the unlabeled

dataset and the style code can only change the color channel in this case. Without the Reconstruction

Loss (Model c), the model is trained only with adversarial loss but without the regularization

of content preservation. And therefore, we see clear artifacts on the output images. However,

adding reconstruction loss alone hardly helps, since the latent code used in the reconstruction of the

unlabeled images could be very different from the prior distribution ?(I) that we use for generation.

Therefore, similar artifacts can be observed if we do not add latent code adversarial loss (Model

d). As for the architecture, if we choose to use an encoder-decoder style network as in the original

MUNIT [141], with downsampling and upsampling (Model e), we observe that the output images

are always blurred due to the loss of spatial information. In contrast, with our architecture (Model

f), the network is capable of augmenting images with diverse color, blurring and illumination styles

but without clear artifacts.

Furthermore, we incorporate these different variants of augmentation networks into training and
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Table 5.2 Ablation study over different training methods of the augmentation network. “MM”,
“� �”, “�/”, “rec”, “ND” refer to “Multi-mode”, “Image Discriminator”, “Reconstruction Loss”,
“Latent Style Discriminator” and “No Downsampling”, respectively. The first row is a baseline that
uses only the domain adversarial loss but no augmentation network. “Model (a)” is a single-mode
translation network that does not use latent style code.

Model Modules IJB-C (Vrf) IJB-C (Idt) IJB-S (V2S) LFW
MM � � Rec �/ ND 1e-7 1e-6 1e-5 Rank1 Rank5 Rank1 Rank5 Accuracy

72.74 85.33 90.52 94.99 96.75 56.35 66.77 99.82
(a) X X 74.80 87.58 91.94 95.51 97.09 56.98 65.66 99.80
(b) X X X X 75.32 88.00 91.71 95.42 97.04 57.54 66.72 99.75
(c) X X X 74.51 87.49 91.97 95.61 97.18 57.17 66.24 99.78
(d) X X X X 75.07 88.11 92.19 95.66 97.12 56.85 64.87 99.78
(e) X X X X 73.99 86.52 91.33 95.33 97.04 58.47 66.00 99.73
(f) X X X X X 77.39 87.92 91.86 95.61 97.13 57.33 65.37 99.75

show the results in Table 5.6. The baseline model here is a model that only uses domain alignment

loss without augmentation network. In fact, compared with this baseline, using all different variants

of the augmentation network achieves performance improvement in spite of the artifacts in the

generated images. But a more stable improvement is observed for the proposed augmentation

network across different evaluation protocols. We also show more examples of augmented images

in Figure 5.6.

5.4.4 Quantity vs. Diversity

Although we have shown in Sec. 5.4.3 that utilizing unlabeled data leads to better performance on

challenging testing benchmarks, generally it shall be expected that simply increasing the number

of labeled training data can also have a similar effect. Therefore, in this section, we conduct a

more detailed study to answer such a question: which is more important for feature generalizability:

quantity or diversity of the training data? In particular, we train several supervised models by

adjusting the number of labeled training data. For each such model, we also train a corresponding

model with additional unlabeled data. The evaluation results are shown in Figure 5.7.

On the IJB-S dataset, which is significantly different from the labeled training data, we see that

the models trained with unlabeled data consistently outperforms the supervised baselines with a large

margin. In particular, the proposed method achieves better performance than the supervised baseline
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Figure 5.7 Evaluation results on IJB-C and IJB-S with different protocols and different number of
labeled training data.

even when there is only one-fourth of the overall labeled training data (1M vs 4M), indicating the

value of data diversity during training. Note that there is a significant performance boost when

increasing the number of labeled samples from 0.5M to 1M. However, after that, the benefit of

acquiring more labeled data plateaus and in fact it is more helpful to introduce 70K unlabeled data

than 3M additional labeled data.

On the IJB-C dataset, for both verification and identification protocols, we observe a similar trend

as the IJB-S dataset. In particular, larger improvement is achieved at lower FARs. This is because the

verification threshold at lower FARs is affected by the low quality test data (difficult impostor pairs),

which is more similar to our unlabeled data. Another interesting observation is that the improvement

margin increases when there is more labeled data. Note that in general semi-supervised learning, we

would expect less improvement by using unlabeled data when there is more labeled data. But it is

the opposite in our case because the unlabeled data has different characteristics than the labeled data.

So when the performance of supervised model saturates with sufficient labeled data, transferring the

knowledge from diverse unlabeled data becomes more helpful.

For both IJB-S and IJB-C (TAR@FAR=1e-7), we observe that after a certain point, adding

87



10 20 30 40 50 60 70 80
# Training Data (thousand)

40.0
42.5
45.0
47.5
50.0
52.5
55.0
57.5

IJB-S-V2S (Rank1)

WiderFace
MegaFace
CASIA-Webface
Baseline

10 20 30 40 50 60 70 80
# Training Data (thousand)

45.0
47.5
50.0
52.5
55.0
57.5
60.0 IJB-S-V2B (Rank1)

WiderFace
MegaFace
CASIA-Webface
Baseline

10 20 30 40 50 60 70 80
# Training Data (thousand)

92.5
93.0
93.5
94.0
94.5
95.0
95.5
96.0 IJB-C (Rank1)

WiderFace
MegaFace
CASIA-Webface
Baseline

10 20 30 40 50 60 70 80
# Training Data (thousand)

40
45
50
55
60
65
70
75

IJB-C (TAR@1e-7)

WiderFace
MegaFace
CASIA-Webface
Baseline

10 20 30 40 50 60 70 80
# Training Data (thousand)

65

70

75

80

85

90 IJB-C (TAR@1e-6)

WiderFace
MegaFace
CASIA-Webface
Baseline

10 20 30 40 50 60 70 80
# Training Data (thousand)

99.0

99.2

99.4

99.6

99.8

100.0 LFW (Accuracy)

WiderFace
MegaFace
CASIA-Webface
Baseline

Figure 5.8 Evaluation Results on IJB-S, IJB-C and LFW with different protocols and different
number and choice of unlabeled training data. The red line here refers the performance of the
supervised baseline which does not use any unlabeled data.

more labeled data does not boost performance any more and the performance starts to fluctuate.

This happens because the new labeled data does not necessarily help with those hard cases. Based

on these results, we conclude that when the number of labeled training data is small, it is more

important to increase the quantity of the labeled dataset. Once there is sufficient labeled training

data, the generalizablity of the representation tends to saturate while the diversity of the training

data becomes more important.

5.5 Choice of the Unlabeled Dataset

In Section 5.4.4, we discussed on the impact of the quantity/diversity of training data on feature

generalizability, where we conducted the experiments by adjusting the number of labeled faces.

Here, we extend the discussion by showing more experiments on the choice of unlabeled dataset.

In addition to the WiderFace dataset, we consider to utilize two other datasets: MegaFace [117]

and CASIA-WebFace [50]. For MegaFace, we only use the distractor images in their identification
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protocol, which are crawled from album photos on Flicker and present a larger degree of variation

compared with the faces in MS-Celeb-1M. CASIA-WebFace, similar to MS-Celeb-1M, is mainly

composed of celebrity photos, and therefore it should not introduce much additional diversity. Note

that CASIA-WebFace is a labeled dataset but we ignore its labels for this experiment. The diversity

(facial variation) of the three datasets can ranked as: WiderFace > MegaFace > CASIA-WebFace.

For both MegaFace and CASIA-Webface, we choose a random subset to match the number of the

WiderFace. Furthermore, to see the impact of the quantity of unlabeled dataset, we also train the

models with different numbers of unlabeled data. Then, we evaluate all the models on IJB-S, IJB-C

and LFW. The reason to evaluate on LFW here is to see the impact of different unlabeled datasets

on the performance in the original domain. The results are shown in Figure 5.8. Note that due to the

large number of experiments, we do not use augmentation network here. But empirically we found

the trends would be similar.

From Figure 5.8, it can be seen that in general, the more diverse the unlabeled dataset is, the more

performance boost it leads to. In particular, using CASIA-WebFace as the unlabeled dataset hardly

improves performance on any protocol. This is expected because CASIA-WebFace is very similar to

MS-Celeb-1M and hence it cannot introduce additional diversity to regularize the training of face

representations. Using MegaFace distractors as the unlabeled dataset improves the performance on

both IJB-C and IJB-S, both of which have more variations than the MS-Celeb-1M. Using WiderFace

as the unlabeled dataset further improves the performance on the IJB-S dataset. Note that all the

models in this experiment maintain the high performance on the LFW dataset. In other words, using

a more diverse unlabeled dataset would not deteriorate the performance on the original domain and

safely improves the performance on the challenging new domains. An additional result that we can

observe is that the size of the unlabeled dataset does not have a clear effect compared to its diversity.

5.5.1 Comparison with State-of-the-Art FR Methods

In Table 5.3 we show more complete results on IJB-C dataset and compare our method with other

state-of-the-art methods. In generally, we observe that with fewer labeled training samples and
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Table 5.3 Performance comparison with state-of-the-art methods on the IJB-C dataset.

Method Data Model Verification Identification
1e-7 1e-6 1e-5 1e-4 Rank1 Rank5

Cao et al. [44] 13.3M SE-ResNet-50 - - 76.8 86.2 91.4 95.1
PFE [54] 4.4M ResNet-64 - - 89.64 93.25 95.49 97.17
ArcFace [38] 5.8M ResNet-50 67.40 80.52 88.36 92.52 93.26 95.33
Ranjan et al. [146] 5.6M ResNet-101 67.4 76.4 86.2 91.9 94.6 97.5
AFRN [147] 3.1M ResNet-101 - - 88.3 93.0 95.7 97.6
Baseline 3.9M ResNet-50 62.90 82.94 90.73 94.57 94.90 96.77
Proposed 4.0M ResNet-50 77.39 87.92 91.86 94.66 95.61 97.13

Table 5.4 Performance comparison with state-of-the-art methods on the IJB-B dataset.

Method Data Model Verification Identification
1e-6 1e-5 1e-4 1e-3 Rank1 Rank5

Cao et al. [44] 13.3M SE-ResNet-50 - 70.5 83.1 90.8 90.2 94.6
Comparator [94] 3.3M ResNet-50 - - 84.9 93.7 - -
ArcFace [38] 5.8M ResNet-50 40.77 84.28 91.66 94.81 92.95 95.60
Ranjan et al. [146] 5.6M ResNet-101 48.4 80.4 89.8 94.4 93.3 96.6
AFRN [147] 3.1M ResNet-101 - 77.1 88.5 94.9 97.3 97.6
Baseline 3.9M ResNet-50 40.12 84.38 92.79 95.90 93.85 96.55
Proposed 4.0M ResNet-50 43.38 88.19 92.78 95.86 94.62 96.72

number of parameters, we are able to achieve state-of-the-art performance on most of the protocols.

Particularly at low FARs, the proposed method outperforms the baseline methods with a good

margin. This is because at a low FAR, the verification threshold is mainly determined by low quality

impostor pairs, which are instances of the difficult face samples that we are targeting with additional

unlabeled data. Similar trend is observed for IJB-B dataset (Table 5.4). Note that because of fewer

number of face pairs, we are only able to test at higher FARs for IJB-B dataset.

In Table 5.5 we show the results on two different protocols of IJB-S. Both the Surveillance-to-Still

(V2S) and Surveillance-to-Booking (V2B) protocols use surveillance videos as probes and mugshots

as gallery. Therefore, IJB-S results represent a cross domain comparison problem. Overall, the

proposed system achieve new state-of-the-art performance on both protocols.

5.6 Conclusions

In this chapter, we have proposed a semi-supervised framework of learning robust face representation

that could generalize to unconstrained faces beyond the labeled training data. Without collecting
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Table 5.5 Performance on the IJB-S benchmark.

Method Surveillance-to-Still Surveillance-to-Booking
Rank1 Rank5 Rank10 1% 10% Rank1 Rank5 Rank10 1% 10%

MARN [148] 58.14 64.11 - 21.47 - 59.26 65.93 - 32.07 -
PFE [54] 50.16 58.33 62.28 31.88 35.33 53.60 61.75 62.97 35.99 39.82
ArcFace[38] 50.39 60.42 64.74 32.39 42.99 52.25 61.19 65.63 34.87 43.50
Baseline 53.23 62.91 67.83 31.88 43.32 54.26 64.18 69.26 32.39 44.32
Proposed 59.29 66.91 69.63 39.92 50.49 60.58 67.70 70.63 40.80 50.31

domain specific data, we utilized a relatively small unlabeled dataset containing diverse styles

of face images. In order to fully utilize the unlabeled dataset, two methods are proposed. First,

we showed that the domain adversarial learning, which is common in adaptation methods, can

be applied in our setting to reduce domain gaps between labeled faces and hidden sub-domains.

Second, we propose an augmentation network that can capture different visual styles in the unlabeled

dataset and apply them to the labeled images during training, making the face representation more

discriminative for unconstrained faces. Our experimental results show that as the number of labeled

images increases, the performance of the supervised baseline tends to saturate on the challenging

testing scenarios. Instead, introducing more diverse training data becomes more important and

helpful. In a few challenging protocols, we showed that the proposed method can outperform the

supervised baseline with less than half of the labeled data. By training on the labeled MS-Celeb-1M

dataset and unlabeled WiderFace dataset, our final model achieves state-of-the-art performance on

challenging benchmarks.
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Chapter 6

Summary

In this thesis, we first review the history of face recognition problem and its solutions. The

recognition pipeline includes three steps: normalization, feature learning and similarity metric.

We show that existing methods in each step in this pipeline face certain challenges when applied

to real-world face recognition scenarios. Thus, four methods are proposed to improve these steps.

First, to handle the large pose variation, an attention module is proposed to automatically localize

salient facial areas. In contrast to conventional methods to normalize faces by transformation, the

proposed method does not explicitly transform the input image. Instead, it automatically discovers

salient facial areas and incorporates their information into the global face representation. Second,

we propose a new type of face representation, namely probabilistic face embeddings (PFEs). We

show that by converting deterministic face embeddings into PFEs, we not only achieve a better

interpretability and safety control, but also boost the recognition performance by incorporating data

uncertainty into the similarity metric. Third, for the feature extraction, we found that a conventional

deep learning framework would suffer from data bias if we simply introduce more variation to

augment the training data. Thus, we propose a universal learning framework that decouples the

feature embeddings during training to reduce the negative impact of different augmentation on each

other. During testing, these decoupled features are combined under the uncertainty framework

to handle different types of variations. However, such a learning framework is still limited by
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manually designed facial variations, which could be different from data distribution of unconstrained

faces in real world applications. Finally, we propose a semi-supervised learning framework, which

utilizes an auxiliary unlabeled dataset to regularize the embedding model during training. We use a

generative model to automatically discover the latent styles within the unlabeled dataset and transfer

them to augment the labeled images. Then we combine the regularization in both the feature and

image spaces to build a more generalizable face embedding to boost unconstrained face recognition

performance.

6.1 Contributions

The main contributions of this thesis are as follows:

1. A spatial transformer-based attention module that automatically detects salient facial regions

to extract local features. The attention module could serve as an alternative to complicated

normalization techniques to reduce the variations in face images. Further, it could help to

discover discriminative local features.

2. A framework that combines multiple region attention modules to extract local features and

incorporates them into global facial representation. Experimental results on unconstrained

face databases show that the method could effectively boost the performance. And the

performance further increases when additional region attention modules are incorporated into

the framework.

3. A new type of face representation that takes feature uncertainty into account. We show that

deterministic embeddings, which are used in almost all ongoing studies on face recognition,

suffer from a feature ambiguity dilemma, which cannot be solved by increasing the model

size or augmenting the training data. Instead, we propose to convert pre-trained deep face

representations into PFEs by representing each face image as a distribution in the latent

space. The probabilistic embedding has a better interpretability and can be used as a quality
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assessment method to control the enrollment of face images.

4. A probabilistic framework that could effectively utilize data uncertainty to combine and

compare different PFEs to improve the face recognition performance. Evaluation results on

unconstrained face recognition benchmarks show that the method consistently improves the

recognition performance compared to conventional deterministic embeddings.

5. An universal feature learning framework that learns a set of decoupled face representations.

A confidence-controlled face identification loss and a variation-based decoupling loss are

proposed in the feature learning process to effectively handle different types of variations

in the training data. Experiments show that conventional approaches could suffer from new

variations added into training data while the proposed method incrementally enhances the

feature representations when additional types of variations are introduced.

6. By combining the universal face representation framework and the PFEs, the proposed

method achieves state-of-the-art performance on several challenging recognition benchmarks,

including IJB-C, TinyFace and IJB-S.

7. A semi-supervised learning framework for generalizing face representations with unlabeled

data, where a representation learning method of joint regularization from both image and

feature domains.

8. A multi-mode image translation module is proposed to perform data-driven augmentation to

increase the diversity of the labeled training samples.

9. Empirical results show that the regularization of unlabeled data helps to improve the recognition

performance on unconstrained testing datasets.
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6.2 Suggestions for Future Work

Some of the ongoing and possible future directions within the scope of robust unconstrained deep

face recognition are as follows:

• Uncertainty-aware Representation Learning In Chapter 3, we propose an uncertainty-

aware face representation, i.e. PFE, to boost face recognition performance by incorporating

uncertainty information into the face comparison process. However, the issue of data

uncertainty also exists in the learning process as well. Thus, another direction that is worth

exploring is to study whether modeling data uncertainty could accelerate the training of face

embeddings.

• Domain Generalization In Chapter 4 and Chapter 5, we use manually designed transfor-

mations and an unlabeled dataset to generalize supervised models, respectively. Another

option is to combine several heterogeneous labeled datasets from different sources to train a

more generalizable model. Such a framework is known as Domain Generalization. Although

currently we do not have access to large-scale face datasets with clear domain gaps, we believe

it would be an interesting research direction to explore if one could collect such datasets.

• Self-supervised Learning on Unlabeled Data In Chapter 5, we showed that diversity is

more important than the amount of unlabeled data. As such, we believe there is still space

in terms of methodology that could further utilize a larger set of unlabeled data to boost the

performance. A possible direction is to apply self-supervised learning to unlabeled data,

which has recently been shown successful on image classification tasks.
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